

1 1 TITLE PAGE

2

3 **Title:** Soil N₂O and NO emissions from land use and land-use change in the tropics and
4 subtropics: A meta-analysis

5

6 **Keywords:** greenhouse gases, nitrous oxide, nitric oxide, systematic review, deforestation,
7 REDD+, LUC, LULUC

8

9 **List of authors:**10 J. van Lent^{1,2}11 K. Hergoualc'h¹12 L.V. Verchot^{1,3}

13

14 **Institute:**15 ¹Center for International Forestry Research (CIFOR), Jl. CIFOR, Situ Gede, Bogor 16115,
16 Indonesia17 ²Department of Soil Quality, Wageningen University, Wageningen, The Netherlands18 ³Earth Institute Center for Environmental Sustainability, Columbia University, New York.

19

20 **Corresponding author:**

21 Jeffrey van Lent

22 Telephone: +51982946691

23 Fax: n.a.

24 E-mail: j.lent@cgiar.org

25 2 ABSTRACT

26

27 Deforestation and forest degradation in the tropics may substantially alter soil N-oxide
28 emissions. It is particularly relevant to accurately quantify those changes to properly account
29 for them in a REDD+ climate change mitigation scheme that provides financial incentives to
30 reduce the emissions. With this study we provide updated land use (LU)-based emission rates
31 (104 studies, 392 N₂O and 111 NO case studies), determine the trend and magnitude of flux
32 changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N₂O
33 and 37 NO cases) and evaluate biophysical drivers of N₂O and NO emissions and emission
34 changes for the tropics.

35 The average N₂O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2
36 ($n = 90$) and 1.7 ± 0.5 ($n = 36$) kg N ha⁻¹ yr⁻¹, respectively. In agricultural soils annual N₂O
37 emissions were exponentially related to N fertilization rates and average water-filled pore
38 space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better the
39 observed NO and N₂O emissions. The sum of soil N₂O and NO fluxes and the ratio of N₂O to
40 NO increased exponentially and significantly with increasing nitrogen availability (expressed
41 as $\text{NO}_3^- / [\text{NO}_3^- + \text{NH}_4^+]$) and WFPS, respectively; following the conceptual Hole-In-the-Pipe
42 model. Nitrous and nitric oxide fluxes did not overall increase significantly as a result of
43 LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19 , respectively), however individual LUC
44 trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland
45 forest conversion to croplands (Hedges's $d = 0.78 \pm 0.24$) and NO increased significantly
46 following the conversion of low forest cover (secondary forest younger than 30 years,
47 woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems
48 significantly and highly raised both N₂O and NO emission rates (Hedges's d of 1.03 ± 0.23
49 and 0.52 ± 0.09 , respectively).

50 Changes in nitrogen availability and WFPS were the main factors explaining changes in
51 N₂O emissions following LUC, therefore it is important that experimental designs monitor
52 their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical
53 gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm
54 plantation and soy cultivation).

55 3 INTRODUCTION

56 Land use (LU) and land-use change (LUC) are important contributors to global greenhouse
57 gas (GHG) emissions. The current contribution of LUC to total anthropogenic GHG
58 emissions is estimated between 7 and 18% (Houghton, 2003; Baumert et al., 2005; Baccini et
59 al., 2012; Harris et al., 2012). This estimation heavily depends on biomass values and
60 deforestation rates and is associated with high uncertainties, especially in the tropics
61 (Houghton 2005). Causes of LUC are a complex and interacting combination of economic,
62 social and political factors (Lambin et al., 2001, 2003). However, population growth and
63 agricultural export correlate well with forest conversion rates (DeFries et al., 2010). A recent
64 comparative study showed commercial and subsistence agriculture to be the most prevalent
65 deforestation driver in non-Annex I (i.e. developing) countries (Hosonuma et al., 2012).

66 Between 1980 and 2000, 83% of the new agricultural land within the tropical region were
67 converted from intact or disturbed forest (Gibbs et al., 2010). As the world population and
68 food demand are expected to grow (respectively 34% and 70% by 2050, FAO [2009]), further
69 deforestation is likely in the near future.

70 By avoiding deforestation and forest degradation and through enhancing carbon (C) stocks
71 in forests, reducing worldwide GHG emissions could be achieved with a reasonable level of
72 cost-efficiency (Stern, 2008; Streck & Parker, 2012). However, for climate change mitigation
73 schemes such as reducing emissions from deforestation and forest degradation (REDD+),
74 where payments are based on performance, it is crucial to know how much emissions can be
75 mitigated by preventing deforestation and reforesting. In addition to carbon dioxide (CO₂),
76 several studies on LUC in the tropics reported high non-CO₂ GHG emissions, such as nitrous
77 oxide (N₂O) (e.g. Ishizuka et al., 2005; Keller et al., 2005; Takakai et al., 2006; Verchot et
78 al., 2006; Yashiro et al., 2008) and nitric oxide (NO) (e.g. Verchot et al., 1999; Erickson et
79 al., 2002; Perez et al., 2007; Davidson et al., 2008). Although the absolute mass of N₂O

80 emissions might be small, the global warming potential for N₂O over a 100 year time horizon
81 is 298 times greater than that of CO₂ (Forster et al., 2007). In addition this trace gas also
82 contributes to ozone depletion in the stratosphere (Crutzen, 1970). Nitric oxide, on the other
83 hand, is a free radical that enhances ozone production in the troposphere (lower atmosphere)
84 (Chameides et al., 1992); ozone in the troposphere is a GHG (Myhre et al., 2013). Although
85 NO is in fact an indirect GHG, it is relevant to study its dynamic in combination with that of
86 N₂O as they share the same processes of production (nitrification and denitrification) in the
87 soil and are hypothesized to be interlinked (Firestone & Davidson, 1989).

88 Emissions factors in the IPPC guidelines for national GHG inventories (2006) have high
89 uncertainties although some of these were slightly reduced in the 2013 wetlands supplement
90 (Drösler et al., 2014). On the one hand, this high uncertainty can be explained by the high
91 temporal and spatial variability of N₂O and NO emissions which are known to vary diurnally,
92 seasonally (see e.g. Meixner et al., 1997; Chen & Huang 2009; Lin et al., 2010), and locally
93 due to micro site-specific soil variability (Dalal & Allen, 2008). On the other hand, the high
94 uncertainty is partly due to the paucity of reliable estimates available in the peer-reviewed
95 literature.

96 Sources of biogenic N₂O and NO fluxes from the soil can be a wide variety of
97 microorganisms and processes (Anderson & Poth, 1989), but nitrification and denitrification
98 are the main mechanisms (Davidson et al., 2000; Baggs & Philippot, 2010). Therefore, the
99 magnitude of N₂O and NO fluxes depends on variables that enhance or inhibit nitrification
100 and denitrification such as nitrogen (substrate) availability, soil water content (aeration
101 status), soil temperature and pH (Skiba & Smith, 2000; Heinen, 2006; Dalal & Allen, 2008).
102 Substrates for nitrification and denitrification are ammonium and nitrate, respectively.
103 Ammonium (NH₄⁺) is the result of microbial decomposition of soil organic matter and is
104 converted to nitrate (NO₃⁻) by the nitrifying bacteria under aerobic conditions. In this process,

105 N₂O and NO are produced and partly emitted to the atmosphere. NO₃⁻ in return is used under
106 anaerobic conditions as a terminal electron acceptor for denitrifying bacteria that reduce NO₃⁻
107 to N₂. Along this reduction gradient N₂O and NO are also produced and partly emitted to the
108 atmosphere (Anderson & Poth, 1989; Baggs & Philippot, 2010).

109 Both nitrification and denitrification produce N₂O and NO but are influenced differently
110 by the same soil variables. Therefore, models predicting N₂O and NO fluxes need to consider
111 both processes. Firestone & Davidson (1989) proposed a conceptual model – dubbed the
112 ‘Hole-In-the-Pipe’ (HIP) model – that uses two levels of control for N₂O and NO emissions
113 in soils. The first level of control is nitrogen availability, symbolized as the amount of N
114 flowing through the pipes. The second level of control is generally represented by the soil
115 aeration status, explained as the size of the holes in the pipe through which N₂O and NO
116 “leak” into the atmosphere. The HIP-model and its underlying assumptions were tested under
117 distinct conditions, which showed that soil nitrogen availability could be expressed in
118 different ways. Davidson et al. (2000) tested several indicators and found that the C:N ratio
119 of litterfall and the ratio of NO₃⁻ to the sum of NO₃⁻ and NH₄⁺ were promising proxies of N
120 cycling. Underlining the importance of rapid cycling N in N-oxide production, Purbopuspito
121 et al. (2006) showed a good correlation between $\delta^{15}\text{N}$ signatures of litter and soil and
122 emissions of N₂O in Indonesia. Veldkamp et al. (1998) suggested that, in N fertilized systems
123 of Costa Rica, the major factor controlling N₂O emissions was the soil aeration status (second
124 level of control), as N availability exceeded demand. The soil aeration status is commonly
125 expressed by the water-filled pore space (WFPS) (Linn & Doran, 1984); with a high WFPS
126 meaning a low aeration (Heinen, 2006). Nitric oxide is mainly produced when the WFPS is
127 below field capacity, whereas N₂O is produced at higher WFPS, exceeding field capacity
128 (Davidson et al., 1991, 1993; Dobbie et al., 1999; Davidson & Verchot, 2000; Bateman &

129 Baggs, 2005). Depending on soil texture, the field capacity is at a WFPS of around 60%;
130 whenever the WFPS exceeds 80%, most of the N is expected to be denitrified into N₂.

131 The goal of this study was to review how the emissions of N₂O and NO in the tropics were
132 affected by LU and LUC and to examine their variation in relation to biophysical parameters.
133 We used all studies published in the peer-reviewed literature up to 2013 to calculate
134 emissions per LU type and evaluated relationships with environmental parameters. Next, the
135 effect of LUC was assessed by using a quantitative meta-analysis statistical approach that
136 allows for a comparison between independent studies, and weights studies according to their
137 uncertainty (Hedges & Olkin, 1985). We used the Hedges' *d* (Koricheva et al., 2013) metric
138 to evaluate LUC effects. This is a standardized mean difference similar to the Hedges' *g* but
139 adjusted for small sample sizes. Finally we ran a meta-analysis regression to express the
140 changes in emission rates following LUC as a function of environmental and soil variables
141 changes.

142 4 MATERIAL AND METHODS

143 We followed three main steps to assess how soil N₂O and NO emissions were affected by LU
144 and LUC in the tropics and subtropics: (i) compiling a database of all studies on soil N₂O and
145 NO fluxes, selecting those integrating seasonal variation in their experimental design and
146 categorizing LU types; (ii) estimating average emission rate per LU category and exploring
147 biophysical factors affecting them; and (iii) characterizing the magnitude of emission change
148 due to LUC using a meta-analysis approach and evaluating how this change could be
149 expressed as a function of the change in biophysical factors through a meta-analysis
150 regression.

151

152 **4.1 Data collection and calculation**

153 The database of Stehfest & Bouwman (2006) (available at:
154 www.mnp.nl/en/publications/2006) was used as a basis for our research. From this dataset,
155 we extracted the 102 studies located in the tropics and subtropics (hereafter collectively
156 referred to as 'tropics'), defined as climate types 3-6, using the climate classification defined
157 by De Pauw et al. (1996). We then extended the database by including 279 additional peer-
158 reviewed studies published between 1990 and 2013 on soil emissions of NO and/or N₂O in
159 the tropics. A combination of the following keywords were used in the ISI Web of Science
160 and ScienceDirect search engines: N₂O, nitrous oxide, NO, nitric oxide, emissions, fertilizers,
161 forest, arable, grasslands, flux, nitrification, denitrification, land use, NOx, nitrogen-oxide,
162 tropics, subtropics. As N₂O and NO fluxes are known to vary seasonally (e.g. Meixner et al.,
163 1997; Chen & Huang, 2009), we manually selected the studies that measured the fluxes
164 during both dry and wet seasons. The 103 studies selected (S1), representing 392 N₂O and
165 111 NO LU case studies, were used to estimate annual mean N-oxides emission rates per LU
166 category and to analyse their relationship with environmental proxies. Out of the 104 papers

167 44 measured N₂O and/or NO emissions synchronically in at least two different LUs, one of
168 which was a forest. These 44 papers represented 135 N₂O and 37 NO LUC case studies
169 which were analysed using a meta-analysis statistical approach (S2).

170 We summarized the number of studies and assessed the representation of LU per continent
171 categorizing them in five geographical areas: North-Central America, South America, Africa,
172 South Asia and Oceania. Average annual emission rates were expressed in kg NO-N or N₂O-
173 N ha⁻¹ yr⁻¹ using the estimates provided by the papers. Whenever annual fluxes were not
174 provided by the authors, we calculated them. For studies covering year-round measurements,
175 the annual flux was calculated by scaling up the units from hours or days to a year and cm² or
176 m² to ha. Where possible reported fluxes were weighed according to their time interval. For
177 instance, for studies covering measurements made during the dry and wet seasons, the annual
178 flux was calculated as the sum of each seasonal flux weighted by the number of days per year
179 corresponding to each season. The biophysical variables associated with N₂O and NO
180 emissions from the publications were also expressed as annual averages. Soil variables
181 (temperature, WFPS, bulk density, pH, C content, N content, NH₄⁺ and NO₃⁻) are from the
182 soil top layer (0-10cm). Nitrogen fertilization and litterfall are given as a mass of nitrogen per
183 hectare per year. In some cases the water-filled pore space (WFPS, %) was manually
184 calculated as a function of the gravimetric water content (m, g g⁻¹ d.w.), bulk density (y_d, g
185 cm⁻³) and particle density (y_s, g cm⁻³) as WFPS = 100*(m*y_d)/(1-(y_d/y_s)) (Linn & Doran
186 1984). A y_s default value of 2.65 g cm⁻³ was used for mineral soils (Hillel, 1980), whenever
187 not provided by the studies. Nitrogen fixation was considered by using a dichotomous
188 variable indicating the presence or absence of N₂ fixing species in the LU. Nitrogen fixation
189 rates were barely reported and could not be included. For studies measuring N₂O and NO
190 simultaneously, we calculated the ratio and sum of the two and tested their correlation with

191 WFPS and soil N availability. The latter is expressed as the relative fraction of NO_3^- to total
192 inorganic N ($\text{NO}_3^-/\text{[NO}_3^- + \text{NH}_4^+]$).

193 Three LU case studies from Takakai et al. (2006) and the celery plot in Xiong et al (2006)
194 were excluded from the analysis because the very high fertilizations rates were about three
195 times higher than the International Fertilizer industry Association (IFA) recommended dose
196 for the studied crops.

197

198 **4.2 Land use and land-use change characterization**

199 The LU were classified into nine main categories: 1) forest (primary forest and secondary
200 forest older than 30 years), 2) wetland forest (swamp on peat, swamp on mineral soil and
201 riparian forest), 3) low forest cover (low canopy closure: woodlands and shrublands,
202 secondary forest younger than 30 years), 4) degraded forest (human-induced low forest cover
203 after logging and burning or fallows), 5) agroforestry systems, 6) plantations (mono-specific
204 plantations, e.g. *Acacia*, rubber, oil palm, cinnamon), 7) pastures (pastures and grasslands), 8)
205 rice fields, and 9) croplands (annual and perennial crops). For agroforestry, plantation,
206 pasture, rice and cropland both fertilized and unfertilized cases were combined and the effect
207 of fertilization was tested separately. Only a few studies included age after conversion in a
208 chronosequential sampling design; therefore we pulled together LU cases from different
209 studies to evaluate the change in emission rates as a function of time since conversion.

210 The studies either focused on a specific LUC type (e.g. forest conversion to pasture), or
211 considered several LUC types which were representative for the study region. In the latter
212 case, when only one control (forest) site was available, we used the same control for all
213 converted sites. Whenever several control sites were available in a study we averaged the
214 fluxes from all control sites. When a study measured emissions for several years, each year
215 was considered a separate case. The following LUC were analysed: forest to degraded forest,

216 agroforestry, plantation, pasture and cropland; wetland forest to degraded forest, plantation,
217 pasture and rice; degraded forest to agroforestry; low forest cover to plantation, pasture and
218 cropland. The effect of primary forest conversion to secondary forest is not included in this
219 study as secondary forest (>30 years old) and primary forest were merged into a single
220 category. The same holds for logging impacts in degraded forests.

221

222 **4.3 Statistics**

223 Statistical analysis was performed using the software IBM SPSS Statistics for Windows 21.0
224 (IBM Corp. 2012) and statistical significance was set at a maximum probability level of 5%.
225 The normality of the flux distribution was tested using the test of Shapiro-Wilks. Neither NO
226 and N₂O nor their log-transformed values were normally distributed hence a generalized
227 linear model with a post-hoc pair-wise comparison was performed for comparing the fluxes
228 between LU. Throughout the text averages are followed by standard errors (\pm S.E.).

229 Stepwise multiple linear regression was performed to identify the environmental variables
230 that were significantly related to soil fluxes of N₂O and NO. Variables available in <10% of
231 all study cases were excluded to obtain a sufficient sample size for the regression. In order to
232 maximize the data availability we used pair-wise exclusion for dealing with missing values.
233 We also excluded predictor variables that were collinear (multicollinearity test, VIF statistics)
234 to other variables already included in the model. A non-linear Gaussian function was fit
235 between N₂O, NO fluxes and WFPS using averages per 10% WFPS intervals.

236

237 *4.3.1 Meta-analysis*

238 A meta-analysis was used to quantify the effect of LUC on soil annual N₂O and NO
239 fluxes. For this we used the software Comprehensive Meta-Analysis version 2.2.064 (Biostat
240 Inc., New Jersey, USA) and MetaWin 2.0 (Sinauer Associates, Sunderland, Massachusetts).

241 We defined N₂O or NO emissions after land-use change as being the treatment and N₂O or
242 NO emissions before land-use change as being the control. Hedges' d was used as metric
243 to evaluate the effect size of LUC on N₂O and NO fluxes. This metric is defined as:

244

$$245 \quad d = \frac{(\bar{X}_T - \bar{X}_C)}{S} \times J \quad \dots \dots \dots \quad (1)$$

$$246 \quad S = \sqrt{\frac{(N_C-1)(SD_C)^2 + (N_T-1)(SD_T)^2}{N_C + N_T - 2}} \dots \dots \dots (2)$$

$$247 \quad J = 1 - \frac{3}{4(N_C + N_T - 2) - 1} \quad \dots \dots \dots \quad (3)$$

248

249 Where, \bar{X}_T and \bar{X}_C are the average N_2O or NO flux (in $\text{kg N ha}^{-1} \text{yr}^{-1}$) of the treatment and
 250 control, respectively; S is the pooled standard deviation from the control and treatment flux
 251 standard deviations (SD_C and SD_T) and J is the correction factor calculated from the sample
 252 sizes (N_T and N_C). The effect size (d) for all LUC case studies combined, or that for a
 253 particular LUC type, was assessed using a random model which allows for a varying true
 254 effect size between studies (Gurevitch & Hedges, 1999; Borenstein et al., 2009). A d equal or
 255 smaller than 0.2 indicates a small effect size, a d around 0.5 a medium one and a $d > 0.8$ a
 256 large effect. Positive and negative d 's respectively imply an increase and decrease in N_2O or
 257 NO emission after LUC, respectively.

258 Calculation of d requires knowledge of the standard deviation and sample size associated
259 with the average N_2O or NO flux rate. Whenever these were not available in the publication
260 we contacted the authors, calculated it ourselves using the methodological description of the
261 experimental design or measured it from the figures of the papers using PlotDigitizer 2.5.1
262 (Joseph A. Huwaldt, 2011).

Publication bias for studies with significant and/or high effect sizes was assessed using a normal quantile plot (Wang & Bushman, 1998). Deviation from linearity of the observed

265 distribution suggests publication bias while gaps in the plotted scatter plot indicate that
266 certain effect sizes are missing in the published literature (Borenstein, 2009).

267 Heterogeneity of effect sizes was assessed with the Q and I^2 statistics. A significant $Q_{overall}$
268 means that the variance among LUC study cases is greater than that expected by sampling. In
269 a heterogeneous dataset, the $(1-I^2)$ statistic quantifies the variation within case studies and I^2
270 the variation that could be explained by other variables (or 'real variation'). I^2 of 25%, 50%,
271 75% are respectively considered as low, moderate and high (Borenstein, 2009). An $I^2 > 0$
272 shows that a proportion of the observed variation is real; thus, subgroup division into LUC
273 types and/or meta-analysis regression can be used (Gurevitch & Hedges, 1999). LUC effect
274 sizes obtained from a low sample size are likely to be influenced by random deviations;
275 hence their interpretation should be handled with caution.

276 Finally, we performed a meta-analysis regression (or 'meta-regression') (Higgins &
277 Green, 2011) to assess how the changes in environmental factors affected changes in soil
278 N_2O or NO emission as a result of LUC. We looked at how the standardized mean difference
279 of an environmental parameter was affecting that of soil N_2O or NO emissions. A meta-
280 analysis regression is considered robust when it includes ten cases studies at least
281 (Borenstein, 2009; Higgins & Green, 2011).

282 5 RESULTS

283

284 **5.1 Exploring the dataset**

285 The publication rate of peer-reviewed papers on LU and soil emissions of N₂O and NO in the
286 tropics has more than doubled over the past decade (less than 2 publications y⁻¹ before 2000,
287 more than 5 y⁻¹ afterwards), but remains low. The Americas (combining North-Central and
288 South America) and South Asia represented the majority of the dataset (n = 229 and n = 137),
289 while Africa and Oceania were underrepresented (n = 21 and n = 35, respectively; Fig. 1).

290 LU types studied varied substantially across continents (Fig. 1). In South Asia 61% of the
291 LUs studied were croplands, rice fields or plantations, while these were only 13% in South
292 America. Some LUs were geographically well represented while others were clustered in one
293 continent. For instance, agroforestry systems were spatially well represented, although few in
294 numbers (n = 8), while rice paddies were mostly studied in Asia. Studies on wetland forest
295 were underrepresented (n = 7) and restricted to South Asia (Fig. 1a).

296 Ninety-four percent of the LU case studies on soil fluxes of NO were in North-Central and
297 South America (respectively, n = 62 and n = 36). In Africa and South Asia, respectively, only
298 five and eight LU case studies were found, while Oceania had no measurements at all.

299

300 **5.2 Average land use emissions and environmental parameter values**

301 Neither N₂O nor NO fluxes were normally distributed and about 90% of the observations
302 were below 10 kg N₂O-N and 8 kg NO-N ha⁻¹ yr⁻¹. Table 1 shows average annual N₂O and
303 NO emissions per LU and environmental parameter associated. Croplands displayed the
304 highest N₂O emission rate and also the highest average N fertilization rate. Both pastures and
305 rice fields had relatively high N₂O emissions; however, these were characterized by a high

306 variation. The average NO emission rates did not show any significant difference between
307 LU.

308 The availability of environmental parameters in studies on N-oxides emissions was
309 variable. For example, only 4% of the studies reported nitrogen input through litterfall, while
310 precipitation was given in 91% of all cases. Although the comparison of values from different
311 data sources may generate inconsistencies, some generalizations per LU category can be
312 made. Overall, intact forest had a significantly lower bulk density compared to more
313 compacted soils from pastures. Wetland forest soils had a significant lower bulk density
314 compared to all other soils. Wetland forest soils were more acidic than other soils in general,
315 while cropland soils were significantly less acid than forest soils. Mineral N content did not
316 differ significantly between LU, except for high NH_4^+ and NO_3^- concentrations in wetland
317 forest and rice paddy soils. Plantation soils were the only ones where NO_3^- concentrations
318 exceeded those of NH_4^+ , other LU showed the opposite trend. Carbon and nitrogen content in
319 the soils of natural wetland forest were very high and significantly higher than that in all
320 other LUs. Degraded forest soils showed a high carbon content which is due to the inclusion
321 of eleven degraded peat forests out of the twenty cases. Excluding them resulted in a soil
322 carbon content of 3.8 %.

323 The multiple linear regression analysis indicated that N fertilization, WFPS, and N
324 availability (expressed as $[\text{NO}_3^- / (\text{NO}_3^- + \text{NH}_4^+)]$) were the best proxies for estimating overall
325 soil fluxes of N_2O (Table 2). For agricultural sites (i.e. crop and pasture) N fertilization rate
326 explained part of the variation ($R^2=0.31$, $df=160$, $p<0.01$); but (pair-wise) including the
327 WFPS more than doubled the R squared. Proxies for overall soil NO fluxes were N
328 availability and N fertilization. For agricultural sites N fertilization explained 31% of the
329 variation in NO fluxes, and the inclusion of the WFPS did not improve the relationship. In
330 non-agricultural LUs a non-linear Gaussian function of the WFPS simulated with good fit

331 N₂O and NO fluxes (Fig. 2, Table 2). The relationship indicates that NO and N₂O fluxes peak
332 at WFPS of 45% and 61%, respectively. The ratio of N₂O to NO displayed an exponential
333 relationship with the WFPS (Fig. 3, Table 2), which indicates N-oxide emissions
334 predominantly in the form of N₂O (i.e. N₂O/NO > 1) above a WFPS of 48%. In non-
335 agricultural sites the predominance of N₂O over NO happens at a slightly lower WFPS
336 (46%). The sum of soil N₂O and NO emissions also increased exponentially with increasing
337 N availability.

338 Time since conversion was available in 26% of the LU cases only. Nitrous oxide fluxes
339 from non-fertilized croplands appeared to be higher the first ten years after conversion and
340 thereafter decrease, whereas fluxes from fertilized croplands remained high (Fig. 4). For
341 pastures the pattern was less apparent, the first years after conversion both high and low
342 fluxes were observed.

343

344 **5.3 Land-use change effects on N₂O and NO emissions and environmental parameters**

345 Land-use change effects were evaluated by looking at differences in emissions after and
346 before LUC. This was done for each LUC type and for all LUC combined. The effect sizes of
347 LUC on N₂O emissions were not strictly normally distributed; however, all effect size ranges
348 were present. Deviation from linearity occurred for high and low effect sizes indicating a
349 potential bias for published studies measuring large effects following LUC. A normal
350 quantile plot for NO emissions as affected by LUC indicated a normal distribution; however,
351 some gaps were present in the observed values, possibly due to a biased representation of NO
352 emission changes in the literature.

353 Nitrous oxide emissions were not overall affected by LUC ($d = 0.11 \pm 0.11$); the slight
354 increasing trend was not significant because of opposing effects in different LUC trajectories
355 (Table 3). The LUC case studies overall did not share a common effect size ($Q_{\text{overal}} = 221.3$ P

356 < 0.01) and the majority of the variation was within case studies ($1-I^2$, 59%). Similarly to
 357 N₂O emissions, and for the same reason, NO emissions were not overall affected by LUC;
 358 with a homogeneous effect size ($Q_{\text{overall}} = 31.7$, $P = 0.67$) and 47% of the variation within
 359 LUC case studies ($1-I^2$).

360 Most studies focused on forest clearing for croplands ($n_{\text{F-Crop}} + n_{\text{WFC-Crop}} + n_{\text{DegF-Crop}} = 44$) and
 361 pastures ($n_{\text{F-Pa}} + n_{\text{WFC-Pa}} + n_{\text{DegF-Pa}} = 42$). Transition from intact upland forest to croplands
 362 significantly increased N₂O emissions, while conversion to agroforestry showed a slight, but
 363 insignificant increasing trend. Intact forest conversion to pasture (F-Pa) tended to decrease
 364 N₂O emissions, whereas low forest cover conversion to pasture (LFC-Pa) showed the
 365 opposite trend. Further, conversion of low forest cover overall significantly increased NO
 366 emissions.

367 The Hedges' d effect size of forest conversion to fertilized LU amounted to 1.03 ± 0.31
 368 and 0.52 ± 0.23 for N₂O and NO, respectively, indicating significant and high increased
 369 emissions after fertilization. Evidence for increased emission following conversion to LU
 370 with N fixing crops/trees was weak and fluxes of NO slightly raised but not significantly
 371 ($d_{\text{NO}} = 0.61 \pm 0.33$ $n = 8$).

372 The results of the meta-regression, which was run pooling all LUC case studies together,
 373 are presented in Table 2. The change in N₂O fluxes as affected by LUC was positively related
 374 to changes in N availability and WFPS. No significant relationships were found for NO. The
 375 interactive effect of WFPS and N availability change on N₂O flux change is illustrated in Fig.
 376 5. Whenever N availability increased after LUC ($d_{\text{Navailability}} > 0$) the increase in N₂O emissions
 377 ($d_{\text{N}2\text{O}} > 0$) was exacerbated if the WFPS also increased ($d_{\text{WFPS}} > 0$), or diminished if the WFPS
 378 was decreased ($d_{\text{WFPS}} < 0$). The slope of the regression between $d_{\text{N}2\text{O}}$ and $d_{\text{Navailability}}$ was raised
 379 by 143% for the $d_{\text{WFPS}} > 0$ cases, reduced by 58% for $d_{\text{WFPS}} < 0$ cases.

380 6 DISCUSSION

381

382 **6.1 Dataset representativeness and average annual LU emissions**

383 The body of research on LULUC and N₂O and NO emissions in the Tropics has increased
384 during the past decade; however, Africa and Oceania remain strongly underrepresented. Most
385 of Africa's LU case studies were from (converted) savannahs although Africa has a variety of
386 forest types unaccounted for at present in the literature. Furthermore, a comparison between
387 the spatial distribution of LUC case studies and global forest conversion for 2005-2010 (FAO
388 2010) shows that highest deforested areas overlapped well with studies on N emissions from
389 LUC except for Oceania and Africa (Fig. 1c). These regions need more research on soil N₂O
390 and NO emissions, in representative LULUC categories. Sampling bias was not only
391 geographical; some biofuel or food crops such as oil palm and soy were also
392 underrepresented ($n_{oil\ palm} = 7$ and $n_{soy} = 4$) although they are the most rapidly expanding
393 perennial and annual crop in the tropics (Phalan et al., 2013). Land-use change categories
394 were also not equally represented; there was a dominance of studies on forest conversion to
395 croplands and pastures. Only a few cases (10-13%) assessed the effect of nitrogen
396 fertilization or the use of N-fixing species after LUC. Those studies took place in Latin
397 America (Matson et al., 1996; Veldkamp & Keller 1997; Veldkamp et al., 1998) and Asia
398 (Verchot et al., 2006; Veldkamp et al., 2008). Some wetland forest conversion study cases
399 showed high effect sizes for N₂O emissions (Hadi et al., 2005; Furukawa et al., 2005;
400 Jauhainen et al., 2012), but the overall tendency of wetland forest conversion to increase
401 N₂O emissions was not significant (Table 3) as observed by Hergoualc'h & Verchot (2014).
402 However, the sample size was small and none of the converted case studies were fertilized or
403 intensively monitored following fertilization. Future research direction should consider
404 conversion to fertilized land uses, using an experimental design adequate for capturing

405 fertilization effects on N oxide emissions, and wetland forests in and outside of South Asia.
 406 Likewise, few papers studied forest degradation; a topic that needs more attention (Mertz et
 407 al., 2012).

408 The annual N_2O emission rate in intact upland forest ($2.0 \pm 0.2 \text{ kg N}_2\text{O-N ha}^{-1} \text{ yr}^{-1}$, $n = 88$)
 409 is more than twice the value estimated by Stehfest & Bouwman (2006) ($0.85 \text{ kg N}_2\text{O-N ha}^{-1}$
 410 yr^{-1} , $n = 77$) for the tropics. We excluded the cases considered by Stehfest & Bouwman
 411 (2006) that did not cover seasonal variation, but ended up with a higher sample size by
 412 adding studies published after 2005. Our value is also larger than the model estimations of
 413 $1.4 \text{ kg N}_2\text{O-N ha}^{-1}$ by Potter et al. (1996) and $1.2 \text{ kg N}_2\text{O-N ha}^{-1} \text{ yr}^{-1}$ by Werner et al. (2007).
 414 Dalal & Allen (2008) estimated average emissions in tropical forest of $3.0 \pm 0.52 \text{ kg N}_2\text{O-N}$
 415 $\text{ha}^{-1} \text{ yr}^{-1}$ ($n = 22$) and Kim et al. (2013a, 2013b) of $1.91 \text{ kg N} \pm 0.25$ ($n = 69$). The annual NO
 416 emission rate in tropical forest amounts to $1.7 \pm 0.48 \text{ kg N-NO ha}^{-1} \text{ yr}^{-1}$ ($n = 36$), which is
 417 higher than previous estimates by Stehfest and Bouwman (2006) ($0.39 \text{ kg NO-N ha}^{-1} \text{ yr}^{-1}$, $n =$
 418 33), Davidson and Kingerlee (1997) ($0.8 \text{ kg NO-N ha}^{-1} \text{ yr}^{-1}$, $n = 15$) and Potter et al. (1996)
 419 ($1.2 \text{ kg NO-N ha}^{-1} \text{ yr}^{-1}$).

420 Nitrous oxide emission in agricultural fields and pastures reported by Duxbury et al.
 421 (1982) were the largest in the entire dataset (average emissions of $65 \text{ kg N}_2\text{O-N ha}^{-1} \text{ yr}^{-1}$).
 422 The study was conducted in Florida on drained organic soils under crops, grass or kept as
 423 fallows; that displayed high N mineralization rates ($600\text{-}1,200 \text{ kg N ha}^{-1} \text{ yr}^{-1}$). Excluding them
 424 decreases the overall average N_2O emissions from 4.4 ± 0.6 ($n = 387$) to $3.5 \pm 0.3 \text{ kg N}_2\text{O-N}$
 425 $\text{ha}^{-1} \text{ yr}^{-1}$ ($n = 381$), and croplands emissions from 8.6 ± 2.0 ($n = 93$) to $5.8 \pm 0.9 \text{ kg N}_2\text{O-N ha}^{-1}$
 426 yr^{-1} ($n = 88$).

427

428 **6.2 Land-use change effects on the emissions**

429 According to the meta-analysis LUC overall increased N₂O and NO emissions, albeit not
430 significantly. Land-use change types or practices that induced significant changes in
431 emissions all pointed towards increased rather than decreased emissions. The meta-analysis
432 confirmed that intact upland forest conversion to croplands and nitrogen fertilization after
433 LUC significantly and highly increased soil emissions of N₂O. It also corroborated high
434 increases in NO emissions after low forest cover conversion in general and when fertilizer is
435 applied after LUC. For most LUC trajectories the effect of emission change was not
436 significant even when the sample size was relatively large. For instance, the analysis
437 indicated a trend of decreased N₂O emissions following intact upland forest conversion to
438 pasture, which was not significant since the LUC studies not all agreed on the direction of
439 change. Several publications reported decreased emissions after conversion to pasture (e.g.
440 Verchot et al., 1999; Erickson et al., 2001; Garcia-Montiel et al., 2001), others reported the
441 opposite (e.g. Melillo et al., 2001; Takakai et al., 2006) and one showed no effect (Neill et al.,
442 2005). These apparent contradicting results have been explained by differences or absence of
443 differences in time after conversion of the studied pastures (Keller et al., 1993, Veldkamp et
444 al., 1999, Verchot et al., 1999, Neill et al., 2005, Wick et al., 2005) or the practiced or not
445 slash and burn technique to clear the forest, both affecting N cycling (Luizao et al., 1989;
446 Matson et al., 1990; Steudler et al., 1991; Keller & Reiners, 1994; Neill et al., 1995; Melillo
447 et al., 2001; Garcia-Montiel et al., 2001). Biomass burning produces N₂O during fires and
448 may enhance soil N₂O afterwards by stimulating N mineralisation (Skiba & Smith, 2000).
449 The paucity of field observations together with the lack of land-use history description did
450 not allow to evaluate clearing practices effects or temporal trends in soil emission dynamics
451 with LUC thoroughly. For non-fertilized croplands and pastures, the fluxes of N₂O tended to
452 increase during the first five to ten years after conversion and thereafter tended to decrease to
453 average upland forest or low canopy forest levels (Fig. 4). In fertilized croplands, however,

454 flux rates remained at a high level even beyond this period. Soil physical disturbance
455 following land clearing, high N inputs associated with clear-felling and soil preparation (e.g.
456 compaction, drainage in wetland) all combined may be at the origin of the five to ten year
457 emission peak. In fertilized croplands on the other hand, the sustained emission increase
458 seems to be driven by high mineral N inputs. This temporal variability in emission change
459 indicates that the first ten years following LUC are crucial for GHG budget calculations.

460 We used a meta-analysis statistical approach to assess the trend and magnitude of forest
461 conversion on soil emissions of N oxides. Meta-analysis consists in comparing site specific
462 (pair-wise) effects weighted according to their robustness, therefore it provides a direction
463 and a magnitude of emission change more reliable and precise than those obtained by
464 comparing average emission rates per LU category from individual papers. For example, the
465 meta-analysis effect on N_2O emissions of intact upland forest conversion to croplands (0.78)
466 was much higher than the effect calculated (0.48) using average values from Table 1 and Eq.
467 (1). The effect calculated from average emission rate derived from individual studies can also
468 lead to misleading conclusions such as in the case of intact upland forest conversion to
469 pasture. The effect calculated from average emissions (0.34) was positive indicating
470 increased emissions as opposed to the meta-analysis conclusion (-0.28). Simple assessments
471 based on average values, in general, encompass more studies than meta-analysis but are
472 biased due to the exclusion of pair-wise evaluations. In order to improve the understanding of
473 LUC on trace gas emissions in general, more studies monitoring the fluxes simultaneously in
474 control (forest) and converted sites are necessary. Whenever the conversion includes
475 intermediary stages such as short fallows with the practice of slash-and-burn, the
476 corresponding emission rates should be evaluated as well. When focusing on a specific
477 crop/tree a chronosequential approach including different ages since planting should be
478 considered, especially if fertilization rates evolve with time. The first few years after

479 conversion are likely to be hotspots for N oxide emissions and time since conversion is an
480 important factor to be included.

481

482 **6.3 Biophysical drivers of NO and N₂O emission and emission change**

483 An IPPC Tier 1 approach is generally used by countries in the Tropics to estimate their
484 annual emissions of GHG. Average LU-based emission rates as provided in this paper or the
485 contribution of N applied released as N₂O from agricultural soils (IPCC, 2006) illustrate the
486 type of emission factors applied to activity data at a Tier 1 level. This approach is useful to
487 compare anthropogenic emissions from different countries but does not capture the variations
488 across climate regions for instance (Skiba et al., 2012). Soil fluxes of N₂O and NO are known
489 to be controlled by climate (rainfall, temperature), soil conditions (drainage, aeration, texture,
490 pH, etc.) and management (land cover, fertilization rate and type, etc.) (Skiba & Smith, 2000;
491 Ludwig et al., 2001; Butterbach-Bahl et al., 2013). Country- or regional LU-specific emission
492 factors that better account for local climate, soil management and properties are defined as
493 Tier 2 level whereas Tiers 3 methods usually involves process-based models (Del Grosso et
494 al., 2006). The multiple regression analysis of the dataset indicated that tropical N₂O and NO
495 fluxes could be expressed as a combination of nitrogen availability and/or application and
496 WFPS; even though the predictive power for simulating overall N₂O emissions was low (R^2
497 = 0.39). However, the predictive power of the regressions increases when the database is split
498 up in agriculture and non-agriculture cases (Table 2). The establishment of an emission factor
499 for agricultural soils that includes the WFPS in addition to N fertilization rate is likely to
500 improve estimates of direct agricultural N₂O emissions, one of the largest source of N₂O in
501 most countries. For non-agricultural sites a more mechanistic approach appeared to fit better
502 the observed data. The fluxes of both NO and N₂O followed a Gaussian type relationship
503 with the WFPS – a key determinant for soil anaerobiosis. This type of relationship was

504 hypothesized by Davidson (1991), demonstrated in case studies (Davidson et al., 2000;
505 Davidson and Verchot, 2000; Veldkamp et al., 1998) and used in modelling (Parton et al.,
506 2001; Parton et al., 1996; Potter et al., 1996). Its application in the context of the current
507 tropical database confirms a maximum of N_2O emissions around a WFPS of 60% and
508 indicates maximum NO emissions at a lower WFPS (45%) than that reported by Davidson et
509 al. (2000) (55%). It also points out that N_2O emissions remain high at an 80% WFPS and
510 diminish towards 100% WFPS. Neither air nor soil temperature were found to affect soil N-
511 oxide fluxes across LUs, although the LU annual average span was wide (12-34°C and 14-
512 31°C for air and soil temperatures). In the temperate zone exponential increases in N_2O
513 emissions with increasing temperature have been reported, whereas in the tropics the
514 evidence is mixed (Skiba and Smith, 2000). Substrate (e.g. N, P) and moisture constraints of
515 microbial processes influencing N-oxide fluxes may reduce the temperature effect. Werner et
516 al. (2006), for instance, demonstrated that variations in N_2O emissions from tropical
517 rainforest soils were mainly affected by soil moisture changes and that temperature changes
518 were of minor importance.

519 The data confirmed the concepts formulated in the HIP model (Davidson et al., 2000) with
520 the availability of mineral N in the system (first level of control) controlling in an exponential
521 fashion the $(\text{NO} + \text{N}_2\text{O})$ flux rate and the WFPS (second level of control) controlling also in
522 an exponential fashion the ratio of N_2O to NO. Although our exponential models are similar
523 to those obtained by Davidson and Verchot (2000) using the TRAGNET database and by
524 Davidson et al. (2000) using fluxes from forest to pasture conversions in the American
525 Tropics, the magnitude of the coefficient is different. For a WFPS between 30 and 60% the
526 N_2O to NO ratio obtained using the relationship of Davidson and Verchot (2000) is five to
527 nine times lower than the one obtained with the relationship developed here. Above a NO_3^-
528 $/[\text{NH}_4^+ + \text{NO}_3^-]$ ratio of 0.5 the relationship of Davidson et al. (2000) departs from the one we

529 developed. For instance, at a $0.75 \text{ NO}_3^- / [\text{NH}_4^+ + \text{NO}_3^-]$ value, we estimate annual $\text{NO} + \text{N}_2\text{O}$
530 emissions of about $6 \text{ kg N ha}^{-1} \text{ y}^{-1}$ whereas the model of Davidson et al. indicates 10 kg N ha^{-1}
531 y^{-1} . The probable reason explaining the discrepancy is the temporal scale of the data, we
532 used annual emission rates whereas Davidson et al. used hourly fluxes and thus took into
533 account punctual high emission peaks less apparent in annual budgets. Also, given the
534 nonlinear nature of the functions, an annual budget estimated by summing up fluxes
535 simulated from e.g. hourly WFPS and inorganic N ratio values would lead to a different
536 result than the one simulated from annual WFPS and inorganic N ratio values, as we did. This
537 demonstrates that relationships used in modelling exercises should be developed according to
538 the time step of the model.

539 Land-use change involves major transformations of the soil-plant-atmosphere continuum.
540 As a result of land-clearing fires, mechanical ploughing and compaction, vegetation change,
541 fertilization, etc., the soil system is highly altered from its previous state. Soil properties such
542 as bulk density, porosity, moisture, WFPS, temperature, mineral N content and pH are often
543 affected by LUC (Farquharson & Baldock, 2008; Dobbie et al., 1999; Verchot et al., 1999).
544 Fertilization N input after land-use change increases highly and significantly both N_2O and
545 NO fluxes, as reported by many studies, e.g. Stehfest & Bouwman (2006). However,
546 increased emissions after LUC were not exclusively due to fertilization, changes in
547 endogenous levels of soil nitrogen availability or WFPS were also key factors impacting the
548 changes in N_2O fluxes. These variables should therefore systematically be measured and
549 reported. Land-use change generally impacts more than one variable at a time, therefore
550 changes in emissions will most likely result from an interaction of factors. This was
551 illustrated by the interactive effect of the changes in N availability and WFPS on N_2O
552 emission changes (Fig. 5).

553 7 CONCLUSIONS

554 We estimate natural tropical forests to emit $2.0 \text{ kg N}_2\text{O-N ha}^{-1} \text{ yr}^{-1}$ on average and emission
555 rates to be significantly increased after conversion to cropland, and to a smaller degree to
556 agroforestry. Low forest cover also see their NO emissions raise significantly after being
557 converted. These LUC trajectories can hence contribute substantially to non-CO₂ GHG
558 emission increases whenever they represent a substantial area for a given country. Default
559 Tier 1 N₂O and NO emission factors currently proposed by the IPCC for the tropical region
560 are based on a limited number of studies and rely essentially on N inputs. However,
561 mechanisms of N-oxide production are the result of microbial processes controlled by a
562 combination of factors; thus the IPCC Tier 1 approach is somewhat flawed. Here we
563 established a set of predictive relationships linking annual soil N₂O and NO emissions to
564 biophysical parameters and emission changes to biophysical parameter changes. The analysis
565 established that N availability or N inputs as well as the soil WFPS were the key explanatory
566 factors of emissions or emission changes. In particular, we developed a statistical model for
567 tropical countries allowing the calculation of N₂O emissions from agriculture as a function of
568 both N fertilization rate and WFPS. Improving the scientific understanding of N₂O and NO
569 fluxes and how they relate to environmental parameters requires the design of experiments
570 considering the high spatio-temporal variation of the fluxes and associated parameters and the
571 use of standardized measurement methods. Also, studies considering a LUC transition
572 pathway should include in their design all intermediate land use stages (e.g. degraded forest)
573 susceptible to modify N cycling. Finally, even though the body of research on LUC and N₂O
574 and NO emissions has steadily increased over the past decades, knowledge gaps are still
575 important especially in Africa and Oceania, and for wetland forest (notably on peat),
576 degraded forest and important world crops such as oil palm plantations and soy fields.

577 8 ACKNOWLEDGEMENTS

578 This research was generously supported by the contributions of the governments of Australia
579 (Grant Agreement # 46167) and Norway (Grant agreement # QZA-10/0468) and the
580 European Community's Seventh Framework Programme [FP7/2007-2013] (Grant Agreement
581 # 226310) to the Center for International Forestry Research. This work was carried out as part
582 of the Consultative Group on International Agricultural Research programs on Climate
583 Change and Food Security (CCAFS). We gratefully thank Luluk Suhada for her work on the
584 bibliography for this study and also all scientists that have measured and published the data
585 that we used.

586 9 REFERENCES

587 Anderson, I. C. and Poth, M. A.: Semiannual losses of nitrogen as NO and N₂O from
 588 unburned and burned chaparral, *Global Biogeochem. Cycles*, 3(2), 121,
 589 doi:10.1029/GB003i002p00121, 1989.

590 Baccini, a., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler,
 591 J., Beck, P. S. a., Dubayah, R., Friedl, M. a., Samanta, S. and Houghton, R. a.: Estimated
 592 carbon dioxide emissions from tropical deforestation improved by carbon-density maps, *Nat.*
 593 *Clim. Chang.*, 2(March), 182–185, doi:10.1038/nclimate1354, 2012.

594 Baggs, E. M. and Philippot, L.: Microbial terrestrial pathways to nitrous oxide, in: *Nitrous
 595 Oxide and Climate Change*, Earthscan Ltd, London, UK, 4-35, 247, 2010.

596 Bateman, E. J. and Baggs, E. M.: Contributions of nitrification and denitrification to N₂O
 597 emissions from soils at different water-filled pore space, *Biol. Fertil. Soils*, 41, 379–388,
 598 doi:10.1007/s00374-005-0858-3, 2005.

599 Baumert, K., Herzog, T. and Pershing, J.: *Navigating the Numbers - Greenhouse Gas Data
 600 and International Climate Policy*, World Resources Institute (WRI), Washington D.C., USA,
 601 2005.

602 Borenstein, M., Hedges, L. V, Higgins, J. P. T. and Rothstein, H. R.: *Introduction to Meta-
 603 Analysis, statistics in practice series*, John Wiley and Sons, Ltd., Cambridge (UK), 2009.

604 Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. and Zechmeister-Boltenstern,
 605 S.: Nitrous oxide emissions from soils: how well do we understand the processes and their
 606 controls?, *Philos. Trans. R. Soc. Lond. B. Biol. Sci.*, 368, 20130122,
 607 doi:10.1098/rstb.2013.0122, 2013.

608 Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D.,
 609 Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Mlddleton,
 610 P. and Wang, T.: Ozone precursor relationships in the ambient atmosphere, *J. Geophys. Res.*,
 611 97, 6037, doi:10.1029/91JD03014, 1992.

612 Chen, S. and Huang, Y.: Soil respiration and N 2 O emission in croplands under different
 613 ploughing practices: a case study in south-east China, *Aust. J. Soil Res.*, 47, 198,
 614 doi:10.1071/SR07225, 2009.

615 Crutzen, P. J.: The influence of nitrogen oxides on the atmospheric ozone content, *Q. J. R.
 616 Meteorol. Soc.*, 96, 320–325, doi:10.1002/qj.49709640815, 1970.

617 Dalal, R. C. and Allen, D. E.: Greenhouse gas fluxes from natural ecosystems, *Aust. J. Bot.*,
 618 56(18), 369–407, doi:10.1071/bt07128, 2008.

619 Davidson, E.A.: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. Pages
 620 219-235. In: Rogers, J.E., Whitman W.B. (Eds.): *Microbial Production and Consumption of*
 621 *Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes*. American Society for
 622 Microbiology, Washington (DC), 1991.

623 Davidson, E. A. and Kingerlee, W.: A global inventory of nitric oxide emissions from soils,
 624 *Nutr. Cycl. Agroecosystems*, 48, 37–50, doi:10.1023/A:1009738715891, 1997.

625 Davidson, E. A. and Verchot, L. V.: Testing the hole in the pipe model of nitric and nitrous
 626 oxide emission from soils using the TRAGNET database, *Global Biogeochem. Cycles*, 14(4),
 627 1035–1042, 2000.

628 Davidson, E. A., Vitousek, P. M., Matson, P. A., Riley, R., García-Méndez, G. and Maass, J.
 629 M.: Soil emissions of nitric oxide in a seasonally dry tropical forest of México, *J. Geophys.
 630 Res.*, 96, 15439, doi:10.1029/91JD01476, 1991.

631 Davidson, E. A., Vitousek, P. M., Dunkin, K., Garcia-Mendez, G. and Maass, J. M.:
 632 Processes regulating soil emissions of NO and N₂O in a seasonally dry tropical forest,
 633 *Ecology*, 74(1), 130–139, 1993.

634 Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. and Veldkamp, E.: Testing a
 635 Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides, *Bioscience*, 50(8), 667,
 636 doi:10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2, 2000.

637 Davidson, E. A., De Abreu Sá, T. D., Reis Carvalho, C. J., De Oliveira Figueiredo, R., Kato,
 638 M. d. S. A., Kato, O. R. and Ishida, F. Y.: An integrated greenhouse gas assessment of an
 639 alternative to slash-and-burn agriculture in eastern Amazonia, *Glob. Chang. Biol.*, 14, 998–
 640 1007, doi:10.1111/j.1365-2486.2008.01542.x, 2008.

641 DeFries, R. S., Rudel, T., Uriarte, M. and Hansen, M.: Deforestation driven by urban
 642 population growth and agricultural trade in the twenty-first century, *Nat. Geosci.*, 3(3), 178–
 643 181, doi:10.1038/ngeo756, 2010.

644 De Pauw, E., Nachtergaele, F. O., and Antoine, J.: A provisional world climatic resource
 645 inventory based on the length-of-growing-period concept, in: Batjes, N. H., Kauffman, J. H.,
 646 Spaargaren, O. C. (eds.), *National Soil Reference Collections and Databases (NASREC)*,
 647 Wageningen, ISRIC, 30–43, 1996.

648 Del Grosso, S. J., Parton, W. J., Mosier, A. R., Walsh, M. K., Ojima, D. S. and Thornton, P.
 649 E.: DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in
 650 the United States., *J. Environ. Qual.*, 35, 1451–1460, doi:10.2134/jeq2005.0160, 2006.

651 Dobbie, K. E., McTaggart, I. P. and Smith, K. a.: Nitrous oxide emissions from intensive
 652 agricultural systems: Variations between crops and seasons, key driving variables, and mean
 653 emission factors, *J. Geophys. Res.*, 104, 26891, doi:10.1029/1999JD900378, 1999.

654 Drösler, M., Verchot, L.V., Freibauer, A., Pan, G., Evans, C.D., Bourbonniere, R.A., Alm,
 655 J.P., Page, S., Agus, F., Hergoualc'h, K., Couwenberg, J., Jauhainen, J., Sabiham, S., Wang,
 656 C., Srivastava, N., Borgeau-Chavez, L., Hooijer, A., Minkkinen, K., French, N., Strand, T.,
 657 Sirin, A., Mickler, R., Tansey, K., Larkin, N.: Chapter 2 Drained inland organic soils. In:
 658 Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Jamsranjav, B., Fukuda, M., Troxler, T.
 659 (Eds.): 2013 Supplement to the 2006 guidelines for national greenhouse gas inventories:
 660 Wetlands. IPCC, Switzerland, 2014.

661 Duxbury, J. M., Bouldin, D. R., Terry, R. E. and Tate, R. L.: Emissions of nitrous oxide from
662 soils, *Nature*, 298, 462–464, doi:10.1038/298462a0, 1982.

663 Erickson, H., Davidson, E. A., Keller, M. and Url, S.: Former Land-Use and Tree Species
664 Affect Nitrogen Oxide Emissions from a Tropical Dry Forest, *Oecologia*, 130, 297–308,
665 doi:10.1007/S004420100801, 2002.

666 Erickson, H., Keller, M. and Davidson, E. a.: Nitrogen Oxide Fluxes and Nitrogen Cycling
667 during Postagricultural Succession and Forest Fertilization in the Humid Tropics,
668 *Ecosystems*, 4(1), 67–84, doi:10.1007/s100210000060, 2001.

669 FAO: FAO's Director-General on How to Feed the World in 2050. *Popul. Dev. Rev.*, 35,
670 837–839, doi: 10.1111/j.1728-4457.2009.00312.x, 2009.

671 FAO: Global forest resources assessment 2010: main report, Rome, Italy., 2010.

672 Farquharson, R. and Baldock, J.: Concepts in modelling N₂O emissions from land use, *Plant
673 Soil*, 309, 147–167, doi:10.1007/s11104-007-9485-0, 2008.

674 Firestone M.K., and Davidson, E. A.: Microbial basis of NO and N₂O production and
675 consumption in soil. Exchange of trace gases between terrestrial ecosystems and the
676 atmosphere, M.O. Andrea D.S. Schimel, Ed. *Exch. Trace Gases between Terr. Ecosyst.
677 Atmos.*, Wiley, Toronto pp. 7–21, 1989.

678 Furukawa, Y., Inubushi, K., Ali, M., Itang, a. M. and Tsuruta, H.: Effect of changing
679 groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat
680 lands, *Nutr. Cycl. Agroecosystems*, 71, 81–91, doi:10.1007/s10705-004-5286-5, 2005.

681 Garcia-Montiel, D. C., Steudler, P. A., Piccolo, M. C., Melillo, J. M., Neill, C. and Cerri, C.
682 C.: Controls on soil nitrogen oxygen emissions from forest and pastures in the Brazilian
683 Amazon, *Global Biogeochem. Cycles*, 15, 1021–1030, doi:10.1029/2000GB001349, 2001.

684 Gelfand, I., Feig, G., Meixner, F. X. and Yakir, D.: Afforestation of semi-arid shrubland
685 reduces biogenic NO emission from soil, *Soil Biol. Biochem.*, 41(7), 1561–1570,
686 doi:10.1016/j.soilbio.2009.04.018, 2009.

687 Gibbs, H. K., Ruesch, a S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N. and
688 Foley, J. a: Tropical forests were the primary sources of new agricultural land in the 1980s
689 and 1990s., *Proc. Natl. Acad. Sci. U. S. A.*, 107(38), 16732–16737,
690 doi:10.1073/pnas.0910275107, 2010.

691 Gurevitch, J. and Hedges, L. V: Statistical Issues in Ecological Meta-Analyses, *Ecology*,
692 80(4), 1142–1149, 1999.

693 Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M. and Tsuruta, H.:
694 Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia, *Nutr. Cycl.
695 Agroecosystems*, 71, 73–80, doi:10.1007/s10705-004-0380-2, 2005.

696 Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C.,
697 Potapov, P. V. and Lotsch, a.: Baseline Map of Carbon Emissions from Deforestation in

698 Tropical Regions, Science (80-.), 336(2012), 1573–1576, doi:10.1126/science.1217962,
699 2012.

700 Hedges, L. V and Olkin, I.: Statistical methods for meta-analysis, Academic Press, Inc.,
701 London, UK, 1985.

702 Heinen, M.: Simplified denitrification models: Overview and properties, *Geoderma*, 133,
703 444–463, doi:10.1016/j.geoderma.2005.06.010, 2006.

704 Hergoualc'h, K. and Verchot, L. V.: Greenhouse gas emission factors for land use and land-
705 use change in Southeast Asian peatlands, *Mitig. Adapt. Strateg. Glob. Chang.*, 19, 789–807,
706 doi:10.1007/s11027-013-9511-x, 2014.

707 Higgins, J. P. T. and Green, S.: Cochrane Handbook for Systematic Reviews of Interventions
708 Version 5.1.0 [updated March 2011], available from www.cochrane-handbook.org last
709 access: 8 August 2015, 2011.

710 Hillel, D.: Fundamentals of soil physics., Academic Press, Inc. (London) Ltd., 1980.

711 Hosonuma, N., Herold, M., De Sy, V., De Fries, R. S., Brockhaus, M., Verchot, L., Angelsen,
712 A. and Romijn, E.: An assessment of deforestation and forest degradation drivers in
713 developing countries, *Environ. Res. Lett.*, 7, 044009, doi:10.1088/1748-9326/7/4/044009,
714 2012.

715 Houghton, R. A.: Revised estimates of the annual net flux of carbon to the atmosphere from
716 changes in land use and land management 1850–2000, *Tellus, Ser. B Chem. Phys. Meteorol.*,
717 55, 378–390, doi:10.1034/j.1600-0889.2003.01450.x, 2003.

718 Houghton, R. A.: Aboveground forest biomass and the global carbon balance, *Glob. Chang.*
719 *Biol.*, 11, 945–958, doi:10.1111/j.1365-2486.2005.00955.x, 2005.

720 IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the
721 National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara
722 T and Tanabe K (eds). Published: IGES, Japan, 2006.

723 Jauhainen, J., Silvennoinen, H., Hämäläinen, R., Kusin, K., Limin, S., Raison, R. J. and
724 Vasander, H.: Nitrous oxide fluxes from tropical peat with different disturbance history and
725 management, *Biogeosciences*, 9(4), 1337–1350, doi:10.5194/bg-9-1337-2012, 2012.

726 Keller, M. and Reiners, W. A.: Soil-atmosphere exchange of nitrous oxide, nitric oxide, and
727 methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa
728 Rica, *Global Biogeochem. Cy.*, 8, 399–409, doi:10.1029/94GB01660, 1994.

729 Keller, M., Varner, R., Dias, J. D., Silva, H., Crill, P., de Oliveira Jr, R. C. and Asner, G. P.:
730 Soil–atmosphere exchange of nitrous oxide, nitric oxide, methane, and carbon dioxide in
731 logged and undisturbed forest in the Tapajós National Forest, Brazil, *Earth Interact.*, 9(23), 1–
732 28, 2005.

733 Keller, M., Veldkamp, E., Weitz, A. M. and Reiners, W. A.: Effect of pasture age on soil
 734 trace-gas emissions from a deforested area of Costa Rica, *Nature*, 365, 244–246,
 735 doi:10.1038/365244a0, 1993.

736 Kim, D. G., Giltrap, D. and Hernandez-Ramirez, G.: Background nitrous oxide emissions in
 737 agricultural and natural lands: A meta-analysis, *Plant Soil*, 373, 17–30, doi:10.1007/s11104-
 738 013-1762-5, 2013a.

739 Kim, D.-G., Giltrap, D. and Hernandez-Ramirez, G.: Erratum to: Background nitrous oxide
 740 emissions in agricultural and natural lands: a meta-analysis, *Plant Soil*, 373(1-2), 1007–1008,
 741 doi:10.1007/s11104-013-1883-x, 2013b.

742 Kricheva, J., Gurevitch, J. and Mengersen, K.: *Handbook of meta-analysis in ecology and
 743 evolution*, Princeton University Press., Princeton, USA, 2013.

744 Lambin, E. F., Geist, H. J. and Lepers, E.: Dynamics of Land-Use and Land-Cover Change in
 745 Tropical Regions, *Annu. Rev. Environ. Resour.*, 28, 205–241,
 746 doi:10.1146/annurev.energy.28.050302.105459, 2003.

747 Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes,
 748 O. T., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J.,
 749 Leemans, R., Li, X., Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F.,
 750 Skånes, H., Steffen, W., Stone, G. D., Svedin, U., Veldkamp, T. a., Vogel, C. and Xu, J.: The
 751 causes of land-use and land-cover change: Moving beyond the myths, *Glob. Environ. Chang.*,
 752 11, 261–269, doi:10.1016/S0959-3780(01)00007-3, 2001.

753 Lin, S., Iqbal, J., Hu, R. and Feng, M.: N₂O emissions from different land uses in mid-
 754 subtropical China, *Agric. Ecosyst. Environ.*, 136(1-2), 40–48,
 755 doi:10.1016/j.agee.2009.11.005, 2010.

756 Linn, D. M. and Doran, J. W.: Effect of Water-Filled Pore Space on Carbon Dioxide and
 757 Nitrous Oxide Production in Tilled and Nontilled Soils, *Soil Sci. Soc. Am. J.*, 48, 1267,
 758 doi:10.2136/sssaj1984.03615995004800060013x, 1984.

759 Ludwig, J., Meixner, F. X., Vogel, B. and Forstner, J.: Soil-air exchange of nitric oxide: An
 760 overview of processes, environmental factors, and modeling studies, *Biogeochemistry*, 52,
 761 225–257, doi:10.1023/a:1006424330555, 2001.

762 Luizao, F., Luizao, R., Matson, P., Livingston, G. and Vitousek, P.: Nitrous oxide flux
 763 following tropical land clearing, *Global Biogeochem. Cycles*, 3(89), 281–285,
 764 doi:10.1029/GB003i003p00281, 1989.

765 Matson, P. A., Vitousek, P. M., Livingston, G. P. and Swanberg, N. A.: Sources of variation
 766 in nitrous oxide flux from Amazonian ecosystems, *J. Geophys. Res.*, 95, 16789-16798,
 767 doi:10.1029/JD095iD10p16789, 1990.

768 Matson, P. A., Billow, C., Hall, S. and Zachariassen, J.: Fertilization practices and soil
 769 variations control nitrogen oxide emissions from tropical sugar cane, *J. Geophys. Res.*, 101,
 770 18533, doi:10.1029/96JD01536, 1996.

771 Meixner, F. X., Fickinger, T., Marufu, L., Ser, D., Nathaus, F. J., Makina, E., Mukurumbira,
 772 L. and Andreae, M. O.: Preliminary results on nitric oxide emission from a southern African
 773 savanna ecosystem, *Nutr. Cycl. Agroecosystems*, 123–138, 1997.

774 Melillo, J. M., Steudler, P. A., Feigl, B. J., Neill, C., Garcia, D., Piccolo, M. C., Cerri, C. C.
 775 and Tian, H.: Nitrous oxide emissions from forests and pastures of various ages in the
 776 Brazilian Amazon, *J. Geophys. Res.*, 106, 34179–34188, doi:10.1029/2000JD000036, 2001.

777 Mertz, O., Müller, D., Sikor, T., Hett, C., Heinemann, A., Castella, J.-C., Lestrelin, G., Ryan,
 778 C. M., Reay, D. S., Schmidt-Vogt, D., Danielsen, F., Theilade, I., Noordwijk, M. Van,
 779 Verchot, L. V., Burgess, N. D., Berry, N. J., Pham, T. T., Messerli, P., Xu, J., Fensholt, R.,
 780 Hostert, P., Pflugmacher, D., Bruun, T. B., Neergaard, A. De, Dons, K., Dewi, S.,
 781 Rutishauser, E. and Sun, and Z.: The forgotten D: challenges of addressing forest degradation
 782 in complex mosaic landscapes under REDD+, *Geogr. Tidsskr. J. Geogr.*, 112(January 2014),
 783 63–76, doi:10.1080/00167223.2012.709678, 2012.

784 Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
 785 Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura,
 786 T., Zhang, H.: Anthropogenic and Natural Radiative Forcing. In: Stocker, T.F., Qin, D.,
 787 Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley,
 788 P.M. (Eds.), *Climate Change 2013 The Physical Science Basis. Working Group I*
 789 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate
 790 Change

791 Cambridge University Press, Cambridge, United Kingdom and New York, NY,
 USA, 2013.

792 Neill, C., Piccolo, M. C., Steudler, P. a., Melillo, J. M., Feigl, B. J. and Cerri, C. C.: Nitrogen
 793 dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin, *Soil*
 794 *Biol. Biochem.*, 27(9), 1167–1175, doi:10.1016/0038-0717(95)00036-E, 1995.

795 Neill, C., Steudler, P. A., Garcia-Montiel, D. C., Melillo, J. M., Feigl, B. J., Piccolo, M. C.
 796 and Cerri, C. C.: Rates and controls of nitrous oxide and nitric oxide emissions following
 797 conversion of forest to pasture in Rondônia, *Nutr. Cycl. Agroecosystems*, 71, 1–15,
 798 doi:10.1007/s10705-004-0378-9, 2005.

799 Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R.,
 800 Ojima, D. S. and Schimel, D. S.: Generalized model for NO_x and N₂O emissions from soils,
 801 *J. Geophys. Res.*, 106, 17403, doi:10.1029/2001JD900101, 2001.

802 Phalan, B., Bertzky, M., Butchart, S. H. M., Donald, P. F., Scharlemann, J. P. W.,
 803 Stattersfield, A. J. and Balmford, A.: Crop Expansion and Conservation Priorities in Tropical
 804 Countries, *PLoS One*, 8, e51759, doi:10.1371/journal.pone.0051759, 2013.

805 Potter, C. S., Matson, P. A., Vitousek, P. M. and Davidson, E. a.: Process modeling of
 806 controls on nitrogen trace gas emissions from soils worldwide, *J. Geophys. Res.*, 101, 1361,
 807 doi:10.1029/95JD02028, 1996.

808 Purbopuspito, J., Veldkamp, E., Brumme, R. and Murdiyarso, D.: Trace gas fluxes and
 809 nitrogen cycling along an elevation sequence of tropical montane forests in Central Sulawesi,
 810 Indonesia, *Global Biogeochem. Cycles*, 20, 1–11, doi:10.1029/2005GB002516, 2006.

811 Skiba, U., Jones, S., Dragosits, U., Drewer, J., Fowler, D., Rees, R. M., Pappa, V. A.,
 812 Cardenas, L., Chadwick, D., Yamulki, S. and Manning, A. J.: UK emissions of the
 813 greenhouse gas nitrous oxide, *Philos. Trans. R. Soc. Lond. B. Biol. Sci.*, 367, 1175–1185,
 814 doi:10.1098/rstb.2011.0356, 2012.

815 Skiba, U. and Smith, K. a.: The control of nitrous oxide emissions from agricultural and
 816 natural soils, *Chemosph. - Glob. Chang. Sci.*, 2, 379–386, doi:10.1016/S1465-
 817 9972(00)00016-7, 2000.

818 Stehfest, E. and Bouwman, L.: N₂O and NO emission from agricultural fields and soils under
 819 natural vegetation: Summarizing available measurement data and modeling of global annual
 820 emissions, *Nutr. Cycl. Agroecosystems*, 74, 207–228, doi:10.1007/s10705-006-9000-7, 2006.

821 Stern, N.: The economics of climate change, *Am. Econ. Rev.*, 98:2,1-37, 2008.

822 Steudler, P., Melillo, J. M., Bowden, R. and Castro, M.: The effects of natural and human
 823 disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest,
 824 *Biotropica*, 23, 356–363, 1991.

825 Streck, C. and Parker, C.: Financing REDD, in *Analysing REDD*, edited by A. Angelsen, M.
 826 Brockhaus, and L. V. Verchot, pp. 111–127, Center for International Forestry Research,
 827 Bogor, Indonesia., 2012.

828 Takakai, F., Morishita, T., Hashidoko, Y., Darung, U., Kuramochi, K., Dohong, S., Limin, S.
 829 H. and Hatano, R.: Effects of agricultural land-use change and forest fire on N₂O emission
 830 from tropical peatlands, Central Kalimantan, Indonesia, *Soil Sci. Plant Nutr.*, 52, 662–674,
 831 doi:10.1111/j.1747-0765.2006.00084.x, 2006.

832 Terry, R., Tate, R. and Duxbury, J.: Nitrous oxide emissions from drained, cultivated organic
 833 soils of South Florida, *J. Air Pollut. Control Assoc.*, 31(11), 1173–1176,
 834 doi:10.1080/00022470.1981.10465342, 1981.

835 Veldkamp, E. and Keller, M.: Nitrogen oxide emissions from a banana plantation in the
 836 humid tropics, *J. Geophys. Res.*, 102, 15889-15898, doi:10.1029/97JD00767, 1997.

837 Veldkamp, E., Davidson, E., Erickson, H., Keller, M. and Weitz, A.: Soil nitrogen cycling
 838 and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa
 839 Rica, *Soil Biol. Biochem.*, 31(3), 387–394, doi:10.1016/S0038-0717(98)00141-2, 1999.

840 Veldkamp, E., Keller, M. and Nuñez, M.: Effect of pasture management on N₂O and NO
 841 emissions from soils in the humid tropics of Costa Rica, *Global Biogeochem. Cycles*, 12(1),
 842 71, doi:10.1029/97GB02730, 1998.

843 Veldkamp, E., Purbopuspito, J., Corre, M. D., Brumme, R. and Murdiyarso, D.: Land use
 844 change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia, *J.*
 845 *Geophys. Res.*, 113, G02003, doi:10.1029/2007JG000522, 2008.

846 Verchot, L. V., Davidson, E. A., Cattânio, J. H., Ackerman, I. L., Erickson, H. E. and Keller,
 847 M.: Land use change and biogeochemical controls of nitrogen oxide emissions from soils in

848 eastern Amazonia, *Global Biogeochem. Cycles*, 13(1), 31–46, doi:10.1029/1998GB900019,
849 1999.

850 Verchot, L. V., Hutaibarat, L., Hairiah, K. and van Noordwijk, M.: Nitrogen availability and
851 soil N N_2O emissions following conversion of forests to coffee in southern Sumatra, *Global*
852 *Biogeochem. Cycles*, 20, GB4008, doi:10.1029/2005GB002469, 2006.

853 Wang, M. C. and Bushman, B. J.: Using the normal quantile plot to explore meta-analytic
854 data sets., *Psychol. Methods*, 3(1), 46–54, doi:10.1037/1082-989X.3.1.46, 1998.

855 Werner, C., Zheng, X., Tang, J., Xie, B., Liu, C., Kiese, R., Butterbach-Bahl, K.: N_2O , CH_4
856 and CO_2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest
857 China, *Plant Soil*, 289, 335–353, 2006.

858 Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T., Kiese, R.: A global inventory of N_2O
859 emissions from tropical rainforest soils using a detailed biogeochemical model, *Global*
860 *Biochem. Cy.*, 21, GB3010, doi:10.1029/2006GB002909, 2007.

861 Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M. and Crill, P.: Nitrous oxide fluxes and
862 nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil,
863 *Biogeosciences*, 2, 175–187, doi:10.5194/bgd-2-499-2005, 2005.

864 Xiong, Z., Xie, Y., Xing, G., Zhu, Z. and Butenhoff, C.: Measurements of nitrous oxide
865 emissions from vegetable production in China, *Atmos. Environ.*, 40, 2225–2234,
866 doi:10.1016/j.atmosenv.2005.12.008, 2006.

867 Yashiro, Y., Kadir, W. R., Okuda, T. and Koizumi, H.: The effects of logging on soil
868 greenhouse gas (CO_2 , CH_4 , N_2O) flux in a tropical rain forest, Peninsular Malaysia, *Agric.*
869 *For. Meteorol.*, 148(5), 799–806, doi:10.1016/j.agrformet.2008.01.010, 2008.

870 10 SUPPLEMENTARY MATERIAL

871

872 S1 – Database of LU study cases on N₂O and NO fluxes and environmental parameters.873 S2 – Database used for the meta-analysis of LUC study cases and Hedges' *d* for N₂O and NO

874 fluxes and environmental parameters.

875 11 TABLES

876

877 Table 1: Average of annual N_2O and NO emissions in the Tropics and associated environmental parameter values. Land uses are F: forest,
 878 WF: wetland forest, LFC: low forest cover, DegF: degraded forest, AGF: agroforestry, Pl: plantation, Pa: pasture, R: rice and Crop: cropland.
 879 NA: not available, no nitric oxide cases were available for WF. Standard error and sample size are indicated in brackets, # indicates no statistics
 880 were possible. Letters in superscript indicate significant differences among land uses, whenever differences were not significant no letter was
 881 indicated.

Land use	Flux (kg N ha ⁻¹ yr ⁻¹)	Annual precipitation (mm)	Annual temperatu re (°C)	Soil temperature (°C)	WFPS (%)	Bulk density (g d.w. cm ⁻³)	pH	NH ₄ ⁺ ($\mu\text{g N g}^{-1}$ d.w.)	NO ₃ ⁻ ($\mu\text{g N g}^{-1}$ d.w.)	C (%)	N (%)	Fertilization (kg N ha ⁻¹ yr ⁻¹)	Litterfall (kg N ha ⁻¹ yr ⁻¹)
<i>Nitrous oxide</i>													
F	2.0 ^a (0.2, 90)	2226 (81, 90)	22.8 (0.4, 80)	23.7 ^{a,b} (0.5, 29)	56.1 (3.4, 45)	.9 ^a (0.0, 58)	4.9 ^{a,b,c} (0.1, 55)	20.5 ^a (2.8, 47)	10.8 ^a (1.5, 45)	4.8 ^a (0.5, 45)	0.4 ^a (0.0, 45)	0 ^a (0, 87)	100 (17, 14)
WF	2.7 ^{a,b} (1.9, 7)	2485 (167, 6)	26.1 (0.4, 6)	26.8 ^{a,b} (0.5, 4)	44.5 (7.7, 3)	0.1 ^b (0.0, 4)	3.8 ^a (0.2, 7)	412.0 ^b (119.9, 4)	70.9 ^b (12.2, 5)	49.7 ^b (3.2, 7)	1.6 ^b (0.1, 7)	0 ^{a,b,d} (0, 7)	n.a. (0, 7)
LFC	0.5 ^{a,b} (0.1, 11)	1546 (390, 11)	23.9 (1.6, 9)	28.8 ^{a,b} (1.2, 3)	47.7 (10.6, 8)	1.1 ^{a,c} (0.1, 10)	5.0 ^{a,b,c,d} (0.3, 11)	5.1 ^a (1.1, 8)	3.1 ^a (1, 8)	4.0 ^a (0.9, 8)	0.3 ^a (0.1, 8)	0 ^{a,b,d} (0, 10)	n.a. (0, 10)
DegF	1.9 ^{a,b} (0.5, 30)	2220 (123, 30)	25.1 (0.4, 28)	27.6 ^a (0.6, 14)	48.4 (5, 19)	0.9 ^a (0.1, 24)	4.4 ^{a,b} (0.2, 23)	44.4 ^a (17.4, 20)	11.6 ^a (4.1, 20)	30.0 ^{c 1} (6.2, 20)	0.9 ^c (0.1, 20)	0 ^{a,b} (0, 26)	122 (54, 3)
AGF	3.4 ^{a,b} (1.6, 8)	2297 (112, 8)	25.2 (0.8, 6)	22.1 ^{a,b} (2.3, 2)	77.1 (17.2, 3)	1.2 ^{a,c} (0.1, 8)	5.6 ^{b,c,d} (0.3, 7)	10.7 ^a (4.6, 7)	7.8 ^{a,b} (3.1, 7)	2.8 ^a (0.5, 3)	0.3 ^{a,c} (0.1, 3)	39 ^{a,b,c} (31, 8)	218 (#, 1)
Pl	1.5 ^{a,b} (0.3, 40)	2120 (137, 40)	24.3 (0.6, 38)	25.5 ^{a,b} (0.6, 22)	59.0 (3.4, 26)	1.0 ^{a,c} (0.1, 27)	4.8 ^{a,b,c} (0.1, 37)	11.9 ^a (2.3, 30)	17.8 ^{a,b} (8.2, 27)	6.7 ^a (2.2, 30)	0.4 ^a (0.1, 31)	53 ^{a,b} (25, 35)	304 (153, 5)
Pa	5.2 ^{a,b} (1.3, 97)	1913 (89, 90)	23.4 (0.5, 54)	26.3 ^{a,b} (1.9, 8)	64.2 (4.6, 18)	1.2 ^c (0, 54)	5.4 ^{c,d} (0.1, 49)	26.1 ^a (4.2, 29)	26.9 ^{a,b} (13.7, 29)	5.1 ^a (1.8, 41)	0.3 ^a (0, 39)	90 ^{b,d} (17, 70)	n.a. (17, 70)

R	5.1 ^{a,b} (1.7, 17)	1562 (234, 13)	21.9 (1.9, 13)	20.9 ^b (2.4, 5)	73.0 (1.2, 3)	1.2 ^{a,c} (0, 4)	6.0 ^d (0.3, 17)	788.01 (#, 1)	29.4 ^{a,b} (2.0, 2)	13.6 ^a (5.2, 17)	0.5 ^{a,c} (0.1, 17)	228 ^c (61, 17)	n.a.
Crop	8.6 ^b (2.0, 92)	1965 (123, 76)	24.4 (0.6, 60)	25.3 ^{a,b} (1.1, 23)	58.1 (5.2, 28)	1.1 ^{a,c} (0.1, 44)	5.7 ^{d,e} (0.1, 78)	21.3 ^a (10.9, 36)	12.2 ^a (2.6, 36)	7.5 ^a (1.6, 55)	0.4 ^a (0, 55)	155 ^{c,d} (25, 92)	77 (28, 2)
<i>Nitric oxide</i>													
F	1.7 (0.5, 36)	2342 (166, 35)	21.6 ^a (0.8, 30)	24.9 ^a (0.4, 13)	60.1 (4.5, 24)	0.75 ^a (0.07, 24)	5.3 (0.3, 25)	15.4 (2.5, 21)	12.2 ^a (2.0, 21)	5.1 ^a (0.7, 15)	0.4 (0.1, 19)	0 ^{ab} (0, 36)	79 (16, 10)
DegF	2.9 (1.9, 20)	2119 (281, 19)	25.4 ^{bc} (0.9, 12)	26.4 ^{ab} (0.8, 9)	53.7 (7.8, 11)	1.08 ^b (0.09, 17)	5.6 (0.3, 17)	15.1 (3.1, 13)	5.6 ^{ab} (1.5, 13)	3.1 ^{ab} (0.8, 13)	0.3 (0.1, 10)	0 ^b (0, 20)	68 (6, 2)
AGF	2.3 (0.8, 5)	2219 (147, 5)	26.0 ^{acd} (0.0, 4)	24.4 [#] (#, 1)	56.0 (#, 1)	1.32 ^b (0.03, 5)	5.9 (0.2, 5)	9.5 (4.6, 4)	4.9 ^{ab} (3.1, 4)	2.5 (#, 1)	0.2 (#, 1)	12 ^{bdef} (12, 5)	n.a.
PI	5.4 (5.3, 2)	2124 (1839, 2)	21.4 ^{acd} (4.4, 2)	n.a. (#, 1)	70.0 (#, 1)	1.23 ^{ab} (0.43, 2)	7.6 (#, 1)	n.a. (#, 1)	n.a. (5.9, 17)	n.a. (1.1, 17)	n.a. (0.4, 13)	180 ^{cf} (180, 2)	n.a.
Pa	2.6 (0.7, 28)	2279 (252, 26)	25.5 ^{bd} (0.1, 13)	27.8 ^b (0.7, 8)	66.8 (6.0, 14)	1.22 ^b (0.07, 16)	5.8 (0.3, 17)	27.0 (5.9, 17)	5.4 ^b (1.1, 17)	1.2 ^b (0.4, 13)	0.2 (0.1, 6)	91 ^{ce} (26, 26)	n.a.
Crop	3.1 (0.8, 20)	1686 (268, 14)	24.7 ^{acd} (1.1, 3)	27.8 ^b (0.4, 11)	43.0 (12.3, 6)	1.31 ^b (0.09, 13)	5.7 (0.2, 20)	28.2 (14.5, 12)	12.1 ^{ab} (2.3, 12)	2.5 ^{ab} (1.0, 9)	0.3 (0.1, 4)	88 ^{cd} (17, 20)	n.a.

882

883

¹ including 10 degraded peat forests, soil carbon content for non-peat soils was 3.8.

884 Table 2: Multiple regression between soil N₂O or NO emissions and associated
 885 environmental parameters; and meta-analysis regression between the standardized differences
 886 after and before land-use change of N₂O emissions (or Hedges' *d*, *d*_{N₂O}) and of environmental
 887 factors (*d*_{N_{available}}, *d*_{wfps}). The models are presented with slope and intercept \pm SE; P values are
 888 indicated with * (p<0.05), ** (p<0.01) and *** (p<0.001). All regression models were
 889 significant (p≤0.01).

890

LU	R ²	df	Model
<i>Linear regression LU study cases</i>			
All	0.39	125	$\ln(N_2O+1.2) = 0.002^{***} \pm 0.0004 \times N_{fertilization} + 0.87^{**} \pm 0.29 \times N_{available} + 0.014^{***} \pm 0.003 \times WFPS - 0.11^{ns} \pm 0.22$
Agr ^a	0.83	40	$\ln(N_2O+1.2) = 0.008^{***} \pm 0.0007 \times N_{fertilization} + 0.017^{***} \pm 0.003 \times WFPS - 0.28^{ns} \pm 0.26$
Non-Agr ^b	0.17	80	$\ln(N_2O+1.2) = 0.87^{**} \pm 0.27 \times N_{available} + 0.008^{***} \pm 0.003 \times WFPS - 0.15^{ns} \pm 0.21$
All	0.18	64	$\ln(NO) = 2.27^{**} \pm 0.80 \times N_{available} + 0.0085^* \pm 0.0039 \times N_{fertilization} - 1.42^{***} \pm 0.35$
Agr ^a	0.31	44	$\ln(NO) = 0.0081^{***} \pm 0.0019 \times N_{fertilization} - 0.65^* \pm 0.26$
Non-Agr ^b	0.20	36	$\ln(NO) = 3.02^{**} \pm 1.02 \times N_{available} - 1.67^{**} \pm 0.47$
<i>Gaussian regression WFPS</i>			
Non-Agr ^b	0.90	102	$N_2O = 2.3 \times \exp(-0.5 \times ((WFPS^c - 61.8)/24.7)^2)$
Non-Agr ^b	0.89	36	$NO = 2.5 \times \exp(-0.5 \times ((WFPS^c - 45.3)/16.5)^2)$
<i>HIP model regression</i>			
All	0.48	40	$\log(1+N_2O+NO) = 0.92^{***} \pm 0.15 \times N_{available} + 0.15^* \pm 0.06$
All	0.39	42	$\log(1+N_2O/NO) = 0.0129^{***} \pm 0.003 \times WFPS - 0.32^{ns} \pm 0.18$
Non-Agr ^b	0.40	29	$\log(1+N_2O/NO) = 0.0125^{***} \pm 0.003 \times WFPS - 0.27^{ns} \pm 0.20$
<i>Meta-analysis regression LUC study cases</i>			
All	0.23	89	$d_{N2O} = 0.65^{**} \pm 0.14 \times d_{Navailable} - 0.04 \pm 0.13$
All	0.15	69	$d_{N2O} = 0.55^{**} \pm 0.22 \times d_{wfps} + 0.05 \pm 0.16$

891 N₂O and NO are expressed in kg N₂O-N yr⁻¹ or N-NO ha⁻¹ yr⁻¹, N_{available} is (NO₃⁻/[NO₃⁻+NH₄⁺]) without units, NO₃⁻
 892 and NH₄⁺ in μ g N g⁻¹ d.w., N_{fertilization} in kg N ha⁻¹ yr⁻¹ and WFPS in %.

893 ^aAgr includes cropland and pasture.

894 ^bNon-Agr includes forest, low forest cover, degraded forest, agroforestry and plantation.

895 ^cWFPS intervals of 10%.

896 Table 3 – Hedges' $d \pm \text{SE}$ (n) of N_2O ($d_{\text{N}_2\text{O}}$) and NO (d_{NO}) emission change following
 897 land-use change (LUC). Hedges' d is the standardized mean difference of N_2O (or NO) flux
 898 rates after and before LUC. A $d < 0$ indicates a reduction in emission; a $d > 0$ an increase.
 899 Land uses are: F-forest, WF-wetland forest, LFC-low forest cover, DegF-degraded forest,
 900 AGF-agroforestry, PI-plantation, Pa-pasture, R-Rice and Crop-cropland.

LUC	$d_{\text{N}_2\text{O}}$	d_{NO}
F-DegF	0.09 ± 0.29 (15)	0.08 ± 0.34 (5)
F-AGF	0.34 ± 0.29 (4)	- (1) ^a
F-PI	0.06 ± 0.37 (12)	-
F-Pa	-0.28 ± 0.17 (36)	-0.56 ± 0.67 (9)
F-Crop	$0.78^* \pm 0.24$ (19)	- (2) ^a
Overall F	0.11 ± 0.14 (86)	-0.19 ± 0.37 (17)
WF-DegF	-0.17 ± 0.31 (9)	-
WF-PI	1.07 ± 0.42 (3)	-
WF-Pa	2.37 ± 1.80 (3)	-
WF-R	-0.06 ± 0.62 (9)	-
Overall WF	0.31 ± 0.34 (24)	-
DegF-AGF	0.27 ± 0.19 (4)	0.72 ± 0.28 (4)
LFC-PI	- (2) [#]	-
LFC-Pa	0.47 ± 0.37 (3)	-0.06 ± 0.31 (5)
LFC-Crop	-0.29 ± 0.40 (16)	$0.57^* \pm 0.09$ (11)
Overall LFC ^b	-0.07 ± 0.25 (25)	$0.44^* \pm 0.13$ (20)
Overall LUC	0.11 ± 0.11 (135)	0.16 ± 0.19 (37)
Fertilization ^c	$1.03^* \pm 0.31$ (17)	$0.52^* \pm 0.23$ (12)
N fixation ^c	-0.14 ± 0.33 (13)	0.61 ± 0.33 (8)

901 * $p < 0.05$; no statistics calculated for studies with $n < 3$.

902 ^a no statistics possible.

903 ^b including 4 DegF-AGF LUC cases.

904 ^c Fertilization and N fixation indicate cases of forest conversion to fertilized LU and LU with N_2 fixing
 905 trees/crops.

906 12 FIGURE LEGENDS

907

908 Figure 1: Spatial distribution of land use case studies on soil fluxes of (a) N_2O and (b) NO per
909 land use category in the tropics. Land uses are abbreviated as F: forest, WF: wetland forest,
910 LFC: low forest cover, DegF: degraded forest, AGF: agroforestry, Pl: plantation, Pa: pasture,
911 R: rice and Crop: cropland. Y-axes of the diagrams represent number of case studies per land
912 use. Land use case studies from Europe are omitted ($n = 2$). (c) Spatial distribution of land-
913 use change case studies on soil N_2O and NO fluxes, compared to a map of annual loss of
914 forest area by country between 2005 and 2010. The four shades of grey, from black to light
915 grey, respectively represent >500 , 500-250, 250-50 and <50 net loss of area in 1,000 ha.

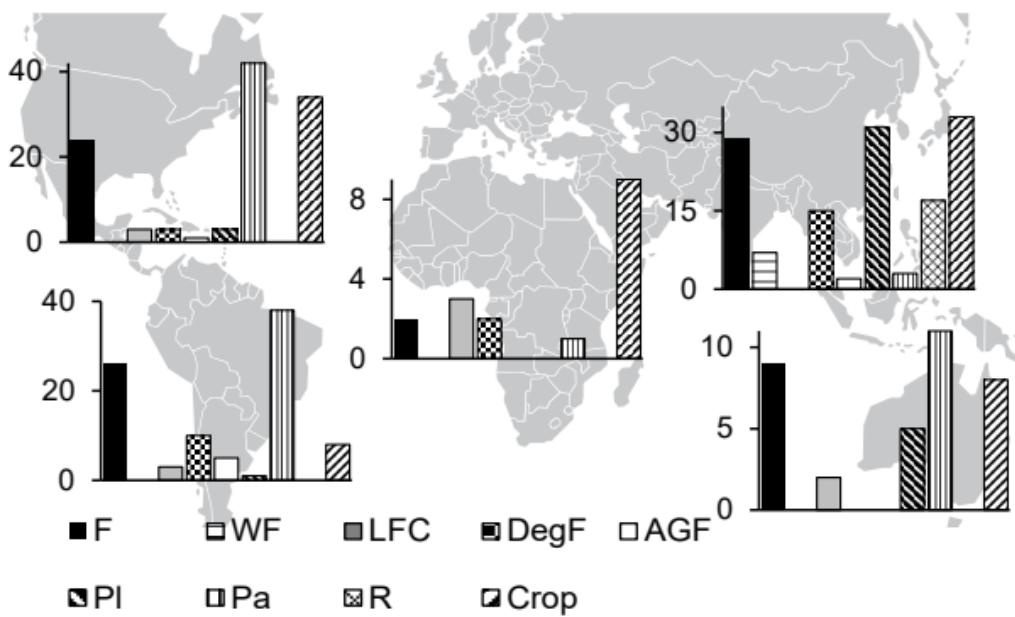
916 Adapted from FAO (2010).

917

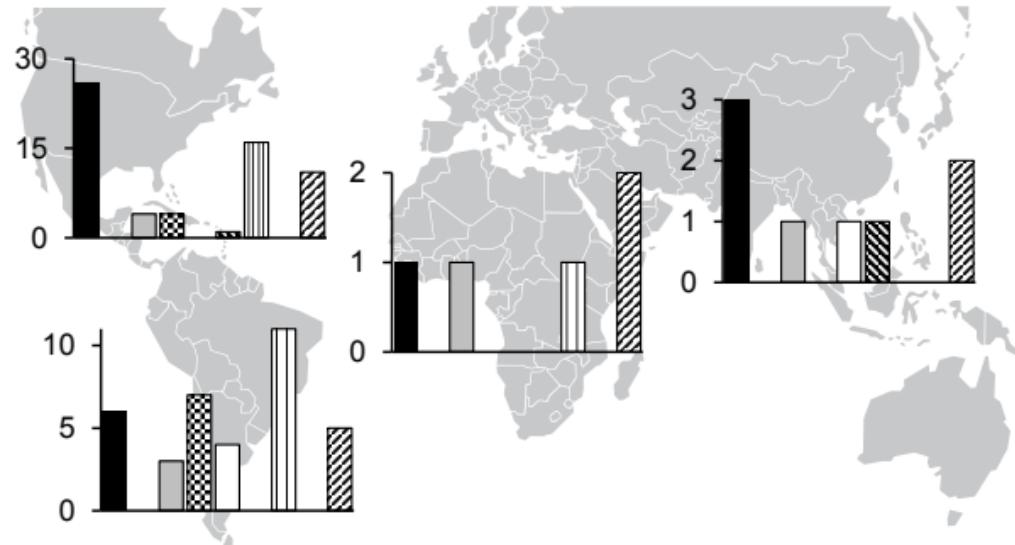
918 Figure 2: Gaussian relationships (dashed lines) between the WFPS and N_2O and NO
919 emissions in non-agricultural land uses. N_2O and NO fluxes are averaged in 10% WFPS
920 intervals. Error bars are N flux standard errors in each WFPS interval.

921

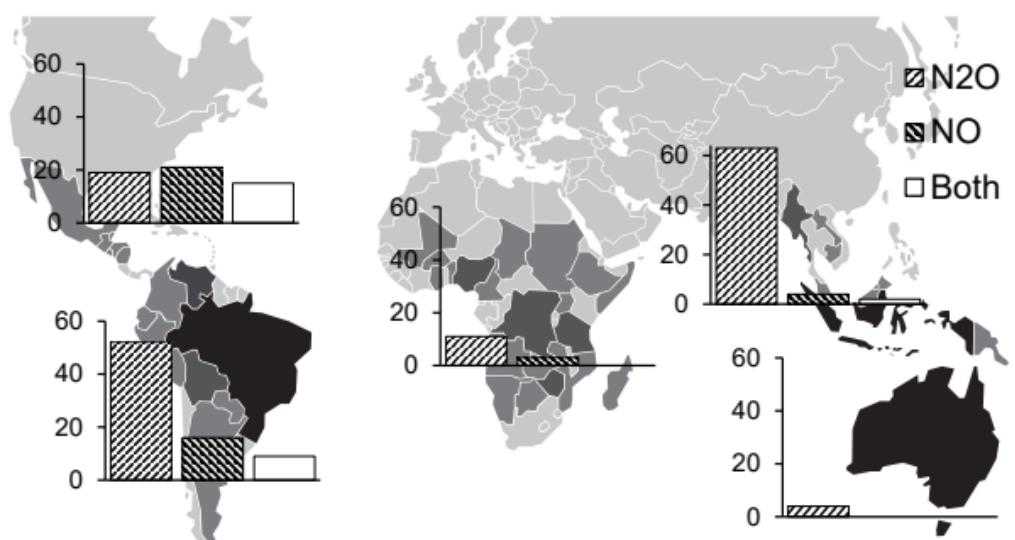
922 Figure 3: Relationships between (a) the WFPS and the ratio of N_2O to NO; (b) $N_{available}$ (NO_3^-
923 $/[NO_3^- + NH_4^+]$) and the sum of N_2O and NO. The domains of definition are (a) [0.02; 44.71]
924 in N_2O to NO ratio and [30.4; 94.4] in WFPS; (b) [0.00; 12.80] in $N_2O + NO$ ($kg\ N\ ha^{-1}\ yr^{-1}$)
925 and [0.01; 0.77] in $N_{available}$.

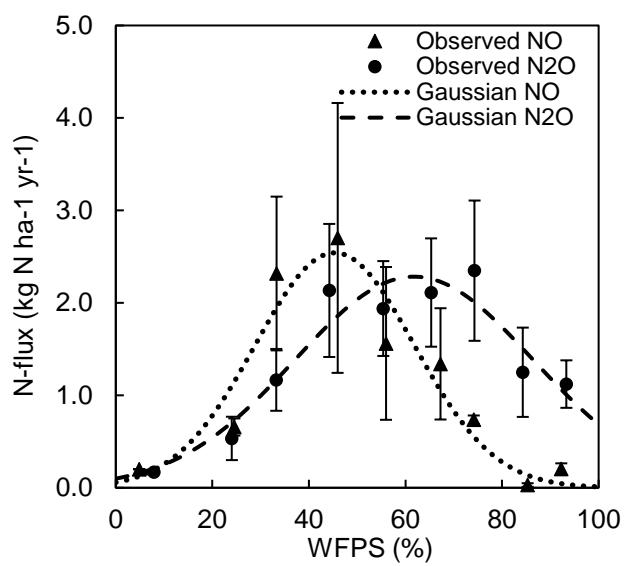

926

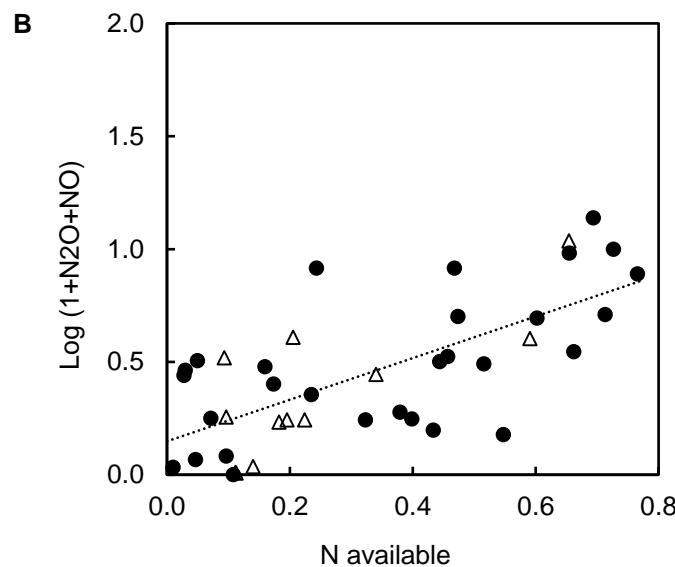
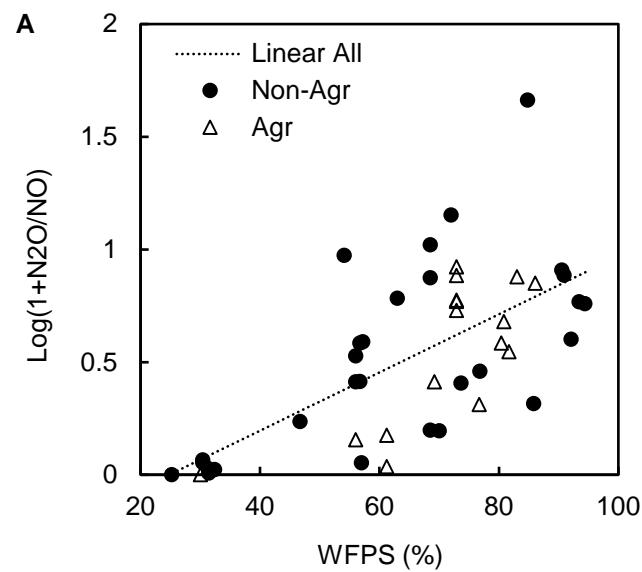
927 Figure 4: Effect of time since conversion on N_2O fluxes in (a) croplands and (b) pastures.
928 Average N_2O flux and 95% confidence intervals are given for upland forests (triangle) and
929 low canopy forests (square). The solid and dashed lines represent a conceptual trend for non-
930 fertilized and fertilized cases, respectively.

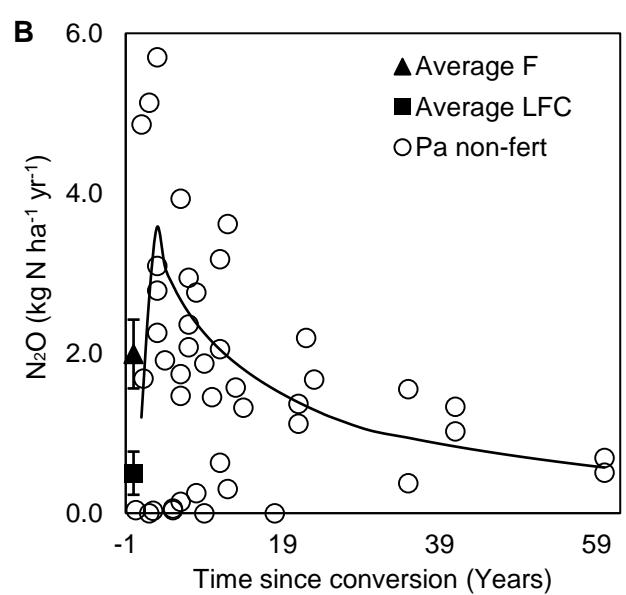
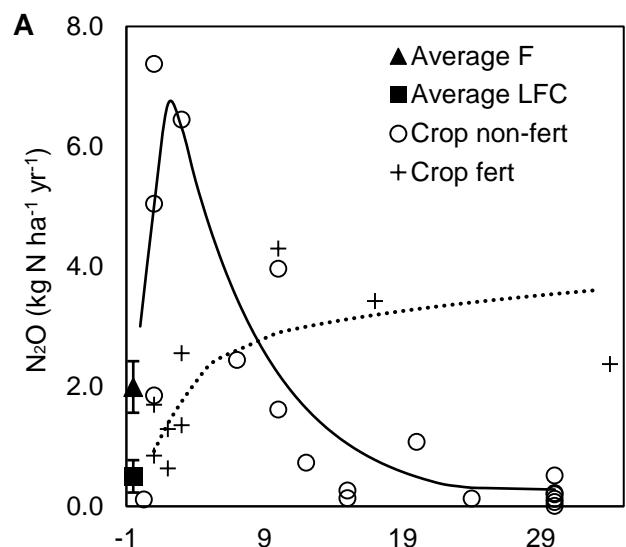

931

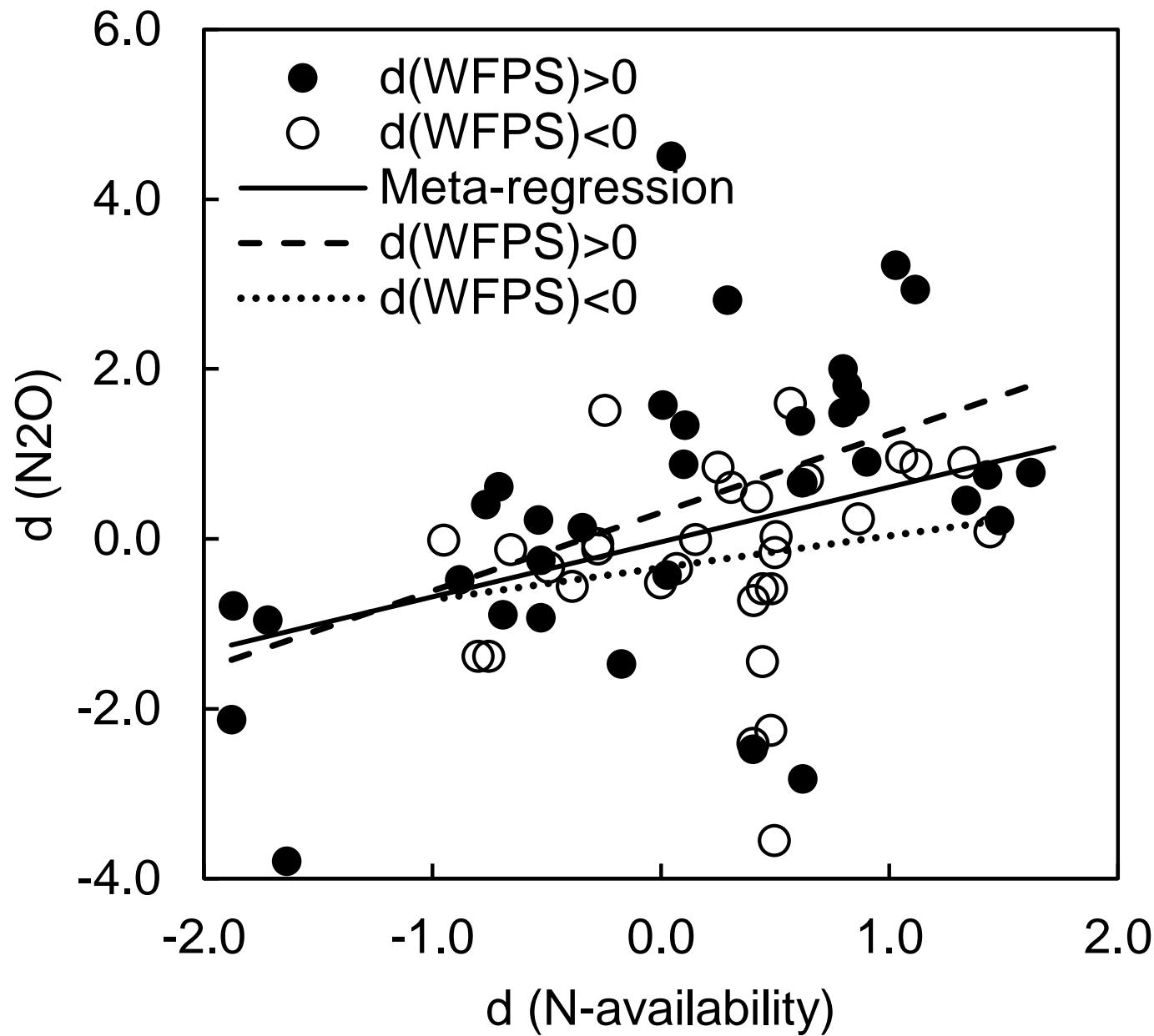
932 Figure 5: N_2O Hedges'd as affected by the interactive changes in $N_{\text{availability}}$ and WFPS. The
933 meta-analysis regression between d_{N_2O} and $d_{\text{availability}}$ was performed for all cases (solid line)
934 and for cases when $d_{\text{WFPs}} > 0$ or $d_{\text{WFPs}} < 0$ (dashed lines). Closed and open circles represent
935 increased and decreased WFPS, respectively.


A. Nitrous oxide LU study cases





B. Nitric oxide LU study cases


C. LUC study cases

