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2 ABSTRACT

Deforestation and forest degradation in the tropics may substantially alter soil N-oxide
emissions. It is particularly relevant to accurately quantify those changes to properly account
for them in a REDD+ climate change mitigation scheme that provides financial incentives to
reduce the emissions. With this study we provide updated land use (LU)-based emission rates
(104 studies, 392 N2O and 111 NO case studies), determine the trend and magnitude of flux
changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O
and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission
changes for the tropics.

The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 £ 0.2
(n=90) and 1.7 £ 0.5 (n = 36) kg N ha* yr, respectively. In agricultural soils annual N2O
emissions were exponentially related to N fertilization rates and average water-filled pore
space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better the
observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N.O to
NO increased exponentially and significantly with increasing nitrogen availability (expressed
as NO3/[NOs+NH4*]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe
model. Nitrous and nitric oxide fluxes did not overall increase significantly as a result of
LUC (Hedges’s d of 0.11 + 0.11 and 0.16 + 0.19, respectively), however individual LUC
trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland
forest conversion to croplands (Hedges’s d = 0.78 + 0.24) and NO increased significantly
following the conversion of low forest cover (secondary forest younger than 30 years,
woodlands, shrublands) (Hedges’s d of 0.44 + 0.13). Forest conversion to fertilized systems
significantly and highly raised both N20O and NO emission rates (Hedges’s d of 1.03 + 0.23

and 0.52 + 0.09, respectively).



50

51

52

53

54

Changes in nitrogen availability and WFPS were the main factors explaining changes in
N20 emissions following LUC, therefore it is important that experimental designs monitor
their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical
gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm

plantation and soy cultivation).
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3 INTRODUCTION

Land use (LU) and land-use change (LUC) are important contributors to global greenhouse
gas (GHG) emissions. The current contribution of LUC to total anthropogenic GHG
emissions is estimated between 7 and 18% (Houghton, 2003; Baumert et al., 2005; Baccini et
al., 2012; Harris et al., 2012). This estimation heavily depends on biomass values and
deforestation rates and is associated with high uncertainties, especially in the tropics
(Houghton 2005). Causes of LUC are a complex and interacting combination of economic,
social and political factors (Lambin et al., 2001, 2003). However, population growth and
agricultural export correlate well with forest conversion rates (DeFries et al., 2010). A recent
comparative study showed commercial and subsistence agriculture to be the most prevalent
deforestation driver in non-Annex | (i.e. developing) countries (Hosonuma et al., 2012).
Between 1980 and 2000, 83% of the new agricultural land within the tropical region were
converted from intact or disturbed forest (Gibbs et al., 2010). As the world population and
food demand are expected to grow (respectively 34% and 70% by 2050, FAO [2009]), further
deforestation is likely in the near future.

By avoiding deforestation and forest degradation and through enhancing carbon (C) stocks
in forests, reducing worldwide GHG emissions could be achieved with a reasonable level of
cost-efficiency (Stern, 2008; Streck & Parker, 2012). However, for climate change mitigation
schemes such as reducing emissions from deforestation and forest degradation (REDD+),
where payments are based on performance, it is crucial to know how much emissions can be
mitigated by preventing deforestation and reforesting. In addition to carbon dioxide (CO,),
several studies on LUC in the tropics reported high non-CO2 GHG emissions, such as nitrous
oxide (N20) (e.g. Ishizuka et al., 2005; Keller et al., 2005; Takakai et al., 2006; Verchot et
al., 2006; Yashiro et al., 2008) and nitric oxide (NO) (e.g. Verchot et al., 1999; Erickson et

al., 2002; Perez et al., 2007; Davidson et al., 2008). Although the absolute mass of N>O
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emissions might be small, the global warming potential for N2O over a 100 year time horizon
IS 298 times greater than that of CO» (Forster et al., 2007). In addition this trace gas also
contributes to ozone depletion in the stratosphere (Crutzen, 1970). Nitric oxide, on the other
hand, is a free radical that enhances ozone production in the troposphere (lower atmosphere)
(Chameides et al., 1992); ozone in the troposphere is a GHG (Myhre et al., 2013). Although
NO is in fact an indirect GHG, it is relevant to study its dynamic in combination with that of
N20 as they share the same processes of production (nitrification and denitrification) in the
soil and are hypothesized to be interlinked (Firestone & Davidson, 1989).

Emissions factors in the IPPC guidelines for national GHG inventories (2006) have high
uncertainties although some of these were slightly reduced in the 2013 wetlands supplement
(Drosler et al., 2014). On the one hand, this high uncertainty can be explained by the high
temporal and spatial variability of N2O and NO emissions which are known to vary diurnally,
seasonally (see e.g. Meixner et al., 1997; Chen & Huang 2009; Lin et al., 2010), and locally
due to micro site-specific soil variability (Dalal & Allen, 2008). On the other hand, the high
uncertainty is partly due to the paucity of reliable estimates available in the peer-reviewed
literature.

Sources of biogenic N2O and NO fluxes from the soil can be a wide variety of
microorganisms and processes (Anderson & Poth, 1989), but nitrification and denitrification
are the main mechanisms (Davidson et al., 2000; Baggs & Philippot, 2010). Therefore, the
magnitude of N2O and NO fluxes depends on variables that enhance or inhibit nitrification
and denitrification such as nitrogen (substrate) availability, soil water content (aeration
status), soil temperature and pH (Skiba & Smith, 2000; Heinen, 2006; Dalal & Allen, 2008).
Substrates for nitrification and denitrification are ammonium and nitrate, respectively.
Ammonium (NH4") is the result of microbial decomposition of soil organic matter and is

converted to nitrate (NO3") by the nitrifying bacteria under aerobic conditions. In this process,
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N20 and NO are produced and partly emitted to the atmosphere. NOs™in return is used under
anaerobic conditions as a terminal electron acceptor for denitrifying bacteria that reduce NO3
to N2. Along this reduction gradient N2O and NO are also produced and partly emitted to the
atmosphere (Anderson & Poth, 1989; Baggs & Philippot, 2010).

Both nitrification and denitrification produce N2O and NO but are influenced differently
by the same soil variables. Therefore, models predicting N2O and NO fluxes need to consider
both processes. Firestone & Davidson (1989) proposed a conceptual model — dubbed the
‘Hole-In-the-Pipe’ (HIP) model — that uses two levels of control for N2O and NO emissions
in soils. The first level of control is nitrogen availability, symbolized as the amount of N
flowing through the pipes. The second level of control is generally represented by the soil
aeration status, explained as the size of the holes in the pipe through which N.O and NO
“leak” into the atmosphere. The HIP-model and its underlying assumptions were tested under
distinct conditions, which showed that soil nitrogen availability could be expressed in
different ways. Davidson et al. (2000) tested several indicators and found that the C:N ratio
of litterfall and the ratio of NO3" to the sum of NO3z and NH4* were promising proxies of N
cycling. Underlining the importance of rapid cycling N in N-oxide production, Purbopuspito
et al. (2006) showed a good correlation between 8*°N signatures of litter and soil and
emissions of N2O in Indonesia. Veldkamp et al. (1998) suggested that, in N fertilized systems
of Costa Rica, the major factor controlling N2O emissions was the soil aeration status (second
level of control), as N availability exceeded demand. The soil aeration status is commonly
expressed by the water-filled pore space (WFPS) (Linn & Doran, 1984); with a high WFPS
meaning a low aeration (Heinen, 2006). Nitric oxide is mainly produced when the WFPS is
below field capacity, whereas N2O is produced at higher WFPS, exceeding field capacity

(Davidson et al., 1991, 1993; Dobbie et al., 1999; Davidson & Verchot, 2000; Bateman &
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Baggs, 2005). Depending on soil texture, the field capacity is at a WFPS of around 60%;
whenever the WFPS exceeds 80%, most of the N is expected to be denitrified into No.

The goal of this study was to review how the emissions of N2O and NO in the tropics were
affected by LU and LUC and to examine their variation in relation to biophysical parameters.
We used all studies published in the peer-reviewed literature up to 2013 to calculate
emissions per LU type and evaluated relationships with environmental parameters. Next, the
effect of LUC was assessed by using a quantitative meta-analysis statistical approach that
allows for a comparison between independent studies, and weights studies according to their
uncertainty (Hedges & Olkin, 1985). We used the Hedges’ d (Koricheva et al., 2013) metric
to evaluate LUC effects. This is a standardized mean difference similar to the Hedges’ g but
adjusted for small sample sizes. Finally we ran a meta-analysis regression to express the
changes in emission rates following LUC as a function of environmental and soil variables

changes.
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4 MATERIAL AND METHODS

We followed three main steps to assess how soil N2O and NO emissions were affected by LU
and LUC in the tropics and subtropics: (i) compiling a database of all studies on soil N2O and
NO fluxes, selecting those integrating seasonal variation in their experimental design and
categorizing LU types; (ii) estimating average emission rate per LU category and exploring
biophysical factors affecting them; and (iii) characterizing the magnitude of emission change
due to LUC using a meta-analysis approach and evaluating how this change could be
expressed as a function of the change in biophysical factors through a meta-analysis

regression.

4.1 Data collection and calculation

The database of Stehfest & Bouwman (2006) (available at:
www.mnp.nl/en/publications/2006) was used as a basis for our research. From this dataset,
we extracted the 102 studies located in the tropics and subtropics (hereafter collectively
referred to as ‘tropics’), defined as climate types 3-6, using the climate classification defined
by De Pauw et al. (1996). We then extended the database by including 279 additional peer-
reviewed studies published between 1990 and 2013 on soil emissions of NO and/or N2O in
the tropics. A combination of the following keywords were used in the 1SI Web of Science
and ScienceDirect search engines: N2O, nitrous oxide, NO, nitric oxide, emissions, fertilizers,
forest, arable, grasslands, flux, nitrification, denitrification, land use, NOx, nitrogen-oxide,
tropics, subtropics. As N2O and NO fluxes are known to vary seasonally (e.g. Meixner et al.,
1997; Chen & Huang, 2009), we manually selected the studies that measured the fluxes
during both dry and wet seasons. The 103 studies selected (S1), representing 392 N.O and
111 NO LU case studies, were used to estimate annual mean N-oxides emission rates per LU

category and to analyse their relationship with environmental proxies. Out of the 104 papers
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44 measured N2O and/or NO emissions synchronically in at least two different LUs, one of
which was a forest. These 44 papers represented 135 N2O and 37 NO LUC case studies
which were analysed using a meta-analysis statistical approach (S2).

We summarized the number of studies and assessed the representation of LU per continent
categorizing them in five geographical areas: North-Central America, South America, Africa,
South Asia and Oceania. Average annual emission rates were expressed in kg NO-N or N2O-
N ha yr? using the estimates provided by the papers. Whenever annual fluxes were not
provided by the authors, we calculated them. For studies covering year-round measurements,
the annual flux was calculated by scaling up the units from hours or days to a year and cm? or
m? to ha. Where possible reported fluxes were weighed according to their time interval. For
instance, for studies covering measurements made during the dry and wet seasons, the annual
flux was calculated as the sum of each seasonal flux weighted by the number of days per year
corresponding to each season. The biophysical variables associated with N.O and NO
emissions from the publications were also expressed as annual averages. Soil variables
(temperature, WFPS, bulk density, pH, C content, N content, NH4s" and NO3") are from the
soil top layer (0-10cm). Nitrogen fertilization and litterfall are given as a mass of nitrogen per
hectare per year. In some cases the water-filled pore space (WFPS, %) was manually
calculated as a function of the gravimetric water content (m, g g* d.w.), bulk density (yq, g
cm®) and particle density (ys, g cm™) as WFPS = 100*(m*yq)/(1-(ya/ys)) (Linn & Doran
1984). A ysdefault value of 2.65 g cm™ was used for mineral soils (Hillel, 1980), whenever
not provided by the studies. Nitrogen fixation was considered by using a dichotomous
variable indicating the presence or absence of N> fixing species in the LU. Nitrogen fixation
rates were barely reported and could not be included. For studies measuring N2O and NO

simultaneously, we calculated the ratio and sum of the two and tested their correlation with
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WEPS and soil N availability. The latter is expressed as the relative fraction of NO3™ to total
inorganic N (NO3/[NOs+NH4™]).

Three LU case studies from Takakai et al. (2006) and the celery plot in Xiong et al (2006)
were excluded from the analysis because the very high fertilizations rates were about three
times higher than the International Fertilizer industry Association (IFA) recommended dose

for the studied crops.

4.2 Land use and land-use change characterization

The LU were classified into nine main categories: 1) forest (primary forest and secondary
forest older than 30 years), 2) wetland forest (swamp on peat, swamp on mineral soil and
riparian forest), 3) low forest cover (low canopy closure: woodlands and shrublands,
secondary forest younger than 30 years), 4) degraded forest (human-induced low forest cover
after logging and burning or fallows), 5) agroforestry systems, 6) plantations (mono-specific
plantations, e.g. Acacia, rubber, oil palm, cinnamon), 7) pastures (pastures and grasslands), 8)
rice fields, and 9) croplands (annual and perennial crops). For agroforestry, plantation,
pasture, rice and cropland both fertilized and unfertilized cases were combined and the effect
of fertilization was tested separately. Only a few studies included age after conversion in a
chronosequential sampling design; therefore we pulled together LU cases from different
studies to evaluate the change in emission rates as a function of time since conversion.

The studies either focused on a specific LUC type (e.g. forest conversion to pasture), or
considered several LUC types which were representative for the study region. In the latter
case, when only one control (forest) site was available, we used the same control for all
converted sites. Whenever several control sites were available in a study we averaged the
fluxes from all control sites. When a study measured emissions for several years, each year

was considered a separate case. The following LUC were analysed: forest to degraded forest,
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agroforestry, plantation, pasture and cropland; wetland forest to degraded forest, plantation,
pasture and rice; degraded forest to agroforestry; low forest cover to plantation, pasture and
cropland. The effect of primary forest conversion to secondary forest is not included in this
study as secondary forest (>30 years old) and primary forest were merged into a single

category. The same holds for logging impacts in degraded forests.

4.3 Statistics
Statistical analysis was performed using the software IBM SPSS Statistics for Windows 21.0
(IBM Corp. 2012) and statistical significance was set at a maximum probability level of 5%.
The normality of the flux distribution was tested using the test of Shapiro-Wilks. Neither NO
and N20 nor their log-transformed values were normally distributed hence a generalized
linear model with a post-hoc pair-wise comparison was performed for comparing the fluxes
between LU. Throughout the text averages are followed by standard errors (£ S.E.).
Stepwise multiple linear regression was performed to identify the environmental variables
that were significantly related to soil fluxes of N2O and NO. Variables available in <10% of
all study cases were excluded to obtain a sufficient sample size for the regression. In order to
maximize the data availability we used pair-wise exclusion for dealing with missing values.
We also excluded predictor variables that were collinear (multicollinearity test, VIF statistics)
to other variables already included in the model. A non-linear Gaussian function was fit

between N2O, NO fluxes and WFPS using averages per 10% WFPS intervals.

4.3.1 Meta-analysis
A meta-analysis was used to quantify the effect of LUC on soil annual N.O and NO
fluxes. For this we used the software Comprehensive Meta-Analysis version 2.2.064 (Biostat

Inc., New Jersey, USA) and MetaWin 2.0 (Sinauer Associates, Sunderland, Massachusetts).
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We defined N2O or NO emissions after land-use change as being the treatment and N.O or
NO emissions before land-use change as being the control. Hedges’d (d) was used as metric

to evaluate the effect size of LUC on N2O and NO fluxes. This metric is defined as:

d=ETED s J )

5= J (oD +Np—1)(Pp)2 @)
Nc+Nt-2

=l —— e, 3)

4(Nc+Np-2)—-1

Where, X and X are the average N2O or NO flux (in kg N ha! yr?) of the treatment and
control, respectively; S is the pooled standard deviation from the control and treatment flux
standard deviations (SDc and SDT) and J is the correction factor calculated from the sample
sizes (Nt and Nc). The effect size (d) for all LUC case studies combined, or that for a
particular LUC type, was assessed using a random model which allows for a varying true
effect size between studies (Gurevitch & Hedges, 1999; Borenstein et al., 2009). A d equal or
smaller than 0.2 indicates a small effect size, a d around 0.5 a mediumoneandad > 0.8 a
large effect. Positive and negative d’s respectively imply an increase and decrease in N2O or
NO emission after LUC, respectively.

Calculation of d requires knowledge of the standard deviation and sample size associated
with the average N2O or NO flux rate. Whenever these were not available in the publication
we contacted the authors, calculated it ourselves using the methodological description of the
experimental design or measured it from the figures of the papers using PlotDigitizer 2.5.1
(Joseph A. Huwaldt, 2011).

Publication bias for studies with significant and/or high effect sizes was assessed using a

normal quantile plot (Wang & Bushman, 1998). Deviation from linearity of the observed
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distribution suggests publication bias while gaps in the plotted scatter plot indicate that
certain effect sizes are missing in the published literature (Borenstein, 2009).

Heterogeneity of effect sizes was assessed with the Q and 12 statistics. A significant Qoverail
means that the variance among LUC study cases is greater than that expected by sampling. In
a heterogeneous dataset, the (1-12) statistic quantifies the variation within case studies and 12
the variation that could be explained by other variables (or ‘real variation’). 1% of 25%, 50%,
75% are respectively considered as low, moderate and high (Borenstein, 2009). An I2 > 0
shows that a proportion of the observed variation is real; thus, subgroup division into LUC
types and/or meta-analysis regression can be used (Gurevitch & Hedges, 1999). LUC effect
sizes obtained from a low sample size are likely to be influenced by random deviations;
hence their interpretation should be handled with caution.

Finally, we performed a meta-analysis regression (or ‘meta-regression’) (Higgins &
Green, 2011) to assess how the changes in environmental factors affected changes in soil
N20 or NO emission as a result of LUC. We looked at how the standardized mean difference
of an environmental parameter was affecting that of soil N2O or NO emissions. A meta-
analysis regression is considered robust when it includes ten cases studies at least

(Borentstein, 2009; Higgins & Green, 2011).
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5 RESULTS

5.1 Exploring the dataset

The publication rate of peer-reviewed papers on LU and soil emissions of N2O and NO in the
tropics has more than doubled over the past decade (less than 2 publications y* before 2000,
more than 5 y* afterwards), but remains low. The Americas (combining North-Central and
South America) and South Asia represented the majority of the dataset (n = 229 and n = 137),
while Africa and Oceania were underrepresented (n = 21 and n = 35, respectively; Fig. 1).

LU types studied varied substantially across continents (Fig. 1). In South Asia 61% of the
LUs studied were croplands, rice fields or plantations, while these were only 13% in South
America. Some LUs were geographically well represented while others were clustered in one
continent. For instance, agroforestry systems were spatially well represented, although few in
numbers (n = 8), while rice paddies were mostly studied in Asia. Studies on wetland forest
were underrepresented (n = 7) and restricted to South Asia (Fig. 1a).

Ninety-four percent of the LU case studies on soil fluxes of NO were in North-Central and
South America (respectively, n = 62 and n = 36). In Africa and South Asia, respectively, only

five and eight LU case studies were found, while Oceania had no measurements at all.

5.2 Average land use emissions and environmental parameter values

Neither N2O nor NO fluxes were normally distributed and about 90% of the observations
were below 10 kg N2O-N and 8 kg NO-N ha* yr. Table 1 shows average annual N,O and
NO emissions per LU and environmental parameter associated. Croplands displayed the
highest N2O emission rate and also the highest average N fertilization rate. Both pastures and

rice fields had relatively high N>O emissions; however, these were characterized by a high
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variation. The average NO emission rates did not show any significant difference between
LU.

The availability of environmental parameters in studies on N-oxides emissions was
variable. For example, only 4% of the studies reported nitrogen input through litterfall, while
precipitation was given in 91% of all cases. Although the comparison of values from different
data sources may generate inconsistencies, some generalizations per LU category can be
made. Overall, intact forest had a significantly lower bulk density compared to more
compacted soils from pastures. Wetland forest soils had a significant lower bulk density
compared to all other soils. Wetland forest soils were more acidic than other soils in general,
while cropland soils were significantly less acid than forest soils. Mineral N content did not
differ significantly between LU, except for high NH4* and NO3™ concentrations in wetland
forest and rice paddy soils. Plantation soils were the only ones where NOs™ concentrations
exceeded those of NH4*, other LU showed the opposite trend. Carbon and nitrogen content in
the soils of natural wetland forest were very high and significantly higher than that in all
other LUs. Degraded forest soils showed a high carbon content which is due to the inclusion
of eleven degraded peat forests out of the twenty cases. Excluding them resulted in a soil
carbon content of 3.8 %.

The multiple linear regression analysis indicated that N fertilization, WFPS, and N
availability (expressed as [NOs/ (NOs™ + NH4")]) were the best proxies for estimating overall
soil fluxes of N2O (Table 2). For agricultural sites (i.e. crop and pasture) N fertilization rate
explained part of the variation (R?>=0.31, df=160, p<0.01); but (pair-wise) including the
WFPS more than doubled the R squared. Proxies for overall soil NO fluxes were N
availability and N fertilization. For agricultural sites N fertilization explained 31% of the
variation in NO fluxes, and the inclusion of the WFPS did not improve the relationship. In

non-agricultural LUs a non-linear Gaussian function of the WFPS simulated with good fit
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N20 and NO fluxes (Fig. 2, Table 2). The relationship indicates that NO and N2O fluxes peak
at WFPS of 45% and 61%, respectively. The ratio of N2O to NO displayed an exponential
relationship with the WFPS (Fig. 3, Table 2), which indicates N-oxide emissions
predominantly in the form of N2O (i.e. N2O/NO > 1) above a WFPS of 48%. In non-
agricultural sites the predominance of N2O over NO happens at a slightly lower WFPS
(46%). The sum of soil N2O and NO emissions also increased exponentially with increasing
N availability.

Time since conversion was available in 26% of the LU cases only. Nitrous oxide fluxes
from non-fertilized croplands appeared to be higher the first ten years after conversion and
thereafter decrease, whereas fluxes from fertilized croplands remained high (Fig. 4). For
pastures the pattern was less apparent, the first years after conversion both high and low

fluxes were observed.

5.3 Land-use change effects on N2O and NO emissions and environmental parameters
Land-use change effects were evaluated by looking at differences in emissions after and
before LUC. This was done for each LUC type and for all LUC combined. The effect sizes of
LUC on N20 emissions were not strictly normally distributed; however, all effect size ranges
were present. Deviation from linearity occurred for high and low effect sizes indicating a
potential bias for published studies measuring large effects following LUC. A normal
quantile plot for NO emissions as affected by LUC indicated a normal distribution; however,
some gaps were present in the observed values, possibly due to a biased representation of NO
emission changes in the literature.

Nitrous oxide emissions were not overall affected by LUC (d = 0.11 + 0.11); the slight
increasing trend was not significant because of opposing effects in different LUC trajectories

(Table 3). The LUC case studies overall did not share a common effect size (Qovera= 221.3 P
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< 0.01) and the majority of the variation was within case studies (1-12, 59%). Similarly to
N20O emissions, and for the same reason, NO emissions were not overall affected by LUC;
with a homogeneous effect size (Qoveran = 31.7, P = 0.67) and 47% of the variation within
LUC case studies (1-1?).

Most studies focused on forest clearing for croplands (Nk-crop+ Nwr-crop+ Nbegr-crop= 44) and
pastures (Nr-pa+ Nwr-pa + Npegr-pa = 42). Transition from intact upland forest to croplands
significantly increased N2O emissions, while conversion to agroforestry showed a slight, but
insignificant increasing trend. Intact forest conversion to pasture (F-Pa) tended to decrease
N20 emissions, whereas low forest cover conversion to pasture (LFC-Pa) showed the
opposite trend. Further, conversion of low forest cover overall significantly increased NO
emissions.

The Hedges’ d effect size of forest conversion to fertilized LU amounted to 1.03 + 0.31
and 0.52 = 0.23 for N2O and NO, respectively, indicating significant and high increased
emissions after fertilization. Evidence for increased emission following conversion to LU
with N fixing crops/trees was weak and fluxes of NO slightly raised but not significantly
(dno=0.61 +£0.33 n = 8).

The results of the meta-regression, which was run pooling all LUC case studies together,
are presented in Table 2. The change in N2O fluxes as affected by LUC was positively related
to changes in N availability and WFPS. No significant relationships were found for NO. The
interactive effect of WFPS and N availability change on N2O flux change is illustrated in Fig.
5. Whenever N availability increased after LUC (dnavailanitity™>0) the increase in N2O emissions
(dn2o > 0) was exacerbated if the WFPS also increased (dwrps>0), or diminished if the WFPS
was decreased (dwrps<0). The slope of the regression between dnzo and davailibility Was raised

by 143% for the dwrps>0 cases, reduced by 58% for dwrps<0 cases.



380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

18

6 DISCUSSION

6.1 Dataset representativeness and average annual LU emissions

The body of research on LULUC and N2O and NO emissions in the Tropics has increased
during the past decade; however, Africa and Oceania remain strongly underrepresented. Most
of Africa’s LU case studies were from (converted) savannahs although Africa has a variety of
forest types unaccounted for at present in the literature. Furthermore, a comparison between
the spatial distribution of LUC case studies and global forest conversion for 2005-2010 (FAO
2010) shows that highest deforested areas overlapped well with studies on N emissions from
LUC except for Oceania and Africa (Fig. 1c). These regions need more research on soil N2O
and NO emissions, in representative LULUC categories. Sampling bias was not only
geographical; some biofuel or food crops such as oil palm and soy were also
underrepresented (Noil paim = 7 and nsoy = 4) although they are the most rapidly expanding
perennial and annual crop in the tropics (Phalan et al., 2013). Land-use change categories
were also not equally represented; there was a dominance of studies on forest conversion to
croplands and pastures. Only a few cases (10-13%) assessed the effect of nitrogen
fertilization or the use of N-fixing species after LUC. Those studies took place in Latin
America (Matson et al., 1996; Veldkamp & Keller 1997; Veldkamp et al., 1998) and Asia
(Verchot et al., 2006; Veldkamp et al., 2008). Some wetland forest conversion study cases
showed high effect sizes for N2O emissions (Hadi et al., 2005; Furukawa et al., 2005;
Jauhiainen et al., 2012), but the overall tendency of wetland forest conversion to increase
N20 emissions was not significant (Table 3) as observed by Hergoualc’h & Verchot (2014).
However, the sample size was small and none of the converted case studies were fertilized or
intensively monitored following fertilization. Future research direction should consider

conversion to fertilized land uses, using an experimental design adequate for capturing
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fertilization effects on N oxide emissions, and wetland forests in and outside of South Asia.
Likewise, few papers studied forest degradation; a topic that needs more attention (Mertz et
al., 2012).

The annual N2O emission rate in intact upland forest (2.0 + 0.2 kg N2O-N ha® yr?, n = 88)
is more than twice the value estimated by Stehfest & Bouwman (2006) (0.85 kg N2O-N ha*
yrt, n = 77) for the tropics. We excluded the cases considered by Stehfest & Bouwman
(2006) that did not cover seasonal variation, but ended up with a higher sample size by
adding studies published after 2005. Our value is also larger than the model estimations of
1.4 kg N2O-N ha! by Potter et al. (1996) and 1.2 kg N2O-N ha* yr by Werner et al. (2007).
Dalal & Allen (2008) estimated average emissions in tropical forest of 3.0 £ 0.52 kg N.O-N
ha! yr! (n = 22) and Kim et al. (2013a, 2013b) of 1.91 kg N +0.25 (n = 69). The annual NO
emission rate in tropical forest amounts to 1.7 +0.48 kg N-NO ha* yr! (n = 36), which is
higher than previous estimates by Stehfest and Bouwman (2006) (0.39 kg NO-N hat yrl n =
33), Davidson and Kingerlee (1997) (0.8 kg NO-N ha? yr, n = 15) and Potter et al. (1996)
(1.2 kg NO-N ha'tyr?),

Nitrous oxide emission in agricultural fields and pastures reported by Duxbury et al.
(1982) were the largest in the entire dataset (average emissions of 65 kg N2O-N ha! yr?).
The study was conducted in Florida on drained organic soils under crops, grass or kept as
fallows; that displayed high N mineralization rates (600-1,200 kg N ha y1). Excluding them
decreases the overall average N2O emissions from 4.4 = 0.6 (n = 387) to 3.5 + 0.3 kg N2O-N
ha! yr! (n = 381), and croplands emissions from 8.6 + 2.0 (n = 93) to 5.8 +0.9 kg N2O-N ha!

yrt(n=88).

6.2 Land-use change effects on the emissions
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According to the meta-analysis LUC overall increased N>O and NO emissions, albeit not
significantly. Land-use change types or practices that induced significant changes in
emissions all pointed towards increased rather than decreased emissions. The meta-analysis
confirmed that intact upland forest conversion to croplands and nitrogen fertilization after
LUC significantly and highly increased soil emissions of N2O. It also corroborated high
increases in NO emissions after low forest cover conversion in general and when fertilizer is
applied after LUC. For most LUC trajectories the effect of emission change was not
significant even when the sample size was relatively large. For instance, the analysis
indicated a trend of decreased N2O emissions following intact upland forest conversion to
pasture, which was not significant since the LUC studies not all agreed on the direction of
change. Several publications reported decreased emissions after conversion to pasture (e.g.
Verchot et al., 1999; Erickson et al., 2001; Garcia-Montiel et al., 2001), others reported the
opposite (e.g. Melillo et al., 2001; Takakai et al., 2006) and one showed no effect (Neill et al.,
2005). These apparent contradicting results have been explained by differences or absence of
differences in time after conversion of the studied pastures (Keller et al., 1993, Veldkamp et
al., 1999, Verchot et al., 1999, Neill et al., 2005, Wick et al., 2005) or the practiced or not
slash and burn technique to clear the forest, both affecting N cycling (Luizao et al., 1989;
Matson et al., 1990; Steudler et al., 1991; Keller & Reiners, 1994; Neill et al., 1995; Melillo
et al., 2001; Garcia-Montiel et al., 2001). Biomass burning produces N.O during fires and
may enhance soil N2O afterwards by stimulating N mineralisation (Skiba & Smith, 2000).
The paucity of field observations together with the lack of land-use history description did
not allow to evaluate clearing practices effects or temporal trends in soil emission dynamics
with LUC thoroughly. For non-fertilized croplands and pastures, the fluxes of N2O tended to
increase during the first five to ten years after conversion and thereafter tended to decrease to

average upland forest or low canopy forest levels (Fig. 4). In fertilized croplands, however,
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flux rates remained at a high level even beyond this period. Soil physical disturbance
following land clearing, high N inputs associated with clear-felling and soil preparation (e.g.
compaction, drainage in wetland) all combined may be at the origin of the five to ten year
emission peak. In fertilized croplands on the other hand, the sustained emission increase
seems to be driven by high mineral N inputs. This temporal variability in emission change
indicates that the first ten years following LUC are crucial for GHG budget calculations.

We used a meta-analysis statistical approach to assess the trend and magnitude of forest
conversion on soil emissions of N oxides. Meta-analysis consists in comparing site specific
(pair-wise) effects weighted according to their robustness, therefore it provides a direction
and a magnitude of emission change more reliable and precise than those obtained by
comparing average emission rates per LU category from individual papers. For example, the
meta-analysis effect on N2O emissions of intact upland forest conversion to croplands (0.78)
was much higher than the effect calculated (0.48) using average values from Table 1 and Eg.
(1). The effect calculated from average emission rate derived from individual studies can also
lead to misleading conclusions such as in the case of intact upland forest conversion to
pasture. The effect calculated from average emissions (0.34) was positive indicating
increased emissions as opposed to the meta-analysis conclusion (-0.28). Simple assessments
based on average values, in general, encompass more studies than meta-analysis but are
biased due to the exclusion of pair-wise evaluations. In order to improve the understanding of
LUC on trace gas emissions in general, more studies monitoring the fluxes simultaneously in
control (forest) and converted sites are necessary. Whenever the conversion includes
intermediary stages such as short fallows with the practice of slash-and-burn, the
corresponding emission rates should be evaluated as well. When focusing on a specific
crop/tree a chronosequential approach including different ages since planting should be

considered, especially if fertilization rates evolve with time. The first few years after
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conversion are likely to be hotspots for N oxide emissions and time since conversion is an

important factor to be included.

6.3 Biophysical drivers of NO and N20O emission and emission change

An IPPC Tier 1 approach is generally used by countries in the Tropics to estimate their
annual emissions of GHG. Average LU-based emission rates as provided in this paper or the
contribution of N applied released as N2O from agricultural soils (IPCC, 2006) illustrate the
type of emission factors applied to activity data at a Tier 1 level. This approach is useful to
compare anthropogenic emissions from different countries but does not capture the variations
across climate regions for instance (Skiba et al., 2012). Soil fluxes of N.O and NO are known
to be controlled by climate (rainfall, temperature), soil conditions (drainage, aeration, texture,
pH, etc.) and management (land cover, fertilization rate and type, etc.) (Skiba & Smith, 2000;
Ludwig et al., 2001; Butterbach-Bahl et al., 2013). Country- or regional LU-specific emission
factors that better account for local climate, soil management and properties are defined as
Tier 2 level whereas Tiers 3 methods usually involves process-based models (Del Grosso et
al., 2006). The multiple regression analysis of the dataset indicated that tropical NoO and NO
fluxes could be expressed as a combination of nitrogen availability and/or application and
WEFPS; even though the predictive power for simulating overall N.O emissions was low (R?
= 0.39). However, the predictive power of the regressions increases when the database is split
up in agriculture and non-agriculture cases (Table 2). The establishment of an emission factor
for agricultural soils that includes the WFPS in addition to N fertilization rate is likely to
improve estimates of direct agricultural N2O emissions, one of the largest source of N2O in
most countries. For non-agricultural sites a more mechanistic approach appeared to fit better
the observed data. The fluxes of both NO and N.O followed a Gaussian type relationship

with the WFPS — a key determinant for soil anaerobiosis. This type of relationship was
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hypothesized by Davidson (1991), demonstrated in case studies (Davidson et al., 2000;
Davidson and Verchot, 2000; Veldkamp et al., 1998) and used in modelling (Parton et al.,
2001; Parton et al., 1996; Potter et al., 1996). Its application in the context of the current
tropical database confirms a maximum of N2O emissions around a WFPS of 60% and
indicates maximum NO emissions at a lower WFPS (45%) than that reported by Davidson et
al. (2000) (55%). It also points out that NoO emissions remain high at an 80% WFPS and
diminish towards 100% WFPS. Neither air nor soil temperature were found to affect soil N-
oxide fluxes across LUs, although the LU annual average span was wide (12-34°C and 14-
31°C for air and soil temperatures). In the temperate zone exponential increases in N.O
emissions with increasing temperature have been reported, whereas in the tropics the
evidence is mixed (Skiba and Smith, 2000). Substrate (e.g. N, P) and moisture constraints of
microbial processes influencing N-oxide fluxes may reduce the temperature effect. Werner et
al. (2006), for instance, demonstrated that variations in N2O emissions from tropical
rainforest soils were mainly affected by soil moisture changes and that temperature changes
were of minor importance.

The data confirmed the concepts formulated in the HIP model (Davidson et al., 2000) with
the availability of mineral N in the system (first level of control) controlling in an exponential
fashion the (NO + N.O) flux rate and the WFPS (second level of control) controlling also in
an exponential fashion the ratio of N>O to NO. Although our exponential models are similar
to those obtained by Davidson and Verchot (2000) using the TRAGNET database and by
Davidson et al. (2000) using fluxes from forest to pasture conversions in the American
Tropics, the magnitude of the coefficient is different. For a WFPS between 30 and 60% the
N20 to NO ratio obtained using the relationship of Davidson and Verchot (2000) is five to
nine times lower than the one obtained with the relationship developed here. Above a NOs

/[NH4*+NOs3] ratio of 0.5 the relationship of Davidson et al. (2000) departs from the one we
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developed. For instance, at a 0.75 NO3/[NH4"+NO3] value, we estimate annual NO + N2O
emissions of about 6 kg N ha! y* whereas the model of Davidson et al. indicates 10 kg N ha-
LyL. The probable reason explaining the discrepancy is the temporal scale of the data, we
used annual emission rates whereas Davidson et al. used hourly fluxes and thus took into
account punctual high emission peaks less apparent in annual budgets. Also, given the
nonlinear nature of the functions, an annual budget estimated by summing up fluxes
simulated from e.g. hourly WFPS and inorganic N ratio values would lead to a different
result than the one simulated from annual WFPS and inorganic N ratio values, as we did. This
demonstrates that relationships used in modelling exercises should be developed according to
the time step of the model.

Land-use change involves major transformations of the soil-plant-atmosphere continuum.
As a result of land-clearing fires, mechanical ploughing and compaction, vegetation change,
fertilization, etc., the soil system is highly altered from its previous state. Soil properties such
as bulk density, porosity, moisture, WFPS, temperature, mineral N content and pH are often
affected by LUC (Farquharson & Baldock, 2008; Dobbie et al., 1999; Verchot et al., 1999).
Fertilization N input after land-use change increases highly and significantly both N>O and
NO fluxes, as reported by many studies, e.g. Stehfest & Bouwman (2006). However,
increased emissions after LUC were not exclusively due to fertilization, changes in
endogenous levels of soil nitrogen availability or WFPS were also key factors impacting the
changes in N2O fluxes. These variables should therefore systematically be measured and
reported. Land-use change generally impacts more than one variable at a time, therefore
changes in emissions will most likely result from an interaction of factors. This was
illustrated by the interactive effect of the changes in N availability and WFPS on N2O

emission changes (Fig. 5).
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7 CONCLUSIONS

We estimate natural tropical forests to emit 2.0 kg N2O-N ha* yr! on average and emission
rates to be significantly increased after conversion to cropland, and to a smaller degree to
agroforestry. Low forest cover also see their NO emissions raise significantly after being
converted. These LUC trajectories can hence contribute substantially to non-CO> GHG
emission increases whenever they represent a substantial area for a given country. Default
Tier 1 N2O and NO emission factors currently proposed by the IPCC for the tropical region
are based on a limited number of studies and rely essentially on N inputs. However,
mechanisms of N-oxide production are the result of microbial processes controlled by a
combination of factors; thus the IPCC Tier 1 approach is somewhat flawed. Here we
established a set of predictive relationships linking annual soil N2O and NO emissions to
biophysical parameters and emission changes to biophysical parameter changes. The analysis
established that N availability or N inputs as well as the soil WFPS were the key explanatory
factors of emissions or emission changes. In particular, we developed a statistical model for
tropical countries allowing the calculation of N2O emissions from agriculture as a function of
both N fertilization rate and WFPS. Improving the scientific understanding of N2O and NO
fluxes and how they relate to environmental parameters requires the design of experiments
considering the high spatio-temporal variation of the fluxes and associated parameters and the
use of standardized measurement methods. Also, studies considering a LUC transition
pathway should include in their design all intermediate land use stages (e.g. degraded forest)
susceptible to modify N cycling. Finally, even though the body of research on LUC and N.O
and NO emissions has steadily increased over the past decades, knowledge gaps are still
important especially in Africa and Oceania, and for wetland forest (notably on peat),

degraded forest and important world crops such as oil palm plantations and soy fields.
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10 SUPPLEMENTARY MATERIAL

S1 — Database of LU study cases on N2O and NO fluxes and environmental parameters.
S2 — Database used for the meta-analysis of LUC study cases and Hedges’d for N2O and NO

fluxes and environmental parameters.
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Table 1: Average of annual N2O and NO emissions in the Tropics and associated environmental parameter values. Land uses are F: forest,

WEF: wetland forest, LFC: low forest cover, DegF: degraded forest, AGF: agroforestry, Pl: plantation, Pa: pasture, R: rice and Crop: cropland.

NA: not available, no nitric oxide cases were available for WF. Standard error and sample size are indicated in brackets, # indicates no statistics

were possible. Letters in superscript indicate significant differences among land uses, whenever differences were not significant no letter was

indicated.
Land Flux Annual Annual Soil WFPS Bulk pH NH4* NOs- C N Fertilization Litterfall
use (kg Nhal precipitation temperatu temperature (%) density (MgNg! (ugNg? (%) (%) (kgNha' (kg N ha?
yr) (mm) re (°C) (°C) (g d.w. cm™) d.w.) d.w.) yr) yr)
Nitrous oxide
F 2.08 2226 22.8 23.73b 56.1 .92 4.93b.c 20.52 10.82 4.82 0.42 02 100
(0.2, 90) (81, 90) (0.4,80)  (0.5,29) (3.4,45  (0.0,58) (0.1,55) (2.8,47) (1.5,45) (0.5,45) (0.0, 45) (0, 87) (17, 14)
WF 2.7ab 2485 26.1 26.82b 44.5 0.1° 3.82 412.0° 70.9° 49.7° 1.6° oab.d n.a.
(1.9, 7) (167, 6) (0.4, 6) (0.5, 4) (7.7, 3) (0.0, 4) (0.2,7) (119.9,4) (12.2,5) (3.2,7) (0.1, 7) (0, 7)
LFC 0.52b 1546 23.9 28.82b 47.7 1.1ac 5.02b.cd 5.12 3.12 4.02 0.32 oab.d n.a.
(0.1, 11) (390, 11) (1.6, 9) (1.2, 3) (10.6,8)  (0.1,10) (0.3,11)  (1.1,8) (1, 8) (0.9, 8) (0.1, 8) (0, 10)
DegF 1.92b 2220 25.1 27.62 48.4 0.92 4.42b 44.42 11.62 30.0¢1t 0.9¢ 0ab 122
(0.5, 30) (123,30) (0.4,28) (0.6, 14) (5, 19) (0.1,24) (0.2,23) (17.4,20) (4.1,20) (6.2,20) (0.1, 20) (0, 26) (54, 3)
AGF 3.4ab 2297 25.2 22.13b 77.1 1.2a¢ 5.60cd 10.72 7.82b 2.82 0.3a¢ 39abe 218
(1.6, 8) (112, 8) (0.8, 6) (2.3,2) (17.2, 3) (0.1, 8) 03,7 (46,7) (3.1,7) (0.5, 3) (0.1, 3) (31, 8) #, 1)
Pl 1.52b 2120 24.3 25,52 59.0 1.0a¢ 4.8abc 11.98 17.82b 6.72 0.42 53ab 304
(0.3, 40) (137,40)  (0.6,38)  (0.6,22)  (3.4,26) (0.1,27) (0.1,37) (2.3,30) (8.2,27) (2.2,30) (0.1,31) (25,35) (153, 5)
Pa 5.2ab 1913 234 26.32b 64.2 1.2¢ 5.4¢d 26.12 26.920 5.12 0.32 9Qbd n.a.
(1.3,97) (89, 90) (0.5, 54) (1.9, 8) (4.6, 18) (0,54)  (0.1,49) (4.2,29) (13.7,29) (1.8,41) (0, 39) (17, 70)
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R 5.1ab 1562 21.9 20.9p 73.0 1.2ac 6.0d 788.01 29.4ab 13.62 0.5a¢ 228°¢ n.a.
(1.7, 17) (234,13) (1.9, 13) (2.4, 5) (1.2, 3) (0, 4) (0.3, 17) #, 1) (2.0,2) (5.2,17) (0.1,17) (61, 17)

Crop 8.6° 1965 24.4 25.3ab 58.1 1.1ac 5.7de 21.32 12.22 7.52 0.42 155¢d 77
(2.0, 92) (123,76) (0.6, 60) (1.1, 23) (5.2,28) (0.1,44) (0.1,78) (10.9,36) (2.6,36) (1.6, 55) (0, 55) (25, 92) (28, 2)

Nitric oxide

F 1.7 2342 2162 2492 60.1 0.752 5.3 15.4 12.22 512 0.4 0a 79
(0.5, 36) (166, 35) (0.8, 30) (0.4, 13) (4.5, 24) (0.07,24) (0.3,25) (2.5,21) (2.0, 21) (0.7, 15) (0.1,19) (0, 36) (16, 10)

DegF 2.9 2119 25.4 b 26.4 @ 53.7 1.08° 5.6 15.1 5.62b 3.12b 0.3 0P 68
(1.9, 20) (281, 19) (0.9,12) (0.8,9) (7.8, 11) (0.09,17) (0.3,17) (3.1,13) (1.5, 13) (0.8, 13) (0.1, 10) (0, 20) (6, 2)

AGF 2.3 2219 26.0 acd 24.4% 56.0 1.32° 5.9 9.5 4.9ab 25 0.2 12 bdef na
(0.8, 5) (147, 5) (0.0, 4) #, 1) (#, 1) (0.03,5) (0.2,5) (4.6, 4) (3.1, 4) (#, 1) (#, 1) (12, 5) e

PI 5.4 2124 21.4 acd na 70.0 1.23ab 7.6 na na na na 180 na
(5.3,2) (1839, 2) (4.4, 2) o (#, 1) (0.43, 2) (#, 1) o o o o (180, 2) e

Pa 2.6 2279 25.5 bd 27.8°b 66.8 1.22°b 5.8 27.0 5.4°b 1.2b 0.2 91 ce na
(0.7, 28) (252, 26) (0.1, 13) (0.7, 8) (6.0, 14) (0.07,16) (0.3,17) (5.9,17) (1.1,17) (0.4, 13) (0.1, 6) (26, 26) e

Crop 3.1 1686 24.7 acd 27.8°b 43.0 1.31° 5.7 28.2 12.1 2.5a 0.3 88 cd na
(0.8, 20) (268, 14) (1.1,3) (0.4,11)  (12.3,6) (0.09,13) (0.2,20) (14.5,12) (2.3,12) (1.0,9) (0.1, 4) (17, 20) e

Lincluding 10 degraded peat forests, soil carbon content for non-peat soils was 3.8.



884

885

886

887

888

889
890

891
892
893
894
895

38

Table 2: Multiple regression between soil N2O or NO emissions and associated
environmental parameters; and meta-analysis regression between the standardized differences
after and before land-use change of N2O emissions (or Hedges’ d, dn2o) and of environmental
factors (dnavailable, dwips). The models are presented with slope and intercept + SE; P values are
indicated with * (p<0.05), ** (p<0.01) and *** (p<0.001). All regression models were

significant (p<0.01).

LU R2 df Model

Linear regression LU study cases
Ln(N20+1.2) = 0.002*** +0.0004 X Nrertilization + 0.87** +0.29 X Navailable +

Al 039 125 5,014+ £0.003 x WFPS — 0.11" +0.22
- KKk - KKk _
Agr? 0.83 40 an(glniiglzé) = 0.008*** £0.0007 X Ntertilization + 0.017*** £0.003 x WFPS
Non-Agr® 0.17 80 k8(£\|50+1.2) = 0.87** £0.27 X Navailable + 0.008*** +0.003 x WFPS — 0.15"
Al 018 64 Ln(NO) = 2.27** £0.80 % Navailable + 0.0085* £0.0039 X Ntertilization — 1.42***
+0.35
Agrd 0.31 44 Ln(NO) = 0.0081*** +0.0019 X Nfertilization — 0.65* +0.26
Non-Agr® 0.20 36 Ln(NO) = 3.02** £1.02 % Navailable — 1.67** £0.47
Gaussian regression WFPS
Non-Agr® 0.90 102 N20 = 2.3 x exp(-0.5 x (WFPS¢-61.8)/24.7)?)
Non-Agr® 0.89 36 NO = 2.5 x exp(-0.5 x (WFPS¢-45.3)/16.5)?)
HIP model regression
All 0.48 40 Log(1+N20+NO) = 0.92*** +£0.15 X Navailable + 0.15* £0.06
All 0.39 42 Log(1+ N2O/NO) = 0.0129*** +0.003 x WFPS — 0.32"s +0.18
Non-Agr° 0.40 29 Log(1+ N2O/NO) = 0.0125*** +0.003 x WFPS — 0.27"s +0.20

Meta-analysis regression LUC study cases

All 0.23 89 dnzo = 0.65** £0.14 X dnavailable -0.04 +0.13
All 0.15 69 dnzo = 0.55** +£0.22 x dwfps +0.05 +0.16

N20 and NO are expressed in kg N20-N yrt or N-NO ha-1 yr, Navailable is (NO3/[NOs+NH4*]) without units, NO3z"
and NHgs* in pg N g d.w., Neertiiization in kg N ha'! yr* and WFPS in %.

aAgr includes cropland and pasture.

bNon-Agr includes forest, low forest cover, degraded forest, agroforestry and plantation.

‘WFPS intervals of 10%.
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Table 3 — Hedges’ d + SE (n) of N2O (dn2o) and NO (dno) emission change following
land-use change (LUC). Hedges’ d is the standardized mean difference of N2O (or NO) flux
rates after and before LUC. A d <0 indicates a reduction in emission; a d > 0 an increase.
Land uses are: F-forest, WF-wetland forest, LFC-low forest cover, DegF-degraded forest,

AGF-agroforestry, Pl-plantation, Pa-pasture, R-Rice and Crop-cropland.

LUC dnz2o dno

F-DegF 0.09 £0.29 (15) 0.08 £0.34 (5)
F-AGF 0.34 +0.29 (4) - (1)

F-PI 0.06 £0.37 (12) -

F-Pa .0.28+0.17 (36)  -0.56 +0.67 (9)
F-Crop 0.78* £0.24 (19) -(2)2

Overall F 0.11 £0.14 (86) -0.19 +0.37 (17)
WF-DegF -0.17 0.31 (9) -

WF-P| 1.07 £0.42 (3) -

WF-Pa 2.37 +1.80 (3) -

WF-R -0.06 +0.62 (9) -

Overall WF 0.31 0.34 (24) ;

DegF-AGF 0.27 +0.19 (4) 0.72 +0.28 (4)
LFC-PI - (2) -

LFC-Pa 0.47 +0.37 (3) -0.06 0.31 (5)
LFC-Crop -0.29 +0.40 (16) 0.57* £0.09 (11)
Overall LFCP -0.07 £0.25 (25)  0.44* £0.13 (20)
Overall LUC 0.11 +0.11 (135) 0.16 £0.19 (37)

Fertilization®

N fixation®

1.03* £0.31 (17)

-0.14 +0.33 (13)

0.52* +0.23 (12)

0.61 +0.33 (8)

* p < 0.05; no statistics calculated for studies with n<3.
a no statistics possible.

bincluding 4 DegF-AGF LUC cases.
¢ Fertilization and N fixation indicate cases of forest conversion to fertilized LU and LU with N2 fixing
trees/crops.
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12 FIGURE LEGENDS

Figure 1: Spatial distribution of land use case studies on soil fluxes of (a) N2O and (b) NO per
land use category in the tropics. Land uses are abbreviated as F: forest, WF: wetland forest,
LFC: low forest cover, DegF: degraded forest, AGF: agroforestry, PI: plantation, Pa: pasture,
R: rice and Crop: cropland. Y-axes of the diagrams represent number of case studies per land
use. Land use case studies from Europe are omitted (n = 2). (c) Spatial distribution of land-
use change case studies on soil N2O and NO fluxes, compared to a map of annual loss of
forest area by country between 2005 and 2010. The four shades of grey, from black to light
grey, respectively represent >500, 500-250, 250-50 and <50 net loss of area in 1,000 ha.

Adapted from FAO (2010).

Figure 2: Gaussian relationships (dashed lines) between the WFPS and N2O and NO
emissions in non-agricultural land uses. N2O and NO fluxes are averaged in 10% WFPS

intervals. Error bars are N flux standard errors in each WFPS interval.

Figure 3: Relationships between (a) the WFPS and the ratio of N2O to NO; (b) Navaitable (NO3
/[NO3+NH4"]) and the sum of N2O and NO. The domains of definition are (a) [0.02; 44.71]
in N20O to NO ratio and [30.4; 94.4] in WFPS; (b) [0.00;12.80] in N2O + NO (kg N ha* yr?)

and [001,077] iN Navailable.

Figure 4: Effect of time since conversion on N2O fluxes in (a) croplands and (b) pastures.
Average N2O flux and 95% confidence intervals are given for upland forests (triangle) and
low canopy forests (square). The solid and dashed lines represent a conceptual trend for non-

fertilized and fertilized cases, respectively.
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Figure 5: N2O Hedges’d as affected by the interactive changes in Navailability and WFPS. The
meta-analysis regression between dnzo and dnavailavility Was performed for all cases (solid line)
and for cases when dwrps>0 or dwrps <O (dashed lines).Closed and open circles represent

increased and decreased WFPS, respectively.
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