

Supplement of

Predictors and mechanisms of the drought-influenced mortality of tree species along the isohydric to anisohydic continuum in a decade-long study of a central US temperate forest

L. Gu et al.

Correspondence to: L. Gu (lianhong-gu@ornl.gov)

Supplementary Figures 32

33	Figure S1. The species mortality expressed relative to the stem number density of 2005
34	as a function of daily mean precipitation rate in the previous year.
35	Figure S2. The species mortality expressed relative to the stem number density of 2005
36	as a function of precipitation variability index in the previous year.
37	Figure S3. The species mortality expressed relative to the stem number density of 2005
38	as a function of positive temperature anomaly integral in the previous year.
39	Figure S4. The species mortality expressed relative to the stem number density of 2005
40	as a function of vapor pressure deficit integral in the previous year.
41	Figure S5. The mortality of the plant community as a whole expressed relative to the
42	stem number density of 2005 as a function of the previous year's daily mean precipitation
43	rate (a), predawn leaf water potential integral (PLWPI) at the community level (b),
44	precipitation variability index (c), mean effective precipitation interval with a threshold
45	daily precipitation rate of 5 mm day ⁻¹ (d), positive temperature anomaly integral (e), and
46	vapor pressure deficit integral (f). Mortality data of 2013 and 2014 are removed. This
47	figure shows that even when the impact of the extreme drought of 2012 is not included,
48	these predictors still explain a significant amount of variance in interannual variations of
49	tree mortality.

pacies mortality expressed relative to the stem number density of 2005 22 S1 Th E:

50

Vapor pressure deficit integral (kPa days) Vapor pressure deficit integral (kPa days)

