16th November, 2015

2	
3	
4	Response to Reviewers' comments on the manuscript 'Application of the ¹⁵ N-Gas Flux method for
5	measuring in situ N_2 and N_2O fluxes due to denitrification in natural and semi-natural terrestrial
6	ecosystems and comparison with the acetylene inhibition technique.' (Manuscript ID =
7	doi:10.5194/bgd-12-12653-2015)
8	
9	
10 11 12 13	We are very grateful to the two reviewers for their comprehensive comments and suggestions for the improvement of the manuscript. We have attempted to accommodate all the suggestions and amended the manuscript accordingly where possible. Due to overlap of the comments between the two reviewers, we are presenting a joint response for all received comments.
14	
15	
12	
16	Response (in bold-face) to each comment (<i>in italics</i>) of the Reviewers follows:
17	
18	Major comments
19	
20	1)[Reviewer #2 : The long enclosure (up top 20h) was used for the first time in field studies to my
21	knowledge (previously up to 2 h, see details). Linearity check with 1, 2, 20h was not adequate due to
22	the long interval between 2 and 20h. Previous studies (e.g. Tauchnitz et al, 2014) checked linearity by
23	short intervals of 20 minutes. Linearity was only evaluated on the total data set, i.e. data from all
24	sites from one system were pooled. But this check must be done for each site and sampling event.
25	Physically linearity is extremely improbable, since concentration gradients decrease over time (e.g.
26	Healy et al 1996). Moreover, the modelling by Healy et al. predicts that diffusion to subsoil increase
27	with extended enclosure. This has been shown for denitrification studies (with the ALL) by Mahmood
28	1997. Although tests of this subsoli diffusion bias have never been published for the 15N gas flux
29	method to my knowledge, it is evident that this bids must be very significant for enclosure periods of
3U 21	annost 1 auy. Note that Morse et al 2013 incubated in closed vessels when accumulating > 20n. I
32	many of the measurements.
33	<u>Request</u> : - Evaluate linearity / non-linearity of N2 and N2O fluxes at each site and sampling date and

- 33 <u>Request</u>: Evaluate linearity / non-linearity of N2 and N2O fluxes at ea
 34 discuss possible bias from subsoil diffusion during extended enclosure]
- 35

36 <u>Response</u>

In response to the reviewer's comment, we have carried out additional checks for the linearity of 37 38 the evolved N₂ and N₂O gases per sampling plot and sampling event, which are presented in the 39 Supplementary Information (SI) submitted with the revised manuscript (Supplementary Tables 40 4&5). This additional information is described in the results section (lines: 433-444) with reference to the SI. Despite, the reviewer's expectation for significant bias of the reported fluxes due to the 41 42 extended enclosure period, this was not shown by the additional analysis, except for two cases, 43 which are subsequently reported in the results, and discussed in lines (559-595). We suspect that subsoil diffusion may have not significantly affected our flux rates due to the relatively high water 44 45 filled pore space (WFPS) of our field sites (mean WFPS data per site reported in discussion: lines 46 573-576) which may have limited the downwards diffusion of gases back into the soil despite the 47 absence of a bottom barrier in our chambers. Jury et al. (1982) have shown that the wetter the soil the longer it takes for steady state gas diffusion to be established and this may take several hours 48 49 from the start of gas production. The underestimation of flux rates due to a decreasing diffusion 50 gradient between the soil surface and the chamber headspace (as modelled by Healy et al. 1996) 51 does not constitute an issue for the N₂ gas, which is not a trace gas and is abundant in the 52 atmosphere (78%). This was the main reason why we selected an extended incubation period to be able to detect a reliable ¹⁵N-N₂ signal in the N₂ rich chamber headspace. A decreasing gas 53 54 diffusion gradient is more likely to be observed in the case of N₂O, but only where there is 55 significant N₂O production, such as in fertilised grasslands for example (see R-IG in Supplementary 56 Table 2). However, the majority of our field sites showed a very low N₂O production rate and it is 57 unlikely that these have been affected by the gas diffusion gradient. It would have been desirable 58 to perform the linearity checks at more frequent intervals, as suggested by the reviewer, but 59 unfortunately this was not possible in the present study, where we focused more on constraining the spatial variability of the denitrification fluxes, at the expense of a more detailed temporal 60 61 investigation (which was also the case in Tauchnitz et al. 2015). In subsequent applications of our 62 methodology we will assess the temporal variability of N_2 and N_2O gas fluxes during varying incubation periods, as there seems to be a lack of conclusive results particularly for field 63 64 applications of the ¹⁵N Gas-Flux method.

65

66

2)[Reviewer #1: The new method seems promising and the results here are certainly worthy of
publication, but there needs to be a more thorough treatment of possible fertilization and water
addition effects in the new method. The authors worked hard to minimize the amount of nitrate and
water added to the field chambers but there needs to be a more clear statement of just how much
the inorganic N pools and soil moisture content were increased by the additions. And once the extent
of the increases is clarified, there should be some comparison with the literature to see if these
increases have affected rates in previous studies.]

- 75 [Reviewer #2: The amount of label added: it was variable and pretty low, but this is not well justified,
- 76 since no mineral N data of sites were shown. It is thus not possible to see to which extent
- 77 denitrification was potentially enhanced by increasing nitrate. In nitrate-free soils, 1kg
- 78 NO3-N/ha would clearly enhance denitrification.
- 79 <u>Request:</u> -Show mineral N and 15N label amendment for each site (in an appendix) and discuss based
- 80 on that the possible dilution and consumption of the label]
- 81
- 82 <u>Response</u>

83 In response to the above comments by both reviewers we have added ambient soil nitrate data as 84 well as the estimated soil nitrate pool enrichment for each land use type in Table 2 at the end of 85 the manuscript. Moreover, in the Supplementary Information we have added Supplementary Table 2 that details the ¹⁵N label amendment per field site for the present study and compares 86 87 with the annual average soil nitrate pool enrichment for the period April 2013 to October 2014. 88 Based on these data, the range of soil nitrate enrichment was quite variable (range: 2- 40 %) and 89 above our annual average and this was attributed to discrepancies between the soil nitrate 90 content on the day of the measurement and the data used for calculating the required tracer concentration (data from previous campaign). Our aim was to enrich the total soil nitrate pool by 91 no more than 10% with ¹⁵N-NO₃, but clearly this was not always possible unless we were able to 92 measure the ambient soil nitrate pool on the day of the ¹⁵N amendment, which was logistically 93 impossible. To our knowledge only Kulkarni et al. (2014) have applied the ¹⁵N Gas-Flux method in 94 the field with soil nitrate enrichment levels lower than in our study, but in their case this resulted 95 in poorly detected ¹⁵N-N₂ fluxes. Even at slightly higher soil nitrate enrichment levels that we 96 97 originally aimed for, our tracer application rates corresponded to daily N atmospheric deposition 98 rates in the case of the organic soils and daily fertilizer application rates for the improved 99 grasslands. Therefore, we believe that our field denitrification rates using the ¹⁵N Gas-Flux method 100 reflect as close as possible 'true' in situ rates. (Manuscript changes: Lines: 411-416 and 597-621)

101

102	The range of the augmented water content was between 3 and 5 %. Detailed data from each
103	sampling plot are presented in Supplementary Table 1. The manuscript has been amended in lines
104	265-269.

- 105
- 106 3)[**Reviewer #2**: The 15N distribution was not well explained since the grid distance of injection was
- 107 not given. It is thus not possible to judge potential non-homogeneity of labeling. For this, the volume
- 108 of each injection and the distance must be reported. You might compare your pattern to Wu et al
- 109 2011 who optimized injection volume to achieve homogeneity.]

110

111 <u>Response</u>

112 The information on number of injections, volume per injection and the distances of the grid have

113 been added to the methods section (Lines: 254-257). Wu et al. (2011) have optimised the number

114 of injections and the volume of tracer needed to achieve homogeneous labelling of a soil core

115 (diameter 15 cm; height 20 cm) and reported that 38 injections of 4 mL volume each were

116 necessary. We have used only 10 injections of 5- 20 mL volume (depending on the soil water

117 content of each land use type) to minimise the disturbance of the soil pore water:air matrix,

118 particularly in highly porous media such as peatland soils, and this may have affected the

homogeneous distribution of the tracer. This comparison has been added to the Discussion (Lines:
 633-639).

121

122 4)[Reviewer #2: Another artefact from long enclosures is the decrease in N2O/(N2+N2O) ratio due to

123 increasing N2O reduction as N2O concentration increases during accumulation. This is

124 straightforward and has been repeatedly shown (unfortunately I have no reference at hand). This

125 effect is not addressed at all in this paper and might in part explain why ratios were mostly very

126 small.

127 <u>Request</u>: -Evaluate the change in product ratio during 1, 2, 20h sampling for each site and discuss the
 128 bias of the 20h values]

- 129
- 130 <u>Response</u>

131 The change of the denitrification product ratio with incubation time was evaluated in each sampling plot where both N₂ and N₂O fluxes were available (data shown in Supplementary Table 132 133 6). Generally, the product ratio increased with increasing incubation time with the exception of 134 the grassland soils, where the maximum product ratio was observed after 2 hours of incubation. 135 This was indeed an indication of some further reduction of the denitrification derived N₂O to N₂ 136 during the extended closure period of up to 20 hours, even though the N₂O increased linearly 137 during 20 hours incubation (apart from the R-IG), as discussed in the response for the major 138 comment 1. This observation has been included in the Results section (Lines: 460-466). We refer to 139 this observation in the discussion as well where we make the recommendation that in soils 140 displaying high denitrification activity (e.g. improved grasslands) the incubation period should not 141 exceed 2 hours for a more accurate estimation of the $N_2O/N_2 + N_2O$ ratio. A longer incubation is 142 warranted under conditions of low flux seasons (winter) or low flux sites such as the organic soils 143 (Lines: 681-691).

144

145

146 5)[**Reviewer #2**: AIT was used as a reference but the major bias from this method was not discussed

- 147 i.e. catalytic NO decomposition (Bollman & Conrad 1997, Nadeem ea 2013). Hence this method is
- 148 today considered to be inadequate for field quantification (e.g. Felber et

- 149 al, 2013). Moreover, the C2H2 treated cores were sealed from the bottom thus avoiding subsoil
- 150 *diffusion. If the 15N labeled cores had been sealed from the bottom, discrepancies between the*
- 151 methods would certainly have been even larger than reported.
- 152 -Discuss all factors of bias of the AIT and take into account the absence of subsoil
- 153 diffusion.]
- 154
- 155 <u>Response</u>

Our intention was to use the AIT as an alternative field method to compare against and in essence 156 'fool-proof' our measurements with the adapted ¹⁵N Gas-Flux method that was applied for the 157 158 first time in the field. The good agreement we got between the two methods gives an additional indication that our adapted method gives reasonable estimates of in situ denitrification. However 159 160 we agree with the comment here and are aware of the several drawbacks of the AIT as a field 161 quantification method and the fact that subsoil diffusion was not possible with the AIT, which also 162 did not receive any nitrate amendment, preclude the direct comparison of the two methods. In 163 response to the reviewer's comments we have adapted the respective section of the discussion 164 4.3 (Lines: 697-737) to reflect several possible sources of uncertainty that may be responsible for 165 the discrepancies observed between the two field methods. 166 167 168 Minor comments 169 170 Reviewer #2: 171 172 [P 12654 (54), L 15 : check reported precision, do you mean 0.5% of 0.367 at%? This 173 would be d15N of 5 per mil, i.e. one to two orders worth than previous methods. L 18 174 give units of volume/surface ratio L18 20h accumulation time far too long, see above L 175 24 C2H2 bias not fully addressed (see above)] 176 177 Response

The coefficient of variation (CV) of 0.5 % refers to the R29 and R30 precision reported in Table 1.
 The units for the chamber volume/surface are cm³:cm².

181	[P55 L9 but not only with respect to EXCESS nitrogen]
182	
183	Response
184	The word 'excess' is deleted
185	
186	[P56 L 18-20 AIT not adequately discussed (see above, check Bollman & Conrad, 1997
187	and Nadeem et al. 2013)]
188	
189	Response
190 191 192	The effect of acetylene on the catalytic decomposition of NO has been added as a significant drawback of the AIT for quantifying in situ denitrification rates with reference to Nadeem et al. 2013 (Lines: 105-109).
193	
194	[P57 L1 This statement is incorrect since the 15N gas flux method is inadequate for
195 196	saturated soils (see Tauchnitz et al 2014 and references therein) where only the push-pull method is suitable for quantification. L7 refer also to Tauchnitz et al 2014]
197	
198	Response
199 200 201	The statement on the suitability of the ¹⁵ N Gas-Flux method for saturated soils has been deleted. The reference to the study by Tauchnitz et al (2015) in restored peatland soils has been added to the literature review in Lines 119-122.
202	
203	[P59 L18-21; P60 L11: Not clear what per mil means here L12 not clear what 3 mL st
204	100 mL means]
205	
206	Response
207 208	The per mil units refer to the standard deviation of δ^{15} N. The clarification has been added to the section 2.1. In L12 the mistake is a typo. It reads now three 100 mL flasks.
209	

[P61 L2 Small insertion depth of 10 cm further enhances subsoil diffusion (see Healy et al, 1996) L10

211 the purpose of a vent in incorrectly addressed her. It is needed to allow pressure pumping, and this is

212 independent of cover volume. Exclusion of pressure pumping affects fluxes, please discuss. L12 did

213 you check temperature during 20h closure? If so, pleas report data L15 report number of injections

214 and grid dimensions

215 L25 since water content is among the main drivers: more detail is needed here: what

- 216 was the range of augmented water content and discuss potential effects. An increase
- 217 of 5% (g/g) is quite a lot.]
- 218

219 <u>Response</u>

According to Healy et al. (1996), inserting the chamber walls into the soil up to the depth of gas

221 production could minimise the error due to the distortion of the gas concentration gradient by

222 increasing vertical (upward) diffusion and minimising any radial diffusion. The collars were

223 inserted at approximately 10 cm depth, which was also the depth of the tracer injection.

224 Therefore, the top 10 cm of soil was considered our gas production depth and this was surrounded

by the collar walls, thus minimising radial diffusion. Deeper insertion of the collars would not have

- affected subsoil diffusion downward, as the reviewer suggests, but it would rather minimised any
- 227 further radial diffusion (see Healy et al, 1996).

228

We did not use a vent tube (as suggested by Hutchinson and Mosier, 1981) in our chamber design,
 which could have diluted the chamber headspace with atmospheric N₂, as part of our effort to
 increase the probability of a detectable ¹⁵N-N₂ signal in the chamber headspace. The build-up of
 positive pressure within the chamber's headspace, particularly during the extended 20 hours
 incubation, may have potentially led to underestimations of the N₂ and N₂O fluxes and thus we
 amended the manuscript to recognize this underestimation. (See manuscript amendments: Lines
 248-252 and 567-570).

236

The soil temperature was not recorded inside the soil enclosure during the incubation, since we
 wanted to minimise any further disturbance of the soil matrix but measured within the m² plots
 assuming similar temperature inside and outside of the chamber. To avoid any over-heating of the
 enclosed soils, we covered our chambers with reflective foil

241

242 The number of injections and grid dimensions are reported in line 255.

244 245 246	The range of the augmented water content was between 3 and 5 %. Detailed data from each sampling plot are presented in Supplementary Table 1. The manuscript has been amended in lines 265-269.
247	
248	[P62 L 10 capping the bottom precludes comparison with 15N gas fluxes since the soil was not
249	capped at the bottom in the 15N treated microplots (see comments on subsoil diffusion)]
250	
251	Response
252	The intact soil cores used in the AIT technique were capped at both ends to make sure that cored
253	soli (up to 10 cm depth) is retained during incubation within the tube without failing out to avoid
254	any overdose of soil with C_2H_2 and to maintain similar soil pore and headspace C_2H_2 across the
255	sites A significant effect of subsoil diffusion was not demonstrated for the N Gas-Flux method in
250	the majority of the sampling plots (as snown in Supplementary Tables 4 &5) and this mismatch of
257	the two methods in terms of sealing is discussed in the major comments above. Therefore, we
258 259	precluded on the basis of the subsoil diffusion effect
260	
261	[P63 suggest to give also an equation for evolved N2O]
262	
263	Response
264	The equation for calculating the evolved N_2O is exactly the same with equation (5), where N_2
265	concentration is replaced by the total N_2O concentration. This is described in the manuscript in
266	lines 346-350, and therefore we believe that repeating the same equation for a second time would
267	be redundant.
268	
269	[In section 2.3: please explain how you calculate N2O flux from other sources.]
270	
271	Response
272	We did not partition the sources of N_2O in this study, but rather measured total N_2O flux (from all
273	possible sources) to be used in equation (5) for estimating the evolved N ₂ O due to denitrification.
274	This is explained in the methods section in lines 346-350.
275	
276	[P64 L1-5 linearity is not expected for 20h closure. Please address time course data and linearity for

277 each site and sampling (see above)

278 279 280	P67 L 1 this analysis is not adequate. Each site and date must be checked individually (see above, data might be shown in appendix). Please check also which values were significantly different from background air. Data not significantly different must be excluded from linearity checks.]
281	
282	Response
283	Please see response for major comment 1 above.
284	
285 286 287 288	[P64 L22 15XN of N2 and N2O can be very different due to inhomogeneity of labeling and formation of hybrid N2 or N2O (Spott et al 2007). Pleas discuss uncertainty from assuming equal 15XN of N2 and N2O. Did you get useful 15XN of N2 in high flux plots? If so how 15XN of N2 and N2O agreed in those cases. (data of individual sites should be given in an appendix)
289	
290	[P71 L 6-24 in this discussion please also address that you did not measure 15XN of
291	N2]
292	
293	[P71 L27 the arguing for hybrid N fluxes should better explained. You can only check this
294	precisely if you have good estimates for the enrichment of NO3 (15a_NO3). If 15XN
295	< 15a_NO3 then you obtain positive values for hybrid N according to Spott et al 2007.
296	But his might be also due to non-homogeneity. You did not measure 15a-NO3 but have
297	initial estimates which are lower than 15XN. So this indicates strong non-homogeneity.
298	This is an important observation. Would be good to show the data (15XN and calculated
299	15a_NO3, shold be shown in appendix) and discuss more in detail.]
300	
301	Response
302	We were able to calculate ${}^{15}X_N$ from the N ₂ isotope ratio data mostly from the woodland and

303 grassland plots. Data from all plots where the ${}^{15}X_N$ could be calculated from both the N₂ and the

 N_2 O isotope ratio data are shown in Supplementary Table 3. When comparing the mean ${}^{15}X_N$ from the two data sources for each land use type, these were not significantly different, thus indicating

 $_{20}$ negligible effect from hybrid N₂ and N₂O fluxes. This comparison has been added in the results,

307 lines: 427-431 and the discussion for further clarification, lines: 652-657.

309 310 311 312	[P69 1-3: the lower NO+ formation is probably due to the different geometry of the ion source of the IRMS and not due to injection volume. L10 note that true values are needed when using the equations by Spott et al 2007 to calculate hybrid N2 and/or N2O L 16 but note that your precision was not better than older data, eg Well ea 1998.]
313	
314	Response
315 316	Clarifications were added in the discussion section 4.1 (Lines: 509-538) to address the above comments by the reviewer.
317	
318 319 320 321 322	[P70 L14 note that Morse and Bernhard incubated in closed systems which did not allow subsoil diffusion. 20 h closure has never before been employed for 15N gas flux studies in the field, to my knowledge. L18 this is not adequately proven because it was only tested using averages of all sites of one system, but it needs to be shown on individual sites /dates (see above) L20 please show WFPS data]
323	
324	Response
325 326 327 328	The difference between our approach and the one described in Morse and Bernhard (2013) has been made explicit in the Discussion (Lines: 564-567). The rest of this comment is addressed in our response above (comment 1). The mean WFPS data per field site are presented in the Discussion (Lines: 573-576).
329	
330 331 332	[P72 L4 not clear to me. I agree that nitrification might dilute the 15N in NO3 causing a decrease in 15XN. But N2O from nitrification is another issue. You can calculate that based on the Bergsma (2001) equations and it would be a valuable extension of your data.]
333	
334	Response
335 336 337 338 339 340	A clarification has been added to the Discussion (Lines: 658-660) to address the above comment. It now reads 'the slope of $^{15}X_N$ with time was negative suggesting dilution of the ^{15}N -labelled soil NO_3^- pool by the oxidation of the ambient ammonium (nitrification).' The source partitioning of the N_2O is the subject of a separate publication and we do not think that adding this information here is within the scope of this methodological study.
341	[P72 L 9 to 20. This discussion is too simple as it only compares ranges of values without addressing
342	denitrification controls. So if you want to keep this, compare soil types, mineral N level, organic C,

343 moisture and so on, and discuss in which cases agreement or disagreement of data was expected.]

345 <u>Response</u>

346 In this part of the Discussion (Lines: 665-677, revised manuscript) we are comparing our measured 347 in situ denitrification rates with the published literature, where similar methodological 348 approaches were used. There is a general agreement of our rates with the rates reported for low ¹⁵N field applications, whereas our rates are significantly lower compared to fertiliser level 349 350 applications of ¹⁵N. We believe that this part of the discussion is important as it shows that the denitrification rates measured with our adapted method generally agree with the literature and 351 352 are not unreasonable. We do not expand our discussion to discuss the observed differences in 353 denitrification rates between land use types and the effect of soil variables in controlling process 354 rates, as this discussion would be beyond the scope of this methodological study, but instead we 355 make reference to the separate publication that focuses on 'The relative magnitude and controls of in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial 356 ecosystems using ¹⁵N tracers' (Sgouridis and Ullah, accepted). In response to the reviewer's 357 358 comment we have removed the part of the discussion between P12672 L25 and P12673 L15 (Pages 359 and lines refer to the pdf of the manuscript published in the Biogeosciences Discussion forum).

360

361 [P73 L 5 This does not apply to all organic soils, i.e. to bogs, but not to fens L9 this needs clarification.

362 Not adequate to leave BD values out, but include them as zero fluxes or 50 % of detection limit.

- 363 Which option is advisable depends on the number of BD values. If you have only few, then 50% of
- 364 *detection limit would be adequate from my view.*]
- 365

366 <u>Response</u>

367 The comment for P73 L5 does no longer apply as this part of the discussion has been removed (see 368 previous comment). As for the comment for P73 L9, although this statement has also been 369 removed from the discussion we would like to provide a clarification. By 'N₂ fluxes below the 370 detection limit' we meant those samples that did not pass our minimum detectable concentration 371 filter (MDC, described in the manuscript) and therefore they were not regarded as valid samples. As to the reason why these samples were not valid we cannot be certain as it may had to do with 372 the sampling procedure, or simply that the ¹⁵N-N₂ signal even over 20 hour incubationmay have 373 374 been too low to be detected by our IRMS. Therefore, we chose to not use these samples as invalid, 375 rather than assuming a potentially false 0 flux, which would have seriously underestimated the 376 mean flux rate calculation.

377

378 [P73 L22-26 since the AIT is not quantitative this arguing is not suitable (see above)]

379

380 <u>Response</u>

381	This argument has been removed from the discussion. See also response to major comment 5.
382	
383	[P74 L12-15 this is a weak argument since N2O flux is by no means equal to denitrification.
384	
385	And also reviewer #1: The authors correctly point out that "adding nitrate to the
386 387 388 389 390 391 392 393 393	C2H2 amended cores would have been desirable for evaluating directly the priming effect of the added substrate on denitrification rates", yet they did not do this. As a result, they cannot really conclude that the AIT rates were lower due to incomplete blockage of N2O reduction from the data you have. The idea that "if the 15N tracer addition in the static chambers, even at such low rate (< 1 kg N/ha), were to stimulate the denitrification activity, this might have been reflected through high bulk N2O flux from the chamber compared to the intact cores" is not really valid, as the vast majority of the denitrification flux went to N2. So it would be hard to see a fertilization effect in the bulk N2O flux.]
395	Response
396 397 398 399 400 401 402 403	We agree with the comments of both reviewers and in response we amended the respective section of the discussion as such: 'Adding nitrate to the C_2H_2 amended cores would have been desirable for evaluating directly the priming effect of the added substrate on denitrification rates. Even though the ¹⁵ N tracer addition to the static chambers corresponded to the amounts of N naturally deposited in these land use types either via management practices and/or atmospheric deposition, thus avoiding excessive N fertilisation of the sampling plots, it cannot be conclusively argued that the same amount of applied nitrate would not have led to similar denitrification rates between the AIT and the ¹⁵ N Gas-Flux methods.' Discussion Lines: 702-714.
404	
405 406	[Fig.1: the meaning of N2 and N2O in the Fig. is not clear. NO is not removed in the furnace but reduced to N2]
407	
408	Response
409 410	Figure 1 was adapted to clarify the above comment. N_2O is removed in the liquid nitrogen trap. NO is not removed but reduced to N_2 in the furnace and finally N_2 is directed to the IRMS.
412	[[ia 2, l]aita, a N/m2/b2]
412	[riy 2. onitsy iv/ii/2/11?]
413	
414	Response

416	the chamber headspace at the different incubation times.
417	
418	
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	

415 The units in Figure 2 are $\mu g\,N$ as the evolved N_2 and N_2O refer to amounts of gas accumulated in

437	Application of the ^{15}N -Gas Flux method for measuring in situ N_2 and N_2O fluxes due to
438	denitrification in natural and semi-natural terrestrial ecosystems and comparison with
439	the acetylene inhibition technique.
440	
441	F. Sgouridis ^{1*} , S. Ullah¹ and A. Stott ² and S. Ullah ¹
442	
443	¹ School of Physical and Geographical Sciences, Keele University, Staffordshire, UK.
444	² NERC Life Sciences Mass Spectrometry Facility, Centre for Ecology & Hydrology,
445	Lancaster Environment Centre, Lancaster, UK.
446	*Corresponding author: Fotis Sgouridis, School of Geographical Sciences, University of
447	Bristol, Bristol, BS8 1SS. Email: f.sgouridis@bristol.ac.ukSchool of Physical and
448	Geographical Sciences, Keele University, Staffordshire, ST5 5BG. Tel. +44(0) 1782 733737.
449	Email: <u>f.sgouridis@keele.ac.uk</u>
450	
451	Keywords: Organic soils, forest, grassland, ¹⁵ N tracer, acetylene inhibition technique, nitrous
452	oxide.
453	
454	
455	
456	
457	14

459 Abstract

460 Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial 461 ecosystems. ¹⁵N tracer approaches can provide *in situ* measurements of both N₂ and N₂O 462 simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need 463 for large ¹⁵N additions in order to detect ¹⁵N₂ production against the high atmospheric N₂. For 464 15 N-N₂ analyses, we have used an 'in house' laboratory designed and manufactured N₂ 465 preparation instrument which can be interfaced to any commercial continuous flow isotope 466 467 ratio mass spectrometer (CF-IRMS). The N_2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μ L) for 468 ¹⁵N-N₂ analysis. For the analysis of N₂O, an automated Tracegas Pre-concentrator (Isoprime 469 Ltd) coupled to an IRMS was used to measure the ¹⁵N-N₂O (4 mL gas injection volume). 470 Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air 471 and in standard N₂O (0.5 ppm) was better than 0.5 %. The ¹⁵N Gas-Flux method was adapted 472 473 for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the ¹⁵N tracer application rate to 0.04 - 0.5 kg ¹⁵N ha⁻¹. For our chamber design 474 (volume/ surface = $8:1 \text{ cm}^3:\text{cm}^2$) and $\frac{\text{a-up to}}{20}$ h incubation period, the minimum detectable 475 flux rates were 4 μg N m $^{-2}$ h^{-1} and 0.2 ng N m $^{-2}$ h^{-1} for the N_2 and N_2O fluxes respectively. 476 The N₂ flux ranged between 2.4 and 416.6 μ g N m⁻² h⁻¹, and the grassland soils showed on 477 478 average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N₂O flux was on average 20 to 200 times lower than the N₂ flux, while the 479 denitrification product ratio ($N_2O/N_2 + N_2O$) was low, ranging between 0.03 and 13 %. Total 480 denitrification rates measured by the acetylene inhibition technique under the same field 481 482 conditions in the same land use types correlated (r = 0.58) with the denitrification rates

Formatted: Superscript
Formatted: Superscript

483	measured under the ¹⁵ N Gas-Flux method but were underestimated by a factor of 4 and this
484	was <u>partially</u> attributed to the incomplete inhibition of N_2O reduction to N_2 under relatively
485	high soil moisture content. The results show that the ¹⁵ N Gas-Flux method can be used for
486	quantifying N_2 and N_2O production rates in natural terrestrial ecosystems, thus significantly
487	improving our ability to constrain ecosystem N budgets.
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	

503 1. Introduction

504 There has been a renewed interest recently in developing new or enhancing existing 505 measurement approaches for improving our ability to constrain dinitrogen (N_2) fluxes due to 506 denitrification in terrestrial ecosystems (Kulkarni et al. 2014, Lewicka-Szczebak et al. 2013, 507 Wang et al. 2011, Yang et al. 2014). Denitrification, the reduction within soils of nitrogen oxides (NO_3^- and NO_2^-) to NO, N_2O and ultimately N_2 gas, constitutes the most important 508 509 mechanism for the removal of excess reactive nitrogen (Nr) in terrestrial ecosystems 510 (Galloway et al. 2008, Groffman 2012). Despite its importance, denitrification is considered 511 the most un-constrained process in the global N cycle (Groffman 2012, Kulkarni et al. 2008) 512 due to uncertainties in N₂ flux estimations that are likely leading to underestimations of denitrification rates at multiple scales (Butterbach-Bahl et al. 2013). Considering 513 514 contemporary atmospheric N deposition rates globally including UK (Dore et al. 2012, Galloway et al. 2008, Payne 2014), the available Nr pool in soils may be greater than the 515 516 capacity of denitrification for its removal with important consequences of chronic N 517 enrichment of natural terrestrial ecosystems (Galloway et al. 2008, Limpens et al. 2003). 518 Moreover, nitrous oxide (N_2O) , an obligate intermediate of denitrification, is a potent 519 greenhouse gas involved in the breakdown of stratospheric ozone (Ravishankara et al. 2009). 520 Therefore, a reliable estimation of the relative magnitude of the major denitrification end 521 products $(N_2 + N_2O)$ in soils is crucial in evaluating the role of denitrification as an Nr sink 522 (Kulkarni et al. 2008).

523

N₂ comprises ~78 % of the atmosphere and thus it is extremely difficult to measure small N₂
fluxes from soil against this high background, particularly in natural terrestrial ecosystems
(Groffman et al. 2006). Available methods for measuring both N₂ and N₂O are limited and

can be categorised into the direct flux and ¹⁵N isotope tracer methods (Kulkarni et al. 2014), 527 whilst micrometeorological approaches (Eddy covariance) are impossible in the N₂ rich 528 529 atmosphere (Felber et al. 2012). The gas-flow soil core method (Burgin and Groffman 2012, 530 Butterbach-Bahl et al. 2002, Scholefield et al. 1997, Wang et al. 2011) allows the direct 531 measurement of N₂ flux (without the addition of any substrate such as nitrate) from intact soil 532 cores where the soil atmosphere is replaced by a mixture of He/O₂. However, despite the high 533 precision of the technique, cores still need to be extracted from the field and conditioned over 534 lengthy periods of time for the complete removal of N2 from the soil atmosphere. This method is therefore time and resource intensive which limits its application to intensive 535 temporal and large spatial scales (Kulkarni et al. 2014). Moreover, the gas-flow soil core 536 method cannot discriminate between sources of N₂O thus overestimating the denitrification 537 product ratio (N₂O/ N₂ + N₂O) (Butterbach-Bahl et al. 2013, Morse et al. 2015). The 538 539 acetylene inhibition technique (AIT) is also a direct flux method that exploits the ability of acetylene (C_2H_2) at high concentrations (10 % v/v) to inhibit the reduction of N₂O to N₂ 540 (Tiedje et al. 1989), thus total denitrification $(N_2 + N_2O)$ is measured in C_2H_2 amended soil 541 cores in situ, whilst N₂ flux is estimated indirectly by difference from un-amended soil cores. 542 543 Despite its simplicity and cost-effectiveness, the AIT is becoming increasingly unpopular due its several limitations, (, reviewed in Groffman et al. (2006), of which the catalytic 544 decomposition of NO inat the presence of C2H2 under oxic or suboxic conditions in the field 545 (Nadeem et al. 2013) that in particular, precludes its use for reliable estimates of *in situ* 546 denitrification rates (Felber et al. 2012). 547

Formatted: Not Highlight
Formatted: Not Highlight
Formatted: Not Highlight

Formatted: Not Highlight Formatted: Not Highlight Formatted: Not Highlight

548

The ¹⁵N Gas-Flux method (Mosier and Klemedtsson 1994) has the advantage of providing *in situ* measurements of both N_2 and N_2O simultaneously, thus allowing its application over large temporal and spatial scales. It requires the addition of a ¹⁵N-labelled tracer in a soil

552	enclosure in the field which is subsequently covered by a chamber while the chamber
553	headspace is progressively enriched with ¹⁵ N-N ₂ and ¹⁵ N-N ₂ O produced by denitrification
554	(Stevens and Laughlin 1998). Assuming that both N_2 and N_2O originate from the same
555	uniformly labelled soil NO_3^- pool (Stevens and Laughlin 2001), the true denitrification
556	product ratio can be more accurately estimated as opposed to the direct flux approaches
557	(Bergsma et al. 2001). The ¹⁵ N Gas-Flux method is suitable for both well and poorly-drained
558	soil applications and allows for broader areal coverage compared to ¹⁵ N tracer 'push-pull'
559	techniques constrained to 'point' measurements in fully saturated soils and sediments (Harms
560	and Jones 2012, Sanders and Trimmer 2006, Whitmire and Hamilton 2005). Field
561	applications of the ¹⁵ N Gas-Flux method so far have been limited to fertilised agro-
562	ecosystems (Baily et al. 2012, Cuhel et al. 2010, Graham et al. 2013) and more recently
563	restored peatland soils (Tauchnitz et al. 2015) with high ¹⁵ N tracer application rates (between
564	10 - 200 kg N ha ⁻¹), with the exception of Kulkarni et al. (2014) who have measured
565	denitrification rates in Northern hardwood forests of the US by adding tracer amounts of ¹⁵ N-
566	labelled nitrate and Morse and Bernhardt (2013) who applied the same technique in intact soil
567	cores collected from mature and restored forested wetlands in North Carolina, USA. These
568	recent studies hold much promise that the ¹⁵ N Gas-Flux technique can be applied to a range
569	of natural and semi-natural terrestrial ecosystems allowing the quantification of the relative
570	magnitude of N_2 and N_2O fluxes due to denitrification from these under-represented
571	ecosystems.

573 Natural and semi-natural terrestrial ecosystems in the UK (i.e. peatlands, heathlands, acid 574 grasslands, deciduous and coniferous forests), where there is no fertiliser use and the impact 575 from grazing and commercial forestry is minimal (Mills et al. 2013), along with improved 576 and unimproved grasslands (grazed and/or fertilised) constitute approximately 49 % and 85

. 1

577 % of rural land use cover in England and Wales, respectively (Morton et al. 2011). Unlike
578 arable agriculture, these land use types have been poorly investigated for their role in Nr loss
579 through denitrification.

580

The major challenge in measuring ¹⁵N-N₂ at near natural abundance levels is the possibility 581 of interference at m/z 30 ($^{30}N_2$) due to the reaction of oxygen in the ion source with N and the 582 formation of NO⁺ ions that also have m/z 30 (Stevens et al. 1993). Commonly, this issue is 583 584 addressed in continuous flow isotope ratio mass spectrometers (CF-IRMS) with the inclusion of a copper (Cu) oven for reducing O_2 in the gas sample (Russow et al. 1996). Recently, it 585 has been suggested that the interference at m/z 30 can be further reduced by including a 586 587 molecular sieve column in gas chromatograph IRMS (GC-IRMS) systems to not only separate N_2 and O_2 in the gas sample, but also to quantitatively remove O_2 and other trace 588 gases such as carbon monoxide (Lewicka-Szczebak et al. 2013, Yang et al. 2014). We 589 590 hypothesise that the precision for m/z 30 determination can be greatly improved by using a 591 custom-built preparative unit for the removal of H₂O, CO₂, N₂O, NO⁺ and CO; a device 592 which also permits the micro scale injection of volumes of $< 5 \mu$ L. These injection volumes 593 are much smaller than have previously been reported in the literature.

594

595 Studies that have directly compared the ¹⁵N Gas-Flux method with the AIT in the field are 596 rare and have exclusively focused on highly fertilised agro-ecosystems with moderate to low 597 soil moisture contents (Aulakh et al. 1991, Mosier et al. 1986, Rolston et al. 1982). These 598 studies have measured comparable denitrification rates by both field techniques, although the 599 relatively low soil moisture contents have probably allowed greater diffusion of C_2H_2 to the 500 anaerobic microsites where denitrification occurs (Malone et al. 1998), whilst the high nitrate 601 application rates have probably favoured nitrate reduction over N₂O reduction (Dendooven 602 and Anderson 1995) resulting in high denitrification rates from the AIT. Conversely, 603 laboratory studies have shown that the AIT significantly underestimates total denitrification compared to the ¹⁵N tracer approach (Yu et al. 2010) and the direct N₂ flux approach (Qin et 604 al. 2012) due to the incomplete inhibition of N₂O reduction to N₂ by C₂H₂ in wet soils (Yu et 605 al. 2010) or in soils with low nitrate content, where N_2O reduction is more energetically 606 favourable (Qin et al. 2013, Qin et al. 2014). A direct-comparison of the ¹⁵N Gas-Flux 607 method with the AIT under in situ conditions across a range of natural and semi-natural 608 terrestrial ecosystems has not been attempted before. It can provide valuable insights in terms 609 610 of the validity and applicability of the two field techniques for measuring denitrification rates 611 across broad spatial and temporal scales.

612

The objectives of the present study were: (1) to determine the precision and suitability of our preparative-IRMS instrumentation for measuring ${}^{15}N-N_2$ and ${}^{15}N-N_2O$ at low enrichment levels, (2) to adapt the ${}^{15}N$ Gas-Flux method for application across natural and semi-natural terrestrial ecosystems and (3) to directly-compare the validity and applicability of the ${}^{15}N$ Gas-Flux method with the AIT for measuring *in situ* denitrification rates.

- 618
- 619
- 620
- 621
- 622
- 623

- 625
- 626

627 2. Materials and methods

628 2.1. IRMS system

For N2 gas isotopic analysis we used an Isoprime isotope ratio mass spectrometer 629 (Isoprime Ltd, UK, Wythenshawe) coupled to an in house built N2 preparative interface 630 631 (Figure 1). Headspace gas (4 µL) was manually injected with a gas tight syringe (SGE 632 Analytical science) into the preparative interface via an open split. Prior to its 633 introduction into the IRMS, the sample was treated as follows: a) dried by passing through Mg(ClO₄)₂ (Elemental Microanalysis Ltd, Devon, UK), b) CO₂ removed with 0.7 634 - 1.2 mm Carbosorb (Elemental Microanalysis Ltd, Devon, UK), c) N₂O cryogenically 635 trapped under liquid nitrogen, and d) O2 removed over a copper-packed reduction furnace 636 637 heated at 600°C. The N₂ was then directed towards the triple collectors of the isotope ratio mass spectrometer where m/z 28, m/z 29 and m/z 30 mass ions were measured. 638 Mass/charge ratios for the m/z 28, m/z 29 and m/z 30 nitrogen ($^{28}N_2$, $^{29}N_2$ and $^{30}N_2$) were 639 recorded for each sample at a trap current of 300 µAmps. Instrument stability checks were 640 performed prior to each analysis by running a series of 10 reference pulses of N₂ (BOC 641 special gases) until a standard deviation of δ^{15} Nfit better than 0.05 ‰ was achieved. 642 Additionally, 10 consecutive injections (4 μ L) of atmospheric air were analysed prior to 643 the analysis of actual samples. Precision of the instrument was better than $\delta^{15}N$ 0.08 % in 644 all quality control tests. 645

647	Nitrous oxide was analysed using modified headspace methods described for the analysis
648	of nitrogen gas above. Headspace gas (ca. 4_mL) was injected into a TraceGas TM
649	Preconcentrator coupled to an Isoprime TM IRMS (GV instruments Ltd, UK) whereupon
650	the sample was directed through a series of chemical traps designed to remove $\mathrm{H_2O}$ and
651	CO2. The N2O was cryogenically trapped under liquid nitrogen. The waste was flushed
652	out of the instrument. The N ₂ O was further cryofocused in a second liquid nitrogen trap
653	prior to being introduced onto a 25 m x 0.32 mm Poraplot Q gas chromatography column
654	(Chrompack column, Varian, Surrey, U.K). The column separated N ₂ O from any residual
655	CO ₂ , and both entered the IRMS via an open split. The retention time between the first
656	eluting CO ₂ (< 2^{E-10} amplitude) and second eluting N ₂ O peak typically fell in the range
657	between 60 - 70 seconds to avoid isobaric interference of the CO_2 with the calculated ¹⁵ N.
658	The N ₂ O was directed towards the triple collectors of the isotope ratio mass spectrometer
659	where m/z 44, m/z 45 and m/z 46 mass ions were measured and recorded. Instrument
660	stability checks were performed prior to each analysis by running a series of 10 reference
661	pulses of N ₂ O (BOC special gases) until a standard deviation of $\frac{\delta^{15}Nfit}{\delta}$ better than 0.05
662	$\%$ was achieved. Prior to each sample batch analysis, trace gas N_2O measurements were
663	made on 3-xthree 100 mL flasks containing atmospheric air collected from outside the
664	stable isotope laboratory. $\delta^{15}N$ precisions using the Trace gas Preconcentrator and
665	Isoprime IRMS were better than 0.3 $\%$ respectively at 600 μ Amp trap current.

667 2.2. Field application of the ¹⁵N Gas-Flux and AIT techniques

668	In situ measurements of N_2 and N_2O were made using static chambers according to the
669	¹⁵ N Gas-Flux method (Mosier and Klemedtsson 1994). Five plots were randomly
670	established in June 2013 in each of four study sites in the Ribble - Wyre River catchments

671	(area 1145 km ² ; NW England, $53^{\circ}59'99''$ N, $2^{\circ}41'79''$ W). The study sites were a
672	heathland (R-HL), a deciduous woodland (R-DW), an unimproved grassland (R-UG) and
673	an improved grassland (R-IG). In August 2013, four more study sites were tested in the
674	Conwy River catchment (area 345 km ² ; N. Wales, 52°59'82" N, 3°46'06" W) following a
675	similar sampling design. These sites were an acid grassland (C-UG), an ombrotrophic
676	peat bog (C-PB), a mixed deciduous and coniferous woodland (C-MW) and an improved
677	grassland (C-IG). Further details on the location, land management status and major soil
678	properties for all study sites can be found in Sgouridis & Ullah (2014).

680	In each plot a round PVC collar (basal area 0.05 m ² ; chamber volume 4 L) was inserted
681	into the soil at c. 10 cm depth 2 - 4 weeks before the measurement date. The collars were
682	open at the bottom to permit natural water table levels during the measurements. The
683	natural vegetation cover at the soil surface of each installed collar remained unchanged.
684	The PVC collars were fitted with a circular groove of 25 mm depth to fit in an acrylic
685	cylindrical cover (chamber) providing a gas-tight seal when filled with water (Ullah and
686	Moore 2011). The gas leak rate from the chamber was determined in the laboratory by
687	placing the sealed collar and chamber over a tray of water, injecting CH_4 (10 ppm), and
688	determining the change in CH ₄ concentration within the chamber headspace over time
689	(Yang et al. 2011). The CH_4 concentration change within 24 hours was negligible with
690	the relative standard deviation (RSD) being $< 5 \%$. <u>We did not use a vent tube for</u>
691	pressure equilibration, as suggested by Hutchinson and Mosier (1981), in our chamber
692	design, which could have diluted the chamber headspace with atmospheric N_{2} , as part of
693	our effort to increase the probability of a detectable ¹⁵ N-N ₂ signal in the chamber
694	headspaceDue to the relatively small volume of the chamber's headspace there was no
695	need for air circulation within the chamber or a vent for pressure equilibration (Mulvaney

Formatted: Font: Not Bold

Formatted: Font: Not Bold Formatted: Not Highlight Formatted: Font: Not Bold Formatted: Font: Not Bold

and Kurtz 1984)._-Instead chambers were covered with reflective foil for minimising 696 temperature increase within the chamber headspace during the incubation period (Ullah 697 and Moore 2011). Labelled K¹⁵NO₃⁻ (98 at. % ¹⁵N, Sigma-Aldrich) was applied in each 698 plot via multiple ten injections of equal volume through an equally-spaced grid (4 x 6 cm) 699 using custom-made 10 cm long lumber needles attached to a plastic syringe (Ruetting et 700 al. 2011). The ¹⁵N tracer was delivered as the needle was pushed into the soil from the 701 surface up to 10 cm depth aiming to achieve as uniform as possible labelling of the soil 702 volume enclosed by the collar, as required by the ¹⁵N gas flux method (Mosier and 703 Klemedtsson 1994). The volume and concentration of the labelled K¹⁵NO₃⁻ tracer solution 704 was determined from measurements of soil nitrate and moisture content, as well as bulk 705 density adjacent to each plot made during the installation of the collars (Morse and 706 Bernhardt 2013). Lower application rates (< 0.1 kg N ha⁻¹) were administered to natural 707 study sites (e.g. peat bog, heathland) and higher rates (< 1 kg N ha⁻¹) administered to 708 709 semi-natural (e.g. unimproved and improved grasslands). The tracer solution (50 - 2050 mL) was adjusted between within 3 and 5 % of the ambient volumetric water content (see 710 Supplementary Table 1 for detailed data from each sampling plot). Since the volume of 711 the added solution corresponded to a precipitation amount of ≤ 2 mm, the increase of the 712 volumetric water content was considered minor (Tauchnitz et al. 2015). 713

714

Following the ¹⁵N tracer application the collars were covered with the acrylic chamber fitted with a rubber septum for gas sampling. Two sets of gas samples (20 mL each) were collected with a gas tight syringe (SGE Analytical science) through the septum of the chamber cover at T = 1h, T = 2h and $T \approx 20h$ after the tracer injection, while a T = 0hsample was collected immediately after tracer injection above the plot surface before fitting the chamber cover. The gas samples were transferred into pre-evacuated (<100 Pa)

723

724

12 mL borosilicate glass vials with butyl rubber septa (Exetainer vial; Labco Ltd., High Wycombe, United Kingdom) for storage under positive pressure and were analysed within 8 weeks from collection without any significant change of the gas concentration (Laughlin and Stevens 2003).

725

Adjacent to each PVC collar in each plot, two intact soil cores (50 mm I.D., 15 cm long) 726 were extracted from 10 cm depth leaving the top 5 cm void as a headspace volume. The 727 cores were capped on both ends with the top cap fitted with a rubber septum for gas 728 sampling. One set of cores was amended with pure C₂H₂ with 5 mL injected through the 729 septum directly in the middle of the soil core before 10 % of the headspace being also 730 731 replaced with pure C₂H₂. The second set of cores was not amended with C₂H₂ and both cores were placed back in the ground where they came from. Gas samples (5 mL) were 732 collected with a gas tight syringe (SGE Analytical science) through the septa of the cores 733 734 at T = 1h and T = 2h after amendment with acetylene. The gas samples were transferred into pre-evacuated (<100 Pa) 3 mL borosilicate glass vials with butyl rubber septa 735 736 (Exetainer vial; Labco Ltd., High Wycombe, United Kingdom) for storage under positive 737 pressure.

738

739 2.3. Flux calculations

The ¹⁵N content of the N₂ in each 12 mL vial was determined using the IRMS system described above and the ratios R29 ($^{29}N_2/^{28}N_2$) and R30 ($^{30}N_2/^{28}N_2$) were measured in both enriched (T=1, 2 and 20 hours) and reference samples (T=0 hours). The inclusion of air reference standards between every 10 samples indicated an upward drift for R30 over time, potentially due to the formation of NO⁺ in the ion source despite the inclusion of the
Cu reduction step (Lewicka-Szczebak et al. 2013). Subsequently, every sample batch was
drift corrected by fitting a linear regression through the air reference standards and
calculating an offset correction for both R29 and R30 (Yang et al. 2014). The minimum
detectable change (MDC) in R29 and R30 was defined with repeated manual analyses of
air reference standards (n=10) and was calculated using the following equation (Matson et
al. 2009):

751
$$MDC = \mu_{pair\,diff} + (2\sigma_{pair\,diff})$$
 (1)

where μ is the mean difference of all possible unique pairs of air reference standards (n=45) and σ is the standard deviation between sample pairs. The MDC for R29 was 7.7 x 10⁻⁷ and for R30 was 6.1 x 10⁻⁷ and these values were used to determine if each time step sample was significantly different from ambient reference samples (T=0 hours), and if not they were excluded from the flux calculations.

757

For calculating the total N₂ flux from a uniformly labelled soil nitrate pool when both R29 and R30 are measured, the 'non-equilibrium' equations were applied as described by Mulvaney (1984) for estimating first the ¹⁵N fraction in the soil NO₃⁻ denitrifying pool ($^{15}X_N$) as:

762
$${}^{15}X_N = 2(\Delta R30/\Delta R29)/(1 + 2(\Delta R30/\Delta R29))$$
 (2)

763 where $\Delta R29$ and $\Delta R30$ is the difference between R29 and R30 respectively between

real enriched (T=1, 2 and 20 hours) and reference samples (T=0 hours). Subsequently, the respectively. The $^{15}X_N$ allows the quantification of the fraction of the N₂ evolved from the 15 N-labelled pool

766 (*d*) using either the $\Delta R30$ or the $\Delta R29$:

767
$$d = \frac{\Delta R30}{\left({}^{15}X_N\right)^2}$$
 (3)

768
$$d = \frac{\Delta R29}{2({}^{15}X_N)(1-{}^{15}X_N)^2}$$
(4)

769

⁷⁷⁰ Using *d* and the concentration of $[N_2]$ (µg N) in the chamber headspace, the evolved N₂ ⁷⁷¹ from the soil pool was calculated:

772 Evolved
$$N_2 = d[N_2]/(1-d)$$
 (5)

The N₂ flux was then calculated using linear regression between the <u>maximum</u> evolved N₂ and the <u>respective</u> incubation time per plot surface area and was expressed in μ g N m⁻² h⁻¹ representing the total N₂ flux from the mixture of the ¹⁵N-labelled tracer and the soil N at natural abundance (Stevens and Laughlin 1998).

777

The ¹⁵N content of the N₂O in the same 12 mL vials as well as the ratios R45 ($^{45}N_2O$ / $^{44}N_2O$) and R46 ($^{46}N_2O$ / $^{44}N_2O$) were measured in both enriched (T=1, 2 and 20 hours) and reference samples (T=0 hours). The application of the <u>'non-equilibrium'</u> equations to N₂O is analogous to N₂ after correcting for the naturally occurring oxygen isotopes (Bergsma et al. 2001). Therefore, the ratios R45 and R46 were converted to ratios of R29 and R30 respectively by applying the following equations:

784
$$R29 = R45 - R17$$
 (6)

785 R30 = (R46 - (R29R17)) - R18(7)

where for R17 ($^{17}O/^{16}O$) the value 0.000373 was used and for R18 ($^{18}O/^{16}O$) the value 786 0.0020052 was used (Bergsma et al. 2001). There was no significant instrumental drift for 787 788 the ratios R45 and R46 over time. The MDC was defined, for the converted R29 and R30, with repeated automatic analyses of 0.5 ppm N_2O standards (n=15) as 3.4 x 10⁻⁵ and 2.9 x 789 10^{-5} respectively. The second set of gas samples collected at the same time in the field 790 were analysed for bulk-total N2O on a GC-µECD (7890A GC Agilent Technologies Ltd., 791 Cheshire, UK) and the concentration of $[N_2O]$ (µg N) was used in Eq. (5) to calculate the 792 N₂O flux due to denitrification of the mixture of the ¹⁵N-labelled tracer and the soil N and 793 expressed in µg N-N₂O m⁻² h⁻¹. Assuming that the N₂O originates from the same 794 uniformly labelled pool as N₂, the ${}^{15}X_N$ from N₂O was used to estimate d for N₂ using 795 either R30 (Eq. 3) or R29 (Eq. 4), thus lowering the limit of detection for N2 (Stevens and 796 Laughlin 2001) and allowing measurement of N2 gas flux from natural terrestrial 797 ecosystems at low ¹⁵N-tracer application rates. 798

799

Gas samples collected from the intact soil cores with or without acetylene amendment were analysed for N₂O on a GC- μ ECD (7890A GC Agilent Technologies Ltd., Cheshire, UK) and for CO₂ on a GC-FID (7890A GC Agilent Technologies Ltd., Cheshire, UK) and flux rates were determined by linear regression between 0 and 2 hours. The instrument precision was determined from repeated analyses of 6 ppm N₂O and 200 ppm CO₂ standards respectively (n = 8) and the RSD was <1%.

806

807 2.4. Statistical analysis

808	Using factor analysis on selected soil physico-chemical properties, the samples from the 8
809	field sites were ordinated in three broad land use types: organic soils (C-PB, C-UG, R-
810	HL); forest soils (C-MW, R-DW) and grassland soils (C-IG, R-UG, R-IG) according to
811	Sgouridis and Ullah (2014). All subsequent statistical analyses were performed on the
812	broad land use types rather than individual field sites. The data were analysed for
813	normality and homogeneity of variance with the Kolmogorov-Smirnov test and the
814	Levene statistic respectively and logarithmic transformations were applied as necessary.
815	One-Way ANOVA combined with the Hochberg's GT2 post hoc test for unequal sample
816	sizes or the Games-Howell post hoc test for unequal variances was performed for
817	comparing the variance of the means between land use types for all gas fluxes. Pearson
818	correlation was used between log-transformed flux rates. Comparisons between the ¹⁵ N
819	Gas-Flux and AIT techniques were made with independent samples t-test. All statistical
820	analyses were performed using SPSS [®] 21.0 for Windows (IBM Corp., 2012, Armonk,
821	NY).
822	
823	
824	
825	
826	
827	
828	
829	

3. Results

840 3.1. IRMS system evaluation

The precision of the IRMS systems was evaluated using repeated analyses of ambient air samples for N_2 (n=10) injected manually in one batch and repeated analyses of N_2O gas standard at natural abundance and 0.5 ppm concentration (n=15) using automated injections. The mean measured ratios of R29 and R30 for N_2 and of R45 and R46 for N_2O are shown in Table 1. Measurement precision was defined as the coefficient of variation (%) and it was lower for R29 compared to R30 and lower for R45 compared to R46, but still less than 0.5 % for all four measured ratios. We estimated the ¹⁵N atom% abundance for both gases as per Yang et al. (2014) and the precision was less than 0.01% for N_2 in air and 0.26 % for standard N_2O at natural abundance. The mean measured R30 (5.16 x 10^{-5}) was higher than the theoretical value of 1.35×10^{-5} for N₂ in ambient air suggesting some interference at m/z 30 potentially due to the formation of NO⁺ ions in the ion source

of the mass spectrometer despite the inclusion of the Cu reduction oven. The contribution 852 of NO⁺ ions (R30 measured - R30 theoretical) was 3.81 x 10⁻⁵, whilst the ratio of R30 853 854 theoretical/ R30 measured was 0.26. Correcting the R30 ratio for the contribution of NO⁺ ions results in a lower 'true' precision for the R30 (CV = 1.67 %). 855 856 3.2. Field application of the ¹⁵N Gas-Flux method 857 The ¹⁵N tracer application rate was variable between land use types and ranged between 858 0.03 and 1 kg ¹⁵N ha⁻¹ or between 0.1 and 2.2 mg ¹⁵N kg⁻¹ dry soil and while it was lower 859 in the case of the organic soils and higher for the woodland and grassland soils (Table 2). 860 861 Based on the soil nitrate content on the day of the tracer amendments (Table 2), the estimated enrichment of the total soil nitrate pool was on average between 13 and 25 % 862 (detailed data on the ¹⁵N tracer application per field site are shown in Supplementary 863 Table 2). 864 865 The 15 N fraction in the denitrifying pool (${}^{15}X_N$), as calculated from the measured isotopic 866 ratios of the N_2O after 1 hour of incubation using Eq. (2), ranged between 65 and 93 ^{15}N 867 at%. The average change of the ${}^{15}X_N$ with incubation time, indicated by the slope shown 868 in Table 2, was not different from 0 in case of the organic (t-test; t = 0.520, df = 18, p >869

ratios of the N₂O after 1 hour of incubation using Eq. (2), ranged between 65 and 93 ¹⁵N at%. The average change of the ¹⁵X_N with incubation time, indicated by the slope shown in Table 2, was not different from 0 in case of the organic (t-test; t = 0.520, df = 18, p >0.05) and grassland soils (t-test; t = 0.047, df = 28, p > 0.05), whilst it was significantly below 0 for the woodland soils (t-test; t = 2.917, df = 18, p < 0.05). Separating the woodland soils to C-WL-MW and R-<u>DWWL</u> sites, only the former displayed a significant negative slope of ¹⁵X_N with incubation time (t-test; t = 3.306, df = 8, p < 0.05), suggesting that N₂O may be deriving production from a second nitrate pool, possibly nitrate produced Formatted: Superscript

from the oxidation of NH4⁺ via nitrification, in the C-WLMW. In the cases where the 875 876 $^{15}X_N$ could be calculated from the N₂ isotope ratio data (woodland and grassland soils; Formatted: Subscript 877 data shown in Supplementary Table 3), this was not significantly different from their respective ${}^{15}X_N$ calculated from the N₂O isotope ratio data (t-test; t-wL = 0.929, df = 12, p Formatted: Subscript 878 Formatted: Subscript > 0.05; *t*-_{GL} = 1.511, *df* = 20, *p* > 0.05). 879 880 The linearity of the evolved N₂ and N₂O fluxes in the chamber headspace between 1 and 881 Formatted: Subscript Formatted: Subscript 20 hours of incubation time was evaluated in each sampling plot when all three time steps 882 were above the MDC values (data presented in Supplementary Tables 4 & 5). With 883 Formatted: Not Highlight 884 respect to the N₂ flux, significant deviation from linearity was observed only in C-MW Formatted: Subscript (mean $r_1^2 = 0.59$, n = 5), whilst in C-PB, C-UG, R-HL and R-IG the per site analysis was Formatted: Superscript 885 not possible due to missing flux data between time steps. When the data were pooled per 886 887 land use type (Figure 2a), the linear increase in the evolved N₂ The evolved N₂ in the Formatted: Subscript 888 chamber headspace increased linearly from 1 to 20 hours of incubation in all three land use types (Figure 2a). The increase was statistically significant after 20 hours incubation 889 890 in GL (ANOVA; F = 19.8, p < 0.01), whilst due to the high variability among plots, 891 shown by the large error bars at 20 hours incubation in Figure 2a, it was not significant for the OS and WL soils. Regarding the N₂O flux, this was found to increase linearly with 892 Formatted: Subscript time in all the field sites (Supplementary Table 5), with the exception of the R-IG (mean 893 894 $r^2 = 0.49$, n = 4). When data were pooled per land use type (Figure 2b), Similarly, the evolved N₂O also increased linearly between incubation time points (Figure 2b), and the 895 896 amount of N2O accumulated after 20 hours was significantly higher than in the previous time points for all land use types (ANOVA; $F_{OS} = 4.6$, $F_{WL} = 5.1$, $F_{GL} = 14.7$, p < 0.05). 897 Therefore, N_2 and N_2O flux rates were estimated using linear regression (when $r^2 > 0.95$) 898

between 1 and 20 hours incubation using only those time points that were above the MDC values estimated for each gas.

901

902	The N ₂ flux ranged between 2.4 and 416.6 µg N m ⁻² h ⁻¹ and was significantly different
903	among land use types (Table 3) with the grassland soils showing on average 3 and 14
904	times higher denitrification rates than the woodland and organic soils respectively (Figure
905	3a). A similar pattern was observed for the N_2O flux due to denitrification (range: 0.003 -
906	20.8 μ g N m ⁻² h ⁻¹) with the grassland soils emitting on average 14 and 120 times more
907	N_2O than the woodland and organic soils respectively (Figure 3b), whilst the N_2O flux
908	was on average 20 to 200 times lower than the N_2 flux among land use types.
909	Consequently, the denitrification product ratio (N ₂ O/ N ₂ + N ₂ O) was low, ranging
910	between 0.03 and 13 % and was highest in the GL and similar between the WL and OS
911	(Figure 3c). The change of the denitrification product ratio with incubation time was
912	evaluated in each sampling plot where both N ₂ , and N ₂ O fluxes were available (data
913	shown in Supplementary Table 6). Generally, the product ratio increased with increasing
914	incubation time with the exception of the grassland soils, where the maximum product
915	ratio was observed after 2 hours of incubation (ANOVA; $F = 6.11$, $p < 0.05$). This was an
916	indication of some further reduction of the denitrification derived N ₂ O to N ₂ during the
917	extended closure period (up to 20 hours).
918	
919	

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Normal, Justified, Indent: Left: 0.63 cm

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Subscript
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Subscript
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Subscript
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Normal, Justified, Indent: Left: 0.63 cm

Formatted: Subscript

920 3.3. Comparison with the AIT

The total denitrification rate measured from the C2H2 amended intact soil cores in the 921 same land use types ranged between 0.5 and 325.2 µg N m⁻² h⁻¹ and correlated positively 922 with the total denitrification rate (N_2 and N_2O fluxes combined) measured with the ^{15}N 923 Gas-Flux method (Pearson; r = 0.581, n = 25, p < 0.01) following a similar trend among 924 land use types, albeit only the OS being significantly lower than the grassland and 925 woodland soils (Table 3). The AIT denitrification rates were between 3 and 5 times lower 926 than the total denitrification from the ¹⁵N Gas-Flux (Figure 4a) with the difference being 927 significant in woodland (t-test; t = 3.914, df = 18, p < 0.01) and grassland soils (t-test; t =928 3.521, df = 25, p < 0.01). 929

930

The bulk-total N2O flux measured from the un-amended intact soil cores ranged between 931 0.15 and 86.6 μg N m^{-2} h^{-1} and was between 1 and 3 times lower than the total 932 denitrification rate from the C_2H_2 amended cores. There were no significant differences 933 934 between bulk N₂O fluxes measured with the static chambers and the un-amended intact soil cores (Figure 4b), which indicated that total N2O emissions were comparable 935 between the two field techniques. Consequently, estimating the denitrification product 936 ratio from the un-amended and C₂H₂ amended intact soil cores resulted in significantly 937 higher ratios compared to the ¹⁵N Gas-Flux approach (Figure 4c), which were on average 938 between 50 and 60 % and not significantly different among land use types (Table 3). 939

940

The mean CO_2 production rate was similar irrespective of whether it was measured in static chambers, in C_2H_2 amended or un-amended intact soil cores (Figure 5), indicating that soil respiration (including both microbial and plant respiration) was not affected by the measurement technique.

945			
946			
947			
948			
949			
950			
951			
952			
953			
954			
955			
956			
957			
958			
959			
960			
961			
962			

4. Discussion

964 4.1. IRMS system evaluation

The precision of our trace gas isotope ratio mass spectrometer (TG-IRMS) for manual 965 analysis of ¹⁵N-N₂ in gas samples was comparable for both R29 and R30 ratios to the 966 967 recently developed gas chromatograph-IRMS (GC-IRMS) systems that included a combination of a copper reduction oven and a molecular sieve (Lewicka-Szczebak et al. 968 2013) or only a molecular sieve (Yang et al. 2014) for the removal of O₂ from the 969 970 samples. In fact, injecting only This was achieved while injecting a trace amount of headspace gas sample (4 µL), which is less than half of what is used by Lewicka-971 Szczebak et al. (2013) and ten times less than the required sample volume by Yang et al. 972 $(2014)_{.5}$ we have reduced Furthermore, -t the interference at m/z 30 by NO⁺ ions was 973 <u>reduced</u> by an order of magnitude (3.81×10^{-5}) compared to the value (1.6×10^{-4}) 974 975 reported by Lewicka-Szczebak et al. (2013). Consequently, correcting the R30 ratio for the NO⁺ ions interference led to a CV value of < 2%, which was significantly lower than 976 the precision reported for natural abundance samples in previous studies (Lewicka-977 Szczebak et al. 2013, Russow et al. 1996, Stevens et al. 1993), thus constituting a 978 significant improvement in m/z 30 determination in N₂ gas samples with low ¹⁵N 979 980 enrichment. However, the correction of the R30 ratio is only useful for estimating the 'true' instrument precision for m/z 30 and is not necessary for calculating N₂ fluxes as 981 shown by Lewicka-Szczebak et al. (2013), unless using the mathematical formulations of 982 983 Spott and Stange (2007).

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

984

The TraceGasTM Preconcentrator IRMS system used for ¹⁵N-N₂O analysis displayed similar precision for the determination of R45 and R46 in standard N₂O gas at circa ambient concentration to a similar system used by Bergsma et al.(2001), while injecting

988	only 4 mL of gas sample as opposed to 0.5 L used by Bergsma et al. (2001). When
989	expressed in delta values ($\delta^{15}N$), the precision of our system was better than 0.05 ‰,
990	which is significantly better than the respective precisions reported in Lewicka-Szczebak
991	et al. (2013) and Yang et al. (2014), but comparable to Well et al. (1998). Therefore, the
992	improved analytical precision achieved for both ¹⁵ N-N ₂ and ¹⁵ N-N ₂ O analyses using
993	smaller sample volumes than previously reported, allowed us to quantify in situ N_2 and
994	N_2O fluxes with low $^{15}\!N$ enrichment under field conditions, which was previously not
995	possible.

997 4.2. Field application of the ¹⁵N Gas-Flux method

The minimum detectable N2 and N2O fluxes depend on the precision of the IRMS 998 systems, the soil NO3⁻ pool enrichment and the incubation parameters, such as the 999 dimensions of the static chamber and the incubation time (Bergsma et al. 2001, Stevens 1000 1001 and Laughlin 2001). For our chamber design, an incubation time of up to 20 hours, and using the estimated MDC values (for both N_2 and $N_2 O)$ for calculating a $^{15}\!X_N$ value of 1002 0.6, the minimum detectable flux rates were 4 μ g N m⁻² h⁻¹ and 0.2 ng N m⁻² h⁻¹ for the N₂ 1003 and N₂O fluxes respectively. These were significantly better than the minimum rates (175 1004 - 900 μ g N₂-N m⁻² h⁻¹ and 0.04 - 0.21 μ g N₂O-N m⁻² h⁻¹) reported by Bergsma et al. 1005 (2001), and Kulkarni et al (2014) and Tauchnitz et al (2015), using similar field ¹⁵N 1006 tracer approaches, and comparable to the minimum rates measured by a high precision 1007 ¹⁵N gas flux approach in a laboratory soil incubation (Yang et al. 2014) and the gas-flow 1008 soil core method (8 μ g N₂-N m⁻² h⁻¹ and < 1 μ g N₂O-N m⁻² h⁻¹) by Wang et al. (2011). We 1009 have managed to further lower the limit of detection for N_2 and N_2O fluxes due to the 1010 1011 high precision of our preparative devices coupled to the IRMS systems, but also by

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

lowering the volume to surface area ratio of our chambers from 16:1 to 8:1 (cm³/cm²) and by extending the incubation time to approximately 20 hours, for the first time in a field study.

Most studies using ¹⁵N tracers and static chambers in highly fertilised systems typically

deploy their chambers between 1 and 2 hours (Baily et al. 2012, Cuhel et al. 2010,

Tauchnitz et al. 2015), but it has been shown that longer incubation periods (up to 24 or

48 hours) may be needed in case of low ¹⁵N enrichment applications in intact soil cores

(Morse and Bernhardt 2013) and laboratory incubations (Yang et al. 2014) for a more

precise and accurate detectable ¹⁵N-N₂ signal. However, it should be noted that in these

cases where an extended incubation period was employed, the soil cores or slurries did

not allow the subsoil diffusion -of the evolved N_2 and N_2O back into the soil pore spaces

(Clough et al. 2005). The open-bottom, un-vented static chamber design used in this study

may have allowed some loss of the evolved and/or produced N₂ and N₂O through

downward subsoil diffusion and/or reduction of gas mass-exchanges at the soil-

atmosphere interfaceflow due to positive pressure build up in the chamber headspaces.

<u>However, w</u>We have demonstrated that the N₂ flux and more importantly the N₂O flux

increased linearly with time through the 20 hour incubation period, probably as a result of

a slow N₂O diffusion rate due to the high water filled pore space (WFPS) (Jury et al.

1982) in our land use types field sites (Mean WFPS: C-PB = $70 \pm SE 3.21$ %; C-UG = 66

± SE 1.58 %; R-HL = 69 ± SE 2.00 %; C-MW = 42 ± SE 0.76 %; R-DW = 65 ± SE 1.79

<u>%; R-UG = 64 ± SE 1.41 %; C-IG = 60 ± SE 1.45 %; R-IG = 61 ± SE 2.46 %</u> range: 60 –

70 %, apart from the C WL site with an average WFPS of 42 %). In the case of the C-

MW, the N_2 flux may have been underestimated due to a faster decrease in the gas

concentration gradient between the soil surface and the chamber headspace as a result of

Formatted: Superscript
Formatted: Superscript

Field Code Changed

Formatted: Subscript
Formatted: Subscript

Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

1037	higher air-filled porosity (Healy et al. 1996) and the subsequent diffusion of N_2 in the back	Form
1038	into subsoil. In the case of the R-IG, where N_2O flux was not found linear up to 20 hours	Form
1039	incubation, some of the N_2O may have been diffused into the subsoil and further reduced	Form
1040	to N ₂ (Clough et al. 2005), thus leading to an underestimated N ₂ O flux rate. In this study,	Form
1041	we have chosen to report flux rates based on linear regression up to 20 hours incubation	Form Form
1042	period (where available), for comparison purposes between land use types exhibiting	
1043	marked differences in potential denitrifer activity (Sgouridis and Ullah, 2014). It has been	
1044	shown that a linear flux model is less sensitive to noisy datasets hovering close to the	
1045	limit of detection (particularly the OS land use type in our case), in spite of the even if	
1046	thepossibility of underestimation of -true fluxes-may be somehow underestimated (Levy	
1047	et al. 2011). However, when our objective was to estimate annual in situ flux rates of N_2	Form
1048	and N ₂ O due to denitrification from natural and semi-natural land use types between	Form
1049	April 2013 and October 2014 (Sgouridis and Ullah in review 2015), the flux rate	Form
1050	estimation was based on the maximum evolved N ₂ and N ₂ O rate at any valid (above the	Form Form
1051	MDC) time step, thus reporting maximum flux rates per land use type to possibly avoid	Form
1052	the risk of underestimation. Therefore, based on results so far, we suggest using varying	
1053	incubation times under field conditions to capture a more reliable ¹⁵ N signal s ,	Form
1054	particularyparticularly of-for N ₂ gas, from sites exhibiting low and/or greatersignificant	Form
1055	seasonal variability of flux ratess variability. (e.g. OS and DW in our sites)., and were	
1056	therefore confident in estimating N_2 and N_2O flux rates by linear regression across the	
1057	incubation period.	
1058	Moreover, an extended incubation period with closed chambers aggregates any diurnal	Form
1059	fluctuations of denitrification activity (Aulakh et al. 1991) providing a more accurate	
1060	daily flux rate.	
1061		

Formatted: Not Highlight
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Subscript
Formatted: Not Highlight
Formatted: Subscript

Formatted: Subscript
Formatted: Subscript
Formatted: Not Highlight
Formatted: Not Highlight
Formatted: Subscript
Formatted: Subscript

natted: Subscript

natted: Not Highlight

1062	The average ^{15}N tracer application rate (0.04 - 0.5 kg ^{15}N ha $^{-1}$ or 0.4 - 1.2 mg ^{15}N kg $^{-1}$ dry	
1063	soil) across land use types was one to two orders of magnitude lower than previous	
1064	applications of the ¹⁵ N Gas-Flux method in highly fertilised agricultural systems (Baily et	
1065	al. 2012, Bergsma et al. 2001, Cuhel et al. 2010, Graham et al. 2013) and in restored	
1066	peatland soils (Tauchnitz et al. 2015). The estimated enrichment of the total soil NO3-	
1067	pool was variable $(2 - 40 \%$, Supplementary Table 2) and this wide range was due to the	7
1068	fact that the tracer concentration was calculated based on the previous campaign's soil	
1069	nitrate data, which in some cases did not reflect the soil nitrate content on the day of the	
1070	tracer application a month laterIt should be noted that the soil nitrate enrichment levels	
1071	reported in this study correspond to the high end of the average soil NO3 ² pool enrichment	
1072	(10 - 15 %, Supplementary Table 2) for the period April 2013 to October 2014, which is	
1073	presented in a separate publication (Sgouridis and Ullah 2015)2015. To our knowledge,	
1074	only Kulkarni et al. (2014) have applied the ¹⁵ N Gas-Flux method in the field with soil	U
1075	nitrate enrichment levels (5 %) lower than in our study, but this had as a consequence	
1076	poorly detected 15 N-N ₂ fluxesNevertheless, fFor the organic soils, the average tracer	U
1077	application rate reflected corresponded to the current estimates of daily atmospheric N	
1078	deposition (0.05 kg N ha ⁻¹ d ⁻¹) in the UK (~ 15 - 20 kg N ha ⁻¹ y ⁻¹) (Dore et al. 2012, Payne	
1079	2014), whilst for the grassland soils the tracer application mimicked a daily fertiliser	
1080	application rate of 0.5 kg N ha ⁻¹ d ⁻¹ . Due to the inclusion of the N-rich C- $\frac{WL}{MW}$ site in	
1081	the woodland soils, tracer application rates were higher than the daily atmospheric N	
1082	deposition rates, thus also to-reflecting internal N cycling processes (e.g. nitrification) as	
1083	an additional source of nitrate in these well-drained forest soils. Therefore, the application	
1084	of the ¹⁵ N tracer at these low rates should not be expected to enrich the soil nitrate pool,	
1085	and potentially enhance the denitrification activity, in excess of the amount of nitrogen	
1086	normally deposited via natural processes and common management practices.	

Formatted: Subscript
Formatted: Superscript

Formatted: Font: Not Bold
Formatted: Font: Not Bold

Formatted: Font: Not Bold
Formatted: Font: Not Bold

Formatted: Superscript

1088	The major assumptions of the $^{15}\mathrm{N}$ Gas-Flux method and the associated <u>_</u> non-equilibrium
1089	equations <u>"</u> are that the denitrifying soil NO_3 pool is uniformly labelled with ¹⁵ N and that
1090	the N_2 and N_2O originate from the same denitrifying pool (Stevens and Laughlin 1998).
1091	The $^{15}\!N$ fraction in the denitrifying pool ($^{15}\!X_N$), calculated non-destructively from the
1092	measured isotope ratios, ranged between 65 and 93 $\%$ and was well above the 10 $\%$
1093	threshold for the correct application of the <u>"non-equilibrium equations"</u> (Lewicka-
1094	Szczebak et al. 2013). However, the calculated $^{15}X_{\rm N}$ was higher than the estimated total
1095	soil NO ₃ ⁻ pool enrichment (range: $13-2$ - 40 %) suggesting only partial mixing of the
1096	added tracer (98 15 N at %) with the ambient soil nitrate at natural abundance despite the
1097	elaborate effort for uniform tracer application with multiple injections across 10 cm soil
1098	depth (Ruetting et al. 2011). Wu et al. (2011) have optimised the number of injections and
1099	the volume of tracer needed to achieve homogeneous labelling of a soil core (diameter 15
1100	cm; height 20 cm) and reported that 38 injections of 4 mL volume each were necessary.
1101	We have used only 10 injections of 5- 20 mL volume (depending on the soil water
1102	content of each land use type) to minimise the disturbance of the soil matrix, particularly
1103	in highly porous media such as peatland soils, and this may have affected the
1104	homogeneous distribution of the tracer. We did not were not able to sample the soil within
1105	the chamber collars for directly estimating the ${}^{15}\text{NO}_3$ content of the soil pool due to time
1106	and budget constraints. However, in cases where destructive soil sampling was used to
1107	measure the soil nitrate pool enrichment (Kulkarni et al. 2014), the results were
1108	significantly different from the estimated enrichment due to sampling bias of the volume
1109	of soil affected by the tracer application. Non-uniform mixing of the ¹⁵ N label may lead to
1110	overestimation of the ${}^{15}\!X_N$ and underestimation of the denitrification flux rates (Boast et
1111	al. 1988). However, it is unlikely under field conditions to achieve complete mixing of

Field Code Changed

1112	the added tracer with the ambient nitrate; and experimental studies (Mulvaney 1988,
1113	Mulvaney and Van den Heuvel 1988) have shown that the error is well-constrained and
1114	that accurate measurements can be made even with a less-uniformly labelled denitrifying
1115	pool. The non-significant change of ${}^{15}\!X_N$ with incubation time suggested only one
1116	denitrifying pool for both N_2 and N_2O , assuming negligible N_2 production from anammox
1117	and co-denitrification (Spott and Stange 2007). Moreover, the similar ${}^{15}X_{N}$ values
1118	obtained from both the N ₂ and the N ₂ O isotope ratio data for the woodland and grassland
1119	soils (Supplementary Table 3), was an additional indication that the effect of hybrid N_2
1120	<u>fluxes was negligible and</u> , thus permitting the use of the it was appropriate to use the $^{15}X_N$,
1121	calculated from the N_2O isotope ratios, for calculating N_2 flux rates using the more
1122	reliable R30 measurements (Stevens and Laughlin 2001). Only in the case of the C-WL
1123	MW well-drained forest site, shown to exhibit the highest nitrification potential
1124	(Sgouridis and Ullah 2014), the slope of ${}^{15}X_N$ with time was negative suggesting a second
1125	co-occurring nitrifying pool for N ₂ O production dilution of the 15 N-labelled soil NO ₃ pool
1126	by the oxidation of the ambient ammonium (nitrification). It is therefore possible that N_2
1127	flux rates may be overestimated in C-WLMW, due to the underestimation of the ${}^{15}X_N$
1128	from the N ₂ O data, but Bergsma et al. (1999) showed that temporal changes of the soil
1129	NO_3 pool enrichment are negligible at ¹⁵ N enrichment levels similar to ours.

We were able to measure appreciable in situ fluxes of both N_{2} and $N_{2}O$ due to 1131 1132 denitrification in all three land use types. Our N2 fluxes from woodland soils compare well with the rates reported in the literature for restored forested wetlands in North 1133 America (Morse and Bernhardt 2013) and with the rates from northern hardwood forests 1134 in US (Kulkarni et al. 2014), using ¹⁵N tracers at similar or lower application rates to 1135 1136 ours. Our results are also comparable to the rates reported from central European forests, Formatted: Subscript Formatted: Subscript Formatted: Subscript

Formatted: Superscript Formatted: Subscript Formatted: Superscript

1137	under similar atmospheric N deposition rates, using the gas-flow soil core method	
1138	(Butterbach-Bahl et al. 2002). For the grassland soils, the N_2 fluxes measured in the	
1139	present study were significantly lower than previous applications of the ¹⁵ N Gas-Flux	
1140	method at high fertiliser application rates (Baily et al. 2012, Cuhel et al. 2010, Graham et	
1141	al. 2013), whilst for the organic soils our rates were significantly lower than the ones	
1142	reported by Tauchnitz et al. (2015) since their ¹⁵ N tracer application rate (30 kg N ha ⁻¹)	Formatted: Superscript
1143	was 300 times higher than ours. a comparison with the literature was not possible due to	Formatted: Superscript
1144	the lack of experimental data on N_2 fluxes. The N_2O fluxes were up to 200 times lower	
1145	than the N_2 fluxes leading to low denitrification product ratios in all land use types, a	
1146	result which is in line with the N_2O yields reported from ^{15}N tracer studies in forest	
1147	(Kulkarni et al. 2014, Morse and Bernhardt 2013) and grassland soils (Baily et al. 2012,	
1148	Bergsma et al. 2001). It is likely that the denitrification product ratio in the grassland soils	
1149	has been underestimated due to the extended incubation period (up to 20 hours), during	
1150	which some of the denitrification derived N ₂ O may have diffused back into the soil and	Formatted: Subscript
1151	was further reduced to N ₂ . Therefore, we would recommend that in soils displaying high	Formatted: Subscript
1152	denitrification activity (e.g. improved grasslands) the incubation period should not exceed	
1153	<u>2 hours for a more accurate estimation of the N₂O/ N₂ + N₂O ratio. In the present study</u>	
1154	we have compared the in situ denitrification rates between three major land use types	
1155	using an extended field incubation period to increase the probability of detecting a	
1156	reliable ¹⁵ N-N ₂ signal, particularly under conditions of low denitrifier activity due to	Formatted: Superscript
1157	seasonality of denitrification and/or inherent capacity of soils (for example organic and	Formatted: Subscript
1158	deciduous forest soils). However, these rates should be considered as-conservative since	
1159	confounding issues such as subsoil diffusion and non-inhomogeneous labelling of the soil	
1160	nitrate pool may in some cases have led to underestimations of the in situ denitrification	Formatted: Font: Italic
1161	<u>rates.</u>	

1185

1163	The significantly higher denitrification rates in grassland soils, compared to organic and
1164	forest soils, observed under this study could be supported through the additional supply of
1165	reactive nitrogen via fertilisation and the additional inputs of organic C and N through
1166	grazing (Cowan et al. 2015, Rafique et al. 2012, van Beek et al. 2010). A relatively high
1167	denitrification activity in poorly drained forest soils is usually sustained by the high soil
1168	water filled pore space (WFPS) (Liu et al. 2013), while it may be limited by low
1169	nitrification rates necessary for supplying the electron acceptors (nitrate) for
1170	denitrification to occur (Sgouridis and Ullah 2014). Conversely, well drained forest soils
1171	with organic N rich leaf litter may display high nitrification rates, but denitrification
1172	activity is often limited by the low WFPS (Sgouridis and Ullah 2014). Organic soils are
1173	naturally nutrient limited and their denitrification potential has been shown to be
1174	primarily limited by the availability of nitrate (Francez et al. 2011, Hayden and Ross
1175	2005, Sgouridis and Ullah 2014). It should be noted that N_2 fluxes below the detection
1176	limit of 4 μ g N m ⁻² -h ⁻⁴ -were not used in denitrification rate calculations and this might
1177	have led to slight overestimation of rates, particularly for the OS. It is beyond the scope of
1178	this paper to discuss in detail the differences in denitrification rates between land use
1179	types. The variation of denitrification across natural and semi natural land use types has
1180	been investigated in these sites over two years using the adapted ¹⁵ N Gas Flux method
1181	and the results are presented in a separate publication (Sgouridis & Ullah, submitted).
1182	•
1102	
1183	4.3. Comparison with the AIT
1184	The total denitrification rates measured with the C ₂ H ₂ amended intact soil cores followed

the same trend as the total denitrification (N $_2$ and N $_2O$ fluxes combined) from the $^{15}\mathrm{N}$

Formatted: Indent: Left: 0.63 cm

1186	Gas-Flux measurements, while they were on average 168 times lower than the
1187	denitrification potential measured in the same land use types in anaerobic soil slurries
1188	amended with acetylene and nitrate in a previous study (Sgouridis and Ullah 2014), thus
1189	reflecting lower <i>in situ</i> rates. However, <u>T</u> the AIT denitrification rates were between 3 and
1190	5 times lower than the ¹⁵ N Gas-Flux rates despite the fact that the AIT intact soil cores
1191	were capped at the bottom, thus not allowing any subsoil diffusion of the evolved gases
1192	due to denitrification. Therefore, the AIT rates should have been higher than the ¹⁵ N Gas-
1193	Flux rates if serious underestimation was occurring due to subsoil diffusion in the open-
1194	bottom static chambers, which was not the case. Adding nitrate to the C ₂ H ₂ amended
1195	cores is and would have been desirable for evaluating directly evaluating the priming
1196	effect of the added substrate on denitrification rates. Even though tThe ¹⁵ N tracer
1197	addition to the static chambers corresponded to the amounts of N naturally deposited in
1198	these land use types either via management practices and/or atmospheric deposition, thus
1199	avoiding excessive N fertilisation of the sampling plots. However,, it cannot be
1200	conclusively argued that the same amount of applied nitrate would not have led to similar
1201	denitrification rates between the AIT and the ¹⁵ N Gas-Flux methods. , which was an
1202	indication that discrepancies due to overestimation of the soil NO3-pool- ¹⁵ N enrichment
1203	most likely have not led to serious underestimation of the denitrification rates using the
1204	"non-equilibrium equations". Previous comparisons between the AIT and the ¹⁵ N tracer
1205	method in field studies showed no significant difference between the two methods in
1206	measuring in situ total denitrification rates when tracer is applied at high fertilisation rates
1207	$(50 - 200 \text{ kg N ha}^{-1})$ and relatively low soil moisture contents (WFPS: 40 - 60 %) (Aulakh
1208	et al. 1991, Mosier et al. 1986). Conversely, in laboratory incubations it was shown that
1209	the AIT significantly underestimated total denitrification compared to the ¹⁵ N tracer
1210	approach (Yu et al. 2010) and the direct N_2 flux approach (Qin et al. 2012) due to the

Formatted: Superscript

Formatted: Superscript

1211	incomplete inhibition of N_2O reduction to N_2 by C_2H_2 in wet soils (Yu et al. 2010) or in
1212	soils with low nitrate content (Qin et al. 2013, Qin et al. 2014). In our study, the soil
1213	WFPS ranged between 60 and 70 % in all land use types, with the exception of the C-WL
1214	<u>MW</u> site (mean WFPS 42 %), whilst the 15 N-NO ₃ ⁻ tracer application rate was low (< 1 kg
1215	<u>N ha⁻¹). was not added in the intact soil cores with or without acetylene treatment. Adding</u>
1216	nitrate to the C2H2-amended cores would have been desirable for evaluating directly the
1217	priming effect of the added substrate on denitrification rates. However, the lack of tracer
1218	addition in the AIT treatments is unlikely to be the cause of underestimation of
1219	denitrification as the bulk N2O flux (including all possible N2O sources) was not different
1220	between the 15 N Gas-Flux chamber and the no-C ₂ H ₂ amended intact soil core
1221	measurements. If the 15 N tracer addition in the static chambers, even at such low rate (< 1
1222	kg ¹⁵ N ha ⁻¹), were to stimulate the denitrification activity, this might have been reflected
1223	through high bulk N2O flux from the chamber compared to the intact cores. Moreover, the
1224	disturbance of the soil structure during the extraction of the soil cores and the effect of the
1225	acetylene addition to microbial activity were not significant as it was suggested by the
1226	similar CO ₂ production rates (Aulakh et al. 1991), representing soil respiration (Felber et
1227	al. 2012), in the static chambers and the C_2H_2 amended and un-amended intact soil cores.
1228	Therefore, we conclude could argue that it is possible that the AIT underestimated total
1229	denitrification rates compared to the ¹⁵ N Gas-Flux method due to the likely incomplete
1230	inhibition of N ₂ O reduction to N ₂ under relatively high soil moisture contents, although
1231	the shorter incubation time (2h for the intact cores) may have limited the ability of C_2H_2
1232	to fully equilibrate within soil pore spaces. Other confounding factors such as the
1233	catalytic decomposition of NO inat the presence of C ₂ H ₂ (Nadeem et al. 2013) may have
1234	also contributed to the lower denitrification rates measured by the AIT., but since NO was
1235	not measured in this study final conclusions cannot be drawn. This study has confirmed

Formatted: Superscript

some of the drawbacks of the AIT as a quantification method of in situ denitrification rates compared to the¹⁵N Gas-Flux . However, more useful conclusions as to which method is more appropriate for measuring denitrification in the field can be drawn only if the AIT is compared to the ¹⁵N Gas Flux and the gas flow soil core methods under the same field conditions.

Formatted: Superscript

Consequently, <u>T</u>the estimation of the denitrification product ratio using the AIT method, from the un-amended cores (N₂O only) and the C₂H₂ amended cores (N₂ + N₂O)_a is grossly usually overestimated (Butterbach-Bahl et al. 2013) since the source of N₂O cannot be discriminated with the AIT, whilst the N2 flux is underestimated due to the incomplete inhibition of N₂O reduction (Butterbach-Bahl et al. 2013). This was confirmed in the present study for all the land use types and even the maximum denitrification product ratio after 2 hours incubation in the case of the grassland soils (23 %), was still significantly lower than the respective ratio from the AIT (50 %). Therefore, the much lower denitrification product ratio estimated from the ¹⁵N Gas-Flux measurements is significantly more reliable and the wider application of this field technique across a range of land use types can have important implications for evaluating the role of denitrification as a reactive nitrogen sink and as a source of N₂O emissions (Butterbach-Bahl et al. 2013, Kulkarni et al. 2008).

5. Conclusion 1256

The analytical precision for both ¹⁵N-N₂ and ¹⁵N-N₂O analyses was greatly improved by 1257 1258 using smaller sample volumes than previously reported, thus allowing us to quantify in situ N2 and N2O fluxes with low ¹⁵N enrichment under field conditions, which was 1259

Formatted: List Paragraph, Justified, Indent: Left: 0.5 cm

1260	previously not possible. The ¹⁵ N Gas-Flux method was applied for the first time across a
1261	range of natural and semi-natural land use types at ¹⁵ N tracer application rates mimicking
1262	current estimates of atmospheric N deposition (natural systems) or grassland fertiliser
1263	application rates and yielded analytically valid flux rates for both $N_{2} \mbox{ and } N_{2} O$ in all the
1264	land use types. A possible limitation of the adapted ¹⁵ N Gas-Flux method when applied at
1265	low 15 N enrichment levels is the uncertainty associated with the estimation of the soil NO ₃ ⁻
1266	pool enrichment and the possibility for subsoil diffusion of the evolved gases due to the
1267	extended enclosure periodin cases of extended incubation (> 2 hr) that may result in the
1268	underestimation of denitrification rates. However, the direct field comparisonComparing
1269	of-the ¹⁵ N Gas-Flux method with the AIT suggested-confirmed the drawbacks of the AIT
1270	as a reliable quantification method that the AIT further underestimates of in situ
1271	denitrification rates. Moreover, the AIT method that also seriously overestimates the
1272	denitrification product ratio compared to the ¹⁵ N Gas-Flux method, most likely due to the
1273	incomplete inhibition of N2O reduction to N2 under relatively high soil moisture contents.
1274	Consequently, <u>T</u> the ¹⁵ N Gas-Flux method, as applied in our study, constitutes holds much
1275	promise as a more reliable field technique for measuring <i>in situ</i> denitrification rates and its
1276	wider application across a range of terrestrial ecosystems can lead to its refinement and
1277	improvement and in the long termand can significantly improve contribute to our
1278	understanding of the role of denitrification as a reactive nitrogen sink.
1279	

Formatted: Font: Not Italic

Formatted: List Paragraph, Justified, Indent: Left: 0.5 cm

1281 6. Acknowledgements

1280

1282 The authors are grateful to Mr Edward Ritchie and Mr Richard Rhodes for granting us 1283 permission to access their land, as well as the National Trust in Conwy, the Abbeystead 1284 Estate in the Trough of Bowland and the Forestry Commission in Gisburn Forest for their

1285	guidance and advice. We are also thankful to Miss Ravindi Wanniarachchige at Keele
1286	University for her help during field sampling and laboratory analysis. Finally we are
1287	grateful to the two reviewers: an anonymous and Dr RienhardtReinhard Well -for their
1288	comprehensive comments and suggestions-, which improved this manuscriptfor the
1289	improvement of the manuscript. This research was funded by the UK Natural Environment
1290	Research Council grant (NE/J011541/1) awarded to Keele University and supported by a
1291	'grant in kind' from the NERC Life Sciences Mass Spectrometry Facility Steering
1292	Committee.
1293	
1294	
1295	
1296	
1297	
1298	
1299	
1300	
1301	
1302	
1303	
1304	
1305	
	50

Formatted: Indent: Left: 0 cm

1306

1307

1308 7. References

- Aulakh, M., Doran, J. and Mosier, A.: Field-Evaluation of 4 Methods for Measuring
 Denitrification, Soil Sci. Soc. Am. J., 55, 1332-1338, 1991.
- 1311 Baily, A., Watson, C. J., Laughlin, R., Matthews, D., McGeough, K. and Jordan, P.: Use of
- the 15 N gas flux method to measure the source and level of N2O and N-2 emissions from
- 1313grazed grassland, Nutr. Cycling Agroecosyst., 94, 287-298, 2012.
- 1314 Bergsma, T., Bergsma, Q., Ostrom, N. and Robertson, G.: A heuristic model for the
- calculation of dinitogen and nitrous oxide flux from nitrogen-15-labeled soil, Soil Sci. Soc.
 Am. J., 63, 1709-1716, 1999.
- 1317 Bergsma, T., Ostrom, N., Emmons, M. and Robertson, G.: Measuring simultaneous fluxes
- from soil of N(2)O and N(2) in the field using the (15)N-Gas "nonequilibrium" technique,
 Environ. Sci. Technol., 35, 4307-4312, 2001.
- Boast, C., Mulvaney, R. and Baveye, P.: Evaluation of N-15 Tracer Techniques for Direct
 Measurement of Denitrification in Soil .1. Theory, Soil Sci. Soc. Am. J., 52, 1317-1322,
- 1322 1988.
- Burgin, A. J. and Groffman, P. M.: Soil O-2 controls denitrification rates and N2O yield in a
 riparian wetland, Journal of Geophysical Research-Biogeosciences, 117, G01010, 2012.
- Butterbach-Bahl, K., Willibald, G. and Papen, H.: Soil core method for direct simultaneous
 determination of N-2 and N2O emissions from forest soils, Plant Soil, 240, 105-116, 2002.
- Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. and Zechmeister-Boltenstern,
 S.: Nitrous oxide emissions from soils: how well do we understand the processes and their
 controls?, Philosophical Transactions of the Royal Society B-Biological Sciences, 368, 2013.
- Clough, T., Sherlock, R., Rolston, D.: A review of the movement and fate of N₂O in the
 subsoil. Nutr.Cycling Agroecosyst. 72, 3-11, 2005.
- 1332 Cowan, N. J., Norman, P., Famulari, D., Levy, P. E., Reay, D. S. and Skiba, U. M.: Spatial
 1333 variability and hotspots of soil N2O fluxes from intensively grazed grassland,
 1334 Biogeosciences, 12, 1585-1596, 2015.
- Cuhel, J., Simek, M., Laughlin, R. J., Bru, D., Cheneby, D., Watson, C. J. and Philippot, L.:
 Insights into the Effect of Soil pH on N2O and N-2 Emissions and Denitrifier Community
- 1337 Size and Activity, Appl. Environ. Microbiol., 76, 1870-1878, 2010.

13	38 39	Following Anaerobic Events, Soil Biology & Biochemistry, 27, 1251-1260, 1995.	
13 13 13	40 41 42	Dore, A. J., Kryza, M., Hall, J. R., Hallsworth, S., Keller, V. J. D., Vieno, M. and Sutton, M. A.: The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads, Biogeosciences, 9, 1597-1609, 2012.	
13 13 13	43 44 45	Felber, R., Conen, F., Flechard, C. R. and Neftel, A.: Theoretical and practical limitations of the acetylene inhibition technique to determine total denitrification losses, Biogeosciences, 9, 4125-4138, 2012.	
13 13	46 47	Francez, A., Pinay, G., Josselin, N. and Williams, B. L.: Denitrification triggered by nitrogen addition in Sphagnum magellanicum peat, Biogeochemistry, 106, 435-441, 2011.	
13 13 13	48 49 50	Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. and Sutton, M. A.: Transformation of the Nitrogen Cycle: Recent trends, questions and potential solutions, Science, 320, 889-892, 2008.	
13 13 13	51 52 53	Graham, C. J., van Es, H. M. and Melkonian, J. J.: Nitrous oxide emissions are greater in silt loam soils with a legacy of manure application than without, Biol. Fertility Soils, 49, 1123-1129, 2013.	
13 13 13	54 55 56	Groffman, P. M., Altabet, M. A., Bohlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P. and Voytek, M. A.: Methods for measuring denitrification: Diverse approaches to a difficult problem, Ecol. Appl., 16, 2091-2122, 2006.	
13 13	57 58	Groffman, P.: Terrestrial denitrification: challenges and opportunities, Ecological Processes, 1, 11, 2012.	
13 13 13	59 60 61	Healy, R. W., Striegel, R. G., Russel, T. F., Hutchinson, G.L. and Livingston, G. P.: Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: Identification of physical processes, Soil Sci. Soc. Am. J., 60, 740-747, 1996.	
13 13	62 63	Hutchinson, G. L. and Mosier, A. R.: Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes, Soil Sci. Soc. Am. J., 45, 311-316, 1981.	Formatted: Font: Not Bold
13 13	64 65	Harms, T. K. and Jones, J. B., Jr.: Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils, Global Change Biol., 18, 2958–2968, 2012.	
13 13	66 67	Hayden, M. and Ross, D.: Denitrification as a nitrogen removal mechanism in a Vermont peatland, J. Environ. Qual., 34, 2052-2061, 2005.	
13 13	68 69	Jury, W., Letey, J. and Collins, T.: Analysis of Chamber Methods used for Measuring Nitrous-Oxide Production in the Field, Soil Sci. Soc. Am. J., 46, 250-256, 1982.	
13 13	70 71	Kulkarni, M. V., Burgin, A. J., Groffman, P. M. and Yavitt, J. B.: Direct flux and N-15 tracer methods for measuring denitrification in forest soils, Biogeochemistry, 117, 359-373, 2014.	
13 13	72 73	Kulkarni, M. V., Groffman, P. M. and Yavitt, J. B.: Solving the global nitrogen problem: it's a gas!, Frontiers in Ecology and the Environment, 6, 199-206, 2008.	

Laughlin, R. J. and Stevens, R. J.: Changes in composition of nitrogen-15-labeled gases
during storage in septum-capped vials, Soil Sci. Soc. Am. J., 67, 540-543, 2003.

Levy, P. E., Gray, A., Leeson, S. R., Gaiawyn, J., Kelly, M.P.C., Cooper, M.D.A., Dinsmore,
 K. J., Jones, S. K. and Sheppard, L. J.: Quantification of uncertainty in trace gas fluxes
 measured by the static chamber method, Eur. J. Soil Sci., 62, 811-821, 2011.

- Lewicka-Szczebak, D., Well, R., Giesemann, A., Rohe, L. and Wolf, U.: An enhanced
 technique for automated determination of N-15 signatures of N-2, (N-2+N2O) and N2O in
- 1381 gas samples, Rapid Communications in Mass Spectrometry, 27, 1548-1558, 2013.
- Limpens, J., Berendse, F. and Klees, H.: N deposition affects N availability in interstitial
 water, growth of Sphagnum and invasion of vascular plants in bog vegetation, New Phytol.,
 157, 339-347, 2003.

Liu, X., Chen, C. R., Wang, W. J., Hughes, J. M., Lewis, T., Hou, E. Q. and Shen, J.: Soil
 environmental factors rather than denitrification gene abundance control N2O fluxes in a wet
 sclerophyll forest with different burning frequency, Soil Biol. Biochem., 57, 292-300, 2013.

Malone, J., Stevens, R. and Laughlin, R.: Combining the N-15 and acetylene inhibition techniques to examine the effect of acetylene on denitrification, Soil Biology & Biochemistry, 30, 31-37, 1998.

- Matson, A., Pennock, D. and Bedard-Haughn, A.: Methane and nitrous oxide emissions from
 mature forest stands in the boreal forest, Saskatchewan, Canada, For. Ecol. Manage., 258,
 1073-1083, 2009.
- Mills, R. T. E., Tipping, E., Bryant, C. L. and Emmett, B. A.: Long-term organic carbon
 turnover rates in natural and semi-natural topsoils, Biogeochemistry, 1-16, 2013.

Morse, J. L. and Bernhardt, E. S.: Using N-15 tracers to estimate N2O and N-2 emissions
 from nitrification and denitrification in coastal plain wetlands under contrasting land-uses,

- Soil Biology & Biochemistry, 57, 635-643, 2013.
- Morse, J. L., Duran, J., Beall, F., Enanga, E. M., Creed, I. F., Fernandez, I. and Groffman, P.
 M.: Soil denitrification fluxes from three northeastern North American forests across a range of nitrogen deposition, Oecologia, 177, 17-27, 2015.
- Morton, D., Rowland, C., Wood, C., Meek, L., Marston, C., Smith, G., Wadsworth, R. and
 Simpson, I. C.: Final Report for LCM2007 the new UK Land Cover Map, Centre for
 Ecology & Hydrology, 2011.
- 1405 Mosier, A. R. and Klemedtsson, L.: Measuring denitrification in the field, in: Methods of Soil
- Analysis, Part 2, Microbiological and Biochemical Properties, Weaver, R. W., Angle, J. S.
 and Bottomley, P. S. (Eds.), Soil Science Society of America, Inc., Wisconsin, USA, 1047,
- 1408 1994.
- Mosier, A., Guenzi, W. and Schweizer, E.: Field Denitrification Estimation by N-15 and
 Acetylene Inhibition Techniques, Soil Sci. Soc. Am. J., 50, 831-833, 1986.

1412	collector Mass Spectrometers., Soil Sci. Soc. Am. J., 48, 690-692, 1984.
1413 1414	Mulvaney, R.: Evaluation of N-15 Tracer Techniques for Direct Measurement of Denitrification in Soil .3. Laboratory Studies, Soil Sci. Soc. Am. J., 52, 1327-1332, 1988.
1415 1416	Mulvaney, R. and Kurtz, L.: Evolution of Dinitrogen and Nitrous-Oxide from N-15 Fertilized Soil Cores Subjected to Wetting and Drying Cycles, Soil Sci. Soc. Am. J., 48, 596-602, 1984.
1417 1418 1419	Mulvaney, R. and Van den Heuvel, R.: Evaluation of N-15 Tracer Techniques for Direct Measurement of Denitrification in Soil .4. Field Studies, Soil Sci. Soc. Am. J., 52, 1332-1337, 1988.
1420 1421 1422	Nadeem, S., Dorsch, P. and Bakken, L. R.: Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system: Implications for the expression of denitrification in ex situ experiments, Soil Biol. Biochem., 57, 606-614, 2013.
1423 1424	Payne, R. J.: The exposure of British peatlands to nitrogen deposition, 1900-2030, Mires and Peat, 14, 04, 2014.
1425 1426 1427	Qin, S., Hu, C. and Oenema, O.: Quantifying the underestimation of soil denitrification potential as determined by the acetylene inhibition method, Soil Biology and Biochemistry, 47, 14-17, 2012.
1428 1429 1430	Qin, S., Yuan, H., Dong, W., Hu, C., Oenema, O. and Zhang, Y.: Relationship between soil properties and the bias of N2O reduction by acetylene inhibition technique for analyzing soil denitrification potential, Soil Biol. Biochem., 66, 182-187, 2013.
1431 1432	Qin, S., Yuan, H., Hu, C., Oenema, O., Zhang, Y. and Li, X.: Determination of potential N2O-reductase activity in soil, Soil Biology & Biochemistry, 70, 205-210, 2014.
1433 1434 1435	Rafique, R., Anex, R., Hennessy, D. and Kiely, G.: What are the impacts of grazing and eutting events on the N2O dynamics in humid temperate grassland?, Geoderma, 181–182, 36-44, 2012.
1436 1437	Ravishankara, A. R., Daniel, J. S. and Portmann, R. W.: Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123-125, 2009.
1438 1439	Rolston, D., Sharpley, A., Toy, D. and Broadbent, F.: Field Measurement of Denitrification .3. Rates during Irrigation Cycles, Soil Sci. Soc. Am. J., 46, 289-296, 1982.
1440 1441 1442	Ruetting, T., Huygens, D., Staelens, J., Mueller, C. and Boeckx, P.: Advances in N-15-tracing experiments: new labelling and data analysis approaches, Biochem. Soc. Trans., 39, 279-283, 2011.
1443 1444 1445	Russow, R., Stevens, R. and Laughlin, R.: Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification, Isotopes Environ. Health Stud., 32, 289-297, 1996.

Mulvaney, R. L.: Determination of 15N-Labeled Dinitrogen and Nitrous Oxide With Triple-

1446 1447 1448	Sanders, I. A. and Trimmer, M.: In situ application of the ¹⁵ NO ₃ - ⁻ isotope pairing technique to measure denitrification in sediments at the surface water groundwater interface, Limnology and Oceanography: Methods, 4, 142–152, 2006.	
1449 1450 1451	Scholefield, D., Hawkins, J. and Jackson, S.: Development of a helium atmosphere soil incubation technique for direct measurement of nitrous oxide and dinitrogen fluxes during denitrification, Soil Biology & Biochemistry, 29, 1345-1352, 1997.	
1452 1453 1454	Sgouridis, F. and Ullah, S.: Denitrification potential of organic, forest and grassland soils in the Ribble-Wyre and Conwy River catchments, UK, Environ. SciProcess Impacts, 16, 1551-1562, 2014.	
1455 1456	Sgouridis, F. and Ullah, S.: The relative magnitude and controls of <i>in situ</i> N ₂ and N ₂ O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems using ¹⁵ N tracers,	Formatted: Font: Not Bold
1457 1458 1459 1460	Environ. Sci. Technol., doi: 10.1021/acs.est.5b03513, 2015. Spott, O. and Stange, C. F.: A new mathematical approach for calculating the contribution of anammox, denitrification and atmosphere to an N_2 mixture based on a ¹⁵ N tracer technique, Rapid Communications in Mass Spectrometry, 21, 2398-2406, 2007.	Formatted: Font: Not Bold
1461 1462	Stevens, R. J. and Laughlin, R. J.: Lowering the detection limit for dinitrogen using the enrichment of nitrous oxide, Soil Biol. Biochem., 33, 1287-1289, 2001.	
1463 1464 1465	Stevens, R. J., Laughlin, R. J., Atkins, G. J. and Prosser, S. J.: Automated determination of ¹⁵ N-labeled dinitrogen and nitrous oxide by mass spectrometry, Soil Sci. Soc. Am. J., 57, 981-988, 1993.	
1466 1467	Stevens, R. and Laughlin, R.: Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils, Nutr. Cycling Agroecosyst., 52, 131-139, 1998.	
1468 1469 1470 1471	Tauchnitz, N., Spott, O., Russow, R., Bernsdorf, S., Glaser, B. and Meissner, R.: Release of nitrous oxide and dinitrogen from a transition bog under drained and rewetted conditions due to denitrification: results from a 15N nitrate-bromide double-tracer study, Isotopes in Environmental and Health Studies, 51, 300-321, 2015.	
1472 1473 1474	Tiedje, J. M., Simkins, S. and Groffman, P. M.: Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods, Plant Soil, 115, 261-284, 1989.	
1475 1476 1477	Ullah, S. and Moore, T. R.: Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada, J. Geophys. ResBiogeosci., 116, G03010, 2011.	
1478 1479 1480	van Beek, C. L., Pleijter, M., Jacobs, C. M. J., Velthof, G. L., van Groenigen, J. W. and Kuikman, P. J.: Emissions of N2O from fertilized and grazed grassland on organic soil in relation to groundwater level, Nutr. Cycling Agroecosyst., 86, 331–340, 2010.	
1481 1482 1483	Wang, R., Willibald, G., Feng, Q., Zheng, X., Liao, T., Brueggemann, N. and Butterbach- Bahl, K.: Measurement of N-2, N2O, NO, and CO2 Emissions from Soil with the Gas-Row- Soil-Core Technique, Environ. Sci. Technol., 45, 6066-6072, 2011.	
l	55	

1484 1485 1486	Well, R., Becker, K-W., Langel, R., Meyer, B. and Reineking, A.: Continuous flow equilibration for mass spectrometric analysis of dinitrogen emissions, Soil Sci. Soc. Am. J., 62, 906-910, 1998.
1487 1488 1489 1490	Wu, H., Dannenmann, M., Fanselow, N., Wolf, B., Yao, Z., Wu, X., Bruggemann, N., Zheng, X., Han, X., Dittert, K. and Butterbach-Bahl, K.: Feedback of grazing on gross rates of N mineralisation and inorganic N partitioning in steppe soils of Inner Mongolia, Plant Soil, 340, 127-139, 2011.
1491 1492	Whitmire, S. L. and Hamilton, S. K.: Rapid Removal of Nitrate and Sulfate in Freshwater Wetland Sediments, J. Environ. Qual., 34, 2062-2071, 2005.
1493 1494 1495	Yang, W. H., McDowell, A. C., Brooks, P. D. and Silver, W. L.: New high precision approach for measuring N-15-N-2 gas fluxes from terrestrial ecosystems, Soil Biology & Biochemistry, 69, 234-241, 2014.
1496 1497 1498	Yang, W. H., Teh, Y. A. and Silver, W. L.: A test of a field-based N-15-nitrous oxide pool dilution technique to measure gross N2O production in soil, Global Change Biol., 17, 3577-3588, 2011.
1499 1500 1501	Yu, K., Seo, D. and DeLaune, R. D.: Incomplete Acetylene Inhibition of Nitrous Oxide Reduction in Potential Denitrification Assay as Revealed by using 15N-Nitrate Tracer, Commun. Soil Sci. Plant Anal., 41, 2201-2210, 2010.
1502	
1503	
1504	
1505	
1506	
1507	
1508	
1509	
1510	Tables

Table 1: Measured ratios of R29 and R30 for N₂ in ambient air (n=10), ratios of R45 and R46 in standard N₂O gas (0.5 ppm concentration, n=15) and ¹⁵N at% abundance calculated from the respective ratios for both gases. SD; standard deviation, CV; coefficient of variation.

	R29 (N ₂)	R30 (N ₂)	R45 (N ₂ O)	R46 (N ₂ O)	¹⁵ N at% (N ₂)	¹⁵ N at% (N ₂ O)
Mean	7.38 10 ⁻³	5.16 10 ⁻⁵	8.00 10-3	$2.21 \ 10^{-3}$	3.71 10 ⁻¹	3.88 10-1
SD	2.77 10-7	2.26 10 ⁻⁷	1.25 10 ⁻⁵	1.04 10 ⁻⁵	2.09 10 ⁻⁵	1.01 10 ⁻³
CV (%)	0.00	0.44	0.16	0.47	0.01	0.26

1518
1519 Table 2: The ambient soil nitrate pool, The areal application rate of the ¹⁵N tracer application
1520 rate, the estimated enrichment of the total soil nitrate pool, the calculated ¹⁵X_N value from
1521 N₂O and the slope of the ¹⁵X_N change with incubation time in the three land use types. Data
1522 are means with standard errors in parentheses.

Land Use Type	<u>Ambient</u> <u>NO3⁼</u>	Tracer <u>a</u> Application	Enrichment of total soil NO ₃ ²	$^{15}X_{N}(\%)$	$^{15}X_{N}$ slope
	<u>(kg N ha⁻¹)</u>	rate (kg ¹⁵ N ha ⁻¹)	<u>pool (%)</u>		
Organic Soil (n=3)	0.53 (0.44)	0.04 (0.0 <mark>2,15</mark>)	<u>25 (11.8)</u>	90 (1.5)	0.003 (0.0054)
Woodland (n=2)	<u>3.86 (2.42)</u>	0.62 (0.4 <mark>106</mark>)	<u>,13 (0.7)</u>	79 (8.3)	-0.007 (0.0025)
Grassland (n=3)	<u>,1.81 (0.96)</u>	0.51 (0.19 0)	<u>24 (5.1)</u>	81 (8.4)	0.000 (0.0037)

1523

1515

1516

Formatted: Font: 10 pt
Formatted: Font: 10 pt
Formatted: Font: 10 pt
Formatted Table
Formatted: Font: 10 pt
Formatted: Font: 10 pt, Not Superscript/ Subscript
Formatted: Font: 10 pt
Formatted: Font: (Default) Times New Roman, 10 pt
Formatted: Font: 10 pt
Formatted: Font: 10 pt
Formatted: Font: (Default) Times New Roman, 10 pt
Formatted: Font: 10 pt
Formatted: Font: 10 pt
Formatted: Font: (Default) Times New Roman, 10 pt
Formatted: Font: 10 pt
Formatted: Font: 10 pt
Formatted: Font: (Default) Times New Roman, 10 pt
Formatted: Font: 10 pt
Formatted: Font: 10 pt
Formatted: Font: (Default) Times New Roman, 10 pt
Formatted: Font: 10 pt
Formatted: Font: (Default) Times New Roman, 10 pt
Formatted: Font: 10 pt

Table 3: Comparison of mean flux rates and ratios between land use types for the two field methods using One-Way ANOVA. All variables are log-transformed. *F*; *F* statistic, *P*; probability level.

¹⁵ N Gas-Flux	F	Р
Denitrification	19.4	< 0.001
N ₂ O emission	31.1	< 0.001
$N_{2}O/(N_{2}+N_{2}O)$	7.4	< 0.01
Total bulk N ₂ O	19.4	< 0.001
CO ₂ production	19.8	< 0.001
AIT		
Denitrification	12.7	< 0.001
Total bulk N ₂ O	9.4	< 0.01
$N_{2}O/(N_{2}+N_{2}O)$	0.3	> 0.05
CO ₂ production (un- amended cores)	11.2	< 0.001
CO_2 production (C_2H_2 amended cores)	11.7	< 0.001

1535 Figures

Figure 2: Evolved (a) N₂ and (b) N₂O gas measured between 1, 2 and 20 hours incubation
time points using the ¹⁵N Gas-Flux method in the organic soil (OS), woodland (WL) and
grassland (GL) land use types. Data points are means and the error bars represent standard
errors.

Figure 3: Mean rates of: (a) N_2 flux, (b) N_2O emission due to denitrification and (c) the denitrification product ratio $N_2O/(N_2 + N_2O)$ in the three land use types (OS; organic soils, WL; woodland and GL; grassland). Same lower case letters indicate no significant differences (p > 0.05) between land use types according to One-way ANOVA and the Games-Howell *post hoc* test. The sample size (n) is given in parenthesis for each land use type on the x-axis. Error bars represent standard errors.

Figure 4: (a) Mean total denitrification measured with the ¹⁵N Gas-Flux method and the AIT, 1565 (b) Mean bulk N₂O emission measured in the static chambers of the ¹⁵N Gas-Flux method 1566 1567 and in un-amended intact soil cores and (c) the denitrification product ratio $N_2O/(N_2 + N_2O)$ with the ¹⁵N Gas-Flux method and the AIT in the three land use types (OS; organic soils, 1568 WL; woodland and GL; grassland). Same lower case letters indicate no significant 1569 differences (p > 0.05) between measurement methods according to independent samples t-1570 1571 test. The sample size (n) is given in parenthesis for each land use type and each method on 1572 the x-axis. Error bars represent standard errors.

Figure 5: Mean CO₂ production measured in the static chambers of the ¹⁵N Gas-Flux method, in un-amended and C₂H₂ amended intact soil cores in the three land use types (OS; organic soils, WL; woodland and GL; grassland). Same lower case letters indicate no significant differences (p > 0.05) between measurement methods according to independent samples t-test. The sample size (n) is given in parenthesis for each land use type on the xaxis. Error bars represent standard errors.