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Abstract

This study investigates the performances of different optical indices to estimate gross
primary production (GPP) of herbaceous stratum in a Mediterranean savanna with
different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluo-
rescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index5

(sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegeta-
tion index (NDVI) were computed from near-surface field spectroscopy measurements
collected using high spectral resolution spectrometers covering the visible near-infrared
regions. GPP was measured using canopy-chambers on the same locations sampled
by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by10

remote sensing quantities (RSM) can better track changes in GPP caused by nutrient
supplies compared to those driven exclusively by meteorological data (MM). Particu-
larly, we compared the performances of different RSM formulations – relying on the
use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed
photosynthetically active radiation (fAPAR) – with those of classical MM.15

Results showed significantly higher GPP in the N fertilized experimental plots during
the growing period. These differences in GPP disappeared in the drying period when
senescence effects masked out potential differences due to plant N content. Conse-
quently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it
was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 cor-20

related well with GPP during the whole measurement period. Results revealed that
the relationship between GPP and Fy760 is not unique across treatments but it is
affected by N availability. Results from a cross validation analysis showed that MM
(AICcv =127, MEcv =0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when
soil moisture was used to constrain the seasonal dynamic of LUE. However, residual25

analyses demonstrated that MM is predictively inaccurate whenever no climatic vari-
able explicitly reveals nutrient-related changes in the LUE parameter. These results
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put forward that RSM is a valuable means to diagnose nutrient-induced effects on the
photosynthetic activity.

1 Introduction

Human-induced nutrient imbalances are affecting essential processes that lead to im-
portant changes in ecosystem structure and functioning (Peñuelas et al., 2013). In5

spite of the crucial role of nutrients in regulating plant processes, efforts to describe
and predict the response of photosynthesis to such changes with remote sensing in-
formation have been limited. In the framework of the classical Monteith Light Use Ef-
ficiency (LUE) model (Monteith, 1972), estimates of photosynthesis (hereafter gross
primary productivity, GPP) are based on three key quantities: (i) the fraction of pho-10

tosynthetically active radiation (fAPAR) absorbed by the vegetation, (ii) potential LUE
(or maximum, LUEm), and (iii) correction factors related to meteorological conditions
that limit LUEm. Although Nitrogen (N) deficiencies have been recognized one of the
main controlling factors of LUEm (Madani et al., 2014), the predictive capability of LUE
models is usually circumspect as they operate based on the general assumption that15

plants are under non-limiting nutrient conditions.
Very little attention has been given to nutrient-induced effects on fAPAR and LUE in

common formulations of LUE models. Light absorption by plant is given by chlorophyll
pigments that enable photosynthetic processes. Assuming a correlation between leaf
chlorophyll pigments and leaf N content, note that N atoms are basic components of20

the chlorophylls molecular structure, several studies have demonstrated that leaf ni-
trogen content can be estimated through chlorophyll-related hyperspectral vegetation
indices (Baret et al., 2007; Schlemmer et al., 2013). Among these indices, the MERIS
Terrestrial Chlorophyll Index (MTCI, Dash and Curran, 2004) has been used as a proxy
for fAPAR (Rossini et al., 2010; Wang et al., 2012). However, leaf N content is a trait of25

GPP not only because it scales with chlorophylls but also regulates enzyme kinetic pro-
cesses driving photosynthesis and hence the physiological status of the plant (Huang
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et al., 2004; Walker et al., 2014). Then, prescribing biome-specific LUE parameters
and correcting LUEm only for climatic and environmental conditions may hamper the
accurate prediction of GPP (Yuan et al., 2014). For these reasons, recent literature
has called for better physiological descriptors of the dynamic behavior of LUE (Guanter
et al., 2014).5

The sun-induced chlorophyll fluorescence (SIF) or physiological-related reflectance
indices such as the photochemical reflectance index (PRI) provide a new optical means
to spatially infer LUE (Damm et al., 2010; Guanter et al., 2014; Rossini et al., 2015)
and can provide diagnostic information regarding plant nutrient and water status (Lee
et al., 2013; Pérez-Priego et al., 2005; Suárez et al., 2008; Tremblay et al., 2012).10

From a physiological perspective, the efficiency of green plants to transform absorbed
light into chemical energy during photosynthesis can be characterized by two main
photo-protective mechanisms: (i) non-photochemical quenching that can be detected
using the Photochemical Reflectance Index (PRI), originally proposed by (Gamon et al.,
1992) to track changes in the de-epoxidation state of the xanthophyll cycle pigments,15

and (ii) chlorophyll fluorescence, the dissipation of energy that exceeds photosynthetic
demand (Krause and Weis, 1984). The PRI has been directly correlated with LUE
(Drolet et al., 2008; Gamon et al., 1997; Nichol et al., 2000; Peñuelas et al., 2011;
Rahman et al., 2004). However, such relation may vary because of the sensitivity of
the PRI to confounding factors like those associated with temporal changes in the20

relative fraction of chlorophyll : carotenoids pigment composition (Filella et al., 2009;
Porcar-Castell et al., 2012), viewing angles and vegetation structure (Garbulsky et al.,
2011; Grace et al., 2007; Hall et al., 2008; Hilker et al., 2008).

Alternatively, the estimation of SIF by passive remote sensing systems has been
proven feasible in recent years from satellite (Frankenberg et al., 2014; Lee et al.,25

2013; Parazoo et al., 2014) to the field (Damm et al., 2010; Guanter et al., 2013;
Meroni et al., 2011), and opens further possibilities to directly track the dynamics of
LUE (Damm et al., 2010; Guanter et al., 2014). Although SIF correlates with LUE,
such relations might not be conservative since chlorophyll fluorescence emission varies
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among species types (Campbell et al., 2008) or with stress conditions such as nutrient
deficiencies (Huang et al., 2004; McMurtrey et al., 2003) or drought (Flexas et al., 2002;
Pérez-Priego et al., 2005). Likewise with the PRI, the retrieval of SIF from the apparent
reflectance signal is not trivial as long as it is affected by the vegetation structure or
canopy background components (Zarco-Tejada et al., 2013).5

Comparable spatial and temporal resolutions of radiometric and ground-based GPP
measurements are essential to accurately optimize LUE model parameters, particularly
in heterogeneous ecosystems. Previous studies have related landscape-scale eddy
covariance fluxes to radiometric measurements taken in single points to constraint
LUE models. However, the explanatory power of GPP models might be greatly re-10

duced by the spatial mismatch between radiometric and eddy covariance flux footprints
(Gelybó et al., 2013). Similar issues occur in small-scale factorial experiments where
comparable measurements on an intermediate scale between leaf-scale cuvette mea-
surements and landscape-scale eddy covariance measurements are required. Here,
we tried to overcome such limitations by combining ground-based radiometric and15

CO2 fluxes measurements with similar extension of the measurement footprint using
portable spectrometers and canopy chambers in a nutrient-manipulation experiment.
The specific objectives were:

a. to assess the effect of different nutrient supplies on grassland photosynthesis and
optical properties and their relationships during a phenological cycle, including20

both growing and drying periods,

b. to evaluate the performance of different LUE modeling approaches with varying
nutrient availability and environmental conditions.
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2 Material and methods

2.1 Site description and experimental design

A nutrient manipulation experiment was set up in a Mediterranean savannah in Spain
(39◦56′24.68′′N, 5◦45′50.27′′W; Majadas de Tietar, Caceres). The site is character-
ized by a mean annual temperature of 16 ◦C, mean annual precipitation of ca. 700 mm,5

falling mostly from November until May, and by a very dry summer. Similar to most
Mediterranean grasland, grazing (< 0.7 cowsha−1) is the main land use in the site. The
site is defined as a typical Mediterranean savanna ecosystem, low density of oak trees
(mostly Quercus Ilex (L.), ∼ 20 treesha−1) dominated by a herbaceous stratum. The
experiment itself was restricted to an open grassland area which was not influenced by10

tree canopy. The herbaceous stratum is dominated by species of the three main func-
tional plant forms (grasses, forbs and legumes). The fraction of the three plant forms
varied seasonally according to their phenological status (Table 1). Overall, leaf area
measurements of the herbaceous stratum characterized the growing season phenol-
ogy as peaking early in April and achieving senescence by the end of May (Table 1).15

The experiment consisted of four randomized blocks of about 20m×20m. Each block
was separated into four plots of 9m×9m with a buffer of 2 m in between to avoid
boundary effects. In each block, four treatments were applied (see Fig. 1):

a. control treatment (C) with no fertilization;

b. Nitrogen addition treatment (+N) with an application of 100 kgNha−1 as potas-20

sium nitrate (KNO3) and ammonium nitrate (NH4NO3);

c. Phosphorous addition treatment (+P) with an application of 50 kgPha−1 as
monopotassium phosphate (KH2PO4); and

d. N and P addition treatment (+NP), juxtaposing treatments (b) and (c).

Each fertilizer was dissolved in water and sprayed on foliage early in the growing25

season (21 March 2014). The same amount of water used in the fertilizer solutions
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(∼ 2 Lm−2) was sprayed on the C treatment to avoid water imbalances among treat-
ments.

Within each plot, two permanent, non-disturbed parcels (32 in total, see black
squares in Fig. 1) were dedicated to monitor CO2 fluxes (net ecosystem CO2 exchange,
NEE; and daytime ecosystem respiration, Reco). While NEE measurements were per-5

formed over the course of the day (from early in the morning to late afternoon), spectral
measurements were conducted simultaneously with flux measurements only around
noon on half of the parcels (16 in total).

Flux and spectral measurements were carried out in four field campaigns:

– campaign #1: before fertilization (20 March 2014),10

– campaign #2: three weeks after fertilization (15 April 2014) during the peak of the
growing period,

– campaigns #3 and #4: on 7 and 27 May 2014, respectively, concurring with the
drying period were performed to evaluate joint effects related to physiological
senescence processes.15

Ancillary measurements were taken in every field campaign as follows: green plant
area index (PAIg) and aboveground biomass were directly measured by harvest in four
parcels (0.25m×0.25m) within each plot in the area surrounding that where spectral
and flux measurements were taken. All samples were refrigerated just after collection,
and transported for laboratory analyses. Fresh samples were separated into functional20

groups, the sample was scanned and green plant area was measured using image
analysis (WinRHIZO, Regent Instruments Inc., Canada). Afterwards, fresh samples
were dried in an oven at 65 ◦C for 48 h and weighed to determine dry biomass. To
analyze the nutrient content in leaf mass, biomass subsamples were ground in a ball
mill (RETSCH MM200, Retsch, Haan, Germany) and total C and N concentrations25

were determined with an elemental analyzer (Vario EL, Elementar, Hanau, Germany).
P concentrations were also measured: 100 mg biomass subsamples were diluted in
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3 mL of HNO3 65 %, (Merck, Darmstadt, Germany) and microwave digested at high
pressure (Multiwave, Anton Paar, Graz, Austria; Raessler et al., 2005). Afterwards,
elemental analysis was conducted using inductively coupled plasma – optical emission
spectrometry (ICP-OES, Optima 3300 DV, Perkin Elmer, Norwalk, USA).

2.2 Flux measurements and meteorological data5

Net CO2 fluxes were measured with three transparent chambers of a closed dynamic
system. The chambers consisted of a cubic (0.6m×0.6m×0.6m) transparent low-
density polyethylene structure connected to an infrared gas analyzer. The chambers
were equipped with different sensors to acquire environmental and soil variables, all in-
stalled at the chamber ceiling: photosynthetically active radiation (PAR, placed outside10

of the chamber to be handled and leveled) was measured with a quantum sensor (Li-
190, Li-Cor, Lincoln, NE, USA); air and vegetation temperatures were measured with
a thermistor probe (type 107, Campbell Scientific, Logan, Utah, USA) and an infrared
thermometer (Tc, IRTS-P, Apogee, UT, USA); atmospheric pressure was measured in-
side the chamber using a barometric pressure sensor (CS100, Campbell Scientific,15

Logan, Utah, USA). The chambers were also equipped with soil temperature and hu-
midity sensors; soil water content was determined with an impedance soil moisture
probe (Theta Probe ML2x, Delta-T Devices, Cambridge, UK) at 5 cm depth and soil
temperature (type 107, Campbell Scientific, Logan, Utah, USA) at 10 cm depth.

The chamber operated as a closed dynamic system. A small pump circulates an20

air flow of 1 Lmin−1 through the sample circuit: air is drawn from inside the cham-
ber – through three porous-hanging tubes spatially distributed through the chamber
headspace – to an infrared gas analyzer (IRGA LI-840, Lincoln, NE, USA), which
measures CO2 and water vapor mole fractions at 1 Hz; this air flow is then returned
to the chamber. The hanging tubes allowed spatially distributed sampling, obviating25

the need to homogenize air during chamber deployment. Nevertheless, one small fan
(12 V, 0.14 A) was fixed at 0.3 m on a floor corner of the chamber and angled 45◦ up-
ward.
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A 0.6m×0.6m metal collar was installed in each permanent parcel of each plot. The
collar provided a flat surface onto which the bottom of the chamber was placed. The
chamber was open and ventilated prior to measurement, so that initial air composition
and temperature represented natural atmospheric conditions. For the NEE measure-
ment, the transparent chamber was placed on the collar (closed position), and fluxes5

were calculated from the rate of change of the CO2 molar fraction (referenced to dry
air) within the chamber. Reco was measured just after NEE using an opaque blan-
ket that covered the entire chamber and kept it dark during the measurements (PAR
values around 0). Chamber deployments lasted 3 min as a general rule. Chamber dis-
turbance effects and correction for systematic errors (leakage, water dilution and gas10

density correction, and light attenuation by the chamber wall) were applied according
to Pérez-Priego et al. (2015). Fluxes were calculated with a self-developed R Package
(http://r-forge.r-project.org/projects/respchamberproc/).

2.3 Field spectral measurements

Midday spectral measurements at canopy level were carried out under clear sky con-15

ditions using two portable spectrometers (HR4000, OceanOptics, USA) characterized
by different spectral resolutions. Spectrometer 1, characterized by a Full Width at Half
Maximum (FWHM) of 0.1 nm and a 700–800 nm spectral range was specifically de-
signed for the estimation of sun-induced chlorophyll fluorescence at the O2-A band
(760 nm). Spectrometer 2 (FWHM= 1 nm, 400–1000 nm spectral range) was used for20

the computation of reflectance and vegetation indices. Spectrometers were housed in
a thermally regulated Peltier box, keeping the internal temperature at 25 ◦C in order to
reduce dark current drift. The spectrometers were spectrally calibrated with a source of
known characteristics (CAL-2000 mercury argon lamp, OceanOptics, USA) while the
radiometric calibration was inferred from cross-calibration measurements performed25

with a calibrated FieldSpec FR Pro spectrometer (ASD, USA). This spectrometer was
calibrated by the manufacturer with yearly frequency.
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Incident solar irradiance was measured by nadir observations of a leveled calibrated
standard reflectance panel (Spectralon; LabSphere, USA). Measurements were ac-
quired using bare fiber optics with an angular field of view of 25◦. The average canopy
plane was observed from nadir at a distance of 110 cm (43 cm diameter field of view)
allowing for collecting measurements of 50 % of the surface area covered by the cham-5

ber measurements. The manual rotation of a mast mounted horizontally on the tripod
allowed sequential observation of the vegetated target and the white reference cali-
brated panel. More in detail, every acquisition session consisted in the consecutive
collection of the following spectra: instrument dark current, radiance of the white refer-
ence panel, canopy radiance and radiance of the white reference panel. The radiance10

of the reference panel at the time of the canopy measurement was then estimated by
linear interpolation.

For every acquisition, 3 and 10 scans (for Spectrometers 1 and 2, respectively) were
averaged and stored as a single file. Five measurements were collected for each plot.
Spectral data were acquired with dedicated software (Meroni and Colombo, 2009) and15

processed with a specifically developed IDL (ITTVIS IDL 7.1.1) application. This appli-
cation allowed the basic processing steps of raw data necessary for the computation
of the hemispherical conical reflectance factor described by Meroni et al. (2011).

The following indices were selected as suitable to investigate long term nutrient-
mediated effects on photosynthesis. The NDVI (Rouse et al., 1974) was selected be-20

cause it correlates well with plant area and among traditional spectral vegetation in-
dices is used worldwide by classical LUE models as a surrogate for fAPAR (Di Bella
et al., 2004). The MTCI (Dash and Curran, 2004) was selected because it was specif-
ically designed for canopy chlorophyll content estimation, and recently used as proxy
for fAPAR as well as NDVI. In this study we used the PRI and SIF as surrogates for25

LUE. A scaled PRI (sPRI) calculated as (PRI+1)/2 was used. SIF was estimated by
exploiting the spectral fitting method described in Meroni et al. (2010), assuming linear
variation of the reflectance and fluorescence in the O2-A absorption band region. The
spectral interval used for SIF estimation was set to 759.00–767.76 nm for a total of 439
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spectral channels used. For methodological distinction among existing approaches,
hereafter SIF is referred to as F760. Because F760 is affected by PAR we use the
apparent chlorophyll fluorescence yield (Fy760; Rossini et al., 2010) computed as the
ratio between F760 and the incident radiance in a nearby spectral region. A summary
of the formulation to compute the vegetation indices and their corresponding target and5

proxy in the LUE model approach are presented in Table 2.

2.4 Relationship between GPP and remote sensing data

Ecosystem-level GPP was computed as the difference between NEE and daytime Reco
taken consecutively with the chambers. To assess how GPP is modulated by light
among treatments and over the phenological cycle of the herbaceous stratum, we com-10

puted the parameters of photosynthetic light response curve (PLRC). Specifically, the
Michaelis–Menten function was fitted to GPP and PAR data taken throughout the day
for each field campaign as follows:

GPPi =
α ·β · PARi
β+ PARi ·α

(1)

where α is a parameter describing the photosynthetic quantum yield15

(µmolCO2 µmolphotons−1), and β is the parameter that extrapolates to GPP at
saturating light condition (µmolCO2 m−2 s−1). According to Ruimy et al. (1994), we
used the optimized parameters of the PLRC as defined in Eq. (1) to estimate the GPP
at 2000 µmolquantumm−2 s−1 of PAR (GPP2000).

We evaluated direct relationships between midday GPP values (measurements20

taken around noon with the chamber) and simultaneous measurements of Fy760 and
spectral indices (NDVI, sPRI, MTCI). In addition, to avoid confounding factors in the
relationship between Fy760 and sPRI and photosynthesis, we also used GPP2000 as
a steady-state photosynthetic capacity descriptor.
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2.5 Monteith’s light-use efficiency modelling approaches

Following Monteith’s LUE framework (Eq. 2) two alternative modeling approaches were
used:

GPP = LUE · fAPAR · PAR, (2)

i. Meteorology-driven methods (MM); based on the MOD17 formulation, fAPAR is5

approached through the relationship with NDVI and includes limiting functions f
(meteo), which are based on climatic driving parameters to limit maximum LUE
(LUEmax). Alternatively, Eq. (2) was reformulated as follows:

GPP = LUEmax · f (meteo) · (a0 · NDVI +a1) · PAR, (3)

where LUEmax, ao, and a1 are model parameters. Three different f (meteo) func-10

tions were tried;

a. MM-VPD, this method is a simplification of the original MOD17, in which
f (meteo) includes two linear ramp functions of both maximum and minimum
vapour pressure deficit (VPD) and minimum temperature (T ). Since minimum
temperature was not limiting at the site, we fixed the f (meteo) parameters15

as suggested by Heinsch et al. (2006) but constraining only a function based
on VPD as follows:

f (meteo) =
[

1−
(

VPD − VPDmin

VPDmax − VPDmin

)]
, (4)

then, VPDmax and VPDmin are defined as the two parameters of the f (meteo)
term.20

b. MM-SWC, where f (meteo) includes a soil water content (SWC) function
(Migliavacca et al., 2011) as the limiting factor of LUEmax:

f (meteo) =
1

1+exp(SWCmax − a · SWC)
, (5)
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here, SWCmax and a are defined as the parameters of the f (meteo) term.

c. MM (SWC-VPD), where f (meteo) includes both soil water content and VPD
functions as limiting factors:

f (meteo) =
[

1−
(

VPD − VPDmin

VPDmax − VPDmin

)]
·
[

1

1+exp(SWCmax−a· SWC)

]
, (6)

here, VPDmax, VPDmin, SWCmax and a are defined as the parameters of the5

f (meteo) term.

ii. RS-based method (RSM); based on a solution of Eq. (1) as follows:

GPP = LUE · fPAR · PAR = (a0 · Ph +a1) · (a2 · St +a3) · PAR

= (b0 · Ph +b1 · St +b2 · Ph · St +b3) · PAR,
(7)

where four alternative model formulations were obtained from the combination of
the sPRI or Fy760 as the physiological related proxy (Ph) for LUE, and NDVI or10

MTCI as structural-related (St) proxy for fAPAR. In Eq. (7), b0, b1, b2, and b3 are
fitting parameters (Rossini et al., 2010).

2.6 Statistical analysis and model performance

All model formulations were optimized using GPP and spectral measurements taken at
midday. Since the means of spectral measurements per treatment could have unequal15

variance, a Welch’s t test was performed to evaluate significant differences between
the mean values of the different vegetation indices for each treatment and over the
four field campaigns. In addition, an analysis of covariance (ANCOVA) was used to test
whether or not there was a significant interaction by the treatment effect between GPP
and Fy760 and different spectral indices.20
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2.6.1 Cross validation analyses and model evaluation

Different model formulations were evaluated in leave-one-out (loo) cross-validation:
from the whole dataset composed by n observations, one data point at a time was
removed. The model was fitted against the n−1 remaining data points (training set)
while the excluded data (validation set) were used for model evaluation. The cross-5

validation process was then repeated n times, with each of the n observations used
exactly once as the validation set. For each validation set of the cross-validated model,
statistics were calculated.

Model accuracy was evaluated by means of different statistics according to Janssen
and Heuberger (1995): root mean square error (RMSE), relative root mean square10

error (rRMSE) determination coefficient (r2) and model efficiency (ME). The model
performances in loo cross-validation were also calculated and reported as RMSEcv,
rRMSEcv, r2 cv and MEcv.

The Akaike Information Criterion (AICcv) was used to evaluate the trade-off between
model complexity (i.e. number of parameters) and explanatory power (i.e. goodness-15

of-fit) of the different model formulations proposed. The AICcv is a method based on
information theory that is useful for statistical and empirical model selection purposes
(Akaike, 1998). Following Anderson et al. (2000), in this analysis we used the following
definition of AICcv:

AICcv = 2(ρ+1)+n
[

ln
(

RSScv

n

)]
(8)20

where n is the number of samples (i.e. observations), p is the number of model param-
eters and RSScv is the residual sum of squares divided by n.

The LUE model formulations proposed in Sect. 2.4 can be ranked according to AICcv,
where the model with lowest AICcv is considered the best among the different model
formulations.25

All model parameters (MM, and RSM) were estimated by using a Gauss–Newton
nonlinear least square optimization method (Bates and Watts, 2008), and standard
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errors of parameters were estimated by bootstrapping (number of sampling, n = 500;
Efron and Tibshirani, 1994), both implemented in the R standard package (R version
3.0.2, R Development Core Team, 2011).

3 Results

3.1 Effects of fertilization on plant nutrient contents and GPP5

Fertilization caused strong variations in leaf N and P content among treatments, plant
forms and across field campaigns (Table 2); while total N content in plants ranged
slightly between 13.8±1.2 and 15.4±1.7 mgg−1 for the C and +P treatments over the
whole experiment, the largest increases in total N were found in the peak of the grow-
ing season (#2, 20 March 2014), when +NP and +N treatments reached values of up10

to 23.7±2.0 and 23.5±4.1 mgg−1, respectively. Although slightly lower, the differences
in total N between C and +P, and +NP and +N remained high over the drying period.
P was higher in +NP and +P treatments after fertilization, as compared to +N and
C treatments. Consequently, the N : P ratio at the first campaign after fertilization (#2)
achieved values of up to 14.2, 6.6, 6, and 3.7, in +N, C, +NP, and +P treatments, re-15

spectively. Similar differences in N : P between treatments were also observed during
the drying period (#3 and #4, Table 2). On the other hand, PAIg ranged from 0.4 m2 m−2

in campaign #4 to up to 2.5 m2 m−2 in campaign #2. No differences were found in PAIg
among treatments since grazing apparently offset any potential difference in the green
aboveground production. Regarding variations in the fraction of plant forms, grass was20

more abundant in +N and +NP treatments compared to C and +P treatments, partic-
ularly during the drying period.

Fertilization caused significant differences in the daily average GPP (p <
0.05) between N-addition treatments (mean values of 19.62±4.15 and 18.19±
5.67 µmolCO2 m−2 s−1 for +N and +NP, respectively) and C and +P treatments25

(14.31±5.39 and 14.40±4.09 µmolCO2 m−2 s−1, respectively) in the peak of the grow-
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ing season (campaign #2); a relative difference of 37 % in GPP was found between
+N and +NP and C treatments. During the drying period, however, GPP was sub-
stantially down regulated (campaigns #3 and #4) and no significant differences were
found, regardless of differences in plant N content observed among treatments. The
potential photosynthetic capacity GPP2000 (Fig. 2) derived from PLRC was similar in5

the four treatments in the pretreatment period (campaign #1, Fig. 2a). GPP2000 varied
throughout the season and peaked in the campaign #2 (15 April) in all treatments. At
this time PLRC of the +N and +NP treatments diverged clearly from no N addition
treatments (C and +P, Fig. 2b). GPP2000 was higher in +N and +NP treatments (18.6
and 20.1 µmolCO2 m−2 s−1, respectively) compared to C and +P treatments (14.9 and10

15.4 µmolCO2 m−2 s−1, respectively). After campaign #2, when the soil layer at 5 cm
depth dried out appreciably (volumetric water content achieved values of 3 % vol., data
not shown), vegetation progressively senesced and GPP in turn was down-regulated
and converged to similar values in all treatments, regardless the higher N content ob-
served in +N and +NP treatments as compared with C and +P treatments (Table 2).15

During the drying season, maximum daily GPP values decreased in all treatments
ranging between 7 and 9 µmolCO2 m−2 s−1 and no significant differences between
PLRC were observed (Fig. 2c and d). These results indicate that the senescence of
the herbaceous stratum, which is regulated by water availability, strongly modulated
the photosynthetic capacity of the vegetation over the long term.20

3.2 Effects of fertilization on remote sensing data

Optical properties of the analyzed plots were similar during campaign #1, before the nu-
trient application. A pronounced seasonal time course was observed for both Ph (sPRI
and Fy760) and structural indices (St; NDVI and MTCI) with maximum values during
the second campaign. It is interesting to note that while for St indices the maximum25

values were reached in +N plots, +NP plots showed maximum Ph values. Vegeta-
tion indices and Fy760 then decreased in the drying period (Fig. 3). As for chamber
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measurements, differences between treatments were more evident during campaign
#2 when C plots showed statistically lower values for all the indices considered, while
only MTCI was able to detect significant differences between N fertilized plots (+N and
+NP). Furthermore significant differences in Fy760 and MTCI between C and the other
three treatments were found (p < 0.05) in the drying period (campaign #4,). NDVI var-5

ied significantly with changes in PAIg with values of 0.4 in the campaign #4 up to 0.8 in

the campaign #2 (p < 0.001, r2 = 0.79).

3.3 Relationship between remote sensing data and GPP

While Ph indices (Fy760 and sPRI) varied linearly with GPP in all treatments (p <
0.001, r2 = 0.66 for Fy760 and p < 0.001, r2 = 0.79 for sPRI, respectively, Fig. 4a and10

b ), different patterns were observed for St: NDVI and GPP were best fitted by an
exponential regression (p < 0.001, r2 = 0.77 Fig. 4c), while a weak linear relationship
between MTCI and GPP (p < 0.05, r2 = 0.45, Fig. 4d) was found. Although a weak
relation between MTCI and GPP was found, MTCI was strongly correlated with plant
N content (y = 14.17x−2.49, p < 0.001, r2 = 0.86). Note that these results are com-15

puted excluding data taken in the pre-treatment campaign (#1) and differences in the
relationship between remote sensing data and GPP among treatments can be only
attributed to nutrient-induced effects. The ANCOVA test did not show significant differ-
ences neither in slope nor intercept of the relationship between GPP and sPRI, and
NDVI across treatments. However, significant differences were found in the relation-20

ship between GPP and Fy760 (p < 0.1, Fig. 4b) and GPP and MTCI (p < 0.01, Fig. 4d)
between N addition treatments (+N and +NP) and C treatments (C and +P).

Similar to GPP, GPP2000 was also significantly related to mean midday sPRI (r2 =
0.76, p < 0.001, Fig. 5a) and Fy760 (r2 = 0.76, p < 0.001, Fig. 5b). As expected, an
exponential regression fitted best for NDVI, while a poor relationship with MTCI was25

found (data not shown).
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3.4 Modeling GPP

Based on the AICcv criterion, MM (VPD-SWC) outperformed MM-VPD, MM-SWC and
RSM models. Although MM (VPD-SWC) showed high accuracy in the predictions
(MEcv = 0.879, r2

cv = 0.881), this model had a tendency to underestimate observation
at high GPP values (see comparison between model predictions and observations,5

Fig. 6a–c). Note that the highest biases in modeled GPP values among MM models
belong to +N and +NP treatments in field campaign #2. Since the four treatments ex-
perienced the same environmental conditions (i.e. comparable values of SWC, VPD,
air temperature), this bias can be attributed to the higher N content (+N and +NP
treatments) as compared to C and +P treatments. Remarkably, residuals of the MM10

(VPD-SWC) taken from periods with moist soil (SWC> 15) were significantly corre-
lated with sPRI and Fy760 (p < 0.05, Fig. 7a and b, respectively). However, no biases
between residuals and predictions were observed in RSM over the span of values and
treatments (Fig. 8). Results from the evaluation of model performance indicated that
RSM performs best when NDVI rather than MTCI, is used as St in the Eq. (7) and,15

hence, as a proxy for fAPAR (Table 3). Our results indicated that RSM performs best
when either Ph (sPRI or Fy760) is combined with NDVI as St.

4 Discussion

4.1 Effects of nutrients on GPP and remote sensing data and their
relationships20

Nutrient fertilization, particularly N inputs, induced physiological changes manifested
as an increase in photosynthetic capacity (i.e. GPP2000). As we expected, plant N
content showed to be a trait of photosynthesis that influences a variety of aspects
of photosynthetic physiology (Ciompi et al., 1996; Sugiharto et al., 1990). These phys-
iological changes were reflected on the optical properties, particularly on fluorescence25
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and sPRI. The increase in fluorescence with N fertilization inputs was recently ex-
plained as the combined effect that a higher N content has on (1) chlorophyll content,
which magnifies APAR and enhances fluorescence signal, and on (2) the increased
photosynthetic capacity that increases the fluorescence, that, ultimately reduces the
non-photochemical quenching (NPQ), which in turn affects PRI (Cendrero-Mateo et al.,5

2015).
The relationships between GPP and Fy760 is not unique and may vary from optimal

to non-optimal environmental conditions (i.e. nutrient deficiencies, water stress), when
other regulatory mechanisms might reduce the degree of coupling between fluores-
cence and photosynthesis (Cendrero-Mateo et al., 2015; Porcar-Castell et al., 2012).10

Although Fy760 was positively correlated with GPP, significant differences in the slope
of this relationship were observed between treatments (Fig. 4b). Further studies are
needed to fully explore the relationship between Fy760 and GPP under different stress
conditions and over different ecosystems. However, if confirmed, the effect of nutrient
availability on the relationship between Fy760 and GPP could have important implica-15

tions in GPP modeling. This result suggests that the inclusion of a correction factor
related to leaves N : P stoichiometry should be considered when modeling GPP as-
suming a linear relationship with fluorescence at plant functional type level (Guanter
et al., 2014; Joiner et al., 2013).

In this study we also explored the capability of remote sensing to describe ecosys-20

tem functional properties defined as those quantities that summarize and integrate
ecosystem processes and responses to environmental conditions and can be retrieved
from ecosystem level fluxes (e.g. GPP2000) and structural measurements (Reichstein
et al., 2014). GPP at light saturation (i.e. GPP2000) is one example of an ecosystem
functional property, shown here to be quite correlated to sPRI and Fy760 (Fig. 5). This25

result suggests that sPRI and Fy760 open also new opportunities for remote sensing
products to describe the spatiotemporal variability of essential descriptors of ecosys-
tem functioning. Inferring GPP2000 using remote-sensing has important implication both
for monitoring global carbon cycle and for benchmarking terrestrial biosphere models.
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MTCI was tightly related with N content (r2 = 0.86, p < 0.001), independent of other
structural variables (i.e. PAIg), and can be used as a good indicator of N availability. Al-
though MTCI has been proven to be very sensitive to variations in chlorophyll contents
(Dash and Curran, 2004) and hence linkable with light absorption processes, it was
weakly correlated with GPP, particularly in plots added with N (+N and +NP; r2 = 0.27,5

p < 0.01, Fig. 4d). A quite wide range of GPP values were found at high values of MTCI
– high GPP values corresponding to the growing season and low ones to the drying
period – which can be explained by two simultaneous mechanisms.

First, despite the high plant N content, physiological mechanisms including stomatal
control or reduced carboxylation efficiency down-regulate GPP (Huang et al., 2004) and10

ultimately might break the relationship between GPP and MTCI. Second, MTCI tracks
changes in N content regardless changes in canopy structure occuring during the dry
season when grass achieved senescence (i.e. green to dry biomass ratio, PAIg). More
studies aimed at the separation of the combined effects of N and changes in green/dry
biomass fractions on fAPAR are essential. On the other hand, although NDVI followed15

the seasonal dynamic of PAIg, it saturated at high GPP values indicating the low ability
of this index to detect spatial variations induced by N fertilization.

Although optical measurements were taken at high spatial resolution (< 0.36 m2), the
separation of confounding factors affecting sPRI or Fy760 is essential to elucidate the
mechanistic association between sPRI or Fy760 and GPP. Like sPRI, the retrieval of20

Fy760 from the apparent reflectance signal can be also affected by vegetation struc-
ture or canopy background components (Zarco-Tejada et al., 2013). After optimization
and selection of the best model parameters using NDVI and sPRI (or Fy760) as driver,
we analyzed the response of simulated GPP to variations in NDVI and sPRI (or Fy760,
Fig. 9). Results indicate that sPRI explained up to 37.5 % of the relative variations of25

GPP when NDVI was saturated, particularly at the peak of the growing season (cam-
paign #2) when NDVI was unable to describe changes in GPP. However, when soil
dried out during the drying period, and a decrease in photosynthetic capacity was
observed, small variations in GPP were hardly explained through sPRI or Fy760 as
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well (Fig. 9b). Similar to other studies in semi-arid ecosystems, the lack of sensitivity
of sPRI or Fy760 to changes in GPP during dry conditions can be explained by the
soil background effect on the reflectance signal (Barton and North, 2001; Mänd et al.,
2010; Zarco-Tejada et al., 2013). Accordingly, Rahman et al. (2004) pointed out that
conditions where sPRI performs best are in dense canopies with low portion of bare5

soil.

4.2 Performances of different LUE modeling approaches

Here we aim at answering the question how can we better simulate GPP using LUE
modeling with varying nutrient availability and environmental conditions by drawing
comparisons between the two model philosophies; RSM against MM approaches.10

There are an increasing number of studies focused on the development of LUE mod-
els driven by remotely sensed information to better explain spatio-temporal variations
of GPP (Gitelson et al., 2014; Rossini et al., 2012, 2014). However, nutrient avail-
ability (and in particular N) greatly influence the spatial variability of LUE even within
the same plant-functional type (e.g. grasslands) and further studies are essential. The15

slightly better performance in cross validation of the MM (VPD-SWC) against all model
configurations, including RSM, supports the importance of a joint use of SWC and
VPD as key parameters to constraint LUE in arid and semi-arid ecosystems (Prince
and Goward, 1995). However, residual analyses demonstrated that MM (VPD-SWC)
was unable to track N-induced differences in GPP during the growing period, when20

both parameters are not limiting (Fig. 7). By contrast, accurate estimates of GPP were
obtained with RSM both over the drying and the growing periods. These results also
indicate the importance of physiological descriptors to constrain LUE, which prevails
over structural factors controlling fAPAR (i.e. green biomass) under given environmen-
tal conditions and encourage the use of hyperspectral remote sensing for diagnostic25

upscaling of GPP.
With sPRI or Fy760 as a proxy for LUE, RSM is presented as a valuable means

to diagnose N-induced effects on physiology. Our results show the limits of MM in
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predicting the spatial and temporal variability of GPP when LUE is not controlled by
meteorological drivers alone (VPD, temperature, soil moisture). Accordingly, GPP is
eventually biased whenever neither climatic nor structural state variables explicitly re-
veal spatial changes in the LUE parameter associated with plant nutrient availability;
residuals showed a clear tendency to underestimate the highest modelled GPP values,5

significantly correlated to Fy760 and sPRI (Fig. 7).

5 Concluding remarks

1. Fy760 and sPRI correlated well with GPP: both increased with N content and
decreased with senescence.

2. MTCI can be used as a good descriptor of N content in plants but the relationship10

with GPP breaks down under drought conditions.

3. Meteo-driven models were able to describe temporal variations in GPP, and soil
moisture can be a key parameter to better track the seasonal dynamics of LUE
in arid environments. However, meteo-driven models were unable to describe N-
induced effects on GPP. Important implication can be derived from these results15

and uncertainties in the prediction of global GPP still remain when meteo-driven
models do not account for plant nutrient availability.

4. sPRI or Fy760 provide valuable means to diagnose nutrient-induced effects on
the photosynthetic activity and, therefore, should be included in diagnostic GPP
models.20

Author contributions. O. Perez-Priego, M. Migliavacca, and M. Rossini conceived the analy-
ses, wrote the introduction, results and discussion, and led the preparation and revision of the
manuscript; F. Fava, T. Julitta made hyperspectral measurements, computed spectral indices
and fluorescence, and wrote part of the methods section; J. Guan, M. Schrumpf and O. Perez-
Priego made chamber measurements, soil and vegetation lab analysis and wrote part of the25

11913

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

methods section; J. Guan organized the dataset; O. Kolle provided technical assistance in the
design and construction of the chambers and data acquisition system and wrote part of the
methods section; G. Moreno and A. Carrara designed the fertilization protocol, organized sam-
pling, provided technical assistance for the managing of the experiment and contributed to data
interpretation; T. Wutzler and O. Perez-Priego developed the R package for flux calculations,5

computed GPP and flux uncertainties and contributed to statistical analyses and interpretation.
N. Carvalhais and M. Reichstein contributed to analyses and interpretation and to draft the
manuscript. All authors discussed the results and contributed to the manuscript.

Acknowledgements. The authors acknowledge the Alexander von Humboldt Foundation and
the Max Planck Research Award that is funding the research activity. We acknowledge City10

council of Majadas de Tietar for its support. The authors acknowledge Andrea Perez-Bargueno,
and Enrique Juarez-Alcalde from (University of Extreamdura), Ramon Lopez-Jimenez (CEAM),
Kathrin Henkel, and Martin Hertel from (MPI-Jena) and Marco Celesti (UNIMIB) for the support
in the field, lab analysis and the development of the transparent chambers; Javier Pacheco
Labrador and Maria Pilar Isabel Martin (CSIC) for help calibrating the radiometric system. We15

thank Andrew S. Kowalski (University of Granada, Spain) for his review of the manuscript and
constructive comments.

The article processing charges for this open-access publication
were covered by the Max Planck Society.20

References

Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Se-
lected Papers of Hirotugu Akaike, edited by: Parzen, E., Tanabe, K., and Kitagawa, G.,
Springer Series in Statistics, Springer, New York, 199–213, 1998.

Anderson, D. R., Burnham, K. P., and Thompson, W. L.: Null hypothesis testing: problems,25

prevalence, and an alternative, J. Wildlife Manage., 64, 912–923, 2000.
Baret, F., Houlès, V., and Guérif, M.: Quantification of plant stress using remote sensing ob-

servations and crop models: the case of nitrogen management, J. Exp. Bot., 58, 869–880,
2007.

11914

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Barton, C. V. M. and North, P. R. J.: Remote sensing of canopy light use efficiency using the
photochemical reflectance index: model and sensitivity analysis, Remote Sens. Environ., 78,
264–273, 2001.

Bates, D. M. and Watts, D. G.: Frontmatter, in: Nonlinear Regression Analysis and Its Applica-
tions, John Wiley & Sons, Inc., Hoboken, NJ, USA, 40–43, 2008.5

Campbell, P. K. E., Middleton, E. M., Corp, L. A., and Kim, M. S.: Contribution of chlorophyll
fluorescence to the apparent vegetation reflectance, Sci. Total Environ., 404, 433–439, 2008.

Cendrero-Mateo, M. P., Carmo-Silva, A. E., Porcar-Castell, A., Hamerlynck, E. P., Papuga, S. A.,
and Moran, M. S.: Dynamic response of plant chlorophyll fluorescence to light, water and
nutrient availability, Funct. Plant Biol., 42, 746–757, doi:10.1071/FP15002, 2015.10

Ciompi, S., Gentili, E., Guidi, L., and Soldatini, G. F.: The effect of nitrogen deficiency on leaf gas
exchange and chlorophyll fluorescence parameters in sunflower, Plant Sci., 118, 177–184,
1996.

Damm, A., Elbers, J., Erler, A., Gioli, B., Hamdi, K., Hutjes, R., Kosvancova, M., Meroni, M.,
Miglietta, F., Moersch, A., Moreno, J., Schickling, A., Sonnenschein, R., Udelhoven, T., van15

der Linden, S., Hostert, P., and Rascher, U.: Remote sensing of sun-induced fluorescence to
improve modeling of diurnal courses of gross primary production (GPP), Glob. Change Biol.,
16, 171–186, 2010.

Dash, J. and Curran, P. J.: The MERIS terrestrial chlorophyll index, Int. J. Remote Sens., 25,
5403–5413, 2004.20

Di Bella, C. M., Paruelo, J. M., Becerra, J. E., Bacour, C., and Baret, F.: Effect of senescent
leaves on NDVI-based estimates of fAPAR: experimental and modelling evidences, Int. J.
Remote Sens., 25, 5415–5427, 2004.

Drolet, G. G., Middleton, E. M., Huemmrich, K. F., Hall, F. G., Amiro, B. D., Barr, A. G.,
Black, T. A., McCaughey, J. H., and Margolis, H. A.: Regional mapping of gross light-use25

efficiency using MODIS spectral indices, Remote Sens. Environ., 112, 3064–3078, 2008.
Efron, B. and Tibshirani, R. J.: An Introduction to the Bootstrap, CRC Monographs on Statistics

& Applied Probability, Chapman & Hall, New York, 271–281, 1994.
Filella, I., Porcar-Castell, A., Munné-Bosch, S., Bäck, J., Garbulsky, M. F., and Peñuelas, J.: PRI

assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes30

in de-epoxidation state of the xanthophyll cycle, Int. J. Remote Sens., 30, 4443–4455, 2009.
Flexas, J., Escalona, J. M., Evain, S., Gulías, J., Moya, I., Osmond, C. B., and Medrano, H.:

Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of

11915

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1071/FP15002


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

net CO2 assimilation and stomatal conductance during water-stress in C3 plants, Physiol.
Plantarum, 114, 231–240, 2002.

Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., and Tay-
lor, T. E.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon
Observatory-2, Remote Sens. Environ., 147, 1–12, 2014.5

Gamon, J. A., Peñuelas, J., and Field, C. B.: A narrow-waveband spectral index that tracks
diurnal changes in photosynthetic efficiency, Remote Sens. Environ., 41, 35–44, 1992.

Gamon, J. A., Serrano, L., and Surfus, J. S.: The photochemical reflectance index: an opti-
cal indicator of photosynthetic radiation use efficiency across species, functional types, and
nutrient levels, Oecologia, 112, 492–501, 1997.10

Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y., and Filella, I.: The photochemical re-
flectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use
efficiencies: a review and meta-analysis, Remote Sens. Environ., 115, 281–297, 2011.

Gelybó, G., Barcza, Z., Kern, A., and Kljun, N.: Effect of spatial heterogeneity on the validation
of remote sensing based GPP estimations, Agr. Forest Meteorol., 174–175, 43–53, 2013.15

Gitelson, A. A., Peng, Y., Arkebauer, T. J., and Schepers, J.: Relationships between gross
primary production, green LAI, and canopy chlorophyll content in maize: implications for
remote sensing of primary production, Remote Sens. Environ., 144, 65–72, 2014.

Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T., and Bowyer, P.: Can we measure terres-
trial photosynthesis from space directly, using spectral reflectance and fluorescence?, Glob.20

Change Biol., 13, 1484–1497, 2007.
Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.-E., and Joiner, J.:

Using field spectroscopy to assess the potential of statistical approaches for the retrieval of
sun-induced chlorophyll fluorescence from ground and space, Remote Sens. Environ., 133,
52–61, 2013.25

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C., Huete, A. R.,
Zarco-Tejada, P., Lee, J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-Valls, G.,
Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global
and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, P. Natl.
Acad. Sci. USA, 111, E1327–E1333, 2014.30

Hall, F. G., Hilker, T., Coops, N. C., Lyapustin, A., Huemmrich, K. F., Middleton, E., Margolis, H.,
Drolet, G., and Black, T. A.: Multi-angle remote sensing of forest light use efficiency by ob-

11916

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

serving PRI variation with canopy shadow fraction, Remote Sens. Environ., 112, 3201–3211,
2008.

Heinsch, F. A., Maosheng, Z., Running, S. W., Kimball, J. S., Nemani, R. R., Davis, K. J.,
Bolstad, P. V., Cook, B. D., Desai, A. R., Ricciuto, D. M., Law, B. E., Oechel, W. C., Hyo-
jung, K., Hongyan, L., Wofsy, S. C., Dunn, A. L., Munger, J. W., Baldocchi, D. D., Liukang, X.,5

Hollinger, D. Y., Richardson, A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S. P.,
and Flanagan, L. B.: Evaluation of remote sensing based terrestrial productivity from MODIS
using regional tower eddy flux network observations, IEEE T. Geosci. Remote, 44, 1908–
1925, 2006.

Hilker, T., Coops, N. C., Hall, F. G., Black, T. A., Wulder, M. A., Nesic, Z., and Krishnan, P.:10

Separating physiologically and directionally induced changes in PRI using BRDF models,
Remote Sens. Environ., 112, 2777–2788, 2008.

Huang, Z. A., Jiang, D. A., Yang, Y., Sun, J. W., and Jin, S. H.: Effects of nitrogen deficiency
on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants,
Photosynthetica, 42, 357–364, 2004.15

Janssen, P. H. M. and Heuberger, P. S. C.: Calibration of process-oriented models, Ecol. Model.,
83, 55–66, 1995.

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemm-
rich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chloro-
phyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:20

methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823,
doi:10.5194/amt-6-2803-2013, 2013.

Krause, G. H. and Weis, E.: Chlorophyll fluorescence as a tool in plant physiology, Photosynth.
Res., 5, 139–157, 1984.

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., Fisher, J. B.,25

Morrow, E., Worden, J. R., Asefi, S., Badgley, G., and Saatchi, S.: Forest productivity and
water stress in Amazonia: observations from GOSAT chlorophyll fluorescence, P. Roy. Soc.
B-Biol. Sci., 280, 20130171, doi:10.1098/rspb.2013.0171, 2013.

Madani, N., Kimball, J. S., Affleck, D. L. R., Kattge, J., Graham, J., van Bodegom, P. M., Re-
ich, P. B., and Running, S. W.: Improving ecosystem productivity modeling through spatially30

explicit estimation of optimal light use efficiency, J. Geophys. Res.-Biogeo., 119, 1755–1769,
2014.

11917

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/amt-6-2803-2013
http://dx.doi.org/10.1098/rspb.2013.0171


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Mänd, P., Hallik, L., Peñuelas, J., Nilson, T., Duce, P., Emmett, B. A., Beier, C., Estiarte, M.,
Garadnai, J., Kalapos, T., Schmidt, I. K., Kovács-Láng, E., Prieto, P., Tietema, A., Wester-
veld, J. W., and Kull, O.: Responses of the reflectance indices PRI and NDVI to experimental
warming and drought in European shrublands along a north–south climatic gradient, Remote
Sens. Environ., 114, 626–636, 2010.5

McMurtrey, J. E., Middleton, E. M., Corp, L. A., Campbell, P., Butcher, L. M., and Daugh-
try, C. S. T.: Optical reflectance and fluorescence for detecting nitrogen needs in Zea mays L.,
Geoscience and Remote Sensing Symposium, IGARSS ’03, 21–25 July 2003, Proceedings,
IEEE International , vol.7, 4602–4604, doi:10.1109/IGARSS.2003.1295594, 2003.

Meroni, M. and Colombo, R.: 3S: a novel program for field spectroscopy, Comput. Geosci., 35,10

1491–1496, 2009.
Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., and Verhoef, W.: Performance of

spectral fitting methods for vegetation fluorescence quantification, Remote Sens. Environ.,
114, 363–374, 2010.

Meroni, M., Barducci, A., Cogliati, S., Castagnoli, F., Rossini, M., Busetto, L., Migliavacca, M.,15

Cremonese, E., Galvagno, M., Colombo, R., and di Cella, U. M.: The hyperspectral irradiome-
ter, a new instrument for long-term and unattended field spectroscopy measurements, Rev.
Sci. Instrum., 82, 043106, doi:10.1063/1.3574360, 2011.

Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., Sonnentag, O.,
Cogliati, S., Manca, G., Diotri, F., Busetto, L., Cescatti, A., Colombo, R., Fava, F., Morra20

di Cella, U., Pari, E., Siniscalco, C., and Richardson, A. D.: Using digital repeat photography
and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake,
Agr. Forest Meteorol., 151, 1325–1337, 2011.

Monteith, J. L.: Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 747–
766, 1972.25

Nichol, C. J., Huemmrich, K. F., Black, T. A., Jarvis, P. G., Walthall, C. L., Grace, J., and
Hall, F. G.: Remote sensing of photosynthetic-light-use efficiency of boreal forest, Agr. Forest
Meteorol., 101, 131–142, 2000.

Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D. B. A., Cescatti, A.,
Pérez-Priego, Ó., Wohlfahrt, G., and Montagnani, L.: Terrestrial gross primary production30

inferred from satellite fluorescence and vegetation models, Glob. Change Biol., 20, 3103–
3121, 2014.

11918

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/IGARSS.2003.1295594
http://dx.doi.org/10.1063/1.3574360


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Peñuelas, J., Garbulsky, M. F., and Filella, I.: Photochemical reflectance index (PRI) and remote
sensing of plant CO2 uptake, New Phytol., 191, 596–599, 2011.

Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., God-
deris, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., and Janssens, I. A.:
Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems5

across the globe, Nature Communications, 4, 2934, doi:10.1038/ncomms3934, 2013.
Pérez-Priego, O., Zarco-Tejada, P. J., Miller, J. R., Sepulcre-Cantó, G., and Fereres, E.: Detec-

tion of water stress in orchard trees with a high-resolution spectrometer through chlorophyll
fluorescence in-filling of the O2-A band, IEEE T. Geosci. Remote, 43, 2860–2868, 2005.

Pérez-Priego, O., López-Ballesteros, A., Sánchez-Cañete, E., Serrano-Ortiz, P., Kutzbach, L.,10

Domingo, F., Eugster, W., and Kowalski, A.: Analysing uncertainties in the calculation
of fluxes using whole-plant chambers: random and systematic errors, Plant Soil, 1–16,
doi:10.1007/s11104-015-2481-x, 2015.

Porcar-Castell, A., Garcia-Plazaola, J., Nichol, C., Kolari, P., Olascoaga, B., Kuusinen, N.,
Fernández-Marín, B., Pulkkinen, M., Juurola, E., and Nikinmaa, E.: Physiology of the sea-15

sonal relationship between the photochemical reflectance index and photosynthetic light use
efficiency, Oecologia, 170, 313–323, 2012.

Prince, S. D. and Goward, S. N.: Global primary production: a remote sensing approach, J. Bio-
geogr., 22, 815–835, 1995.

Raessler, M., Rothe, J., and Hilke, I.: Accurate determination of Cd, Cr, Cu and Ni in woodlice20

and their skins – is moulting a means of detoxification?, Sci. Total Environ., 337, 83–90,
2005.

Rahman, A. F., Cordova, V. D., Gamon, J. A., Schmid, H. P., and Sims, D. A.: Potential of MODIS
ocean bands for estimating CO2 flux from terrestrial vegetation: a novel approach, Geophys.
Res. Lett., 31, L10503, doi:10.1029/2004GL019778, 2004.25

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.: Linking plant and
ecosystem functional biogeography, P. Natl. Acad. Sci. USA, 111, 13697–13702, 2014.

Rossini, M., Meroni, M., Migliavacca, M., Manca, G., Cogliati, S., Busetto, L., Picchi, V.,
Cescatti, A., Seufert, G., and Colombo, R.: High resolution field spectroscopy measurements
for estimating gross ecosystem production in a rice field, Agr. Forest Meteorol., 150, 1283–30

1296, 2010.
Rossini, M., Cogliati, S., Meroni, M., Migliavacca, M., Galvagno, M., Busetto, L., Cremonese, E.,

Julitta, T., Siniscalco, C., Morra di Cella, U., and Colombo, R.: Remote sensing-based esti-

11919

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1038/ncomms3934
http://dx.doi.org/10.1007/s11104-015-2481-x
http://dx.doi.org/10.1029/2004GL019778


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

mation of gross primary production in a subalpine grassland, Biogeosciences, 9, 2565–2584,
doi:10.5194/bg-9-2565-2012, 2012.

Rossini, M., Migliavacca, M., Galvagno, M., Meroni, M., Cogliati, S., Cremonese, E., Fava, F.,
Gitelson, A., Julitta, T., Morra di Cella, U., Siniscalco, C., and Colombo, R.: Remote estimation
of grassland gross primary production during extreme meteorological seasons, Int. J. Appl.5

Earth Obs., 29, 1–10, 2014.
Rossini, M., Nedbal, L., Guanter, L., Ač, A., Alonso, L., Burkart, A., Cogliati, S., Colombo, R.,

Damm, A., Drusch, M., Hanus, J., Janoutova, R., Julitta, T., Kokkalis, P., Moreno, J.,
Novotny, J., Panigada, C., Pinto, F., Schickling, A., Schüttemeyer, D., Zemek, F., and
Rascher, U.: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant10

photosynthesis, Geophys. Res. Lett., 42, 1632–1639, 2015.
Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., and Harlan, J. C.: Monitoring the Vernal

Advancements and Retro Gradation of Natural Vegetation, E74-10676, NASA-CR-139243,
PR-7, Greenbelt, MD, USA, 1974.

Ruimy, A., Saugier, B., and Dedieu, G.: Methodology for the estimation of terrestrial net primary15

production from remotely sensed data, J. Geophys. Res., 99, 5263–5283, 1994.
Schlemmer, M., Gitelson, A., Schepers, J., Ferguson, R., Peng, Y., Shanahan, J., and

Rundquist, D.: Remote estimation of nitrogen and chlorophyll contents in maize at leaf and
canopy levels, Int. J. Appl. Earth Obs., 25, 47–54, 2013.

Suárez, L., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Pérez-Priego, O., Miller, J. R., Jiménez-20

Muñoz, J. C., and Sobrino, J.: Assessing canopy PRI for water stress detection with diurnal
airborne imagery, Remote Sens. Environ., 112, 560–575, 2008.

Sugiharto, B., Miyata, K., Nakamoto, H., Sasakawa, H., and Sugiyama, T.: Regulation of expres-
sion of carbon-assimilating enzymes by nitrogen in maize leaf, Plant Physiol., 92, 963–969,
1990.25

Tremblay, N., Wang, Z., and Cerovic, Z.: Sensing crop nitrogen status with fluorescence indica-
tors. A review, Agron. Sustain. Dev., 32, 451–464, 2012.

Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F.,
Scales, J. C., Wohlfahrt, G., Wullschleger, S. D., and Woodward, F. I.: The relationship of
leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific30

leaf area: a meta-analysis and modeling study, Ecology and Evolution, 4, 3218–3235, 2014.

11920

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/bg-9-2565-2012


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Wang, W., Yao, X., Yao, X., Tian, Y., Liu, X., Ni, J., Cao, W., and Zhu, Y.: Estimating leaf nitrogen
concentration with three-band vegetation indices in rice and wheat, Field Crop. Res., 129,
90–98, 2012.

Yuan, W., Cai, W., Liu, S., Dong, W., Chen, J., Arain, M. A., Blanken, P. D., Cescatti, A.,
Wohlfahrt, G., Georgiadis, T., Genesio, L., Gianelle, D., Grelle, A., Kiely, G., Knohl, A.,5

Liu, D., Marek, M. V., Merbold, L., Montagnani, L., Panferov, O., Peltoniemi, M., Rambal, S.,
Raschi, A., Varlagin, A., and Xia, J.: Vegetation-specific model parameters are not required
for estimating gross primary production, Ecol. Model., 292, 1–10, 2014.

Zarco-Tejada, P. J., Suarez, L., and Gonzalez-Dugo, V.: Spatial resolution effects on chlorophyll
fluorescence retrieval in a heterogeneous canopy using hyperspectral imagery and radiative10

transfer simulation, IEEE Geosci. Remote S., 10, 937–941, 2013.

11921

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Ancillary data resulting from the analysis. Green Plant Area Index (PAIg), fraction of
PAI in different plant forms (fPAI), and C, N, and P plant content. The N : P ratio also is shown.
Data correspond to the mean value and standard deviation (SD) of the subsamples taken in
each plot and treatment.

Campaign Treatment Total PAIg Forbs fPAI Grass fPAI legumes Total C content Total N content Total P content N / P
(m2 m−2) fPAI (mg g−1) (mg g−1) (mg g−1) (mg g−1)

Date – mean±SD % % % mean±SD mean±SD mean±SD –

#1 20 Mar 2014 C 0.85±0.18 28.6±5.2 65.8±8 5.6±3 425 17.7 2.08 8.5
Growing period N 0.76±0.21 30.6±11.1 63.35±11.3 10.2±9.4 463 18.6 1.99 9.34
Pre-treatment NP 1.03±0.3 26.4±8.7 63.3±11.3 10.2± .9.4 421 18.1 1.90 9.52

P 0.95±0.21 22.8±8.4 71±7.4 6.2±3.1 369 16.9 1.94 8.71
#2 15 Apr 2014 C 2.02±0.43 23.1±4.2 74.2±3.2 2.7±1.7 413±152 14.6±0.8 2.23±0.02 6.6
Growing period N 2.17±0.91 20.4±15.2 76.4±18 3.2±2.8 384±121 23.7±2 1.68±0.03 14.2
Post-treatment NP 2.46±0.45 14.3±10.3 81.1±9.5 4.7±5.8 377±330 23.5±4.1 3.95±0.04 6.0

P 1.66±0.58 19.5±14.4 77.5±15.4 3.1±2.3 394±212 15.4±1.7 4.22±0.06 3.7
#3 7 May 2014 C 1.08±0.27 29.9±10.3 68.4±10.2 1.7±1.9 447±52 14.2±1.3 2.41±0.02 5.9
Dry period N 1.29±0.58 18.9±15.6 79.7±16.5 1.4±1.1 449±114 20.1±3.1 1.86±0.03 10.8

NP 0.84±0.21 17.5±3.7 81.1±4.8 1.5±1.4 438±64 20.6±1.2 3.50±0.04 5.9
P 1.37±0.57 22.7±11.5 75.9±10.5 1.5±2.2 444±206 14.7±0.8 3.83±0.03 3.8

#4 27 May 2014 C 0.44±0.10 73.3±15 26.5±15.3 0.2±0.5 442±2 13.8±1.2 2.12±0.01 6.5
Dry period N 0.48±0.28 67.9±28 32.1±28 0.0 448±3 19.0±2.8 1.93±0.02 9.8

NP 0.53±0.26 70.1±17.2 29.8±17.3 0.1±0.1 442±1 18.5±3.4 2.63±0.02 7.1
P 0.71±0.31 67.1±17.1 32.4±17.5 0.5±0.4 441±72 13.2±0.7 2.62±0.02 5.0
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Table 2. Spectral vegetation indices computed in this study. Vegetation indices are classified
into two major classes based on their suitability in inferring fAPAR (structural related indices)
and LUE (physiologically-related indices) parameters. R denotes the reflectance at the spec-
ified wavelength (nm). NDVI: normalized difference vegetation index; MTCI: MERIS terrestrial
chlorophyll index; NDI: normalized difference index; sPRI: scaled Photochemical Reflectance
Index; Fy760: apparent fluorescence yield at 760 nm.

Index Target Model proxy Formulation References

NDVI Green biomass
and leaf area

fAPAR (R800 −R680)/(R800 +R680) Rouse et al. (1974)

MTCI Chlorophyll and
nitrogen content

fAPAR (R754 −R709)/(R709 −R681) Dash and Curran (2004)

sPRI Physiology LUE (R531 −R570)/(R531 +R570) Gamon et al. (1992)

Fy760 Physiology LUE Chlorophyll fluorescence in-filling
of the O2-A band

Meroni and Colombo (2006)
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Table 3. Results from the model evaluation one leave out cross validation analysis across LUE
model configurations and vegetation indices. Based on AICcv, the best performance among
formulation test for each method is highlighted text bold.

LUE Model Variable RMSE rRMSE r2 ME RMSEcv rRMSEcv r2cv MEcv AICcv
(µmol CO2 m−2 s−1) (µmol CO2 m−2 s−1)

MM-VPD NDVI 3.041 23.439 0.894 0.802 3.143 24.671 0.877 0.788 160.887
MM-SWC NDVI 2.663 32.909 0.849 0.848 2.769 34.840 0.835 0.829 148.417
MM (VPD-SWC) NDVI 2.230 21.727 0.894 0.893 2.357 23.266 0.881 0.879 127.478

RSM PRI-NDVI 2.390 24.112 0.879 0.877 2.760 30.832 0.844 0.837 140.627
RSM PRI-MTCI 3.113 35.793 0.794 0.792 3.489 42.123 0.751 0.739 171.125
RSM Fy760-NDVI 2.490 27.743 0.868 0.867 2.835 34.242 0.834 0.828 144.116
RSM Fy760-MTCI 3.676 46.770 0.710 0.710 4.074 52.224 0.654 0.644 191.275
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Table 4. Abbreviations.

a, ao, and a1 are model parameters
b0, b1, b2, and b3 are fitting parameters of RSM
EFPs ecosystem functional properties
f (meteo) limiting functions relying on meteorologically-driven data
fAPAR fraction of absorbed photosynthetically active radiation
fPAIg fraction of PAIg in different plant forms
Fy760 sun-induced chlorophyll Fluorescence yield at 760 nm
GPP gross primary productivity
GPP2000 gross primary productivity estimated at 2000 of PAR
LUE light use-efficiency
LUEm potential or maximum LUE
MM meteorologically driven model
MM-VPD simplifier model of the original MOD17 that account for VPD in f (meteo)
MM(SWC-VPD) meteorologically-driven model that account for VPD and soil moisture in

f (meteo)
MTCI MERIS terrestrial-chlorophyll index
NDVI Normalized difference vegetation index
NEE net ecosystem CO2 exchange
PAIg Green Plant Area Index
PAR Photosynthetically active radiation
ph physiologically-related parameter of RSM referring to either sPRI or Fy760 as

a proxy for LUE
PLRC photosynthetic light response curve
PRI photochemical reflectance index
Reco daytime ecosystem respiration
RSM remote sensing based models
SIF sun-induced chlorophyll fluorescence
sPRI scaled-photochemical reflectance index
st structurally-related parameter of RSM referring to either NDVI or MTCI as

a proxy for fAPAR
SWC soil water content
SWCmax parameter of the f (meteo) term
VPD vapor pressure deficit
VPDmax and VPDmin are fitting parameters of the f (meteo) term
α is a parameter describing the photosynthetic quantum yield
β is the parameter that extrapolates to GPP at saturating light condition

11925

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-print.pdf
http://www.biogeosciences-discuss.net/12/11891/2015/bgd-12-11891-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 11891–11934, 2015

Remote
sensing-based model

of photosynthesis

O. Perez-Priego et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. Overview of the experimental site (SMANIE): the experimental blocks are drawn on
an image acquired with the hyperspectral AHS (Sensytech Inc., Beverly, MA, USA) sensor
during April 2014.
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Figure 2. Photosynthetic light response curves derived for each growing period: (a) pre-
treatment and (b) post-treatment and drying periods (c and d). Treatments are presented in
different colors. Lines represent the Michaelis–Menten function fitting gross photosynthesis
(GPP, µmolCO2 m−2 s−1) and photosynthetic active radiation (PAR, µmolm−2 s−1).
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Figure 3. Seasonal time course of mean midday physiologically-driven vegetation indices;
(a) scale photochemical reflectance index, sPRI (b) apparent fluorescence yield (Fy760), and
structure-driven vegetation indices, (c) NDVI, and (d) MTCI among C, N, NP and P treatments
in a Mediterranean grassland in Spain. Bars indicate ± standard deviation, N = 4. Different let-
ters denote significant difference between treatments (Weilch t test, P < 0.05).
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Figure 4. Relationship between GPP and remote sensing data: (a) scaled photochemical re-
flectance index (sPRI), (b) apparent fluorescence yield, (c) normalized difference vegetation in-
dex (NDVI), and (d) MTCI. Square symbols represent measurements taken in the pre-treatment
(#1) and circles after fertilization (#2–#4). Data were obtained at midday and lines represent
results from the regressions for each treatment excluding measurements in the pre-treatment.
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Figure 5. Relationship betweenGPP2000 and average values of sPRI (a) and apparent fluo-
rescence yield (Fy760). Lines represent results the best linear regressions fitting the data.
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Figure 6. Comparison between measured GPP and GPP modeled with the best performing
LUE model for each kind of formulation: MM (VPD, panel a), MM (SWC, panel b), MM (including
VPD and SWC, panel c), RSM (sPRI-NDVI panel d), and RSM (Fy760-NDVI, panel e). Results
from the cross validation analysis are presented in Table 3.
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Figure 7. Correlation between residuals of the MM (VPD-SWC) model and (a) scaled photo-
chemical reflectance index (sPRI) and (b) chlorophyll fluorescence yield (Fy760) taken from
periods with high soil water content (SWC> 15 %, red circles). No correlation was observed
when SWC < 15 % (p > 0.5, black circles).
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Figure 8. Plot between residuals of both the Meteo-driven model (MM-VPD) and Remote
Sensing-based method (RSM) and modeled GPP values. Both lines represent the local poly-
nomial regression fitting of the residuals against predicted values.
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Figure 9. Contour plot indicating how variation in photosynthesis (GPP, µmolCO2 m−2 s−1) are
explained by variations in the LUE and fPAR parameters of the RSM. While (a) sPRI and
(b) Fy760 are indistinctly used as a proxy of LUE, the NDVI is taken as fPAR.
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