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Abstract  29	  

Aragonite, which is the polymorph of CaCO3 precipitated by modern corals during skeletal 30	  

formation, has a higher solubility than the more stable polymorph calcite. This higher solubility 31	  

may leave animals that produce aragonitic skeletons more vulnerable to anthropogenic ocean 32	  

acidification. It is therefore important to determine whether scleractinian corals have the plasticity 33	  

to adapt and produce calcite in their skeletons in response to changing environmental conditions. 34	  

Both high pCO2 and lower Mg/Ca ratios in seawater are thought to have driven changes in the 35	  

skeletal mineralogy of major marine calcifiers in the past ~540 Ma. Experimentally reduced Mg/Ca 36	  

ratios in ambient seawater have been shown to induce some calcite precipitation in both adult and 37	  

newly settled modern corals; however, the impact of high pCO2 on the mineralogy of recruits is 38	  

unknown. Here we determined the skeletal mineralogy of one-month old Acropora spicifera coral 39	  

recruits grown under high temperature (+3°C) and pCO2 (~900 µatm) conditions, using X-ray 40	  

diffraction and Raman spectroscopy. We found that newly settled coral recruits produced entirely 41	  

aragonitic skeletons regardless of the treatment. Our results show that elevated pCO2 alone is 42	  

unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch 43	  

from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more 44	  

susceptible to predicted ocean acidification. An important area for prospective research would be to 45	  

investigate the combined impact of high pCO2 and reduced Mg/Ca ratio on coral skeletal 46	  

mineralogy. 47	  

 48	  

 49	  

 50	  

 51	  

 52	  

 53	  
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1  Introduction 54	  

Scleractinian corals are the major reef builders, with their skeletons providing the structural basis 55	  

for the habitats of many marine organisms. In modern adult corals, the skeletons are comprised of 56	  

aragonite, a polymorph of calcium carbonate (CaCO3) whose stability is highly sensitive to changes 57	  

in ocean pCO2 (Orr et al., 2005; Feely et al., 2009). However, examination of a 70 million year old 58	  

scleractinian coral fossil showed that some ancient corals were able to produce skeletons entirely of 59	  

calcite (Stolarski et al., 2007), the most stable and least soluble polymorph of CaCO3 (de Leeuw et 60	  

al., 1998; Boulos et al., 2014). Throughout the Phanerozoic (past 540 Ma), there have been 61	  

oscillations between calcite and aragonite as the dominant polymorph precipitated by major reef 62	  

building organisms. During this time period there have been three aragonite-facilitating periods or 63	  

“aragonite seas” and two calcite-facilitating periods or “calcite seas”. The cause of these transitions 64	  

in mineralogy has been the topic of much debate over the past 30 years. One of the most important 65	  

factors affecting skeletal mineralogy is the magnesium to calcium ratio (Mg/Ca) of seawater 66	  

(Sandberg, 1983; Ries, 2010). If the Mg/Ca >2, then aragonite is predominantly precipitated and if 67	  

the Mg/Ca <2, then calcite is predominantly precipitated. Currently conditions favour aragonite 68	  

precipitation, with modern seawater having a Mg/Ca ratio of 5.2 (Lowenstein et al., 2001). A recent 69	  

study found CaCO3 polymorph precipitation to be a function of both Mg/Ca ratio and temperature, 70	  

with aragonite precipitated at high temperature and Mg/Ca ratio and calcite precipitated at low 71	  

temperature and Mg/Ca ratio (Balthasar and Cusack, 2015). Changes in atmospheric pCO2 are also 72	  

thought to contribute to changes in skeletal mineralogy (Sandberg, 1983; Zhuravlev and Wood, 73	  

2009; Lee and Morse, 2010), with rising pCO2 and subsequent reductions in carbonate saturation 74	  

state, potentially favouring the precipitation of minerals with higher stability and lower Mg content, 75	  

such as calcite (Morse et al., 2006; Zhuravlev and Wood, 2009). The polymorphism of abiotically 76	  

precipitated calcium carbonate varies with both temperature and pCO2, but occurs only at low 77	  

Mg/Ca ratios (Lee and Morse, 2010; Balthasar and Cusack, 2015). However less is known about the 78	  

polymorphism of biologically precipitated CaCO3. If ocean acidification favours the deposition of 79	  
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more stable carbonate minerals such as calcite (Mackenzie et al., 1983; Morse et al., 2006; 80	  

Andersson et al., 2008), then organisms producing less stable aragonite skeletons will likely be 81	  

more vulnerable to changes in ocean chemistry under high pCO2. Alternatively, organisms will be 82	  

much less vulnerable if, under high pCO2 conditions, they have the ability to switch from 83	  

predominantly aragonite to calcite precipitation, especially in their early developmental stages. 84	  

 85	  

It is therefore important to determine whether modern aragonitic corals, like their ancestors, are 86	  

able to produce calcite in response to changing seawater chemistry. Initial work on coral skeletal 87	  

mineralogy reported the presence of calcite in modern corals (Houck et al., 1975; Constanz and 88	  

Meike, 1990), however contamination by diagenetic recrystallization (Nothdurft and Webb, 2009) 89	  

and deposits from microboring organisms (Nothdurft et al., 2007) and coralline algae (Goffredo et 90	  

al., 2012) were later proposed to be the source of the calcite, rather than primary calcitic formation 91	  

by the coral. Adult corals grown under low Mg/Ca ratios simulating “calcite seas”, have been 92	  

shown to produce significant amounts of calcite (Reis et al., 2006), however again, some of this 93	  

calcite production may be due to secondary infilling of pore spaces (Reis et al., 2006; Ries, 2010). 94	  

Nevertheless it is accepted that modern adult corals grown under current ambient conditions have 95	  

entirely aragonitic skeletons (Cuif et al., 1999). 96	  

 97	  

Much less is known about the mineralogy of corals in the early post-recruitment phases. Early work 98	  

on the mineralogy of new recruits reported the presence of calcite in only the very early post-99	  

settlement stages (Wainwright, 1963; Vandermeulen and Wantabe, 1973), leading to the 100	  

assumption that unlike adults, newly settled recruits were able to precipitate both calcite and 101	  

aragonite under ambient conditions (Goffredo et al., 2012). However, new recruits of Acropora 102	  

millepora grown under carefully controlled ambient conditions did not show any evidence of calcite 103	  

in their skeleton (Clode et al., 2011) with these authors concluding that initial reports of calcite in 104	  

recruits was also likely to be artefactual. Similarly, an experiment growing new recruits under a 105	  
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range of seawater Mg/Ca ratios, reported that even under the lowest Mg/Ca ratio (0.5), the skeletal 106	  

mineralogy was still dominated by aragonite and under current ambient conditions (Mg/Ca ratio = 107	  

5.3) skeletons were composed entirely of aragonite (Higuchi et al., 2014). Interestingly however, 108	  

this study confirmed that coral recruits are capable of producing some primary calcite in their 109	  

skeletons if the water chemistry is adjusted to “calcite sea” conditions (low Mg/Ca).  110	  

 111	  

The impact of elevated pCO2 on the skeletal mineralogy of new recruits is yet to be investigated. 112	  

Here we tested whether the treatment conditions of high temperature, high pCO2, or a combination 113	  

of high temperature and high pCO2, affected the skeletal mineralogy of newly settled corals. 114	  

Specifically, we question whether high pCO2 and reduced carbonate saturation facilitate the 115	  

production of calcite within coral recruit skeletons.  116	  

 117	  

2  Methods 118	  

2.1  Treatment conditions 119	  

A detailed description of the coral culturing methods and experimental set-up is given in Foster et 120	  

al. (2015a). Briefly, adult Acropora spicifera colonies were collected from the Houtman Abrolhos 121	  

Islands in Western Australia prior to spawning and maintained under ambient conditions (~24°C 122	  

and pH 8.1). Larvae were similarly cultured and maintained under ambient conditions until they 123	  

were motile, at which point they were transferred to treatment tanks. Treatment conditions were: 124	  

ambient temperature and pCO2 (Control: 24°C, ~250 µatm), high temperature and ambient pCO2 125	  

(high temperature: 27°C, ~250 µatm), ambient temperature and high pCO2 (high pCO2: 24°C, ~900 126	  

µatm) and high temperature plus high pCO2 (high temperature + pCO2: 27°C, ~900 µatm). See 127	  

Table 1 for more detail on the experimental conditions. 128	  

 129	  

 130	  

 131	  
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2.2  Processing of skeletons 132	  

Once the coral larvae had settled, the recruits were grown for 4 weeks under treatment conditions, 133	  

before the experiment was concluded. To remove organic material, polyps were immersed in 3-7% 134	  

sodium hypochlorite (NaOCl) and rinsed three times in deionized water. The skeletons were then 135	  

stored in 100% ethanol until further examination and analysis were possible. 136	  

 137	  

2.3  X-ray diffraction analysis 138	  

Bulk analysis of the skeletal mineralogy was conducted by obtaining X-ray diffraction (XRD) 139	  

patterns of the skeletal material. Subsets of 5 juvenile skeletons were randomly selected from each 140	  

treatment. Skeletons were removed from the ethanol and air dried, then detached from the 141	  

transparency paper using a scalpel and gently crushed. The crushed skeletal material from each 142	  

treatment was mounted on a low background holder (off angle piece of single crystal silicon) and 143	  

attached to a reflection spinner stage. A PANalytical Empyrean X-ray diffractometer was used with 144	  

CuKα radiation to record the XRD patterns. The scanning rate was 250 seconds per step in 2 Theta 145	  

ranging from 10° to 80°, with a step size of 0.006°. XRD patterns of skeletal material were 146	  

compared to the XRD peaks for ICDS aragonite and calcite standards. 147	  

 148	  

2.4  Raman spectroscopy 149	  

XRD provides an average analysis for the entire sample, however for calcium carbonate samples 150	  

Raman spectroscopy has been shown to have lower detection limits and lower rates of error, though 151	  

only the surfaces of selected fragments can be analysed at any one time (Kontoyannis and Vagenas, 152	  

2000). Therefore, complementary Raman spectroscopy was also used to check the skeletons for the 153	  

presence of calcite within discreet skeletal fragments. A further 5 skeletons from each treatment 154	  

were randomly selected and each skeleton was individually analysed. Raman spectra were collected 155	  

from 10 random areas (~60 X 60 µm) in the crushed skeletal material of each sample, using a 633 156	  

nm red Helium neon laser. Spectra were measured every 1 µm along the gridded ~60 µm2 area 157	  
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(Figure 1) for each of the 10 areas per sample (~36,000 individual spectra were taken per sample). 158	  

Spectra were similarly taken of both a polished calcite standard and a biogenic aragonite standard to 159	  

use as references. 160	  

 161	  

 162	  

3  Results 163	  

Calcite was not detected in the XRD patterns of any of the skeletons, regardless of treatment. 164	  

Prominent peaks were observed at 2 Theta ~ 26.2° and 27.2°, corresponding with the aragonite 165	  

standard peaks, while no peaks were observed at 2 Theta ~ 29.4°, the location of the primary calcite 166	  

peak (Figure 2). After analysing all of the skeletal material using XRD, the more sensitive Raman 167	  

spectrometry was employed to collect spectra from random fragments of the skeleton. Similarly, no 168	  

trace of calcite was detected in the spectra of any of the treatments. The calcite standard showed 169	  

peaks at 154, 281, 713, and 1086 cm-1 and the biogenic aragonite standard showed peaks at 154, 170	  

205, 704, and 1086 cm-1, which are typical of these polymorphs of CaCO3 (Dandeu et al., 2006). 171	  

Since both calcite and aragonite peak at ~154, ~710 and ~1086 cm-1, the peaks of interest were the 172	  

281 cm-1 peak typical of calcite and the 205 cm-1 peak typical of aragonite (Dandeu et al., 2006). 173	  

All spectra from all individuals, across all treatments, exhibited peaks typical of only aragonite 174	  

mineralogy (Figure 3), with prominent peaks at ~207 cm-1 and no peaks at ~281 cm-1. Both the 175	  

XRD patterns and Raman spectra collected indicate that neither temperature nor pCO2 had any 176	  

effect on the skeletal mineralogy of 1-month old coral recruits, as all skeletons across treatments 177	  

formed entirely aragonitic skeletons. 178	  

 179	  

 180	  

 181	  

 182	  

 183	  
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4  Discussion 184	  

Since aragonite is a more soluble polymorph of CaCO3 than calcite, it would be advantageous for 185	  

modern corals in a rapidly acidifying ocean to be able to produce calcite. Production of calcite has 186	  

been shown to be a phenotypically plastic, with many marine calcifiers able to adjust both the 187	  

proportion of calcite in their shell or skeleton as well as the Mg/Ca ratio (Ries, 2010; 2011). In this 188	  

study both temperature and pCO2 were manipulated to assess their impact on skeletal mineralogy of 189	  

newly settled coral recruits. Neither temperature nor pCO2 affected mineralogy, with all coral 190	  

recruits analysed producing entirely aragonitic skeletons. Although temperature has been shown to 191	  

significantly affect abiotic polymorph precipitation (as a function of Mg/Ca), calcite co-192	  

precipitation with aragonite is favoured at cooler temperatures and low Mg/Ca ratios (<20°C, 193	  

Mg/Ca < 2, Balthasar and Cusack, 2015). As such, temperature treatments applied in this study (24 194	  

and 27°C), were within the range of temperatures favouring aragonite production. These 195	  

temperatures were chosen because they are ecologically relevant to the sub-tropical corals used in 196	  

this study, under both present ambient and future elevated temperature regimes. 197	  

 198	  

Predicting the impact of high pCO2 on polymorph mineralogy is more complex. The extent to 199	  

which oscillations between “calcite seas” and “aragonite seas” throughout the Phanerozoic were 200	  

primarily driven by pCO2 or Mg/Ca ratios has received a lot of attention (see review by Ries, 2010). 201	  

It is accepted that modern adult corals under current ambient conditions produce skeletons 202	  

comprised entirely of aragonite (Cuif et al., 1999). Furthermore, despite initial work suggesting that 203	  

new coral recruits were bimineralic (producing both calcite and aragonite), more recent studies have 204	  

shown that under ambient conditions recruits produce purely aragonitic skeletons (Clode et al., 205	  

2011; Higuchi et al., 2014). However, under reduced Mg/Ca ratios, both adult and newly settled 206	  

corals are able to produce some calcite (Ries et al., 2006; Higuchi et al., 2014). Despite this ability 207	  

to switch to a bimineralic skeleton, corals still produce skeletons comprised mainly of aragonite, 208	  

even under extremely reduced Mg/Ca ratios (Higuchi et al., 2014), suggesting that the ability of 209	  
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some corals in the fossil record to produce entirely calcitic skeletons (Stolarski et al., 2007), may 210	  

not have been solely controlled by the Mg/Ca ratio of seawater. However it should also be noted 211	  

that other coral lineages in the Cretaceous formed entirely aragonitic skeletons, even under highly 212	  

reduced Mg/Ca ratios (Sorauf 1999). The impact of elevated pCO2 on mineralogy has also been 213	  

examined for a range of marine calcifiers (Ries, 2011). In bimineralic animals (e.g. whelks), the 214	  

proportion of calcite in the skeleton increased with increasing pCO2, however in monomineralic 215	  

animals (entirely aragonitic skeletons), calcite was not incorporated into the skeleton as the pCO2 216	  

increased. For the adult temperate coral Oculina arbuscula, a range of CO2 treatments had no 217	  

impact on skeletal mineralogy, with corals in all treatments producing aragonitic skeletons (Ries et 218	  

al., 2010). Our study similarly observed no change in skeletal mineralogy under elevated pCO2 for 219	  

newly settled corals. 220	  

 221	  

Both the elevated temperature and elevated pCO2 conditions applied in this study were ecologically 222	  

relevant values, chosen to correspond to future projections for atmospheric CO2 by 2100, under a 223	  

business-as-usual (RCP 8.5) emissions scenario (Meinshausen et al., 2011; IPCC, 2013). However, 224	  

applying more extreme values for both temperature and pCO2 could potentially identify changes in 225	  

the mineralogy under extreme conditions. Nevertheless, this study is part of a growing body of 226	  

evidence that indicates that corals do not produce calcite under current ambient or predicted near-227	  

future high pCO2 scenarios, regardless of their life stage. It is likely that new coral recruits will 228	  

continue to produce aragonitic skeletons under future emissions scenarios, however at reduced 229	  

calcification rates (Cohen et al., 2009; Anlauf et al., 2011; Foster et al., 2015a) and forming 230	  

skeletons that are smaller, malformed and show evidence of dissolution (Foster et al., 2015b). 231	  

Recruits require high calcification rates and robust skeletons to both maintain their position on the 232	  

substrate as they compete with other benthic organisms for space (Dunstan and Johnson 1998), and 233	  

also to rapidly outgrow the high mortality rates of the smallest and most vulnerable size classes 234	  

(Babcock 1991; Babcock and Mundy 1996; Doropoulos et al., 2012). Reduced calcification rates 235	  
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and more soluble aragonitic skeletons will have implications for the longer-term survival of young 236	  

corals, as these factors will increase mortality rates in the early stages of growth and development 237	  

thereby reducing the numbers of recruits that survive into adulthood. 238	  

 239	  

While coral recruits exposed to extremely reduced Mg/Ca ratios still produced predominantly 240	  

aragonitic skeletons (Higuchi et al., 2014), the combined impact of elevated pCO2 and reduced 241	  

Mg/Ca ratio on the skeletal mineralogy of new recruits is yet to be tested. Since pCO2 and Mg/Ca 242	  

ratio have varied approximately inversely proportionally to one another over geological time (Reis, 243	  

2010; 2011), this would be an interesting direction for future research. Certainly if elevated pCO2 244	  

and concomitant reductions in Mg/Ca ratio are driving the ocean towards “calcite sea” conditions 245	  

(Andersson et al., 2008), then it will be important to examine the simultaneous impact of both 246	  

acidified and low Mg/Ca ratio conditions on coral skeletal mineralogy. 247	  
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Tables 	  375	  

 376	  

Table 1. Physical and chemical conditions maintained for the duration of the experiment (mean ± 377	  

SD). Table from Foster et al., (2015a). 378	  
Treatment Temperature 

(°C) 
pHT TA 

(µmol kg-1) 
pCO2 

(µatm) 
Ωar 

Control 24.4 ± 0.5 8.22 ± 0.05 2308 ± 40 242 ± 22 4.51 ± 0.14 

High temperature 27.6 ± 0.8 8.18 ± 0.05 2312 ± 26 275 ± 24 4.68 ± 0.17 

High pCO2 24.1 ± 0.6 7.77 ± 0.06 2307 ± 30 872 ± 58 1.93 ± 0.08 

High temperature + pCO2 27.4 ± 0.9 7.75 ± 0.08 2309 ± 32 976 ± 103 2.03 ± 0.12 

TA: total alkalinity; pCO2: partial pressure of carbon dioxide; Ωar: aragonite saturation state. 379	  
 380	  

 381	  
	  382	  
Figures 383	  
 384	  
 385	  
 386	  

 387	  

Figure 1: One month old living Acropora spicifera recruit (A), a typical Acropora spicifera recruit 388	  

skeleton with organic material removed (B) and crushed skeletal material showing a typical ~60 389	  

µm2 scan area grid analysed by Raman spectroscopy (C). Scale bars for A and B = 500 µm and 390	  

scale bar for C = 40 µm. 391	  

 392	  

 393	  

 394	  

 395	  
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 396	  

Figure 2. XRD patterns for Acropora spicifera coral recruit skeletons grown under control (a), high 397	  

temperature (b), high pCO2 (c) and high temperature + pCO2 (d) conditions. Aragonite standard 398	  

peaks occur at 26.2° and 27.2° (green bars), and the calcite standard peak occurs at 29.4° (yellow 399	  

bar). 400	  

 401	  

 402	  

 403	  

 404	  
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 405	  

Figure 3: Specific Raman shift of a calcite standard (a) and a biogenic aragonite standard (b) and 406	  

skeletal material from control (c), high temperature (d), high pCO2 (e), and high temperature + 407	  

pCO2 (f) treated Acropora spicifera coral recruits. The ~205 peak specific to aragonite is 408	  

highlighted in green and the ~281 peak specific to calcite is highlighted in yellow. 409	  
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