The authors appreciate the valuable comments from the reviewers and the editor on our
 manuscript. Our point by point response to these comments is listed below.

3

4 Reviewer #1

5	General comments The aims of the paper were to evaluate (1) the influence of root diameter
6	on the root economics spectrum (RES) and (2) that the root chemical traits (C, N) vary across
7	branch orders. Recently it has been argued that roots should be categorized based on their
8	function or order with the architecture more than that based on a diameter cutoff, typically 2
9	mm (see McCormack et al 2015). The distal roots, called absorptive, could be considered as a
10	main group because of their position in the root system. The authors would like to
11	demonstrate this is not the case and that absorptive roots could follow different patterns. The
12	authors consider that a RES exists in plants in general, but it has not been yet demonstrated
13	at large scales (see debates given by Mommer & Weenstra 2012, Reich 2014 or Bardgett et al
14	2015). Defining a RES needs to observe similar traits syndromes related to resource
15	acquisition and conservation in a large number of species. In the present study only a limited
16	number of traits (mainly chemical and anatomy) for 7 species were measured. For these
17	reasons the title gives a false message of the paper and RES should be removed from the title.
18	Additional traits related to resource acquisition (SRL, SRA) in order to confirm the
19	separation between thin and thick roots are expected. In addition the size of cortex (root EC)
20	seems to be a promising trait more than diameter itself, as it drives values of root tissue
21	density (RTD), C and N. But this trait has not been enough underlined in the hypotheses.
22	Similarly for mycorrhiza colonization as it seems to contrast thin and thick absorptive roots.

I consider this paper addresses relevant scientific questions within the scope of BG and presents novel data on absorptive roots by considering separation of thin and thick based on diameter. However the attractive title does not reflect the data shown. The conclusions should take into account this point of view.

27

Response: We appreciate the constructive comments on our manuscript. In this manuscript,
we aim to provide a new perspective on the commonly accepted root economics spectrum.
We hope our findings of different economics strategies for thin and thick absorptive roots
may be instructive for our understanding the emerging debate on the existence of 'root
economics spectrum'.

33 We also acknowledge that there is a big problem of this study, testing a big topic of root 34 economics spectrum using only a few species. This is the main reason why we used the data 35 of 96 species in another study for validation of our perspective. Interestingly, the results of 36 reanalyzing data of 96 species are consistent with our primarily results from a few species. 37 Although the results of both datasets support our perspective on economics strategies in 38 absorptive roots, we argue in the revised version that it is only a first-step in further 39 elucidating root economics spectrum (Line 389-390 in the revised version). Findings of this study may arouse many interests of ecologists in this field. Additionally, we have changed the 40 41 title with a new one, 'Economic strategies for plant absorptive roots vary with root diameter'. 42 The new title may be more suitable for this study.

43	As the reviewer concerns, the number of root traits measured in our study is relative small.
44	However, traits used in this study represent key aspects of root morphology (i.e., diameter,
45	root tissue density), chemicals (i.e., C and N fractions) and anatomy (i.e., EC) that are closely
46	related to resource acquisition in absorptive roots. Further, our perspective is supported by the
47	results of three suits of root trait relationships (root N-root tissue density, root tissue
48	density-root C fractions, root EC-root C and N fractions). As such, we feel that our
49	perspective is reasonable and ecologically meaningful.
50	In the revised version, we haven't covered root EC in the 'introduction' section. The reason
51	for this is that the main focus of the introduction is on effects of root diameter on root
52	economics strategies. Root EC emerges as a proxy for the size of root diameter. Therefore, we
53	feel that it may be proper to introduce the term 'root EC' in the 'material and method' section,
54	and there we also explain why we introduced this new term (Line 196-199). On the other
55	hand, we feel that the reviewer's suggestion of giving the term of root EC in the introduction
56	section may lie in the fact that there are other types of plant species, i.e., monocots, for which
57	the area of root stele is much larger than the area of root EC (see the reviewer's comment
58	below). Unfortunately, our study did we haven't included such species in our study. However,
59	the reviewer's suggestion of these species is important for extrapolation of our results.
60	Therefore, we have added some new text on this topic in the Discussion (Line 358-364).
61	Further, in the summary section we explicitly suggest that future studies should stress on
62	species such as monocots (Line 391).

63	In this study, we haven't included mycorrhizal colonization rate. Despite mycorrhizal
64	colonization rate can be quantified to some extent (i.e. the percentage of root length or total
65	number of roots infected with mycorrhizal fungi), it is very difficult to accurately determine
66	resource acquisition rate through mycorrhizal fungi. Additionally, there are usually many
67	different mycorrhizal fungi species even in a single absorptive root which also adds to
68	hardness of precisely determining resource acquisition through this pathway. Therefore,
69	mycorrhizal colonization rate may not be a very meaningful trait in our studies on root
70	economics strategies.

We haven't included SRL in our analysis. This is because diameter-related root traits 71 including SRL and root anatomical structures have been found to be closely correlated and 72 73 constitute a key ecological dimension for absorptive roots (see Kong et al. 2014). However, in 74 responses to your comment,, we have now included a figure showing the relationship between SRL and thickness of root EC for absorptive roots for the current study and 96 species for our 75 76 previous study (see Fig. S6 of the revised manuscript). The relationships are both strong and 77 consistent for the two dataset. In the relationships, SRL co-varied with root EC in thin roots whereas SRL remained constantly small for thick roots. SRL is also a trait related to resource 78 79 absorption in roots. Therefore, the small SRL of thick roots as well as limited root branching (Baylis 1975; Fitter 2004 in New Phytologist) may suggest these roots may depend less on 80 roots for resource absorption and nutrient foraging but instead depend more on symbioses 81 with, for example,, i.e., mycorrhizal fungi, for nutrient foraging. This idea has been supported 82 by some early and recent studies (St John 1980; Eissenstat et al. 2015; Liu et al. 2015). The 83

84 different foraging strategies for thin and thick absorptive roots may suggest them potentially

85 having different economics strategies when foraging nutrient.

reviewer's concerns, in the summary section we suggest that more traits and trait relationships
as well as more species should be investigated in future studies to further the ideas proposed
in our study.

94

95 Specific comments Choice of the measured root traits. It is surprising that for absorptive 96 roots (distal part of root system including apices) the authors did not measure specific root 97 length or root surface area, nor mycorrhiza colonization, traits considered to be linked with 98 resource acquisition whereas the chosen traits (anatomy, chemical) are more related to 99 transport or construction cost. How can you estimate acquisition strategy with such traits? Root tissue density is more related to construction cost of tissue (mainly stele, see Wahl &
Ryser 2000) and not to resource acquisition.

102

103 Response: The anatomical and chemical traits apart from SRL and mycorrhizal colonization are also key traits closely related to resource acquisition in plant roots. These traits have been 104 105 shown to form a trait syndrome, the diameter-related trait dimension or ecological axis (Kong 106 et al. 2014). Therefore, the traits we examined in this study, although not including all root 107 traits, may represent key aspects of resource acquisition and preservation in absorptive roots. 108 We admit that root tissue density is a trait directly reflecting construction cost of root 109 tissues. However, the construction costs may be associated with root lifespan (see Eissenstat 110 et al. 2000. 'Building roots in a changing environment: implications for root longevity'). For 111 example, following cost-benefit theory, it is not economic for roots with higher construction 112 cost to live shorter. Therefore, roots with higher construction cost may have longer lifespan 113 while roots with lower construction cost may have shorter lifespan. On the other hand, root 114 activity may also be affected by root tissue density (i.e., Picon-Cochard et al 2012. Plant and 115 Soil, 353:47-57). For example, higher root tissue density may result from thickened cell walls 116 or more secondary tissues which can cause reduced root activity. Therefore, we argue that 117 root tissue density can influence resource acquisition and preservation and hence is a key trait 118 of root economics strategies.

119 Regarding, SRL and mycorrhizal colonization, see our response to the general comments120 of the reviewer.

122	Root diameter in driving root trait spectra. Comments on two sentences given page
123	13044, line 21-22: "Traits syndrome for thicker absorptive roots would differ from the
124	predictions of faster acquisition and shorter lifespan"; and page 13044, line 23-24: "This
125	highlights the importance of discriminating the thicker for the thinner absorptive roots when
126	exploring root strategies". I agree but this is because in case of your species thick roots have
127	higher proportion of cortex than thin roots while for other species including monocots this is
128	the opposite. What is then important is the proportion of cortex in the surface area, more than
129	the diameter per se. Thus the link between diameter and lifespan is not applicable.

130

Response: Our study unfortunately did not included species like monocots with stele size 131 132 larger than cortex size. The size of root diameter has been found to be contributed more by the size of cortex than stele in many species (see Gu et al. 2014 in Tree Physiology, Kong et al. 133 134 2014 in New Phytologist, and the current study). However, in species like monocots, the size 135 of stele rather than cortex dominates the size of root diameter or root cross section area. Even though there is no much known about root lifespan in monocots, we speculate that thick roots 136 137 in monocots may also have longer lifespan than thin roots because the construction of thick 138 roots are usually more costly than the construction of thin roots. Therefore, it is possible that 139 monocot roots also show a positive diameter-lifespan relationship but with the slope or R square different than the included in our study. 140

141	For species like monocots, the stele rather than the cortex dominates the size of root
142	diameter or root cross-section area. In the steles of monocots, besides the vascular conduits
143	there are many parenchyma cells that may serve the storage function and potentially alter root
144	trait relationships. However, as there is few data in this regard, we canno't make further
145	inference. Anyway, we appreciate these valuable comments. In the revised manuscript, we
146	have taken these species into account in the discussion section (Line 358-364).
147	

149	Furthermore, the presence of mycorrhiza in thick roots also changes the capacity of the roots
150	to uptake nutrients, independently of their morphology. Thus defining a RES with/without
151	mycorrhiza should be explored.

153	Response: It has been acknowledged that thick roots depend mainly on mycorrhizal fungi for
154	resource acquisition (see Baylis 1975, Kong et al. 2014, Eissenstat et al. 2015 in New
155	Phytologist). The great dependence on mycorrhizal fungi may be one of the reasons of no
156	acquisition-conservation tradeoff in thick roots. However, we know little about how
157	mycorrhizal fungi alter the trait relationships in these thick roots. Unfortunately, assessment
158	of resource acquisition through mycorrhizal fungi is beyond the scope of our current study.
159	See also our response to the general reviewer comment. In the revised version, we also
160	advocate that mycorrhizal fungi in thick roots should be emphasized in future studies for

better understanding the nature the 'non-economic' strategy in thick absorptive roots (Line394-396).

164	Page 13044, line 24-25: Contrary to the sentence, the effect of root diameter in driving root
165	traits spectra has been tested in monocots (see Drouet et al 2005. European Journal of
166	Agronomy, 22:185–193 ; Picon-Cochard et al 2012. Plant and Soil, 353:47–57; and see
167	Zobel. 2003. New Phytologist, 160:276–279).

169	Response: We thank the review for providing these important references. We note these
170	papers have explored the effects of root diameter on root trait spectra. However, roots used in
171	these study do not all belong to absorptive roots, and hence comparisons would be not be
172	ecologically meaningful. For example, thick roots in Picon-Cochard et al. (2012) referred to
173	shoot-born roots which may be similar to the higher-order roots in this study.
174	As in our previous studies, there is significant heterogeneity between these shoot-born roots
175	and root-derived roots (roots produced from shoot-born roots), and the shoot-born roots are
176	less active than root-born roots, see Kong et al. (2010 Plant and Soil). We speculate that the
177	shoot-born roots in Picon-Cochard et al. (2012) may not be the dominant parts of absorptive
178	roots or be weakly absorptive relative to the abundant and active root-derived roots. Therefore,
179	although root diameter effects have been explored in monocots and other species (i.e., Prieto

180	et al., 2015), roots in those studies may not be the real absorptive roots or the dominant part of
181	absorptive roots. Anyway, we appreciate reminding of studies in monocots.
182	In the revised version, we have edited the sentence and use "aware of few previous" instead
183	of "unaware of any previous" in the corresponding sentence (Line 75-76).
184	
185	Methods. Page 13046, line 6-12: precise if all species hold mycorrhiza
186	
187	Response: Correct. Yes, the species examined in this study hold mycorrhiza and we have
188	added this information in this line (Line 121-122).
189	
190	Page 13047, line 1-2: Precise if the roots collected in plastic bags were washed or not before
191	or after freezing. This is important for chemical analyses.
192	
193	Response: Root samples for chemical analyses haven't been washed when they were put in
194	plastic bags and transported in a cooler. Before chemical measurements, root samples were
195	washed in deionized water. The procedure of root sampling and collection followed previous
196	studies, i.e., Pregitzer et al. (2002 Ecological Monographs) and Guo et al. (2008 New
197	Phytologist). In the revised manuscript, we have added more detailed information on how we
198	processed the root samples (Line 134-136).

199	
199	

200	Page 13047, line 7: The type and company of the stereomicroscope should be given
201	Response: we have added information of the stereomicroscope in the revised manuscript.
202	
203	Page 13048, line 1-2: determination of absorptive roots should be developed a bit even
204	always described earlier.
205	
206	Response: We have added detailed information for determination of the absorptive roots in
207	these seven species (Line 163-166).
208	
209	Page 13048, line 25: "root EC": why there is no link with hypotheses?
210	
211	Response: In light of the first hypothesis, we test different economic strategies with root
212	diameter. Here, we use root EC to indicate the size of root diameter. We then separate the thin
213	and thick absorptive roots according to the thickness of root EC. In the sentences following
214	line 25, we have given reasons for using of root EC in this study. In this way, the 'root EC'
215	could be indirectly related to the hypothesis in this study.

217	Page 13049, line 9: 247_m for root EC: have you tested the normal distribution of fig S1a,
218	because it seems there are 2 groups, 250-300_m being in the middle.
219	
220	Response: Yes, we do test the normal distribution of the data in Fig. S1a. The statistical test
221	shows that the frequency distribution in Fig. S1a has no difference from normal distribution
222	(P =0.995). In other words, they follow exactly the normal distribution. We have also supplied
223	this information in the revised manuscript (Line 207-208; Line 224-225).
224	
225	Page 13049, line 16: Moving average analyses should be more described as there are
226	different methods
227	
228	Response: We have added detailed information about procedures used for moving average
229	analysis in the revised manuscript (Line 213-216).
230	
231	Page 13049, line 17: a point is missing between fit and No.
232	
233	Response: We appreciate this careful comment on this error. We have added a point between
234	fit and No.
235	

236	Results. thin vs thick absorptive roots: thick roots do not follow the same pattern as
237	thin one: in conclusion can you consider that thick roots are still absorptive roots? The
238	use of RES is not correct in your work (see comments above).
239	
240	Response: Our results show that thick absorptive roots may not follow similar patterns as the
241	thin absorptive roots. However, these thick roots are still thick absorptive roots as indicated
242	by their anatomical structures. For these thick roots, they have been reported to have a
243	different nutrient foraging strategy, i.e., depending mainly on mycorrhizal fungi rather than
244	roots themselves.
245	
246	Fig S3: different symbols between thin and thick should be shown
247	
248	Response: In the revised manuscript, Fig. S3 in previously submitted version has been

changed to Fig. S4. In this figure, we have provided relationships between extractive C

fraction and root tissue density for both thin and thick absorptive roots, using different

symbols for thin and thick roots. Furthermore, we have also added a figure for the relationship

between the recalcitrant C fraction (sum of acid-soluble and acid-insoluble fractions) and root

tissue density. The new figure (Fig. S4) more clearly shows the difference between thin and

249

250

251

252

253

254

thick roots in these trait relationships.

256	Discussion. Page 13052, line 8-10: fig S1 shows distribution of root EC thickness for your
257	species and previous work, but the two distributions seem to be different not similar. The
258	comparison of your dataset with previous studies (supplementary material) raises more
259	questions than answers. For example, fig S1: the two distributions seem different.

261	Response: We respectfully disagree with the reviewer that comparison of our dataset with
262	previous studies raises more questions than answers. Yes, the distributions of root EC are
263	different for species of the current study and the previous study. Presentation of the two
264	different distributions mainly aims to explain why cutoff points between thin and thick
265	absorptive roots are different for the two datasets. Root EC of our current study follow a
266	normal distribution, and then we use the average root diameter (root EC=247 $\mu m)$ as the
267	cutoff point. While for the data of 96 species from our previous study, they follow a skewed
268	normal distribution with a bias towards thin absorptive roots. In the case of skewed normal
269	distribution, the cutoff point based on average of root EC may cause bias on separating thin
270	and thick absorptive roots. Therefore, for this dataset, we use a cutoff point (root EC=182.8
271	μ m) corresponding to the transition of mycorrhizal colonization. As such, the frequency
272	distributions are used to justify selection of different cutoff points for the two datasets.
273	Although we provide limited approaches to separate thin and thick absorptive roots, a range
274	of difference for the two root groups has increasingly been revealed (i.e., Baylis 1975; St John
275	1980; Eissenstat et al. 2015; Liu et al. 2015). The difference of economic strategies between

thin and thick absorptive roots may add further evidence for the claim of different entity for
the two root groups. On the other hand, we acknowledge that there is no commonly accepted
cutoff point to separate thin and thick absorptive roots. We hope new ways to discriminate the
two root groups may be developed in future studies.

280

281 **Reviewer #2**

282 General comments

283 This is an interesting study on the relationships between root diameter and root strategies for 284 resource acquisition. This study is based on seven contrasting tree species from tropical and 285 subtropical forest, and a range of root traits to test (1) the influence of root diameter on the 286 root economic spectrum and (2) the influence of root branch order on root C and N fractions. 287 The gradient of plant trait variation, called economic spectrum, has been found world-wide describing the existence of a fundamental tradeoff between acquisition and conservation of 288 resources in plant species. However, our knowledge of below-ground trait variation and their 289 290 economics remains limited and inconsistent (Chen et al., 2013; Bardgett et al., 2014; Poorter 291 et al., 2014; Reich, 2014). Consequently, the aim of this study is very relevant. But the authors 292 only used 7 seven three species from tropical and subtropical forests, which is inadequate and 293 quite ambitious to extent this study to the root economic spectrum as indicated in the title. The 294 choice of plant species and root traits are justified but this study will gain in interest with 295 more vegetation types to test the root economic spectrum as announced by the title. More 296 chemical traits implied in root absorption would have been appreciated to test the hypothesis

297	and to gain more insight of root absorption strategies for nutrient capture as expected. The
298	authors wanted to demonstrate the importance of the cortex and epidermis thickness in the
299	root absorption strategy, which seem to be an important root trait for future research in root
300	ecophysiology. Although this study is interesting, it does not correspond to the title. This
301	manuscript is well written but some more proofreading would have been appreciated to avoid
302	few mistakes. Consequently, some parts should be rewrite and correct to improve the quality
303	of the manuscript.

305	Response: We appreciate these pertinent comments on our manuscript. As the reviewer
306	concerns, it is a bit ambitious to test the idea of root economics spectrum using only a few
307	plant species and root traits. This weakness of a few species included has been appreciated in
308	our study. To overcome the weakness, we reanalyze a dataset of 96 species from one of our
309	previous studies. Results of this reanalysis are largely consistent with our current study.
310	Therefore, results of the two datasets both support our hypothesis of different economic
311	strategies for thin and thick absorptive roots. See also our responses to Reviewer #1.
312	After carefully consideration of the reviewer's concerns, we feel that the conclusion of our
313	previous version is too strong. In this revised version, we have toned down our statements
314	(see, for example, Lines 33-36, 389-390) and we have adopted reviewer's suggestion for a
315	more appropriate new title: 'Economic strategies for plant absorptive roots vary with root
316	diameter'. This new title better reflects the scope of our study. Furthermore, in the current
317	version, we argue that results of our study present an instructive perspective for understanding

318	economics strategies in absorptive roots rather than a final conclusion on the existence of the
319	root economics spectrum. We hope the findings of this study are interesting to stimulate more
320	future research in this field by including more species and root traits.
321	We apologize for errors in grammar, phrasing and citations in previously submitted version.
322	We have carefully checked in the revised version.
323	
324	Specific comments
325	Page 13043, line 6: It would have been appreciated to read more details on the studied
326	vegetation in the abstract. Could the authors specify which kind of plant species are
327	considered in this study and where they come from ?
328	
329	Response: We have added the information in the revised version (Line 27).
330	
331	Introduction is clear but few references are missing in the 'Reference' section, while more
332	references would have been appreciated to justify the choice of root traits.
333	
334	Response: We have supplied some important and recent reference on root traits, i.e. Roumet
335	et al. (2006), Bardgett et al. (2014), Eissenstat et al. (2015).

337	Material and Methods are too concise and sometimes informal. Some parts of the 'Material
338	and Methods' section should be rewrite to improve the clarity of the work realized.
339	
340	Response: We note that some parts of the "Material and Methods" are too few. We have
341	supplied more detailed information in this section (see, for example, Lines 163-166, 169-172,
342	184-186, 213-216). We are grateful for reminding of the missing information. Further, we
343	have revised much of text of the Materials and Methods in order to improve clarity. A revised
344	version with tracked change has been provided to make clear the changes we have made.
345	
346	Methods use to separate thin and thick roots should be better explained and easy to
347	reproduce to gain in interest and to ensure the repeatability of this work among studies.
348	
349	Response: We have thoroughly revised the Methods section, better explaining how we
350	separated between thin and thick roots (see, for example, Line 223-233) We also give a
351	detailed response to a similar question following this one (see the latter part of this response
352	letter).
353	
354	In addition, some important details are missing to gain in clarity on the representativeness of

the root subsamples used for root trait measurements.

2	5	6
Э	J	υ

357	Response: We feel that the reviewer may concern about procedure for root chemical
358	measurements. In our study, root samples were ground not by hand but by an automatic mill
359	(ZM200, Retsch, Germany) and well mixed for homogeneity before chemical measurements.
360	We have added this information in revised manuscript (Line 169-172).
361	
362	In addition, I suggest to use the passive form and remove few parts of the 'Statistical analysis'
363	paragraph to the Results section to improve the quality of the text.
364	
365	Response: We follow this suggestion and use the passive form in the section of Statistical
366	analysis. However, respectfully, we decided to not move 'the few parts in this section' to the
367	'Results' section. We feel that these parts present details of the methods and our arguments
368	for amploying these statistical analyses. These are not the real results after the data analyses
	for employing these statistical analyses. These are not the real <i>results</i> after the data analyses.
369	Anyway, we appreciate the reviewer for this comment.
369 370	Anyway, we appreciate the reviewer for this comment.
369 370 371	Anyway, we appreciate the reviewer for this comment. <i>Page 13046, line 22: Could the author specify the root mass or fraction of subsample</i>
369 370 371 372	 Page 13046, line 22: Could the author specify the root mass or fraction of subsample collected to gain more insight of the subsample representativeness.

374	Response: We appreciate reminding of details for preparing root samples before chemical
375	measurements. We did not measure the exact weight of the subsamples, but we are confident
376	that the subsamples were representative. In our study, root samples have been ground not by
377	hand but by an automatic mill (ZM200, Retsch, Germany) and well mixed for homogeneity
378	for chemical measurements. We have added the information in the revised version (Line
379	171-172).

Page 13047, line 8: It is very surprising to measure the root length with a tape whereas high
efficient image software would have been more precise to analyses the root length and the
root diameter. Could the authors justify this choice?

384

385	Response: The authors thank for the suggestion of "high efficient image software" method
386	for root length measurements. In this study, we only used a measuring tape for measuring
387	length of relatively long roots For relative short roots, we used a stereomicroscope with an
388	ocular micrometer (± 0.025 mm). We have added this information in this corresponding
389	sentence (Line 142-143). The combination of using a stereomicroscope and measuring tape
390	has been commonly used in previous studies (e.g., Guo et al. (2008_New Phytologist).

391

Page 13047, line 24 : This work is very long and impressive, I suggest to insert root slices
pictures of the seven species in Supplement.

395	Response: Great suggestion! We have supplied some pictures to show the absorptive and
396	non-absorptive roots. See the new Fig. S1. Here, we have provided pictures for E. chinense
397	and C. chinensis, and for pictures of the other species we refer to Long et al. (2013).
398	
399	Page 13048, line 1 : As the study deals on root order and thin vs. thick roots, it would have
400	been appreciated to briefly describe the determination of absorptive roots.
401	
402	Response: We have revised this sentence and given t more detailed information on the
403	classification of absorptive roots (Line 163-166).
404	
405	Page 13048, lines 4 - 21 : Only two fractions are defined in the Introduction (labile vs.
406	recalcitrant fractions). Could the author unify the terms used in the introduction with the
407	following parts to gain in clarity?
408	
409	Response: Thanks for the suggestion. As pointed out by the reviewer, only two fractions of
410	root carbon are referred to in the introduction while three root carbon fractions are measured
411	in the chemical analyses section. To improve clarity, we have classified extractive C as the
412	labile C fraction and the other two C fractions, the acid-soluble and acid-insoluble C fractions,

413	as the recalcitrant fraction. We have added a sentence to explain this in the Methods section
414	(Lines 184-186).
415	
416	Page 13048, lines 10 - 13 : Parenthesis are missing.
417	
418	Response: Corrected.
419	
420	Page 13048, line 17 : Please, could the authors correct the sentence.
421	
422	Response: We have corrected the sentences.
423	
424	Page 13048, line 25 and Page 13049, line 21 : It is also very surprising to introduce a new
425	root trait and new set of plant species at the end of this Material & Method section. It would
426	have been appreciated to present the additional plant species in the 'Plant species and
427	sampling site' section.
428	
429	Response: In this study, we have introduced a new root trait, root EC referring to the tissues
430	outside the stele including root cortex and epidermis. We have also given explanations for the
431	using of this trait in our study (see the text for details).

Regarding the 'additional plant species': We feel it is not appropriate to introduced this set of
plant species in the "Plant species and sampling site" section. This is because these additional
species were sampled as part of our previous study (Kong et al. 2014). In the current study,
we *reanalyzed* them from this previous study to validate our results.

Page 13049, lines 9 and 23 : The cutting point between the thick and thin absorptive roots
should be introduced earlier in the text. This study will gain in clarity by better explaining
how thin and thick absorptive root are determined, and by using a common cutting point
between the studied plant species and the additional set of 96 plant species. Could the authors
explain why the cutting point was not similar between the two set of plant species ?

442	Response: The reason for the different cut-off points is the different frequency distribution
443	of the two datasets. For species of the current study, root EC follows a normal distribution,
444	while for the 96 species of the previous study, data of root EC follows a skewed normal
445	distribution with a bias towards thin root species. In the case of skewed normal distribution,
446	using the average of root EC as the cutoff point may cause bias on separating thin and thick
447	roots. Therefore, we used 182.8 μm root EC as a cutoff to separating thin and thick roots for
448	the 96 species. This cutoff point also corresponds to the functional transition from lower to
449	higher mycorrhizal colonization when increasing root diameter (see Kong et al. 2014;
450	Eissenstat et al. 2015; Liu et al. 2015). See also our response to the comments of reviewer #1.
451	In addition, we note that there has been no commonly accepted cutoff point to separate thin
452	from the thick absorptive roots. In this study, separation of thin and thick roots is based on 23

453 frequency distribution as well as root mycotrophy. The methods used here represent one kind
454 of strategies to discriminate the two root groups. We also hope that more convenient and
455 precise ways will be developed in future studies.

456

457 Results section are too concise and would have been easier to understand by presenting first 458 the effects of plant species on the measured root traits before presenting the root strategies 459 and root trait relationships. In addition, it would have been appreciated to see the regression 460 lines on the Figures presenting root traits relationships, and a multivariate analysis to better 461 synthesize the results and to clearly understand the trade-offs between root strategies 462 presented in this study.

464	Response: We appreciate these comments by the reviewer. However, the results actually
465	track the main findings of this study, first describing the results related to Hypothesis 1 and
466	then the results related to Hypothesis 2. As such, we are somewhat hesitant changing the
467	order. In the revised version, we have added regression lines in the figures. We appreciate
468	the suggestion of multivariate analyses. However, multivariate analyses are often based on
469	linear relationships. This may not be suitable for traits of chemical fractions that are usually in
470	non-linearly relationships with root tissue density. On the other hand, although multivariate
471	analyses could somehow synthesize the findings of our study, we feel that adding more results
472	would make the manuscript too long. In our study, the bivariate trait relationships are

473	arranged as three	e pieces of s	support for ou	ar perspective of	different	economic	strategies for
-----	-------------------	---------------	----------------	-------------------	-----------	----------	----------------

474 thin and thick absorptive roots. Anyways, we appreciate these valuable suggestions.

475

476 Page 13050, lines 14 and 19 : What does 'medium', 'higher' and 'lower' mean ? Please,
477 could the authors specify the thresholds used ?

478

479	Response: The "lower", "medium" and "higher" refer to root tissue density. They are used to
480	indicate relative size of root tissue density. Here, we do not aim to clearly present definition
481	of "lower", "medium" and "higher" root tissue density. These terms are used for comparisons
482	only in discussing relationships of root C fractions with root tissue density (see, for example,
483	Line 302-306 in the discussion of the revised version).

484

Supplement, line 20 : It is very surprising to modify the dataset. Please, could the author
explain why they removed some points to arrange the results ?

487

Response: Two outliers are removed in analysis of thick absorptive roots for the dataset of 96 species. This is because the relationship between root tissue density-root N concentration in these thick roots is greatly influenced by the two outliers. For example, the relationship is significant (R^2 =0.24, *P*=0.01) when including these two data points, but not significant (R^2 =0.025, *P*=0.45) when excluding them. These values may represent rare cases and can lead to inflated error rates and distoration of
statistic estimates and as such inappropriately affect the overall results. We have added these
justifitions to the supplemenatry information.

496

497 Discussion : Conclusions of this study seem to be highly influenced by the methods used to
498 separate thin and thick roots, and the definition of C and N fractions as well, which imply to
499 better define these traits in the 'Introduction' and 'Material and Methods' sections.

501	Response: As in the revised "statistical analyses" section, we clearly justify the separation of
502	thin and thick absorptive roots. Although there are no commonly accepted criteria for
503	classifying thin and thick absorptive roots, we feel that our method to separate these roots
504	may not greatly influence conclusion of this study. This is because reanalysis of the previous
505	96 species also demonstrate different trait relationships between the two root groups.
506	Therefore, our perspective, despite based on results of a relative few species, may not be a
507	biased but rather a common rule. Moreover, it has been revealed recently that thin and thick
508	absorptive roots do follow different nutrient foraging strategies: the thin ones depend mainly
509	on roots themselves and the thick ones depend on mycorrhizal fungi (see Eissenstat et al.
510	(2015_New Phytologist), and Liu et al. (2015_New Phytologist)). The different foraging
511	strategies for the thin and thick absorptive roots suggest that they potentially have different
512	economics strategies when foraging for nutrient.

513	Our definition and measurements of these C and N fractions has been used in previous
514	studies, i.e., Fan and Guo (2010) and Xiong et al. (2013). These chemical fractions are
515	physiologically and ecologically important (see the introduction section). For example, the
516	recalcitrant fractions are energy costly in chemical synthesis and are usually used for
517	structural tissues such as cell walls, vascular conduit and fibers. For plant organs like leaves
518	and roots, greater investments in recalcitrant fractions can result in them less active (see Feng
519	et al. (2009 PNAS), Eissenstat and Achor (1999)). In this study, our discussion on these
520	chemical fractions and hence the perspective on root economic strategies are based on these
521	commonsense of chemical fractions. Therefore, the definition of C and N fraction may not
522	greatly affect our conclusion.
523	
524	Page 13050, lines 20 - 27 : Discussion of the root traits relationships should be better
525	supported by showing the regression lines, which are not obvious to see on the presented
526	figures.
527	
528	Response: We have added the regression lines for these figures.
529	
530	
531	

532	As there are many questions from the two reviewers (see the above response letter), we
533	have not prepared a list of all the change we made in the revised manuscript. All the
534	relative change in the revised manuscript can be found in our point by point response to
535	the reviewers. The lines where we have made a change are also indicated in the response
536	letter. Additionally, the change for this revised version can be found in the following
537	marked-up manuscript.

539	Economic strategies for plant absorptive roots vary with root diameter The root		
540	economics spectrum: divergence of absorptive root strategics with root diameter		
541	Deliang Kong ^{1,2*} , Junjian Wang ³ , Paul Kardol ⁴ , Huifang Wu ⁵ , Hui Zeng ⁶ , Xiaobao Deng ¹ ,		
542	Yun Deng ¹ -		
543			
544	¹ Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan,		
545	China		
546	² College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang,		
547	China		
548	³ Belle W. Baruch Institute of Coastal Ecology & Forest Science, Clemson University,		
549	Georgetown, South Carolina, USA		
550	⁴ Department of Forest Ecology and Management, Swedish University of Agricultural		
551	Sciences, Ume å Sweden		
552	⁵ School of Life Sciences, Henan University, Kaifeng, China		
553	⁶ Key Laboratory for Urban Habitat Environmental Science and Technology, Peking		
554	University Shenzhen Graduate School, Shenzhen, China		
555			
556	Author for correspondence:		
557	Tel: +86-024-88487163, Fax: +86-024-88492799		
558	E-mail: deliangkong1999@126.com	带格式的	: 字体:

561	Plant roots usually typically vary along a dominant ecological axis, the root economics
562	spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For
563	absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that
564	root economic strategies as predicted from the RES shift differ with increasing root diameter.
565	To test this hypothesis, we used seven contrasting plant species (a fern, a conifer, and five
566	angiosperms from south China) for which we separated absorptive roots into two categories:
567	thin roots (thickness of root cortex plus epidermis < 247 µm-diameter) and thick roots. For
568	each category, we analyzed a range of root traits elosely related to resource acquisition and
569	conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as
570	root anatomical traits. The results showed significant relationships among root traits
571	indicating an acquisition-conservation tradeoff that trait relationships for thin absorptive roots
572	followed the expectations from the RES while no clear such trait relationships were found
573	in support of the RES-for thick absorptive roots. Similar results were found when reanalyzing
574	data of a previous study including more species. Our results suggest The contrasting
575	economic strategies between thin and thick absorptive roots, as revealed here, may provide a
576	new perspective on our understanding of the root economics spectrum. divergence of
577	absorptive root strategies in relation to root diameter, which runs against a single economics-
578	spectrum for absorptive roots.
579	
580	Key-words: chemical fractions, plant functional traits, root diameter, root economics
581	spectrum, root tissue density

Abstract

F	ο	2
Э	0	2

583	1 Introduction	
584	Plant traits reflecting a tradeoff between resource acquisition and conservation represents an	
585	essential ecological axis for plant strategies that is important for our understanding of how	
586	plants drive ecosystem processes and ecosystem responses to environmental change	
587	Cornwell et al., 2008; Freschet et al., 2010; Reich, 2014; Westoby et al., 2002). On the one	域代码已更改
588	end of this ecological axis, there are species with an acquisitive strategiesy, i.e., fast	
589	acquisition of resources (e.g., CO ₂ for leaves and nutrients for roots) accompanied with a	
590	short lifespan. On the other end of the axis, there are species with a conservative strategiesy,	
591	i.e., slow resource acquisition accompanied with a long lifespan. Originally, such an	
592	ecological axis has been demonstrated for leaves, which is widely known as the leaf	
593	economics spectrum (Diaz et al., 2004; Osnas et al., 2013; Wright et al., 2004). More recently,	域代码已更改
594	similar trait spectra have been demonstrated across plant organs from leaves to stems and	
595	roots, thus forming a whole 'plant economics spectrum' (Freschet et al., 2010; Laughlin et al.,	域代码已更改
596	2010; Prieto et al., 2015; Reich, 2014)	
597	Resource acquisition in plant roots is performed by absorptive roots, i.e., the first two or	
598	three orders of a root branch with primarily-developed tissues which are only a part of the	
599	commonly used <u>category of "</u> fine roots <u>"</u> (< 2mm in diameter) (Guo et al., 2008; Long et al.,	域代码已更改
600	2013; Pregitzer et al., 2002). For absorptive roots, the tissue density, i.e., root dry mass per	
601	unit root volume, is a key trait of the root economics spectrum (RES) as tissue density is	
602	closely linked to the acquisition-conservation tradeoff (Bardgett et al., 2014; Birouste et al.,	域代码已更改
603	2014; Craine et al., 2005; Espeleta et al., 2009; Mommer and Weemstra, 2012; Roumet	

604	Catherine et al., 2006). In general, absorptive roots with higher tissue density are slower in	
605	nutrient acquisition and longer in lifespan whereas absorptive roots with lower tissue density	
606	may enable faster acquisition but maintain a shorter lifespan (Ryser, 1996; Wahl and Ryser,	域代码已更改
607	2000; Withington et al., 2006). Recently, tissue density for absorptive roots was found to	
608	negatively correlate with root diameter. This could be because root cortex is less dense than	
609	root stele and because in thicker roots a larger proportion of the root cross-sectional area is	
610	accounted for by the cortex (Chen et al., 2013; Kong et al., 2014; Kong and Ma, 2014). On	域代码已更改
611	the other hand, compared with thinner absorptive roots, thicker absorptive roots may acquire	
612	resources faster because of their greater dependence on mycorrhizal fungi (Eissenstat et al.,	域代码已更改
613	2015; Kong et al., 2014; Kong and Ma, 2014; St John, 1980), and may also have a longer	
614	lifespan due to the larger diameter (Adams et al., 2013; Eissenstat and Yanai, 1997; Wells and	域代码已更改
615	Eissenstat, 2001). As such, the trait syndrome for thicker absorptive roots would differ from	
616	the predictions of faster acquisition and shorter lifespan. This highlights the importance of	
617	discriminating the thicker from the and thinner absorptive roots when exploring root strategies.	
618	However, we are unaware of any previous few studies that have tested for effects root	
619	diameter in driving root-trait economics spectra in absorptive roots.	
620	In addition to structural traits such as density, the chemical composition of absorptive roots	
621	may constitute another important aspect of testing root strategies in relation root diameter	
622	(Hidaka and Kitayama, 2011; Meier and Bowman, 2008; Poorter and Bergkotte, 1992;	域代码已更改
623	Poorter et al., 2009). For example, carbon (C) and nitrogen (N), the two most abundant	
624	elements in plant tissues, are usually bound to organic compounds which may contain labile	
625	fractions (e.g., soluble sugars and proteins in living cells) and recalcitrant fractions (e.g.,	

626	cellulose and lignin in structural tissues) (Atkinson et al., 2012; Berg and McClaugherty, 2008;	
627	Feng et al., 2009; Poorter et al., 2009; Shipley et al., 2006). Generally, absorptive roots with	
628	less labile C and more labile N indicate an acquisitive strategy. This is because high root	
629	activity may be accompanied by an increased production of metabolism-related proteins with	
630	a high labile N content; such roots may be palatable for herbivores and have a relative short	
631	lifespan. On the other hand, conservative roots have contain less labile C and N fractions as	
632	more of these chemicals are used for construction of structural tissues resulting in lower root	
633	activity and a longer lifespan. However, compared with thinner absorptive roots, thicker	
634	absorptive roots may have higher labile C and N fractions as these labile fractions can be	
635	stored in their thick root cortex (Chapin III, 1980; Long et al., 2013; Lux et al., 2004;	
636	Withington et al., 2006). As such, the chemical traits of thicker absorptive roots integrate	
637	'opposing' effects of root metabolism and storage suggesting them having neither a true	
638	acquisitive nor a true conservative strategy. Therefore, to evaluate the impact of thickness on	
639	root economic strategies it is necessary to examine C and N fractions in relation to root	
640	diameter.	
641	Here, we selected a variety of plant species common to tropical and subtropical forests in	
642	south China with contrasting phylogeny and root structure. The aim of our study was two-fold.	
643	First, we examined the influence of root diameter on the root economics- <u>strategies</u> spectrum-	
644	(RES) in absorptive roots. We hypothesized that the root economic strategies diverge differ	
645	between thinner and thicker absorptive roots, with trait relationships indicating a trade-off-	
646	between-acquisitive-andconservative_trade-off traits for thinner roots but not not for ticker	
647	roots. The hypothesis was tested using a series of trait relationships involving both structural 33	

域代码已更改

域代码已更改

648	and chemical traits. Second, root C and N fractions, have been suggested to vary in predictive	
649	ways across branch orders (Fan and Guo, 2010; Goebel et al., 2011). However, we	域代码已更改
650	hypothesized that patterns of root C and N fractions across branch orders differ in species	
651	varying in absorptive root diameter.	
652		
653	2 Materials and methods	
654	2.1 Plant species and sampling sites	
655	We selected seven plant species with contrasting phylogeny and root structure (Table S1) in	
656	tropical and subtropical forests in south China. Three species were sampled at the Heshan	
657	Hilly Land Interdisciplinary Experimental Station (22°41'N, 112°54'E), Guangdong province.	
658	The speciesy were: Dicranopteris dichotoma (Gleicheniaceae) (a fern), Cunninghamia	
659	lanceolata (Taxodiaceae) (a conifer) and Acacia auriculiformis (Leguminosae) (a tree).	
660	Another tree species, Paramichelia baillonii (Magnoliaceae), was sampled in Wutongshan	
661	National Forest Park (22°27'-22°52'N, 113°37'-114°37'E) in Shenzhen, Guangdong province.	
662	Three other tree species, Gordonia axillaris (Theaceae), Endospermum chinense	
663	(Euphorbiaceae) and Cryptocarya chinensis (Lauraceae), were sampled in Jianfengling	
664	Nature Reserve (18°23'-18°50'N, 108°36'-109°05'E), Hainan province. Roots of these species	
665	are mycorrhizas. More information on sites and species can be found in Long's study (Long et	域代码已更改
666	al., 2013) and Table S1 and Long et al. (2013) .–	
667		
668	2.2 Root sampling	带格式的: 字体:(中 Gothic
669	Roots were collected at a soil depth of 0-10 cm in June and July 2011. For each species, at	

文) MS

670	least three mature trees were selected. We first tracked the main lateral roots by carefully	
671	removing surface soil at the base of each plant with a specially manufactured fork. Root	
672	branch order was defined according to Pregitzer's study with the most terminal branch as the	
673	first-order (Pregitzer et al., 2002)-with the most terminal branch as the first order. The intact	域代码已更改
674	roots were collected and soil adhering to the roots was carefully removed. We distinguished	
675	all four root orders for <i>D. dichotoma</i> and the first five orders for the other species. A portion	
676	of each root sample was immediately put into Formalin-Aceto-Alcohol (FAA) solution (90 ml	
677	100% ethanol, 10 ml 100% glacial acetic acid) for later anatomical assessment. The remaining	
678	unwashed part of each root sample was placed in a plastic bags and transported in a cooler to	
679	the laboratory. These root samples were then frozen until measurements of root morphology	
680	and chemistry (Pregitzer et al., 2002).	域代码已更改
681		
682	2.3 Root tissue density	带格式的: 字体:(中文)MS Gothic
682 683	2.3 Root tissue density For each species, 50 root segments for the first order, 30 segments for the second order, and	带格式的: 字体: (中文) MS Gothic 带格式的: 正文, 定义网格后不调 整石缩进, 无孤行控制, 不调整 西文与中文之间的空格, 不调整 中文和教空之间的空格, 不调整
682 683 684	 2.3 Root tissue density. For each species, 50 root segments for the first order, 30 segments for the second order, and 20 segments for the third to the fifth order were randomly picked for measuring root diameter 	带格式的: 字体: (中文) MS Gothic 带格式的: 正文, 定义网格后不调 整石缩进, 无孤行控制, 不调整 西文与中文之间的空格, 不调整 中文和数字之间的空格
682 683 684 685	 2.3 Root tissue density. For each species, 50 root segments for the first order, 30 segments for the second order, and 20 segments for the third to the fifth order were randomly picked for measuring root diameter and length. <u>Depending on root size</u>. The root diameter was measured under a 40× or 20× 	 带格式的:字体:(中文) MS Gothic 带格式的: 正文,定义网格后不调 整右缩进,无孤行控制,不调整 西文与中文之间的空格,不调整 中文和数字之间的空格
682 683 684 685 686	 2.3 Root tissue density, For each species, 50 root segments for the first order, 30 segments for the second order, and 20 segments for the third to the fifth order were randomly picked for measuring root diameter and length. Depending on root size, Tthe root diameter was measured under a 40× or 20× stereomicroscope (MZ41-2B, MshOt, Guangzhou, China)depending on root size. The length 	带格式的: 字体:(中文) MS Gothic 带格式的: 正文,定义网格后不调整右缩进,无孤行控制,不调整 西文与中文之间的空格,不调整 中文和数字之间的空格 带格式的: 字体:(默认) Times New Roman,(中文) MS Gothic,小 四,字体颜色:自动设置
682 683 684 685 686 686	 2.3 Root tissue density. For each species, 50 root segments for the first order, 30 segments for the second order, and 20 segments for the third to the fifth order were randomly picked for measuring root diameter and length. Depending on root size, Tthe root diameter was measured under a 40× or 20× stereomicroscope (MZ41-2B, MshOt, Guangzhou, China)depending on root size. The length of comparatively short roots was assessed using a stereomicroscope with an ocular. 	带格式的: 字体: (中文) MS Gothic 带格式的: 正文, 定义网格后不调 整右缩进, 无孤行控制, 不调整 西文与中文之间的空格, 不调整 中文和数字之间的空格 带格式的: 字体: (默认) Times New Roman, (中文) MS Gothic, 小 四, 字体颜色: 自动设置 带格式的: 字体: (中文) MS Gothic
 682 683 684 685 686 687 688 	 2.3 Root tissue density, For each species, 50 root segments for the first order, 30 segments for the second order, and 20 segments for the third to the fifth order were randomly picked for measuring root diameter and length. Depending on root size, Tthe root diameter was measured under a 40× or 20× stereomicroscope (MZ41-2B, MshOt, Guangzhou, China)depending on root size. The length of comparatively short roots was assessed using a stereomicroscope with an ocular. micrometer (±0.025 mm) while a measuring tape with the minimum scale of 0.5 mm was 	带格式的:字体:(中文) MS Gothic 带格式的:正文,定义网格后不调整右缩进,无孤行控制,不调整西文与中文之间的空格,不调整中文和数字之间的空格 中文和数字之间的空格 帶格式的:字体:(默认)Times New Roman,(中文) MS Gothic,小四,字体颜色:自动设置 带格式的:字体:(中文) MS Gothic 帶格式的:字体:(中文) MS Gothic 帶格式的:字体:(中文) MS Gothic 行格式的:字体:(中文) MS Gothic
 682 683 684 685 686 687 688 688 689 	 2.3 Root tissue density	带格式的: 字体: (中文) MS Gothic 带格式的: 正文, 定义网格后不调 整右缩进, 无孤行控制, 不调整 西文与中文之间的空格, 不调整 中文和数字之间的空格 带格式的: 字体: (默认) Times New Roman, (中文) MS Gothic, 小 四, 字体颜色: 自动设置 带格式的: 字体: (中文) MS 带格式的: 字体: (中文) MS Gothic 带格式的: 字体: (中文) MS Gothic 带格式的: 字体: (中文) MS Gothic
 682 683 684 685 686 687 688 689 690 	 2.3 Root tissue density, For each species, 50 root segments for the first order, 30 segments for the second order, and 20 segments for the third to the fifth order were randomly picked for measuring root diameter and length. Depending on root size, Tthe root diameter was measured under a 40× or 20× stereomicroscope (MZ41-2B, MshOt, Guangzhou, China)depending on root size. The length of comparatively short roots was assessed using a stereomicroscope with an ocular. micrometer (±0.025 mm) while a measuring tape with the minimum scale of 0.5 mm was used for relatively long roots (Guo et al., 2008). After root diameter and length were recorded, roots were oven-dried at 65 °C for 48 h and weighed. Root tissue density was calculated by 	带格式的: 字体: (中文) MS Gothic 带格式的: 正文, 定义网格后不调 整石缩进, 无孤行控制, 不调整 西文与中文之间的空格, 不调整 中文和数字之间的空格 带格式的: 字体: (默认) Times New Roman, (中文) MS Gothic, 小 四, 字体颜色: 自动设置 带格式的: 字体: (中文) MS 带格式的: 字体: (中文) MS Gothic 带格式的: 字体: (中文) MS Gothic

2014). In addition, specific root length (SRL) was calculated as the root length divided by its

带格式的: 字体: 10 磅

694

695 **2.4 Root anatomy**

dry mass.

Root segments from the FAA solution were cleaned with deionized water (4 °C) and then 696 697 transferred to glass Petri dishes for dissection into different branch orders. Root anatomy was 698 determined according to Long et al. (2013)following the procedure of Long's study (Long etal., 2013). Briefly, a minimum of 10 root segments were randomly chosen for each root order. 699 700 All root segments were dehydrated in an ethanol solution series to absolute ethanol, purified 701 in 100% xylene and embedded in paraffin. Root cross-sections were then cut into slices of 8_ 702 µm thick using a microtome (Rotary Microtome KD-2258, Zhejiang, China). After 703 deparaffinage, these root slices were stained first by safranine and then by fast green. 704 Following this staining procedure, the cortex and epidermis was in blue and the stele was in 705 red. The root slices were then photographed by a light microscope (Carl Zeiss Axioscop 20, 706 Jena, Germany). The size of anatomical structures including epidermis, cortex and stele was 707 measured using Image J software (NIH Image, Bethesda, MD, USA). The determination of **a**<u>A</u>bsorptive roots in a root branch wereas defined based on root anatomy (Guo et al., 2008). 708 709 Here, root orders were classified as absorptive roots when they had no or little secondary xylem Long's study (Long et al., 2013). Specifically, absorptive roots referred to the first two 710 orders for D. dichotoma, the first three orders for A. auriculiformis, G. axillaris, C. lanceolata, 711 712 E. chinense and C. chinensis, and the first four orders for P. baillonii, respectively (Fig. S1) 713

 域代码已更改

 带格式的:字体:(中文)宋体, (中文)中文(中国)

 带格式的:字体:(中文)宋体, (中文)中文(中国)

而,	111 ,	、 (日	的	: ()	子 中	は す文	(中	日又) 国)	7	₹11₽,	小
带 四,	格	式非	的 倾	: 斜	字 [,]	体: (中)	(「 文)	中文) 中プ	文 (י	₹体, 中国	小)
带 冲 四,	格	式非	的 倾	: 斜	字 [,]	体: (中)	(「 文)	中文) 中プ	文 (י	₹体, 中国	小)
带 四,	格	式 (月	的 中プ	: ()	字中	体: 1文	」) (中	Þ文) 国)	床 i	₹体,	小
带 倾	格斜	式 ,	的 (月	: לי	字 [,] C)	体: 中	□) 文(户文) 中国	沫)	<体,	非
带 倾	格斜	式 ,	的 (月	: לי	字 [,] ()	体: 中	□) 文(户文) 中国	,))	₹体,	非
714 2.5 Chemical analyses

715	The frozen root samples were put into deionized water to carefully remove any soil particles
716	or dead organic matter that adhered to but was not a part of the root (Pregitzer et al., 2002).
717	The samples of each root branch order were then oven-dried (65 °C for 24 h), milled (ZM200,
718	Retsch, Germany), and mixed homogeneously for chemical analyses. Root C and N
719	concentrations were determined using an element analyzer (VarioEl, Elementar
720	Analysen-systeme GmbH, Germany). Root C fractions (extractive _a ; acid-soluble fraction _a ;
721	acid-insoluble fraction) were determined by a sulfuric acid digestion method. First, we
722	separated the extractive and labile C fraction from other C fractions. A submilled powder-
723	sample of c. 100 mg (m_0) was extracted with 15 ml of cetyl trimethylammonium bromide
724	(CTAB) solution for 3 h, filtered, repeatedly washed with de-ionized water until pH was 7.0,
725	and then oven-dried at 60 $^{\circ}$ C to a constant weight, (m ₁). Second, the filtered residue was
726	digested with 30 ml of-sulfuric acid (72 %) at 22 °C for 3 h, filtered, repeatedly washed (until
727	pH was 7.0), dried and weighed, (m_2) . After the acid-digestion step, the ash content, (m_3) , was
728	determined by combusting 15-30 mg of sample at 550 $^{\circ}$ C for 4 h. Finally, the extractive_
729	fraction, acid-soluble fraction, and acid-insoluble fraction were calculated as 100% \times
730	$(m_0-m_1)/-(m_0-m_3), 100\% \times (m_1-m_2)/-(m_0-m_3), and 100\% \times (m_2-m_3)/-(m_0-m_3), respectively.$
731	Here, the extractive fraction was considered as the labile C fraction while acid-soluble and
732	acid-insoluble fractions were considered as the recalcitrant C fraction.
733	After acid-digestion, aAn about 5mg subsample of residue left after the above
734	acid-digestion procedure was taken used to measure N concentration and N allocation in the
735	acid-insoluble C fraction. The N in the extractive fraction was too low to measure. Thus,

37

域代码已更改

带格式的:字体:(默认)Times New Roman,小四,字体颜色:自 动设置

带格式的: 字体: (默认) Times New Roman, (中文) MS Gothic, 四	小
带格式的: 字体: (默认) Times New Roman, (中文) MS Gothic, 四	小
带格式的: 字体:小四	

race estimates of N in the acid-soluble fraction were calculated as the difference between total N

737 and N in the acid-insoluble fraction.

738

739 **2.6 Statistical analyses**

740	Relationships between root tissue density and root N concentration and each of the three C
741	fractions were assessed by linear regressions. Here, we introduced a new term, for root tissue,
742	'root EC' which referred referring to tissues outside the stele including the epidermis plus
743	cortex. Root EC was used for two reasons. First, the thickness of root EC can be a proxy of
744	the size of root diameter (R^2 =0.91 and R^2 =0.99 for linear regressions in this study and in
745	Kong et al. (2014) ² s study (Kong et al., 2014), respectively). Second, root EC can be used as
746	an indicator of root chemical comp <u>osition</u> ounds as the storage of <u>root</u> labile C and most of
747	root N are is found in root EC (Chen et al., 2013). The relationships between the thickness of
748	root EC and root tissue density and root chemical fractions were also investigated with linear
749	regressions. In addition, the relationship between SRL and thickness of root EC was fitted by
750	exponential regression.
751	To explore the effect of root diameter on root ecological strategies, the above analyses were
752	repeated for thin and thick absorptive roots, respectively. We used <u>Aa</u> mean thickness of 247
753	µm was used for root EC as the cut-off point between thin and thick absorptive roots. The
754	mean thickness of root EC was used because the thickness of root EC for absorptive roots
755	followed a normal distribution (p>0.05, indicating that thickness was statistically no different
756	from a normal distribution; Fig. S21a). To avoid the influence of biological N fixation on
757	relationships between root N and root tissue density and root EC, a legume species, A . 38

域代码已更改

域代码已更改

758	auriculiformis, was excluded in these analyses. In addition, for the thin absorptive roots, the	
759	relationships between the extractive C fraction and root tissue density were was further	
760	explored by a quadratic polynomial regression using moving average data analysis (Fig. S4)	
700	explored by a quadratic polynomial regression using moving average data marysis (11g. 54).	
761	Polynomial regressions were run both for the thin and thick absorptive roots. The moving	
762	average data were obtained as follows. First, the extractive C fraction was sorted along with	
763	the ascending order of root tissue density. Then, the extractive C fraction and root tissue	
764	density were averaged by bins (Reich and Oleksyn, 2004), with bins referring to each of the	域代码已更改
765	two neighboring data of extractive C fraction or root tissue density, respectively. Moving	
766	average analyses were used as it improved the goodness of fit. No polynomial regression	
767	relationships were found for the other two C fractions.	
768	We acknowledge that the seven species we used represent a relative small species pool. To	
769	validate the results of our study, we further used the another dataset of 96 woody species from	
770	one of our previous studies <u>was used</u> where only the first-order roots were included <u>(Kong et</u>	域代码已更改 带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
771	al., 2014). For these 96 species, we did not use the average root EC thickness as the cut-off	带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
772	between thin and thick absorptive roots. This was because root EC of these species they-	
773	followed a skewed normal distribution with abundant species having thinner root EC ($p < 0.05$,	
774	indicating that thickness was statistically different from a normal distribution; Fig. S21b), and	
775	hence lower mycorrhizal colonization (Kong et al., 2014). In the case of a skewed normal	域代码已更改
776	distribution, the cut-off point based on mean root EC might cause bias for separating thin and	
777	thick absorptive roots. Here, we used a thickness of 182.8 µm for root EC was used as a	
778	cut-off between thin and thick absorptive roots for these species (Kong et al., 2014) which is	域代码已更改 带格式的:字体:(中文) 宋体,
779	thinner than in our current study. The thickness of 182.8 µm for root EC corresponded to a 39	

780	transition from lower to higher of-mycorrhizal colonization with increasing root diameter	
781	(Kong et al., 2014). This transition may also indicate a divergence of strategy between thin	
782	absorptive roots (depending mainly on roots themselves for resource acquisition) and thick	
783	absorptive roots (depending mainly on mycorrhizal fungi for resource acquisition, or the	
784	mycotrophy) (Baylis, 1975; Eissenstat et al., 2015; Liu et al., 2015; St John, 1980). In this	\langle
785	dataset, relationships between root tissue density and root N concentration and thickness of	
786	root EC were examined for both the thin and thick absorptive roots.	
787	To test interspecific differences of root chemical fractions among root orders, two-way	
788	ANOVAs were used with plant species and root order as fixed factors. Tukey's HSD test was	
789	conducted to evaluate differences in chemical fractions among root branch orders within	
790	species (Long et al., 2013). All statistical analyses were carried out in SPSS (version 13.0;	
791	SPSS Inc. Chicago, USA) with significant level at $p=\leq 0.05$.	
792		
793	3 Results	
794	3.1 Root strategies trait relationships for thin and thick absorptive roots	
795	Root tissue density was negatively correlated with root N concentration for total and thin but	
796	not for thick absorptive roots (Fig. 1). Similarly, using a larger species pool, negative	
797	relationships between root tissue density and root N concentration were found for total and	
798	thin but not for thick absorptive roots (Fig. S_{32}).	
799	For the thin absorptive roots, the extractive C fraction peaked at medium root tissue density	
800	(Fig. 2a). Moving average analysis showed <u>revealed</u> a quadratic regression relationship of	
801	between the extractive C fraction with and root tissue density in these thin absorptive roots	

带格式的:字体:(中文) 宋体, (中文) 中文(中国) **域代码已更改**

 带格式的: 字体: (中文) 宋体,

 (中文) 中文(中国)

 带格式的: 字体: (中文) 宋体,

 (中文) 中文(中国)

 带格式的: 字体: (中文) 宋体,

 (中文) 中文(中国)

 域代码已更改

 带格式的: 字体: (中文) 宋体,

 (中文) 中文(中国)

域代码已更改

802	(Fig. S <u>34a</u>), while no relationships were found between acid-soluble and acid-insoluble
803	fractions and root tissue density. The recalcitrant C fraction (acid-soluble C + acid insoluble C)
804	in thin absorptive roots showed a quadratic relationship with root tissue density (Fig. S4b). It
805	was also noted that in the thin absorptive roots, the acid-soluble and -insoluble fractions were
806	relatively higher in the higher and lower range of root tissue density, respectively (Fig. 2b,c).
807	For thick absorptive roots, none of the three C fractions were correlated with root tissue
808	density <u>(Fig. 2, Fig. S4)</u> .
809	Across total absorptive roots, thickness of root EC was positively correlated with total root
810	N concentration (Fig. 3a) and negatively with root N in the acid-insoluble fraction (Fig. 3b).
811	Thickness of root EC was also positively correlated with the extractive C fraction (Fig. 3c)
812	and negatively with the acid-insoluble fraction (Fig. 3e). However, in each of thin and thick
813	absorptive roots, no relationships were found between thickness of root EC and each either of
814	these chemical fractions (all p values>0.05, Fig. 3a-e).
815	Thickness of root EC decreased linearly with root tissue density (Fig. 4), but no
816	relationships were found when separated between thin and thick absorptive roots. Using a
817	large species pool we found a very similar pattern: a significant relationship between
818	thickness of root EC and root tissue density for total absorptive roots, a weaker relationship
819	for thin <u>absorptive roots</u> and no relationship for thick absorptive roots (Fig. S <u>5</u> 4). <u>In addition</u> ,
820	we found exponential relationships between SRL and thickness of root EC for the species in
821	our current study as well as for a larger species pool from a previous study (Fig. S6).
822	

3.2 Effects of plant species and root order on root C and N fractions-

824	All chemical fractions except the extractive fraction showed significant differences among	
825	species and root orders (p values<0.05, Table 1), and there were significant interactions for all	
826	chemical fractions (all p values<0.05) indicating plant species-specific effects of root order on	
827	plant chemical traits.	
828	The extractive C fraction tended to increase with increasing root order for species with thin	
829	absorptive roots such as D. dichotoma and A. auriculiformis, but decreased for species with	
830	thick absorptive roots, except for C. lanceolata (Fig. 5a). For both acid-soluble and	
831	acid-insoluble fractions, patterns were largely idiosyncratic, including both increases and	
832	decreases with <u>increasing</u> root branch orders (Fig. 5b,c). For all species, root N concentration	
833	in all species decreased with increasing root branch order (Fig. 6a), whereas N in the	
834	acid-insoluble fraction increased with increasing root branch order, except for C. chinensis	
835	(Fig. 6b).	
836		
837	4 Discussion	
838	The acquisition-conservation tradeoff in plants has been suggested to be consistent across	
839	plant organs (roots, leaves, and stems), as such constituting a key ecological axis, i.e., the	
840	'plant economics spectrum' (Freschet et al., 2010; Prieto et al., 2015; Reich, 2014). The	带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
841	negative relationship between root tissue density and root N concentration across total	瑞格式的: 字体:(中文) 宋体, (中文) 中文(中国)
842	absorptive roots that we found in our study provides supports for the existence of a root-	带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
843	economics spectrum (RES)strategies in absorptive roots. This is because absorptive roots with	
844	higher tissue density usually have longer lifespan (Eissenstat and Yanai, 1997; Ryser, 1996;	(中文)中文(中国) 带私的: 字体:(中文) 末体,
845	Withington et al., 2006), while their lower N concentration would be associated with slow	(中文) 中文(甲国) 带格式的: 字体: (中文) 宋体, (中文) 中文(中国)
	42	

846	resource acquisition (Kong et al., 2010; Mommer and Weemstra, 2012; Reich et al., 2008).
847	However, our results also <u>further</u> showed that the negative relationship between root tissue
848	density and root N concentration existed onlyheld for in thin absorptive roots, but not in for
849	thick <u>absorptive</u> roots (Fig. 1). Although these results were based on a relative small number
850	of species, reanalysis of data from a previous study using including 96 species (Kong et al.,
851	2014) revealed very similar patterns (Fig. S1). As such, trait relationship between root N
852	concentration and root tissue density supports our first hypothesis of different This indicates-
853	that the conventionally recognized RESeconomics strategies for the thin and thick absorptive
854	roots.may be confined to thin absorptive roots only, as such supporting our first hypothesis.
855	- The divergence of absorptive root strategies with root diameter was further supported by-
856	the The trait relationships between root tissue density and root C fractions provide further
857	support for the hypothesis. Theoretically, absorptive roots with lower tissue density would
858	have higher activity, while higher root activity also consumes more labile C thus leaving less
859	labile C-and more recalcitrant C fractions in these roots. In contrast, for in absorptive roots
860	with higher tissue density, more C is used for structural tissues demanding recalcitrant C
861	fractions (Fan and Guo, 2010). Therefore, we would expect an inverted U-shaped relationship
862	for labile C fractions and a U-shaped relationship for recalcitrant C fractions when these C
863	fractions would be correlated with root tissue density. As expected In fact, for thin absorptive
864	roots we found ound an inverted U-shaped relationship between the labile, extractive C
865	fraction and root tissue density (Fig. 2a, S2Fig. S4a) and a U-shaped relationship between -
866	As for recalcitrant C fractions (acid-soluble C + acid insoluble C) and root tissue density (Fig.
867	S4b). in thin absorptive roots, The higher acid-soluble C fractionthe acid-insoluble C fraction- 43

 带格式的: 字体: (中文) 宋体,

 (中文) 中文(中国)

 带格式的: 字体: (中文) 宋体,

 (中文) 中文(中国)

 带格式的: 字体: (中文) 宋体,

 (中文) 中文(中国)

 域代码已更改

域代码已更改 带格式的:字体:(中文) 宋体, (中文) 中文(中国)

带格式的:字体:(中文) 宋体, (中文) 中文(中国) **域代码已更改**

868	peaked at lower but not at higher root tissue density which seems to contradict with the	
869	expected inverted U shaped curve. However, the acid soluble C fraction peaked_at with	
870	increasing higher root tissue density (Fig. 2b) suggest - As such, it could be that thin	
871	absorptive roots with higher tissue density are constructed with more acid-soluble C	
872	compounds, such as cellulose, rather than acid-insoluble C compounds, such as lignin,	
873	possibly because of higher energy demands for ; the production of lignin would require more-	
874	energy than for the production of cellulose (Novaes et al., 2010). Therefore, with increasing	域
875	root tissue density, recalcitrant C fractions in thin absorptive roots may follow a pattern-	(中
876	opposite to that of labile C fractions. As such, the patterns of labile and recalcitrant C-	
877	fractions in thin absorptive roots are in support of RES theory. However, different from thin	
878	absorptive roots, there were no relationships between root C fractions and root tissue density	
879	for thick absorptive roots (Fig. 2, Fig. S4). Therefore, trait relationships between root C	
880	fractions and root tissue density provides further evidence for an acquisition-conservation	
881	tradeoff economics strategy in thin absorptive roots, but not for thick absorptive roots. On the	
882	other hand, for thick absorptive roots, their lower tissue density was accompanied with higher-	
883	extractive and lower acid insoluble C fraction, possibly because of storage of labile C in their-	
884	thick cortex (Long et al., 2013; Lux et al., 2004). These patterns of root C fractions for thick	域
885	absorptive roots run against expectations from the RES. Therefore, our study shows that thick	
886	absorptive roots may follow a strategy different from that for thin absorptive roots.	
887	Furthermore, observed relationships between thickness of root EC and root C and N	
888	fractions provide <u>s</u> d indirect the third piece of evidence support for our contention hypothesis	
889	of <u>different economic strategies</u> divergence of ecological strategy with root diameter. Across	

域代码已更改 带格式的:字体:(中文) 宋体, (中文) 中文(中国)

域代码已更改

890	total absorptive roots, thickness of root EC was positively correlated with root N
891	concentration and the extractive C fraction while being negatively correlated with the
892	acid-soluble C fraction and N in the acid-soluble C fraction. This suggest that compared with
893	thin absorptive roots, thick absorptive roots acquire resources at higher rates as indicated by
894	their higher N concentration and lower C and N in recalcitrant fractions. Meanwhile, thick
895	absorptive roots may also have longer lifespan because of their larger root diameter (Adams et
896	al., 2013; Anderson et al., 2003; McCormack et al., 2012; Wells and Eissenstat, 2001). These
897	findings seem to contrast with an acquisition-conservation tradeoff. Further, we showed that
898	relationships between thickness of root EC and root chemical fractions only hold across the
899	full spectrum from thin to thick absorptive roots. Nevertheless, it was also noted that root
900	tissue density showed a greater range of variation for thin than for thick absorptive roots. For
901	thin absorptive roots, variation in root tissue density might arise from secondary thickening of
902	root EC cell walls (Eissenstat and Achor, 1999; Long et al., 2013; Ryser, 2006; Wahl and
903	Ryser, 2000). This could be associated with lower root activity and hence lower root N
904	concentration (Fig. 1, Fig. S31), which is consistent with and the RES theory an
905	acquisition-conservation tradeoff in thin absorptive roots could be expected. However, for
906	thick absorptive roots, the cell size as well as the cortical cell file number (Chimungu et al.,
907	2014a, b) may be more important than cell wall thickening in determining root activity. If so,
908	root activity may be less affected by thickening of root EC cell walls than by changing the
909	size or number of these cells, and there would thus be hence no clear economic
910	strategies acquisition - conservation trade-off as predicted by the RES for thick absorptive roots.
911	Therefore, relationships between thickness of root EC and root chemical fractions provide-

带格式的: 字体:(中文) 宋体, (中文)中文(中国)
域代码已更改
带格式的:字体:(中文) 宋体, (中文) 中文(中国)
带格式的:字体:(中文) 宋体, (中文) 中文(中国)
带格式的:字体:(中文) 宋体, (中文) 中文(中国)

域代码已更改	
带格式的: 字体:(中文) 宋体, (中文) 中文(中国)	
带格式的: 字体:(中文) 宋体, 倾斜,(中文) 中文(中国)	非
域代码已更改	
带格式的: 字体:(中文) 宋体, (中文) 中文(中国)	
带格式的: 字体:(中文) 宋体, (中文) 中文(中国)	

912	further evidence for the idea of divergence of root strategies between the thin and thick-	
913	absorptive roots which may be underpinned by different mechanisms.	
914	Recent studies have revealed different nutrient foraging strategies for thin and thick	 带格式的: 缩进: 首行缩进: 1 字 符
915	absorptive roots with the former depending on roots themselves and the latter depending more	
916	on mycorrhizal fungi (Baylis, 1975; Eissenstat et al., 2015; Liu et al., 2015). These	域代码已更改
917	observations are supported by the SRL-thickness relationship we found in our study where	
918	thin roots had larger SRL and SRL of thick roots was constantly smaller (Fig. S6). Here, our	
919	results further indicate that thin and thick absorptive roots may follow different economic	
920	strategies when foraging for nutrients in thin and thick absorptive roots These findings	
921	may have has important implications for the emerging debate on the plant root economics	
922	spectrum. For example, Although the existence of an economics spectrum strategies for plant	
923	roots (RES) has been commonly recognized accepted (Craine et al., 2005; Espeleta et al.,	域代码已更改
924	2009; Freschet et al., 2010; Reich, 2014). However, some recent studies have challenged the	
925	ubiquity of root economics spectra shown contrasting findings, suggestingby showing no RES	
926	(Chen et al., 2013) or positive (Kong et al., 2014) relationships between root diameter and	域代码已更改
		域代码已更改
927	root N concentration (Kong et al., 2014). Although there may be other mechanisms, oOne	
928	possible explanation for the conflicting findingsa lack of these studies is the inclusion of	
929	many species with thick absorptive roots. Including these species may potentially obscure	
930	trait relationships indicating acquisition-conservation tradeoffs.trade-offs between acquisitive-	
931	and conservative root traits in these studies is the inclusion of thick absorptive roots which-	
932	eould have altered root trait relationships. On the other hand, the lack of evidence of an	
933	acquisition-conservation tradeoff may have resulted from the larger proportion of root 46	

934	cross-section area accounted for by root EC compared to the stele (Table S2; Kong et al.,	
935	2014). Notable, for species like monocots, the area of root stele is much larger than the area of	
936	root EC. We did not included monocots in our study, but it would be interesting to test	
937	whether the contrasting economic strategies for thin and thick absorptive roots, as presented	
938	here, can be applied across mono-dicots.	
939	Besides the prominent role in influencing root strategy, root thickness may also affect	
940	patterns of root chemical traits among root branch orders. The extractive C fraction increased	
941	with increasing root order for species with thin absorptive roots, whereas it declined for	
942	species with thick absorptive roots. Although both the acid-soluble and acid-insoluble	
943	fractions showed no consistent trends across root branch orders, the total recalcitrant fraction	
944	(sum of acid-soluble and acid-insoluble fractions) showed a pattern opposite to that of the	
945	extractive fraction. On the other hand, root N concentration and N in recalcitrant C fractions	
946	showed relative consistent patterns across root orders. Thus, the findings we provided only	
947	found partial support of our second hypothesis. These patterns of root chemical fractions,	
948	however, are important in understanding soil ecosystem processes. For example, it is	
949	increasingly recognized that lower-order roots, compared with higher-order woody roots, are	
950	faster in root turnover but slower in root decomposition which makes the former a	
951	disproportionally greater source for of soil organic matter (Clemmensen et al., 2013; Fan and	
952	Guo, 2010; Goebel et al., 2011; Xiong et al., 2013). This has been ascribed to higher	
953	recalcitrant C fractions in lower-order compared with higher-order woody roots (Goebel et al.,	\mathbb{N}
954	2011). However, our results may challenge the generality of slower decomposition of	

带格式的: 字体:(中文) (中文)中文(中国)	宋体,
域代码已更改	
带格式的: 字体:(中文) (中文)中文(中国)	宋体,

955	lower-order relative to higher-order roots as some lower-order roots had less recalcitrant C		
956	fractions and hence faster decomposition than higher-order roots.		
957	In conclusion, the results of our study suggest an acquisition-conservation tradeoff for thin		带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
958	absorptive roots but not for thick absorptive roots. In addition, we found revealed for the first		帯格式的: 字体:(中文) 宋体, (中文) 中文(中国) 豊ぬ式的・ 字体,(中文) 字体
959	time divergence of absorptive root strategies and different patterns of root chemical fractions		(中文)中文(中国) 带格式的: 字体: (中文) 宋体, (中文) 中文(中国)
960	with root diameter and root order. Specifically, the axis of the RES dominated in thin-		
961	absorptive roots, while thick absorptive roots did not seem to be constrained by an-		
962	acquisition-conservation tradeoff. The different contrasting economic strategies between thin		
963	and thick absorptive roots for the two groups of roots are important in advancing our		
964	understanding of root ecology and the links with aboveground plant counterparts. Yet, our		
965	knowledge on the functioning of plant roots and their roles in driving soil ecosystem		
966	processes is still limited. We hope that our study presents an instructive perspective on the		带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
967	root economics spectrum that will stimulate further research in this field. Future studies		带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
968	should may test to what extent our results hold for other (groups of) plant species (i.e.	\square	带格式的: 字体:(中文) 宋体, (中文) 中文(中国)
969	monocots) include a larger spectrum of more functional traits (including those associated		带格式的: 子体:(中文)未体, (中文)中文(中国) 带格式的: 字体:(中文) 宋体,
505	monocous, monocous, monocous autor spectrum or proto runctional autos (monocous) autose associated	\frown	(中文) 中文(中国) 带格式的: 字体: (中文) 宋体,
970	with interactions with rhizosphere biota), and unravel the mechanisms underlying the		(中文) 中文(中国) 带格式的: 字体: (中文) 宋体.
971	<u>'non-economics strategy'</u> for thick absorptive roots. <u>Furthermore, we speculate that the</u>		(中文) 中文(中国) 带格式的: 字体: (中文) 宋体,
972	mycotrophy (i.e., species composition of mycorrhizal fungi, their ability in nutrient		(中文)中文(中国) 带格式的: 字体:(中文) 宋体, (中文)中文(中国)
973	acquisition and transfer to roots, etc.) may underlie economics strategy in thick absorptive		
974	roots, and needs to be emphasized in future studies.		
975			

977	References
978	Adams, T. S., McCormack, M. L., and Eissenstat, D. M.: Foraging strategies in trees of
979	different root morphology: the role of root lifespan, Tree Physiology, 33, 940-948, 2013.
980	Anderson, L. J., Comas, L. H., Lakso, A. N., and Eissenstat, D. M.: Multiple risk factors in
981	root survivorship: a four-year study in Concord grape, New Phytologist, 158, 489-501, 2003.
982	Atkinson, R. R. L., Burrell, M. M., Osborne, C. P., Rose, K. E., and Rees, M.: A non-targeted
983	metabolomics approach to quantifying differences in root storage between fast- and
984	slow-growing plants, New Phytologist, 196, 200-211, 2012.
985	Bardgett, R., D., , Mommer, L., and De Vries, F., T.: Going underground: root traits as drivers
986	of ecosystem processes, Trends in Ecology and Evolution, 29, 692-699, 2014.
987	Baylis, G.: Magnolioid mycorrhiza and mycotrophy in root systems derived from it. In:
988	Endomycorrhizas, Sanders, F. E., Mosse, B., and Tinker, P. B. (Eds.), Academic Press, 1975.
989	Berg, B. and McClaugherty, C.: Plant litter: decomposition, humus formation, carbon
990	sequestration, Springer, 2008.
991	Birouste, M., Zamora-Ledezma, E., Bossard, C., Pérez-Ramos, I., and Roumet, C.:
992	Measurement of fine root tissue density: a comparison of three methods reveals the potential
993	of root dry matter content, Plant and Soil, 374, 299-313, 2014.
994	Chapin III, F. S.: The mineral nutrition of wild plants, Annu. Rev. Ecol. Evol. Sys., 11,
995	233-260, 1980.
996	Chen, W., Zeng, H., Eissenstat, D. M., and Guo, D.: Variation of first-order root traits across
997	climatic gradients and evolutionary trends in geological time, Global Ecology and
998	Biogeography, 22, 846-856, 2013.

带格式的:字体:(中文) 宋体, (中文) 中文(中国)

带格式的:字体:(中文) 宋体, (中文) 中文(中国) **带格式的:**行距:2 倍行距

999	Chimungu, J. G., Brown, K. M., and Lynch, J. P.: Large root cortical cell size improves
1000	drought tolerance in maize, Plant Physiology, 166, 2166-2178, 2014a.
1001	Chimungu, J. G., Brown, K. M., and Lynch, J. P.: Reduced root cortical cell file number
1002	improves drought tolerance in maize, Plant Physiology, 166, 1943-1955, 2014b.
1003	Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H.,
1004	Stenlid, J., Finlay, R. D., Wardle, D. A., and Lindahl, B. D.: Roots and associated fungi drive
1005	long-term carbon sequestration in boreal forest, Science, 339, 1615-1618, 2013.
1006	Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy,
1007	O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M.,
1008	Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P.,
1009	Brovkin, V., Chatain, A., Callaghan, T. V., D áz, S., Garnier, E., Gurvich, D. E., Kazakou, E.,
1010	Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M.:
1011	Plant species traits are the predominant control on litter decomposition rates within biomes
1012	worldwide, Ecology Letters, 11, 1065-1071, 2008.
1013	Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J., and Johnson, L. C.: Environmental
1014	constraints on a global relationship among leaf and root traits of grasses, Ecology, 86, 12-19,
1015	2005.
1016	Diaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A.,
1017	Montserrat-Mart í G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S.,
1018	Castro-D éz, P., Funes, G., Hamzehee, B., Khoshnevi, M., P érez-Harguindeguy, N.,
1019	Pérez-Rontom é, M. C., Shirvany, F. A., Vendramini, F., Yazdani, S., Abbas-Azimi, R.,
1020	Bogaard, A., Boustani, S., Charles, M., Dehghan, M., de Torres-Espuny, L., Falczuk, V.,

1021	Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Mart nez,
1022	M., Romo-D éz, A., Shaw, S., Siavash, B., Villar-Salvador, P., and Zak, M. R.: The plant traits
1023	that drive ecosystems: Evidence from three continents, Journal of Vegetation Science, 15,
1024	295-304, 2004.
1025	Eissenstat, D. M. and Achor, D. S.: Anatomical characteristics of roots of citrus rootstocks
1026	that vary in specific root length, New Phytologist, 141, 309-321, 1999.
1027	Eissenstat, D. M., Kucharski, J. M., Zadworny, M., Adams, T. S., and Koide, R. T.: Linking
1028	root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest, New
1029	Phytologist, 208, 114-124, 2015.
1030	Eissenstat, D. M. and Yanai, R. D.: The ecology of root lifespan, Advances in Ecological
1031	Research 27, 1-60, 1997.
1032	Espeleta, J. F., West, J. B., and Donovan, L. A.: Tree species fine-root demography parallels
1033	habitat specialization across a sandhill soil resource gradient, Ecology, 90, 1773-1787, 2009.
1034	Fan, P. and Guo, D.: Slow decomposition of lower order roots: a key mechanism of root
1035	carbon and nutrient retention in the soil., Oecologia, 163, 509-515, 2010.
1036	Feng, Y. L., Lei, Y. B., Wan, R. F., Callaway, R. M., Valiente-Banuet, I., Li, Y. P., and Zheng,
1037	Y. L.: Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an
1038	invasive plant, P. Natl. Acad. Sci. USA 106, 1853-1856, 2009.
1039	Freschet, G. T., Cornelissen, J. H., Van Logtestijn, R. S., and Aerts, R.: Evidence of the 'plant
1040	economics spectrum'in a subarctic flora, J. Ecol., 98, 275-301, 2010.
1041	Goebel, M., Hobbie, S. E., Bulaj, B., Zadworny, M., Archibald, D. D., Oleksyn, J., Reich, P.
1042	B., and Eissenstat, D. M.: Decomposition of the finest root branching orders: linking

1043	belowground dynamics to fine-root function and structure, Ecol. Monogr., 81, 89-102, 2011.
1044	Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y., and Wang, Z.: Anatomical traits associated
1045	with absorption and mycorrhizal colonization are linked to root branch order in twenty-three
1046	Chinese temperate tree species, New Phytologist, 180, 673-683, 2008.
1047	Hidaka, A. and Kitayama, K.: Allocation of foliar phosphorus fractions and leaf traits of
1048	tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu,
1049	Borneo, Journal of Ecology, 99, 849-857, 2011.
1050	Kong, D., Ma, C., Zhang, Q., Li, L., Chen, X., Zeng, H., and Guo, D.: Leading dimensions in
1051	absorptive root trait variation across 96 subtropical forest species, New Phytologist, 203,
1052	863-872, 2014.
1053	Kong, D., Wu, H., Wang, M., Simmons, M., Lü, X., Yu, Q., and Han, X.: Structural and
1054	chemical differences between shoot- and root-derived roots of three perennial grasses in a
1055	typical steppe in Inner Mongolia China, Plant and Soil, 336, 209-217, 2010.
1056	Kong, D. L. and Ma, C. E.: Acquisition of ephemeral module in roots: a new view and test,
1057	Sci. Rep., 4, 5078, 2014.
1058	Laughlin, D. C., Leppert, J. J., Moore, M. M., and Sieg, C. H.: A multi-trait test of the
1059	leaf-height-seed plant strategy scheme with 133 species from a pine forest flora, Functional
1060	Ecology, 24, 493-501, 2010.
1061	Liu, B., Li, H., Zhu, B., Koide, R. T., Eissenstat, D. M., and Guo, D.: Complementarity in
1062	nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across
1063	14 coexisting subtropical tree species, New Phytologist, 208, 125-136, 2015.
1064	Long, Y., Kong, D., Chen, Z., and Zeng, H.: Variation of the linkage of root function with root

1	0	6	5

branch order, PLoS ONE, 8, e57153, 2013.

1066	Lux, A., Luxova, M., Abe, J., and Morita, S.: Root cortex: structural and functional variability
1067	and responses to environmental stress, Root Research, 13, 117-131, 2004.
1068	McCormack, M. L., Adams, T. S., Smithwick, E. A., and Eissenstat, D. M.: Predicting fine

- root lifespan from plant functional traits in temperate trees, New Phytologist, 195, 823-831,
 2012.
- Meier, C. L. and Bowman, W. D.: Links between plant litter chemistry, species diversity, and
 below-ground ecosystem function, P. Natl. Acad. Sci. USA 105, 19780-19785 2008.
- 1073 Mommer, L. and Weemstra, M.: The role of roots in the resource economics spectrum, New1074 Phytologist, 195, 725-727, 2012.
- 1075 Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., and Sederoff, R.: Lignin and biomass:
 1076 a negative correlation for wood formation and lignin content in trees., Plant Physiology, 154,
 1077 555-561, 2010.
- 1078 Osnas, J. L., Lichstein, J. W., Reich, P. B., and Pacala, S. W.: Global leaf trait relationships1079 mass, area, and the leaf economics spectrum, Science, 340, 741-744, 2013.
- 1080 Poorter, H. and Bergkotte, M.: Chemical composition of 24 wild species differing in relative
- 1081 growth rate, Plant Cell Environ, 15, 221-229, 1992.
- Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., and Villar, R.: Causes and consequences
 of variation in leaf mass per area (LMA): a meta-analysis, New Phytologist, 182, 565-588,
- 1084 2009.
- 1085 Pregitzer, K. S., DeForest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W., and Hendrick, R. L.:
- 1086 Fine root architecture of nine North American trees, Ecological Monographs, 72, 293-309,

1087	2002.
1088	Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J. H., Maeght, J. L., Mao,
1089	Z., Pierret, A., Portillo, N., Roupsard, O., Thammahacksa, C., and Stokes, A.: Root functional
1090	parameters along a land-use gradient: evidence of a community-level economics spectrum,
1091	Journal of Ecology, 103, 361-373, 2015.
1092	Reich, P. B.: The world-wide 'fast-slow' plant economics spectrum: a traits manifesto, J.
1093	Ecol., 102, 275-301, 2014.
1094	Reich, P. B. and Oleksyn, J.: Global patterns of plant leaf N and P in relation to temperature
1095	and latitud, P. Natl. Acad. Sci. USA, 101, 11001-11006, 2004.
1096	Reich, P. B., Tjoelker, M. G., Pregitzer, K. S., Wright, I. J., Oleksyn, J., and Machado, J. L.:
1097	Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants, Ecol. Lett.,
1098	11, 793-801 2008.
1099	Roumet Catherine, Urcelay Carlos, and ., D. S.: Suites of root traits differ between annual and
1100	perennial species growing in the field, New Phytologist, 170, 357-368, 2006.
1101	Ryser, P.: The Importance of Tissue Density for Growth and Life Span of Leaves and Roots: A
1102	Comparison of Five Ecologically Contrasting Grasses, Functional Ecology, 10, 717-723,
1103	1996.
1104	Ryser, P.: The mysterious root length, Plant and Soil, 286, 1-6, 2006.
1105	Shipley, B., Lechowicz, M. J., Wright, I., and Reich, P. B.: Fundamental trade-offs generating
1106	the worldwide leaf economics spectrum, Ecology, 87, 535-541, 2006.
1107	St John, T. V.: Root size, root hairs and mycorrhizal infection: a re- examination of Baylis's
1108	hypothesis with tropical trees, New Phytologist, 84, 483-487, 1980.

1109	Wahl, S. and Ryser, P.: Root tissue structure is linked to ecological strategies of grasses, New
1110	Phytologist, 148, 459-471, 2000.
1111	Wells, C. E. and Eissenstat, D. M.: Marked Differences in Survivorship among Apple Roots
1112	of Different Diameters, Ecology, 82, 882-892, 2001.
1113	Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., and Wright, I. J.: Plant ecological
1114	strategies- some leading dimensions of variation among species, Annu. Rev. Ecol. Evol. Sys.,
1115	33, 125-159, 2002.
1116	Withington, J. M., Reich, P. B., Oleksyn, J., and Eissenstat, D. M.: Comparisons of structure
1117	and life span in roots and leaves among temperate trees, Ecological Monographs, 76, 381-397,
1118	2006.
1119	Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F.,
1120	Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E.,
1121	Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J.
1122	J., Navas, ML., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L.,
1123	Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R.:
1124	The worldwide leaf economics spectrum, Nature, 428, 821-827, 2004.
1125	Xiong, Y. M., Fan, P. P., Fu, S. L., Zeng, H., and Guo, D. L.: Slow decomposition and limited
1126	nitrogen release by lower order roots in eight Chinese temperate and subtropical trees., Plant
1127	and Soil, 363, 19-31, 2013.
1128	
1129	
1130	
	55

1131	Acknowledgements
1132	We thank Dr. Zhengxia Chen and Miss Yingqian Long for their assistance in measuring root
1133	chemicals and anatomical structures, and Dr. Chengen Ma and Dr. Xin Jing in (Peking
1134	University, for their valuable contribution to this work. We also appreciate two anonymous
1135	reviewers and the editor Michael Bahn for their valuable comments on the discussion version
1136	of this manuscript. This study was sponsored by the open fund of Key Laboratory of Tropical
1137	Forest Ecology in Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences
1138	and Natural Science Foundation of China (No. 31200344).

带格式的:字体:(中文) 宋体, (中文)中文(中国),检查拼写和 语法
带格式的:字体:(中文) 宋体, (中文)中文(中国),检查拼写和 语法
带格式的:字体:(中文) 宋体, (中文)中文(中国),检查拼写和 语法
带格式的:字体:(中文) 宋体, (中文)中文(中国),检查拼写和 语法

- **Table 1.** *F* values of two-way ANOVAs testing effects of plants species and root branch order
- 1140 on the extractive C fraction, acid-soluble C fraction, acid-insoluble C fraction, N
- 1141 concentration, and N in acid-insoluble C fraction. *, **, *** were significant level at 0.05,
- 1142 0.01, 0.001, respectively.

				Ν	N in
	Extractive C	Acid-soluble	Acid-insoluble	concentra	acid-insoluble C
	fraction	C fraction	C fraction	tion	fraction
Species	132.97***	51.57***	188.51***	1578.85* **	142.40***
Root order	1.63	11.76***	17.78***	521.22** *	19.61***
Species × Root order	4.46***	2.59**	3.53***	29.33***	3.83***

1144 Figure-legends

1145 Fig. 1 Relationships between root tissue density and root N concentration <u>forover the-total</u>

1146 (black line), thin (solid circles, grey line) and thick (open circles) absorptive roots.

and thick (open circles) absorptive roots.

Fig. 3 Relationships between thickness of root EC and root N concentration (a), N in
acid-insoluble C fraction (b), extractive C fraction (c), acid-soluble C fraction (d) and
acid-insoluble C fraction (e) for total (black line), the thin (solid circles) and thick (open
circles) absorptive roots.

Fig. 4 Relationships between root tissue density and thickness of root EC over the for total,

Fig. 5 There C fractions, extractive C fraction (a), acid-soluble C fraction (b) and

1168 acid-insoluble C fraction (c) for the first five , among different root orders in for each of seven

1169 plant species. R1-R5 were-refer to the first to the fifth root branch-order.-

Fig. 6 Root N concentration (a) and N in acid-insoluble C fraction (b) for the first five root

1173 <u>branch among different</u> orders for <u>each of seven plant</u> species. R1-R5 <u>were refer to</u> the first to

1174 the fifth root branch order.

Fig. S2 Frequency distribution of thickness of root EC for absorptive roots in the current

 1239
 Fig. S6 Relationship between specific root length (SRL) and thickness of root EC for data of

1240 absorptive roots in the current study (a) and a previous study (Kong et al. 2014) (b). The
1251

Table S1 Summary of root morphology and anatomical traits for each of the seven plant

1252 species used in our study. Data are presented as mean value with standard error in parentheses.

1253 Root EC refers to the tissue outside the stele including the epidermis and the cortex in

1254

absorptive roots. SRL = specific root length.

Plant species	<u>Root</u>	Root diameter	Root tissue	Thickness of	<u>SRL</u>
	<u>order</u>	<u>(µm)</u>	density (g cm ⁻³)	<u>root EC (µm)</u>	$(m g^{-1})$
<u>D. dichotoma</u>	<u>1</u>	<u>196.80(9.01)</u>	<u>0.60(0.05)</u>	<u>70.5(3.10)</u>	<u>75.1(3.94)</u>
	<u>2</u>	<u>255.59(20.94)</u>	<u>0.47(0.06)</u>	<u>81.06(5.16)</u>	<u>30.18(4.47)</u>
	<u>3</u>	412.34(27.99)	<u>0.50(0.08)</u>	<u>119.45(7.25)</u>	<u>13.31(2.38)</u>
	<u>4</u>	<u>623.32(128.96)</u>	<u>0.50(0.04)</u>	<u>169.86(19.09)</u>	<u>6.78(0.68)</u>
A. auriculiformis	<u>1</u>	286.47(12.46)	<u>0.22(0.02)</u>	<u>98.81(4.85)</u>	<u>60.96(5.4)</u>
	<u>2</u>	362.03(18.26)	0.27(0.03)	<u>134.19(9.51)</u>	38.78(2.62)
	<u>3</u>	<u>509.85(34.16)</u>	<u>0.34(0.06)</u>	<u>168.68(16.51)</u>	<u>21.93(1.98)</u>
	<u>4</u>	<u>552.44(22.39)</u>	<u>0.33(0.03)</u>	160.63(13.40)	<u>6.36(0.82)</u>
	<u>5</u>	852.78(29.42)	<u>0.35(0.03)</u>	<u>146.21(0)</u>	<u>2.47(0.31)</u>
<u>G. axillaris</u>	<u>1</u>	<u>539.9(15.82)</u>	<u>0.36(0.02)</u>	<u>216.76(5.43)</u>	<u>17.68(1.66)</u>
	<u>2</u>	<u>630.63(20.14)</u>	<u>0.37(0.02)</u>	<u>242.84(9.46)</u>	<u>11.31(0.99)</u>
	<u>3</u>	<u>659.87(32.32)</u>	<u>0.43(0.03)</u>	<u>150.6(19.45)</u>	<u>6.86(0.65)</u>
	<u>4</u>	<u>687.50(19.21)</u>	<u>0.60(0.04)</u>	<u>201.07(23.67)</u>	<u>3.70(0.34)</u>
	<u>5</u>	<u>1289.20(75.31)</u>	<u>0.57(0.04)</u>	<u>161.12(22.05)</u>	<u>1.17(0.12)</u>
<u>C. lanceolata</u>	<u>1</u>	<u>558.09(18.42)</u>	<u>0.21(0.02)</u>	<u>221.51(8.28)</u>	<u>48.68(4.25)</u>
	<u>2</u>	<u>488.53(12.37)</u>	<u>0.25(0.02)</u>	<u>186.1(6.53)</u>	<u>30.43(2.85)</u>
	<u>3</u>	<u>532.01(21.27)</u>	<u>0.24(0.02)</u>	<u>194.69(9.81)</u>	<u>15.08(1.57)</u>
	<u>4</u>	<u>773.20(48.83)</u>	<u>0.31(0.03)</u>	<u>235.91(34.07)</u>	<u>7.24(0.51)</u>
	<u>5</u>	<u>1071.33(42.59)</u>	<u>0.26(0.02)</u>	<u>236.28(18.40)</u>	<u>2.98(0.23)</u>
<u>P. baillonii</u>	<u>1</u>	<u>574.50(14.78)</u>	<u>0.28(0.03)</u>	<u>232.07(6.18)</u>	<u>19.33(1.15)</u>
	<u>2</u>	<u>745.19(31.45)</u>	<u>0.24(0.02)</u>	<u>301.8(11.55)</u>	<u>8.71(0.39)</u>
	<u>3</u>	<u>866.27(40.11)</u>	<u>0.21(0.02)</u>	<u>337.76(15.79)</u>	<u>6.83(0.38)</u>
	<u>4</u>	<u>1021.15(79.76)</u>	<u>0.26(0.04)</u>	<u>363.79(23.80)</u>	<u>3.94(0.33)</u>
	<u>5</u>	<u>1672.37(236.49)</u>	<u>0.24(0.02)</u>	<u>550.6(34.15)</u>	<u>2.3(0.24)</u>
<u>E. chinense</u>	<u>1</u>	<u>748.89(39.21)</u>	<u>0.28(0.02)</u>	<u>266.12(16.59)</u>	<u>6.57(0.31)</u>
	<u>2</u>	<u>1133.34(57.74)</u>	<u>0.25(0.02)</u>	<u>405.84(26.84)</u>	<u>5.45(0.41)</u>
	<u>3</u>	<u>1240.00(46.05)</u>	<u>0.27(0.02)</u>	<u>426(22.00)</u>	<u>3.77(0.2)</u>
	<u>4</u>	2065.00(107.3)	<u>0.31(0.02)</u>	<u>341.5(25.01)</u>	<u>2.74(0.2)</u>
	<u>5</u>	2460.00(229.35)	<u>0.29(0.02)</u>	<u>364(12.89)</u>	<u>0.56(0.15)</u>
<u>C. chinensis</u>	<u>1</u>	<u>982.23(27.63)</u>	<u>0.20(0.03)</u>	<u>339.17(11.75)</u>	7.51(1.15)
	<u>2</u>	<u>1133.75(89.98)</u>	<u>0.25(0.03)</u>	275(16.47)	7.57(0.4)
	<u>3</u>	<u>1170.00(67.21)</u>	<u>0.49(0.02)</u>	<u>393.19(24.46)</u>	2.51(0.48)
	<u>4</u>	<u>1815.72(179.61)</u>	<u>0.36(0.02)</u>	<u>347.15(73.75)</u>	<u>1.61(0.33)</u>

