```
Stable isotope study of a new chondrichthyan fauna
 1
     (Kimmeridgian, Porrentruy, Swiss Jura): an unusual
 2
     freshwater-influenced isotopic composition for the
 3
     hybodont shark Asteracanthus
 4
 5
     L. Leuzinger<sup>1,2,*</sup>, L. Kocsis<sup>3,4</sup>, J.-P. Billon-Bruyat<sup>2</sup>, S. Spezzaferri<sup>1</sup>, T.
 6
 7
     Vennemann<sup>3</sup>
 8
     [1]{Département des Géosciences, Université de Fribourg, Chemin du Musée 6, 1700
 9
     Fribourg, Switzerland}
10
     [2] { Section d'archéologie et paléontologie, Office de la culture, République et Canton du
11
     Jura, Hôtel des Halles, 2900 Porrentruy, Switzerland}
12
     [3] {Institut des Dynamiques de la Surface Terrestre, Université de Lausanne, Quartier UNIL-
13
     Mouline, Bâtiment Géopolis, 1015 Lausanne, Switzerland}
14
     [4] {Universiti Brunei Darussalam, Faculty of Science, Geology Group, Jalan Tungku Link,
15
     BE 1410, Brunei Darussalam}
16
     [*]{now at: CRILAR, 5301 Anillaco, La Rioja, Argentina}
17
     Correspondence to: L. Leuzinger (leuzinger.lea@gmail.com)
18
     Abstract
19
20
     Chondrichthyan teeth (sharks, rays and chimaeras) are mineralised in isotopic equilibrium
21
     with the surrounding water, and parameters such as water temperature and salinity can be
```

inferred from the oxygen isotopic composition ($\delta^{18}O_p$) of their bioapatite. We analysed a new 22 23 chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All 24 specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of 25 Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the 26 isotopic composition of bony fish are generally consistent with marine conditions, unusually 27 low $\delta^{18}O_p$ values were measured for the hybodont shark *Asteracanthus*. These values are also lower compared to previously published data from older European Jurassic localities. 28 29 Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have 1 comparable, low-¹⁸O isotopic compositions for *Asteracanthus*. The data are hence interpreted 2 to represent a so far unique, freshwater-influenced isotopic composition for this shark that is 3 classically considered as a marine genus. While reproduction in freshwater or brackish realms 4 is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. 5 Regular excursions into lower salinity waters can be linked to the age of the deposits and 6 correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression 7 and by the competition of the hybodont shark Asteracanthus with the rapidly diversifying 8 neoselachians (modern sharks).

9

10 **1** Introduction

11 Chondrichthyan remains are common in the Mesozoic fossil record of Western Europe, and in 12 many different paleoenvironmental settings (e.g. lagoonal, open marine, reduced salinity) 13 (Duffin and Thies, 1997; Müller, 2011; Underwood, 2002). Their teeth are predominantly 14 composed of fluor-apatite, the most resistant variety of apatite (Vennemann et al., 2001) and 15 are continuously shed and replaced, except in chimaeras (Cappetta, 2012; Stahl, 1999). In 16 addition to their abundance, their mechanical and chemical resistance make them an ideal 17 material for stable isotope analyses. They mineralise in isotopic equilibrium with the 18 surrounding water, hence their primary oxygen isotopic composition ($\delta^{18}O_p$) reflects that of 19 the ambient water at a given temperature when they formed (Kolodny et al., 1983; Longinelli 20 and Nuti, 1973). This makes them a valuable paleoenvironmental proxy, used in numerous 21 studies (e.g. Kocsis et al., 2007; Lécuyer et al., 2003; Vennemann et al., 2001).

This research is based on fossil material – mainly chondrichthyans – found between 2000 and 2011 during controlled palaeontological excavations conducted by the Paléontologie A16 24 team (PAL A16, canton of Jura, NW Switzerland). All fossiliferous sites are located in the 25 vicinity of Porrentruy (Ajoie district) and are related to the building of the Trans-Jura 26 highway (A16). The Ajoie region is part of the Tabular Jura (Marty et al., 2007), mainly 27 consisting of subhorizontal Mesozoic (Oxfordian and Kimmeridgian) strata.

During the Kimmeridgian, the Ajoie region was a shallow-marine carbonate platform at a palaeolatitude of about 30° N (Marty, 2008) and surrounded by the Central and London-Brabant massifs, the Tethys and the Paris Basin (Fig. 1). The paleoclimate was semi-arid with high seasonality (Philippe et al., 2010; Waite et al., 2013). The platform had a very complex morphology due to the basement structure and sea-level changes occurred during its depositional history. These processes induced several episodes of emersion suggested by numerous dinosaur footprints (Marty, 2008; Marty et al., 2007) and hardgrounds, followed by erosion and reworking. Lateral changes in water depth potentially occurred at a very local scale (Jank et al., 2006; Waite et al., 2013). The record of ammonites typical of the boreal and tethyan domains show that the study area was influenced by water masses from both the Tethys and Paris Basin (Colombié and Rameil, 2007; Comment et al., 2011).

Based on phosphate oxygen isotope analyses obtained from this Late Jurassic chondrichthyan fauna, this study proposes answers to the following questions: (1) Is there any unexpected isotopic composition for the associated marine fauna recorded in Porrentruy? (2) Are the Porrentruy isotopic data unique so far, or comparable to other European localities? (3) What do we learn about the paleoecology of the hybodont shark *Asteracanthus* based on the isotopic composition?

13

14 2 Material and methods

15 The chondrichthyan dental material of the PAL A16 collection is rich and diverse, comprising 16 more than 2000 fossils. Sharks and rays (subclass Elasmobranchii) are represented by the 17 hybodont sharks - the extinct sister group of modern sharks (Maisey et al., 2004) (order Hybodontiformes: "Hybodus", Planohybodus, Asteracanthus) -, the modern sharks 18 (subcohort Neoselachii, order Carcharhiniformes: Palaeoscyllium, Corysodon; order 19 20 Heterodontiformes: Heterodontus, Paracestracion; order Protospinaciformes: Protospinax; 21 order Squatiniformes: Pseudorhina) and rays (superorder Batomorphii, order Rajiformes: 22 Belemnobatis, Spathobatis). Chimaeras (superorder Holocephali (sensu Stahl, 1999), order 23 Chimaeriformes: Ischyodus) are also present. The investigated material comes from the 24 Kimmeridgian Reuchenette Formation and more precisely from the latest Early 25 Kimmeridgian (Cymodoce ammonite zone, Banné Marls) and up to the Late Kimmeridgian 26 (Mutabilis ammonite zone, Corbis Limestones and Eudoxus ammonite zone, lower Virgula 27 Marls) (Fig. 2). Except for Asteracanthus and Ischyodus remains that are of a considerable 28 size and were collected directly on the field, the material consists predominantly of 29 microfossils resulting from sediment sieving.

The oxygen isotopic composition of phosphate from biogenic apatite was measured on rays, the chimaeroid *Ischyodus* and the hybodonts *Asteracanthus* and *Hybodus*. Bioapatite of bony fish Pycnodontiformes was also analysed for comparison. Stratigraphically, samples were selected from different beds in order to cover all units of the studied section (Fig. 2).
 Additionally, Kimmeridgian material from the neighbouring Natural History Museum of
 Solothurn was analysed for comparison.

4 The best mineralised part of the teeth, the enameloid, was isolated in Pycnodontiformes and 5 Asteracanthus (Fig. 3). From eleven of the Asteracanthus teeth, dentine was also analysed in 6 parallel to examine any isotopic differences between the tissues. In the case of chimaeroid 7 dental plates the densest parts were selected. For the very small material (1-5 mm) – as in rays 8 and Hybodus – several isolated teeth were analysed together as bulk samples of enameloid 9 and dentine. Due to the small size, only the outer aspect of this material was sampled as it was 10 visibly the best preserved, *i.e.* not worn-out teeth and/or with ornamentation well defined and 11 light-grey in colour. After manual removal of the largest part possible of the root, the most 12 dentine-free teeth were used for analysis.

From the Porrentruy material, 38 samples of *Asteracanthus* teeth (27 enameloid and 11 dentine), 7 of *Ischyodus* dental plates and 13 of Pycnodontiformes teeth were analysed; in addition, 4 bulk samples for *Hybodus* and 3 for rays were investigated. From the Solothurn material, enameloid of 9 *Asteracanthus* and 3 Pycnodontiformes teeth were added for comparison. Altogether, a total of 77 analyses were made.

18 The sample powders (at least 2mg per sample) were pre-treated following the procedure of Koch et al. (1997), and the PO₄³⁻ ion of the apatite was separated and precipitated as silver-19 20 phosphate (e.g. Kocsis, 2011; O'Neil et al., 1994). NBS-120c phosphorite reference material 21 was processed in parallel with the samples. Generally, triplicates of each sample were 22 analysed together with two in-house phosphate standards (LK-2L: 12.1‰ and LK-3L: 23 17.9‰) to correct the results. The samples were analysed in a high-temperature conversion 24 elemental analyser (TC/EA) coupled to a Finningan MAT Delta Plus XL mass spectrometer 25 at the University of Lausanne after the method described in Vennemann et al. (2002). The data are expressed in permil and reported as $\delta^{18}O_p$ on the VSMOW scale (Vienna Standard 26 27 Mean Ocean Water). The overall analytical error is taken as 0.3%, however individual 28 samples often reproduced better. For the NBS-120c an average value of $21.3 \pm 0.3\%$ (n = 6) 29 was obtained. This is somewhat lower than the mean reported value of 21.7 ‰ (e.g. Halas et 30 al., 2011), but no correction was applied to the values measured as the small offset is thought 31 to be due to heterogeneity in the sedimentary phosphorite and its different response to 32 pretreatments compared to the enameloid of the teeth sampled.

1 The oxygen isotope composition of unaltered fish teeth $(\delta^{18}O_p)$ is function of both, water 2 temperature and isotopic composition of ambient water $(\delta^{18}O_w)$ during tooth growth (Kolodny 3 et al., 1983; Lécuyer et al., 2013; Longinelli and Nuti, 1973). Here below is the phosphate 4 fractionation equation of Lécuyer et al. (2013) used for calculating the temperature of sea 5 water:

6
$$T(^{\circ} C) = 117.4 (\pm 9.5) - 4.50 (\pm 0.43) * (\delta^{18}O_p - \delta^{18}O_w).$$
 (1)

For marine fauna, the global, average seawater isotopic composition (δ¹⁸O_w) can be used as an
approximation that is assumed to be equal to -1‰ for the ice-free Late Jurassic seawater (*e.g.*Shackleton and Kennett, 1975).

10

11 3 Results

12 For the Porrentruy samples, the bioapatite oxygen isotope compositions have a range between 13 17.0 and 21.9 %, with an overall average value of 18.8 \pm 0.9 % (n = 65). These values can be 14 grouped into three ranges: (1) values of bulk samples (Hybodus and rays) and Ischyodus that 15 are between 18.5 and 19.8 % (average 19.2 \pm 0.4 %, n=14); (2) enameloid values of 16 Asteracanthus, averaging $18.1 \pm 0.6 \%$ (17.0–19.7 ‰, n=27) and (3) those of Pycnodontiformes with an average of $19.8 \pm 1.0 \%$ (18.2–21.9 ‰, n=13). The average value 17 of 18.9±0.8‰ (17.7–20.0‰, n=11) in the Asteracanthus' dentine is significantly different 18 19 from the equivalent enameloid sampled from the same teeth demonstrated by Student's t-test: 20 t(20) = 2.98, p < 0.01.

For the Solothurn comparison material, an average of $18.7 \pm 0.9 \%$ (n=9) and $19.4 \pm 0.7 \%$

22 (n=3) was obtained for *Asteracanthus* and Pycnodontiformes teeth respectively.

All the data are available and detailed in the supplementary material.

24

25 4 Associated fauna and palaeoecology

The associated fauna of the Porrentruy material is characteristic of a coastal marine environment, with notably a rich marine bivalve assemblage, sea urchins and over 600 ammonites (Comment et al., 2011; Marty and Billon-Bruyat, 2009). Among vertebrates, coastal marine turtles (Plesiochelyidae) (Anquetin et al., 2014; Püntener et al., 2014; Püntener et al., 2015) and crocodilians (Thalattosuchia) (Schaefer, 2012) are common.

2 During the Late Jurassic, modern sharks were expanding and diversifying, while hybodonts 3 were declining and restricted more to environments of reduced salinity, or even freshwater, 4 where modern sharks were less represented (Kriwet and Klug, 2008; Rees and Underwood, 5 2008; Underwood, 2002). In our assemblage however, hybodonts and rays clearly dominate 6 (86% of the dental material). This suggests conditions still favourable to hybodonts in 7 Porrentruy, unlike in neighbouring localities from southern Germany (Nusplingen, Solnhofen) 8 or France (Cerin), where hybodonts are scarce or absent. Our chondrichthyan assemblage (see 9 section 2) is rather similar to that in northern Germany (e.g. in Oker) (Duffin and Thies, 1997; 10 Thies, 1995), also dominated by hybodonts and rays. There, the fauna is associated to 11 conditions of reduced salinity (Underwood and Rees, 2002; Underwood and Ward, 2004; 12 Underwood, 2002, 2004). The chimaeroid *Ischyodus* must also be regarded as one of the most 13 abundant chondrichthyans, even if representing only 3% of the remains. Indeed, its non-14 renewable and less resistant dentition and the relatively low amount of dental elements per 15 individual (six dental plates against hundreds to thousands of teeth for sharks and rays) (Stahl, 16 1999) easily lead to an underestimate of its abundance. Interestingly, most of the few modern 17 sharks (Neoselachii) of our assemblage (i.e. Heterodontus, Palaeoscyllium, Protospinax, 18 Pseudorhina) are thought to have had a benthic lifestyle (Underwood, 2002; Underwood and 19 Ward, 2004), supporting a well-oxygenated bottom water, which is also indicated by the 20 invertebrate fauna.

21

22 5 Discussion

23 5.1 $\delta^{18}O_p$ values from the Porrentruy material : palaeoecological indications

24

25 Values of bulk samples (Hybodus and rays) and Ischyodus have a similar range and could 26 reflect either a similar habitat for these groups, or a similar diagenetic alteration. Since they 27 correspond to dentine-bearing samples -i.e. tissues that are more easily altered than 28 enameloid - and given that the dentine samples of Asteracanthus tend to similar values, the 29 least resistant tissue of all these specimens could have been affected by alteration during 30 diagenesis. Diagenetically altered isotopic values for dentine or bone are expected in fossil 31 samples (see Lécuyer et al., 2003; Sharp et al., 2000; Pucéat et al., 2003). Therefore, in order 32 to discuss ancient ecological parameters, we focus on enameloid samples in the rest of the text.

1 The isotopic compositions of Pycnodontiformes and Asteracanthus enameloid samples are 2 considered not to have been altered, partly because of their original histological structure 3 when examined with a microscope, their black-blueish color when subjected to 4 cathodoluminescence, and the generally good preservation potential for enameloid when not 5 recrystallised (e.g. Kohn and Cerling, 2002). The distinct range in values between 6 Asteracanthus and Pycnodontiformes enameloid, both when compared to one another and to 7 dentine-bearing samples within the same group, further supports preservation of original 8 values. Also, the fact that an Asteracanthus enameloid value measured on a tooth is lower 9 than its dentine counterpart from the same tooth shows that the enameloid did not experience intense alteration, unlike the dentine that clearly recrystallised. Entirely altered specimens 10 11 would give a similar value, whatever the tissue analysed. The same can be inferred from the 12 isotopic difference between Asteracanthus and Pycnodontiformes enameloid values, which 13 would be expected to result in similar values if they would have experienced the same 14 diagenetic alteration (see Fischer et al., 2012). Because of these reasons, the significant differences in $\delta^{18}O_p$ values of Asteracanthus and Pycnodontiformes enameloid from 15 16 Porrentruy (Student t-test, $t_{(38)} = 6.36$, p < 0.01) are interpreted as reflecting actual differences 17 in the living conditions rather than in the alteration process (Fig. 4).

Water temperatures calculated with eq. (1) from enameloid $\delta^{18}O_p$ of Pycnodontiformes and 18 19 Asteracanthus differ by 7.4°C (1.6 ‰). The two taxa are found in the same deposits and such 20 a temperature difference is not plausible neither laterally, nor vertically, given that the water 21 depth did not exceed a few tens of meters in the study area (Waite et al., 2013). Most of our Pycnodontiformes $\delta^{18}O_p$ values (18.2 to 21.9 ‰) indicate marine conditions, since they are 22 23 comparable with the isotopic composition measured on several marine vertebrate taxa from 24 the Late Jurassic of western Europe (18.5 to 22.8 ‰) (see Billon-Bruyat et al., 2005; Dromart 25 et al., 2003; Lécuyer et al., 2003). Those values are consistent with the marine conditions indicated by the associated fauna of Porrentruy. When used in the eq. (1), the 26 27 Pycnodontiformes $\delta^{18}O_p$ values give a mean temperature range that is also consistent with the paleogeographical settings of the study site (23.9 ±4.4 °C, n=13). However, the range in 28 29 values is quite wide (see Fig. 4) and can be interpreted as a tolerance to salinity fluctuations 30 for this taxon, since some of those bony fish are known to be euryhaline and are probably 31 poor environmental indicators (Kocsis et al., 2009; Poyato-Ariza, 2005). Semi-confined 32 lagoons induced by local depth differences on the platform and subjected to higher 33 evaporation rates during the dry season would have been characterised by a higher salinity

and thus higher isotopic composition, potentially recorded by Pycnodontiformes. For the lowest value (18.2 ‰), an influence of a slightly reduced salinity cannot be excluded. On the other hand, the highest values can also be interpreted as reflecting a deeper, cooler environment around the platform. The good state of preservation of Pycnodontiformes remains and the presence of several mandibles and tooth palates suggest that the material was not transported over long distances.

7 The preservation of the fine ornamentation of Asteracanthus teeth also suggests that they 8 lived in the vicinity, even if the isotopic composition of Asteracanthus is significantly 9 different from that of Pycnodontiformes. Also, the associated record of several large 10 Asteracanthus fin spines in marly deposits of the Lower Virgula Marls (lagoonal deposits indicating a low-energy context) (see Waite et al., 2013) argues against long distances of 11 12 sediment transport for those relatively large fossils (up to 26.5 cm long), supporting an autochthonous character of this genus. Moreover, the preservation of the root in several 13 14 Asteracanthus teeth - an indication of post-mortem embedding rather than tooth loss in 15 hybodonts (Underwood and Cumbaa, 2010) - also precludes transport. Yet, temperatures 16 obtained with Asteracanthus enameloid samples using the eq. (1) are higher (average 31.3 17 ± 2.9 °C, n=27). This could imply a habitat closer to the sea surface but would then also 18 suggest a possible influence of more evaporative conditions on the oxygen isotope composition of the water with $\delta^{18}O_w$ values higher than the global average used above (*i.e.* -19 20 1 ‰). For example, 0 ‰ as proposed by Lécuyer et al. (2003) for low latitude marginal seas with high evaporation rates. However, higher δ^{18} O values of water would also result in higher 21 22 temperatures calculated with an average of 35.8 °C and a maximum reaching 41.0 °C, which 23 are considered unrealistic. A more consistent explanation is to consider Asteracanthus as living in a freshwater-influenced environment, *i.e.* an environment with a lower $\delta^{18}O_w$ value 24 25 (Fig. 4).

26

27 **5.2** Shark nurseries in reduced salinity environments for *Asteracanthus* ?

Assessing the tooth replacement rate of an extinct shark is difficult, and studies of such rates are scarce (*e.g.* Botella et al., 2009). However, *Asteracanthus* possesses a crushing dentition composed of a rather small amount of large teeth (see figure in Rees and Underwood, 2008, p.136) organised in a relatively low number of files and rows (*sensu* Cappetta, 2012); hence, a relatively slow replacement rate is likely, compared to other sharks with numerous slender,

cuspidated teeth adapted to clutch and tear their prey. This implies that the $\delta^{18}O_p$ values of 1 2 Asteracanthus potentially reflect an average of the surrounding water parameters over a relatively longer growing period. The lower $\delta^{18}O_p$ values of Asteracanthus, compared to 3 4 typical Late Jurassic marine compositions (see data from marine vertebrates of other studies 5 in section 5.1), corresponds either to a constant brackish living environment or to a marine 6 environment with regular excursions into fresh- or brackish waters (or vice-versa). As 7 Asteracanthus remains were not re-sedimented nor transported over long distances, it can be 8 proposed that they partly inhabited the marine realm, as indicated by the associated fauna, but 9 not continuously. Lateral salinity changes are readily caused by rainy winters coupled with an irregular morphology of the platform, creating marked depth differences and lagoons (Waite 10 11 et al., 2013) where the proportion of meteoric water could have been important. However, 12 excursions into more distant brackish/freshwater realms can also be considered. Extant 13 elasmobranchs that occupy different environmental niches during relatively long period of 14 their lives (not necessarily with salinity variations) can do so for different reasons: seasonal 15 environmental changes, reproduction, and development in distinct environment during the first ontogenetic stages (White and Sommerville, 2010). 16

17 More than 130 Asteracanthus teeth were found in the Porrentruy excavation sites. Only 4 of 18 them appeared to be clearly undersized (< 1 cm) (Figure 3). As illustrated in Rees & 19 Underwood (2008, p.136), the size difference between lingual-most and labial-most teeth of 20 any file is quite small in Asteracanthus medius. Even if a stronger heterodonty cannot be 21 excluded for other species of the genus, it seems more likely that the clearly undersized dental 22 material belonged to juvenile individuals. The record of hundreds of submillimetric fish 23 remains such as dermal denticles resulting from sieving of hundreds of kilograms of 24 sediments exclude a taphonomic bias linked to the size of the teeth. Asteracanthus juveniles 25 could have spent the first period of their life in estuaries, rivers or lagoons, sheltered from 26 predators such as crocodilians or the bony fish *Caturus*. Extant euryhaline bull shark females 27 (Carcharhinus leucas) and their juveniles are known to have a similar behaviour (Jenson, 28 1976; Pillans et al., 2005), as is the case for some small hybodont sharks (Fischer et al., 2011; 29 Klug et al., 2010). The location of this environment with reduced salinity remains open, 30 especially since some sharks are known to migrate across very long distances, e.g. the 31 blacktip shark (Castro, 1996). Regarding the fish faunal composition of Porrentruy, salinity 32 fluctuations within the study area cannot be excluded. Two of the most abundant bony fish 33 taxa recorded - Pycnodontiformes and "Lepidotes" - are known to tolerate salinity

fluctuations (Amiot et al. 2010; Kocsis et al., 2009; Poyato-Ariza, 2005). Additionally, 1 2 several chondrichthyan taxa recorded are potential indicators of reduced salinity: the 3 chimaeroid genus Ischyodus was reported in Jurassic freshwater deposits of Russia (Popov 4 and Shapovalov, 2007) and can therefore not be considered as strictly marine. The modern 5 shark Palaeoscyllium, relatively scarce but present in our fossil assemblage, is the oldest 6 modern shark known to tolerate freshwater, so far only in the Cretaceous though (Sweetman 7 and Underwood, 2006). Finally, and as mentioned above, hybodonts and rays are in some 8 cases also linked to reduced salinity conditions (Duffin and Thies, 1997; Thies, 1995). 9 Salinity fluctuations (from pliohaline to brachyhaline) are supported by different ostracods assemblages in the study site (Schudack et al., 2013), yet they overwhelmingly indicate 10 11 brachyhaline conditions in our sample sections.

12

13 In Figure 5, the oxygen isotopic compositions of Pycnodontiformes and Asteracanthus 14 enameloid samples measured in this study are shown for the Porrentruy and Solothurn 15 localities and compared to previously published data from others - mostly older - Swiss, 16 French, and British Jurassic localities (Billon-Bruvat et al., 2005; Dromart et al., 2003; 17 Lécuyer et al., 2003). Generally, the Porrentruy Asteracanthus $\delta^{18}O_{\rm p}$ values – especially in the Late Kimmeridgian - are lower than in other studies, while Pycnodontiformes values are 18 19 comparable. The material from Solothurn (Kimmeridgian) - a locality with similar 20 palaeoenvironment but under Tethyan influence only - shows some affinities with the 21 Porrentruy material, for instance with unusually low oxygen isotope values for several Asteracanthus. The Porrentruy Asteracanthus $\delta^{18}O_p$ values tend to get lower in the Upper 22 23 Kimmeridgian but this trend must be considered with caution due to the relatively small 24 amount of Lower Kimmeridgian samples.

This global comparison suggests that the low $\delta^{18}O_p$ values measured for Asteracanthus here 25 26 are likely linked to the age of the deposits. Interestingly, a tolerance of Asteracanthus to 27 salinity variations has briefly been mentioned by Kriwet (2000), based on its presence in the 28 younger deposits of the Purbeck and Wealden group in southern England (Woodward, 1895). 29 Asteracanthus remains from freshwater deposits are also recorded in the Upper Cretaceous of 30 Sudan (Buffetaut et al., 1990). The present data indicate an adaptation to a wider salinity 31 range through time and in the Kimmeridgian already, maybe in response to the spectacular 32 diversification of modern sharks in the marine realms of Western Europe at the end of the 33 Jurassic (Cuny and Benton, 1999). Also, the shallow-water platform of NW Switzerland may have somehow represented a shelter for the hybodonts, still dominating the shark fauna around Porrentruy. The high sea-level in the Kimmeridgian (Hardenbol et al., 1998) could have opened new niches in shallow-water environments that was influenced by freshwater run-offs. These new living places could have provided shelter and nursery ground for *Asteracanthus*.

This is the first isotopic evidence of a euryhaline ecology for the large, durophagous shark *Asteracanthus*, classically considered as marine (Agassiz, 1843; Rees and Underwood, 2006,
2008).

9

10 6 Concluding remarks

11 1. Most of the $\delta^{18}O_p$ values of enameloid measured in the hybodont shark *Asteracanthus* are 12 too low to reflect fully marine conditions.

13 2. Comparisons with geochemical data of older European Jurassic localities confirm the 14 unusual character of the Asteracanthus isotopic compositions measured in the material from 15 this study. This new freshwater-influenced isotopic composition of Asteracanthus is likely 16 linked to a change in its ecology through geologic time, as suggested by similar results 17 obtained with Kimmeridgian material from Solothurn. The Kimmeridgian transgression (i.e. 18 opening of new shallow-water niches) (see Fig. 2) and probably competing stress from 19 quickly diversifying neoselachians could have played an important role in the adaptation to 20 brackish and freshwater realms.

3. A predominantly marine ecology is proposed for *Asteracanthus*, combined with regular
excursions into freshwater/brackish environments, possibly for reproduction purposes
considering the rarity of juvenile material in the marine, depositional environment.

24

25 Acknowledgements

We thank the PAL A16 team for making available the fossil material, as well as precious field details, geological data and figures, and also for inspiring discussions. The photographs of the material were kindly taken by Bernard Migy and Olivier Noaillon. We really appreciate the help of S. Thüring from the Natural History Museum of Solothurn for providing additional fossil material for comparative purposes and the assistance of scientists and technicians at the University of Fribourg (B. Grobéty, A. Foubert, P. Dietsche) for preparing tooth thin-sections and making available microscopes. Thank you to G. Cuny for his help in the identification of the fossil material. We also want to thank C. Meier for details on the stratigraphy of Solothurn. Thank you to M. Hechenleitner for his help in finalising this paper. The authors are also grateful for the constructive comments of two reviewers, J. Fischer and R. Amiot. This study was funded by the Section d'archéologie et paléontologie (Canton Jura) and the Federal Road Office from Switzerland. L.K. received support from the Swiss National Science Foundation (SNF PZ00P2_126407) while this research was conducted.

8

9 References

- Agassiz, L. J. R.: Recherches sur les poissons fossiles, Volume 5, Imprimerie de Petipierre,
 Neuchâtel, 1843.
- 12 Amiot, R., Wang, X., Lécuyer, C., Buffetaut, E., Boudad, L., Cavin, L., Ding, Z., Fluteau, F.,

13 Kellner, A. W. a, Tong, H. and Zhang, F.: Oxygen and carbon isotope compositions of middle

- Cretaceous vertebrates from North Africa and Brazil: Ecological and environmental
 significance, Palaeogeogr. Palaeoclimatol. Palaeoecol., 297(2), 439–451,
 doi:10.1016/j.palaeo.2010.08.027, 2010.
- Anquetin, J., Püntener, C. and Billon-Bruyat, J.-P.: A taxonomic review of the Late Jurassic
 eucryptodiran turtles from the Jura Mountains (Switzerland and France), PeerJ, 2, e369,
 doi:10.7717/peerj.369, 2014.
- Billon-Bruyat, J.-P., Lécuyer, C., Martineau, F. and Mazin, J.-M.: Oxygen isotope
 compositions of Late Jurassic vertebrate remains from lithographic limestones of western
 Europe: implications for the ecology of fish, turtles, and crocodilians, Palaeogeogr.
 Palaeoclimatol. Palaeoecol., 216(3-4), 359–375, doi:10.1016/j.palaeo.2004.11.011, 2005.
- Botella, H., Valenzuela-Ríos, J. I. and Martínez-Perez, C.: Tooth replacement rates in early
 chondrichthyans: A qualitative approach, Lethaia, 42(3), 365–376, doi:10.1111/j.15023931.2009.00152.x, 2009.
- 27 Buffetaut, E., Bussert, R. and Brinkman, W.: A new nonmarine vertebrate fauna in the Upper
- 28 Cretaceous of northern Sudan, Berliner Geowissenschaftlische Abhandlungen, A 120(1),
 29 183–202, 1990.
- 30 Cappetta, H.: Chondrichthyes. Mesozoic and Cenozoic Elasmobranchii: Teeth, Dr. Friedr.,
- 31 edited by H.-P. Schultze, Handbook of Paleoichthyology, Volume 3E, Munich, 2012.

- Castro, J. I.: Biology of the blacktip shark, *Carcharhinus limbatus*, off the southeastern
 United States, Bull. Mar. Sci., 59(3), 508–522, 1996.
- 3 Colombié, C. and Rameil, N.: Tethyan-to-boreal correlation in the Kimmeridgian using high-
- 4 resolution sequence stratigraphy (Vocontian Basin, Swiss Jura, Boulonnais, Dorset), Int. J.
- 5 Earth Sci., 96(3), 567–591, doi:10.1007/s00531-006-0117-3, 2007.
- 6 Comment, G., Ayer, J. and Becker, D.: Deux nouveaux membres lithostratigraphiques de la
- 7 Formation de Reuchenette (Kimméridgien, Ajoie, Jura suisse) Nouvelles données
- 8 géologiques et paléontologiques acquises dans le cadre de la construction de l'autoroute A16
- 9 (Transjurane), Swiss Bull. für Angew. Geol., 16(1), 3–24, 2011.
- 10 Cuny, G. and Benton, M. J.: Early radiation of the neoselachian sharks in western Europe,
- 11 Geobios, 32(2), 193–204, 1999.
- 12 Dromart, G., Garcia, J.-P., Gaumet, F., Picard, S., Rousseau, M., Atrops, F., Lécuyer, C. and
- 13 Sheppard, S. M. F.: Perturbation of the carbon cycle at the Middle/Late Jurassic transition:
- 14 geological and geochemical evidence, Am. J. Sci., 303(October), 667–707, 2003.
- Duffin, C. J. and Thies, D.: Hybodont shark teeth from the Kimmeridgian (Late Jurassic) of
 northwest Germany, Geol. Palaeontol., 31, 235–256, 1997.
- Fischer, J., Voigt, S., Schneider, J. W., Buchwitz, M. and Voigt, S.: A selachian freshwaterfauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries, J.
- 19 Vertebr. Paleontol., 31(5), 937–953, 2011.
- 20 Fischer, J., Voigt, S., Franz, M., Schneider, J. W., Joachimski, M. M., Tichomirowa, M.,
- 21 Götze, J. and Furrer, H.: Palaeoenvironments of the late Triassic Rhaetian Sea: Implications
- 22 from oxygen and strontium isotopes of hybodont shark teeth, Palaeogeogr. Palaeoclimatol.
- 23 Palaeoecol., 353-355, 60–72, doi:10.1016/j.palaeo.2012.07.002, 2012.
- Halas, S., Skrzypek, G., Meier-Augenstein, W., Pelc, A. and Kemp, H.F. Inter-laboratory
 calibration of new silver orthophosphate comparison materials for the stable oxygen isotope
- analysis of phosphates. Rapid Commun. Mass Spectrom. 25, 579–584, 2011.
- 27 Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P.-C. and Vail, P. R.:
- 28 Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins:
- 29 Mesozoic-Cenozoic Sequence, Stratigr. Eur. Basins SEPM Spec. Publ., 60, 3-13 and 763-
- 30 781, 1998.

- 1 Jank, M., Meyer, C. and Wetzel, A.: Late Oxfordian to Late Kimmeridgian carbonate deposits
- 2 of NW Switzerland (Swiss Jura): Stratigraphical and palaeogeographical implications in the
- 3 transition area between the Paris Basin and the Tethys, Sediment. Geol., 186(3-4), 237–263,
- 4 doi:10.1016/j.sedgeo.2005.08.008, 2006.
- Jenson, N. H.: Reproduction of the Bull Shark, *Carcharhinus leucas*, in the Lake NicaraguaRio San Juan System, Investig. Ichthyofauna Nicar. Lakes, 40, 539–559, 1976.
- Klug, S., Tütken, T., Wings, O., Pfretzschner, H. and Martin, T.: A Late Jurassic freshwater
 shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin,
 Xinjiang, Northwest China, Palaeobiodiversity and Palaeoenvironments, 90, 241–257,
 doi:10.1007/s12549-010-0032-2, 2010.
- 11 Koch, P. L., Tuross, N. and Fogel, M. L.: The Effects of Sample Treatment and Diagenesis on
- 12 the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite, J. Archaeol. Sci., 24, 417–
- 13 429, 1997.
- Kocsis, L.: Geochemical compositions of marine fossils as proxies for reconstructing ancient
 environmental conditions, Chimia, 65, 787–791, 2011.
- Kocsis, L., Vennemann, T. W. and Fontignie, D.: Migration of sharks into freshwater systems
 during the Miocene and implications for Alpine paleoelevation, Geology, 35(5), 451–454,
 doi:10.1130/G23404A.1, 2007.
- 19 Kocsis, L., Ősi, A., Vennemann, T., Trueman, C. N. and Palmer, M. R.: Geochemical study
- 20 of vertebrate fossils from the Upper Cretaceous (Santonian) Csehbánya Formation (Hungary):
- 21 Evidence for a freshwater habitat of mosasaurs and pycnodont fish, Palaeogeogr.
- 22 Palaeoclimatol. Palaeoecol., 280(3-4), 532–542, doi:10.1016/j.palaeo.2009.07.009, 2009.
- Kohn, M. J. and Cerling, T. E.: Stable Isotope Compositions of Biological Apatite, in
 Phosphate: Geochemical, Geobiological, and Materials Importance. Mineralogy and
 Geochemistry, Volume 48. Mineralogical Society of America Reviews, vol. 4, pp. 455–488.,
 2002.
- Kolodny, Y., Luz, B. and Navon, O.: Oxygen isotope variations in phosphate of biogenic
 apatites: fish bone apatite rechecking the rules of the game, Earth Planet. Sci. Lett., 64, 398–
 404, 1983.
- Kriwet, J.: The fish fauna from the Guimarota mine, in Guimarota A Jurassic Ecosystem,
 edited by T. Martin and B. Krebs, pp. 41–50, Munich, 2000.

- Kriwet, J. and Klug, S.: Diversity and biogeography patterns of Late Jurassic neoselachians
 (Chondrichthyes: Elasmobranchii), Geol. Soc. London, Spec. Publ., 295(1), 55–70,
 doi:10.1144/SP295.5, 2008.
- 4 Lécuyer, C., Picard, S., Garcia, J.-P., Sheppard, S. M. F., Grandjean, P. and Dromart, G.:
- 5 Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: Evidence from
- 6 $δ^{18}$ O values of marine fish teeth, Paleoceanography, 18(3), 16, doi:10.1029/2002PA000863,
- 7 2003.
- 8 Lécuyer, C., Amiot, R., Touzeau, A. and Trotter, J.: Calibration of the phosphate δ^{18} O
- 9 thermometer with carbonate–water oxygen isotope fractionation equations, Chem. Geol., 347,
- 10 217–226, doi:10.1016/j.chemgeo.2013.03.008, 2013.
- Longinelli, A. and Nuti, S.: Oxygen isotope measurements of phosphate from fish teeth and
 bones, Earth Planet. Sci. Lett., 20, 337–340, 1973.
- Maisey, J. G., Naylor, J. P. and Ward, D. J.: Mesozoic elasmobranchs, neoselachian
 phylogeny and the rise of modern elasmobranch diversity. In: Arratia, G. and Tintori, A.
 (eds): Mesozoic Fishes 3 Systematics, Paleoenvironments and Biodiversity. Proceeding of
 the international meeting Serpiano, 2001. Verlag Dr. Friedrich Pfeil, München, p. 17-56,
 2004.
- Marty, D.: Sedimentology, taphonomy, and ichnology of Late Jurassic dinosaur tracks from
 the Jura carbonate platform (Chevenez-Combe Ronde tracksite, NW Switzerland): insights
 into the tidal-flat palaeoenvironment and dinosaur diversity, locomotion, and palaeoecology,
 GeoFocus, 21, 278 pp., 2008.
- Marty, D. and Billon-Bruyat, J.-P.: Field-trip to the excavations in the Late Jurassic along the
 future Transjurane highway near Porrentruy (Canton Jura, NW Switzerland): dinosaur tracks,
 marine vertebrates and invertebrates, in 5th International Symposium on Lithographic
 Limestone and Plattenkalk, pp. 94–129., 2009.
- 26 Marty, D., Ayer, J., Becker, D., Berger, J.-P., Billon-Bruyat, J.-P., Braillard, L., Hug, W. A.
- 27 and Meyer, C.: Late Jurassic dinosaur tracksites of the Transjurane highway (Canton Jura,
- 28 NW Switzerland): overview and measures for their protection and valorisation, Bull. für
- 29 Angew. Geol., 12, 75–89, 2007.
- 30 Müller, M. K.: The fish fauna of the Late Jurassic Solothurn Turtle Limestone (NW
- 31 Switzerland), Swiss J. Geosci., 104(S1), 133–146, doi:10.1007/s00015-011-0061-5, 2011.

- O'Neil, J. R., Roe, L. J., Reinhard, E. and Blake, R. E.: A rapid and precise method of oxygen
 isotope analysis of biogenic phosphate, Isr. J. Earth Sci., 43(203-212), 1994.
- Philippe, M., Billon-Bruyat, J.-P., Garcia-Ramos, J. C., Bocat, L., Gomez, B. and Piñuela, L.:
 New occurrences of the wood *Protocupressinoxylon purbeckensis* Francis: implications for
 terrestrial biomes in southwestern Europe at the Jurassic/Cretaceous boundary, Palaeontology,
 53(1), 201–214, doi:10.1111/j.1475-4983.2009.00926.x, 2010.
- Pillans, R. D., Good, J. P., Anderson, W. G., Hazon, N. and Franklin, C. E.: Freshwater to
 seawater acclimation of juvenile bull sharks (*Carcharhinus leucas*): plasma osmolytes and
 Na⁺/K⁺-ATPase activity in gill, rectal gland, kidney and intestine, J. Comp. Physiol. B., 175,
 37–44, doi:10.1007/s00360-004-0460-2, 2005.
- Popov, E. V. and Shapovalov, K. M.: New finds of chimaeroid fishes (Holocephali,
 Chimaeroidei) from the Jurassic of European Russia, in Modern Russian paleontology: classic

13 and newest methods, vol. C, edited by A. Y. Rozanov, pp. 25–44, Paleontological Institute,

- 14 Russian Academy of Sciences, Moscow, 2007.
- Poyato-Ariza, F. J.: Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and
 a new interpretation of their evolutionary history, Bull. Kitakyushu Museum Nat. Hist. Hum.
 Hist., A(3), 169–184, 2005.
- Pucéat, E., Lécuyer, C., Sheppard, S. M. F., Dromart, G., Reboulet, S. and Grandjean, P.:
 Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope
 composition of fish tooth enamels, Paleoceanography, 18(2), 1-12,
 doi:10.1029/2002PA000823, 2003.
- Püntener, C., Billon-Bruyat, J.-P., Bocat, L., Berger, J.-P. and Joyce, W. G.: Taxonomy and
 phylogeny of the turtle *Tropidemys langii* Rütimeyer, 1873, based on new specimens from the
 Kimmeridgian of the Swiss Jura Mountains, J. Vertebr. Paleontol., 34(2), 353–374,
 doi:10.1080/02724634.2013.804412, 2014.
- Püntener, C., Anquetin, J. and Billon-Bruyat, J.-P.: *Thalassemys bruntrutana* n. sp., a new
 coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland), and the
 paleobiogeography of the Thalassemydidae, PeerJ, 3, e1282, doi:10.7717/peerj.1282, 2015.
- 29 Rees, J. and Underwood, C. J.: Hybodont sharks from the Middle Jurassic of the Inner
- 30 Hebrides, Scotland, Trans. R. Soc. Edinb. Earth Sci., 96, 351–363, 2006.

- Rees, J. and Underwood, C. J.: Hybodont sharks of the English Bathonian and Callovian
 (Middle Jurassic), Palaeontology, 51(1), 117–147, doi:10.1111/j.1475-4983.2007.00737.x,
 2008.
- 4 Schaefer, K.: Variabilité de la morphologie dentaire des crocodiliens marins (Thalattosuchia)
- 5 du Kimméridgien d'Ajoie (Jura, Suisse), M.S. thesis, University of Fribourg, Switzerland,
 6 111 pp., 2012.
- Schudack, U., Schudack, M., Marty, D. and Comment, G.: Kimmeridgian (Late Jurassic)
 ostracods from Highway A16 (NW Switzerland): taxonomy, stratigraphy, ecology, and
 biogeography, Swiss J. Geosci., 106(2), 371–395, doi:10.1007/s00015-013-0138-4, 2013.
- 10 Shackleton, N. and Kennett, J. P.: Paleotemperature history of the Cenozoic and the initiation

of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281,

- 12 Initial Reports Deep Sea Drill. Proj., 29, 743–756, 1975.
- 13 Sharp, Z. D., Atudorei, V. and Furrer, H.: The effect of Diagensis on oxygen isotope ratios of
- 14 biogenic phosphates, Am. J. Sci., 3000, 222–237, 2000.
- Stahl, B. J.: Chondrichthyes III. Holocephali, Dr. Friedr., edited by H.-P. Schultze, Handbook
 of Paleoichthyology, Volume E, Munich, 1999.
- Sweetman, S. C. and Underwood, C. J.: A Neoselachian shark from the non-marine Wessex
 Formation (Wealden Group: Early Cretaceous, Barremian) of the Isle of Wight, southern
 England, Palaeontology, 49, 457–465, 2006.
- Thies, D.: Placoid scales (Chondrichthyes: Elasmobranchii) from the Late Jurassic
 (Kimmeridgian) of northern Germany, J. Vertebr. Paleontol., 15(3), 463–481, 1995.
- Underwood, C. J.: Sharks, rays and a chimaeroid from the Kimmeridgian (Late Jurassic) of
 Ringstead, Palaeontology, 45(2), 297–325, 2002.
- 24 Underwood, C. J.: Environmental controls on the distribution of neoselachian sharks and rays
- 25 within the British Bathonian (Middle Jurassic), Palaeogeogr. Palaeoclimatol. Palaeoecol.,
- 26 203, 107–126, doi:10.1016/S0031-0182(03)00663-1, 2004.
- 27 Underwood, C. J. and Cumbaa, S. L.: Chondrichthyans from a Cenomanian (Late Cretaceous)
- 28 bonebed, Saskatchewan, Canada, Palaeontology, 53(4), 903-944, doi:10.1111/j.1475-
- 29 4983.2010.00969.x, 2010.

- 1 Underwood, C. J. and Rees, J.: Selachian faunas from the Earliest Cretaceous Purbeck Groups
- 2 of Dorset, Southern England, Spec. Pap. Palaeontol., 68, 107–19, 2002.
- Underwood, C. J. and Ward, D. J.: Neoselachian sharks and rays from the British Bathonian
 (Middle Jurassic), Palaeontology, 47(3), 447–501, 2004.
- 5 Vennemann, T., Hegner, E., Cliff, G. and Benz, G. W.: Isotopic composition of recent shark
- teeth as a proxy for environmental conditions, Geochim. Cosmochim. Acta, 65(10), 1583–
 1599, 2001.
- 8 Vennemann, T. W., Fricke, H. C., Blake, R. E., O'Neil, J. R. and Colman, A.: Oxygen isotope
- 9 analyses of phosphates: a comparison of techniques for analysis of Ag₃PO₄, Chem. Geol.,
 10 185, 321–336, 2002.
- 11 Waite, R., Marty, D., Strasser, A. and Wetzel, A.: The lost paleosols: Masked evidence for 12 emergence and soil formation on the Kimmeridgian Jura platform (NW Switzerland),
- 13Palaeogeogr. Palaeoclimatol. Palaeoecol., 376, 73–90, 2013.
- 14 White, W. T. and Sommerville, E.: Elasmobranchs of Tropical Marine Ecosystems, in Sharks
- and their relatives II Biodiversity, adaptive Physiology, and Conservation, edited by J. C.
- 16 Carrier, J. A. Musick, and M. R. Heithaus., pp. 160-200, CRC Press, London New York,17 2010.
- 18 Woodward, A. S.: Catalogue of the fossil fishes in the British Museum (Natural History),
- 19 British Museum (Natural History) Dept. of Geology, 1889-1901.
- 20

Figure 1. Paleogeographical map of the study site and surroundings (Late Kimmeridgian,
modified from Comment et al., 2011). CH = Switzerland, paleolatitude of Porrentruy = ~
30°N. Emerged land is outlined, darker grey corresponds to deeper water. *Upper left corner:* present-day geographical position of Porrentruy (A) and other European
sites (•) of previously published studies and providing geochemical data compared in Fig. 5.
The shaded square delimits the area detailed in the palaeogeographical map.

Figure 2. Simplified stratigraphic profile of the Porrentruy area with third order orbital cycle
and section yielding the studied chondrichthyan material. Numbers indicate geological age in
millions of years. SB = sequence boundary, ts = transgressive surface, mfs = maximum
flooding surface.

Figure 3. Fossil material from the study site of Porrentruy. A: Teeth of *Asteracanthus. Left*:
adult specimen (SCR010-1125). *Right*: juvenile specimen (SCR004-221) to scale and
magnified. Occlusal (top) and lateral (bottom) views. B: Left prearticular bone of
Pycnodontiformes with teeth (specimen SCR010-1204). Photographs by PAL A16.

1 2 Figure 4. Graphic representation of the $\delta^{18}O_p$ values (average, standard deviation, end 3 members) measured for Porrentruy in this study and their corresponding water temperature 4 using the eq. (1). Comparable water temperatures for all taxa require different $\delta^{18}O_w$ values, which relate to salinity. Bulk and dentine values might have suffered diagenesis. Note the 5 6 strong difference between $\delta^{18}O_w$ of Pycnodontiformes and Asteracanthus enameloid values 7 (i.e. distinct palaeoenvironments) when similar ecological T is assumed. The wide value 8 range of Pycnodontiformes indicates a tolerance to salinity fluctuations occurring within the 9 platform, and possibly a living area broader than the shallow-marine platform. No attempt to define the final $\delta^{18}O_w$ values or water temperatures is made here. 10

Figure 5. Comparison of $\delta^{18}O_p$ values (average, standard deviation, end members) of Pycnodontiformes and *Asteracanthus* enameloid samples from Porrentruy, Solothurn and other European localities through time. The stratigraphical position is approximate and corresponds to Early, Middle, Late divisions of each stage. The approximate geographical

- 1 positions of previously studied localities (Dromart et al., 2003; Lécuyer et al., 2003; Billon-
- 2 Bruyat et al., 2005) are shown in Fig. 1. Detailed localities and stratigraphic positions are
- 3 available in the supplementary material.