1 Dear Editor,

Herewith, we resubmit our manuscript (bg-2015-372) for publication in *Biogeosciences* after
finishing the required minor revisions.
We appreciate the valuable comments from Dr. Alexandra Weigelt. Below, we explain,
point-by-point, how we incorporate the suggestions in our revision and give our replies to the

6 reviewer's comments.

7 Besides our responses to the reviewer's comments, we have made some additional

8 improvements to the manuscript. (1) We follow the editor's suggestion to change 'for' to 'of'

9 in the title of the manuscript. (2) As suggested by the editor, we have added a short section on

the implication of our findings for soil processes (Line 361-368). (3) We have added some

11 details to the corresponding author's address (Key Laboratory of Tropical Forest Ecology in

12 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences). This study has

13 been sponsored by an open fund from the laboratory, and we feel this laboratory should be

14 mentioned on the title page.

15 Further, we apologize for any grammatical missteps. We have carefully revised the

1

16 manuscript (see the version with marked-up change), and believe it now meets the

17 international standards.

18 We look forward to hearing from you in due course.

19

20 Yours sincerely,

21 Deliang Kong

Reviewer comments:

24	In the revised version of their manuscript the authors present trait data on absorptive roots
25	from seven mostly woody dicots to show that fine and thick absorptive roots differ in their
26	root economic strategies. For five root orders of each species a limited amount of
27	morphological traits was assessed together with total C and N content as well as their labile
28	and recalcitrant fractions. One important morphological trait was root cortex diameter (EC).
29	The data supports the conclusion that thin and thick absorptive roots differ in content of
30	almost all C and N fractions and thus might also be differentiated along the
31	acquisition-conservation trait-off from the root economics spectrum.
32	The paper presents valuable data on an important topic in trait ecology. Root traits and their
33	differentiation and importance are currently very much debated and there is a strong need for
34	data as presented in the current manuscript. Even though seven species is on the low side and
35	the selection of species is from my point of view rather non-ideal (for such a low number I
36	would have voted for either a more general spread e.g. including more conifers and other
37	mycorrhiza types or for more specific thus excluding the fern and the one conifer). However,
38	the morphological results are backed up by a much larger data base, which is convincing. The
39	manuscript is well written and argues soundly. I think the concerns of previous reviewers (of
40	which I am not one) are well met. I have only minor remarks on the manuscript which are
41	listed below.

43 Minor remarks:

- 44 Check throughout for double and missing spaces e.g. L72 or L59 before as.
- 45 **Response:** We have carefully checked the manuscript for mistakes such as double and46 missing spaces.

47

48	L31: 'fractions ' At first I was not sure what to expect from this without reading the rest of the
49	text. I would expect e.g. different C fractions such as sugar, other carbohydrates etc. from this
50	description. This obviously is the case as these differentiations are the central point of the
51	paper. I would make sure this is understood right away and denote the measured fractions in
52	brackets already in the abstract.
53	Response: We have added the three fractions (see Line 31).

54

55 L34: 'more	' species. I	' would sta	ate 94 spe	ecies here.
---------------	--------------	-------------	------------	-------------

Response: We have replaced 'more species' with '96 species' (see Line 35). In Fig S3 of the supporting information, we have excluded two outlier species for the 96 species study and the species number, as the reviewer suggests, should be 94. However, we feel that it is proper to

- refer to the total number of species (96 species) of that study.
- 60
- 61 L42: 'represents' should be 'represent' as it relates to plant traits which is more than one
 62 either

63	Response: We have changed 'represents' to 'represent' (Line 43).	
64		
65	L76: effects of	
66	Response: We have added 'of' after the 'effects' (Line 76).	
67		
68	L79: in relation to	
69	Response: We have added 'to' after the 'relation' (Line 78).	
70		
71	L 86ff: you say roots with less labile C and more labile N indicate acquisitive strategy and	
72	(89) roots with less labile C and N are conservative. Is this true like this, than only the CN	
73	ratio would be important or only N as C obviously would than not be decisive for a change in	
74	root mode.	
75	Response: We acknowledge that 'CN ratio, or N as C', as pointed out by the reviewer, could	
76	also be indicative for acquisitive or conservative strategies of plant roots. However,	
77	determination of C and N fractions may be more useful for predicting changes of root	
78	strategies. For example, given a certain content of total C, it can appear in at least two cases: 1)	
79	higher labile C and lower recalcitrant C fractions; 2) lower labile C and higher recalcitrant C	
80	fractions. Although the two cases both can lead to a similar content of total C, they may	
81	represent different strategies. In the revised version, we have revised this sentence to show	
82	that our argument is based on the perspective of root C and N fractions (Line 84-85).	

84	L112: Is there any other justification as to why you chose exactly these species? They are a
85	subset of the 96 you published on earlier, I presume, but to me it is a rather strange
86	sub-selection with one fern and one conifer. I would recommend another sentence to justify
87	this.
88	Response: As stressed by the reviewer, we have included two species (a fern and a conifer
89	species) in addition to five angiosperm species. These two species are selected for two

90 reasons: (I) plant economic strategies have been explored and proved in many different plant

91 species, i.e., conifers and angiosperms (Espeleta et al. 2009), ferns (Dong et al. 2015), cycads

92 (Zhang et al. 2015), different kind of species (Wright et al. 2004; Freschet et al. 2010).

93 Therefore, including the fern and conifer species increases the species pool, and more

94 importantly, extrapolates to some extent our idea of root economic strategies across groups of

95 plant species. However, for logistic constraints, we could only include one fern species and a

96 conifer. As such, we advocate in the concluding paragraph that more species should be

97 included in future studies. (II) The anatomical structures have been explored in one of our

98 previous studies (see Long et al. 2013) and their results may be instructive for our current

99 study. See Line 121-125 for the added information.

100 The papers referred to here are listed below and can also be found in the references section101 of this manuscript.

102 Dong et al. 2015. Root morphology, histology and chemistry of nine fern species

103 (pteridophyta) in a temperate forest. *Plant and soil*.

104	Espeleta et al. 2009	. Tree species fine-ro	ot demography parallels	s habitat specialization	across
-----	----------------------	------------------------	-------------------------	--------------------------	--------

a sandhill soil resource gradient. *Ecology*.

- 106 Freschet et al. 2010. Evidence of the 'plant economics spectrum'in a subarctic flora. *Journal*107 of Ecology.
- 108 Long et al. 2013. Variation of the linkage of root function with root branch order. *Plos One*.
- 109 Wright et al. 2004. The worldwide leaf economic spectrum. *Nature*.
- 110 Zhang et al. 2015. Extending the generality of leaf economic design principles in the cycads,
- 111 an ancient lineage. New Phytologist.
- 112
- 113 L122: 'are mycorrhizas' is not correct grammar. Either refer to are colonized with
- 114 *mycorrhiza or are mycorrhized.*
- **Response:** We have changed 'mycorrhizas' to 'mycorrhized' (Line 121).

- 117 L204: Why would you use thickness of 247 μm as a cut of? Just because it is the mean and
- 118 thus you would split the data set in half? I have my problems with this rather arbitrary split as
- 119 there is not clear ecological or physiological reasoning behind this size. I think this
- 120 *separation earns some justification as well.*
- 121 **Response:** We acknowledge that there is no commonly accepted cutoff point for separating
- the thin and thick absorptive roots. In this study, we used mean thickness of root EC as a

123	cutoff point. Such a cutoff point seems effective as it is based on the frequency distribution of
124	root EC thickness. On the other hand, some older and more recent studies have provided a
125	range of evidence including root morphology, physiology and demography to show the
126	different entities of the thin and thick absorptive roots. Therefore, it is likely that the thin and
127	thick absorptive roots may have different economic strategies and that our idea of different
128	economic strategies for the two root groups may not be greatly influenced by the selection of
129	cutoff point. Finally, we hope that the physiologically and ecologically based cutoff point
130	could be developed in future studies.
131	
132	L286-294: There should be no need to justify your study in the discussion. Shorten this part to
133	one intro sentence without refs. Those have all been cited in the intro.
134	Response: We have shortened this part to one sentence (Line 289-294).
135	
136	L 296: relatively
137	Response: We have changed 'relative' to 'relatively' (Line 296).
138	
139	L352 strategy
140	Response: We have changed 'strategies' to 'strategy' (Line 349).
141	
142	L361 Notably
	7

Response: We have changed 'Notable' to 'Notably' (Line 358).

- 145 L391: including
- **Response:** We have changed 'include' to 'including' (Line 395).

148	Economic strategies for of plant absorptive roots vary with root diameter	
149	Deliang Kong ^{1,2*} , Junjian Wang ³ , Paul Kardol ⁴ , Huifang Wu ⁵ , Hui Zeng ⁶ , Xiaobao Deng ¹ ,	
150	Yun Deng ¹	
151		
152	¹ <u>Key Laboratory of Tropical Forest Ecology.</u> Xishuangbanna Tropical Botanical Garden,	/
153	Chinese Academy of Sciences, Mengla, Yunnan, China	
154	² College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang,	
155	China	
156	³ Belle W. Baruch Institute of Coastal Ecology & Forest Science, Clemson University,	
157	Georgetown, South Carolina, USA	
158	⁴ Department of Forest Ecology and Management, Swedish University of Agricultural	
159	Sciences, Ume å, Sweden	
160	⁵ School of Life Sciences, Henan University, Kaifeng, China	
161	⁶ Key Laboratory for Urban Habitat Environmental Science and Technology, Peking	
162	University Shenzhen Graduate School, Shenzhen, China	
163		
164	Author for correspondence:	
165	Tel: +86-024-88487163, Fax: +86-024-88492799	
166	E-mail: deliangkong1999@126.com	
167		
168		

带格式的:字体:(默认) Times New Roman,(中文) 宋体,小四

169 Abstract

170	Plant roots typically vary along a dominant ecological axis, the root economics spectrum,
171	depicting a tradeoff between resource acquisition and conservation. For absorptive roots,
172	which are mainly responsible for resource acquisition, we hypothesized that root economic
173	strategies differ with increasing root diameter. To test this hypothesis, we used seven plant
174	species (a fern, a conifer, and five angiosperms from south China) for which we separated
175	absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247
176	μ m) and thick roots. For each category, we analyzed a range of root traits related to resource
177	acquisition and conservation, including root tissue density, different carbon (C) and nitrogen
178	(N) fractions (i.e., extractive, acid-soluble and acid-insoluble fractions) as well as root
179	anatomical traits. The results showed significant relationships among root traits indicating an
180	acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships
181	were found for thick absorptive roots. Similar results were found when reanalyzing data of a
182	previous study including more 96 plant species. The contrasting economic strategies between
183	thin and thick absorptive roots, as revealed here, may provide a new perspective on our
184	understanding of the root economics spectrum
185	
186	Key-words: chemical fractions, plant functional traits, root diameter, root economics

186 Key-words: chemical fractions, plant functional traits, root diameter, root economics
187 spectrum, root tissue density

188

189 **1 Introduction**

190	Plant traits reflecting a tradeoff between resource acquisition and conservation represents an
191	essential ecological axis for plant strategies that is important for our understanding of how
192	plants drive ecosystem processes and ecosystem responses to environmental change
193	(Cornwell et al., 2008; Freschet et al., 2010; Reich, 2014; Westoby et al., 2002). On the one
194	end of this ecological axis, there are species with acquisitive strategies, i.e., fast acquisition of
195	resources (e.g., CO ₂ for leaves and nutrients for roots) accompanied with a short lifespan. On
196	the other end of the axis, there are species with conservative strategies, i.e., slow resource
197	acquisition accompanied with a long lifespan. Originally, such an ecological axis has been
198	demonstrated for leaves, which is widely known as the leaf economics spectrum (Diaz et al.,
199	2004; Osnas et al., 2013; Wright et al., 2004). More recently, similar trait spectra have been
200	demonstrated across plant organs from leaves to stems and roots, thus forming a whole 'plant
201	economics spectrum' (Freschet et al., 2010; Laughlin et al., 2010; Prieto et al., 2015; Reich,
202	2014).
203	Resource acquisition in plant roots is performed by absorptive roots, i.e., the first two or
204	three orders of a root branch with primarily-developed tissues which are part of the commonly
205	used category of 'fine roots' (< 2mm in diameter) (Guo et al., 2008; Long et al., 2013;
206	Pregitzer et al., 2002). For absorptive roots, the tissue density, i.e., root dry mass per unit root
207	volume, is a key trait of the root economics spectrum -as tissue density is closely linked to
208	the acquisition-conservation tradeoff (Bardgett et al., 2014; Birouste et al., 2014; Craine et al.,
209	2005; Espeleta et al., 2009; Mommer and Weemstra, 2012; Roumet et al., 2006). In general,
210	absorptive roots with higher tissue density are slower in nutrient acquisition and longer in
211	lifespan whereas absorptive roots with lower tissue density may enable faster acquisition but

212	maintain a shorter lifespan (Ryser, 1996; Wahl and Ryser, 2000; Withington et al., 2006).
213	Recently, tissue density for absorptive roots was found to negatively correlate with root
214	diameter. This could be because root cortex is less dense than root stele and because in thicker
215	roots a larger proportion of the root cross-sectional area is accounted for by the cortex (Chen
216	et al., 2013; Kong et al., 2014; Kong and Ma, 2014). On the other hand, compared with
217	thinner absorptive roots, thicker absorptive roots may acquire resources faster because of their
218	greater dependence on mycorrhizal fungi (Eissenstat et al., 2015; Kong et al., 2014; Kong and
219	Ma, 2014; St John, 1980), and may also have a longer lifespan due to the larger diameter_
220	(Adams et al., 2013; Eissenstat and Yanai, 1997; Wells and Eissenstat, 2001). As such, the
221	trait syndrome for thicker absorptive roots would differ from the predictions of faster
222	acquisition and shorter lifespan. This highlights the importance of discriminating thicker and
223	thinner absorptive roots when exploring root strategies. However, we are aware of few studies
224	that have tested for effects of root diameter in driving trait economics spectra in absorptive
225	roots.
226	In addition to structural traits such as density, the chemical composition of absorptive roots
227	may constitute another important aspect of testing root strategies in relation <u>to</u> root diameter
228	(Hidaka and Kitayama, 2011; Meier and Bowman, 2008; Poorter and Bergkotte, 1992;
229	Poorter et al., 2009). For example, carbon (C) and nitrogen (N), the two most abundant
230	elements in plant tissues, are usually bound to organic compounds which may contain labile
231	fractions (e.g., soluble sugars and proteins in living cells) and recalcitrant fractions (e.g.,
232	cellulose and lignin in structural tissues) (Atkinson et al., 2012; Berg and McClaugherty, 2008;
233	Feng et al., 2009; Poorter et al., 2009; Shipley et al., 2006). From the perspective of C and N 12

234	fractionsGenerally, absorptive roots with less labile C and more labile N may indicate an
235	acquisitive strategy. This is because high root activity may be accompanied by an increased
236	production of metabolism-related proteins with a high labile N content; such roots may be
237	palatable for herbivores and have a relative short lifespan. On the other hand, conservative
238	roots contain less labile C and N fractions as more of these chemicals compounds are used for
239	construction of structural tissues resulting in lower root activity and a longer lifespan.
240	However, compared with thinner absorptive roots, thicker absorptive roots may have higher
241	labile C and N fractions as these labile fractions can be stored in their thick root cortex
242	(Chapin III, 1980; Long et al., 2013; Lux et al., 2004; Withington et al., 2006). As such, the
243	chemical traits of thicker absorptive roots integrate 'opposing' effects of root metabolism and
244	storage, suggesting them having neither a true acquisitive nor a true conservative strategy.
245	Therefore, <u>into</u> evaluatinge the impact of thickness on root economic strategies it is necessary
246	to examine C and N fractions in relation to root diameter.
247	Here, we selected a variety of plant species common to tropical and subtropical forests in
248	south China with contrasting phylogeny and root structure. The aim of our study was two-fold.
249	First, we examined the influence of root diameter on the root economic strategies in
250	absorptive roots. We hypothesized that the root economic strategies differ between thinner
251	and thicker absorptive roots, with trait relationships indicating acquisitive-conservative
252	trade-off for thinner roots but not for ticker roots. The hypothesis was tested using a series of
253	trait relationships involving both structural and chemical traits. Second, root C and N
254	fractions have been suggested to vary in predictive ways across branch orders (Fan and Guo,

255 2010; Goebel et al., 2011). However, we hypothesized that patterns of root C and N fractions

across branch orders differ in species varying in absorptive root diameter.

257

258 2 Materials and methods

259 2.1 Plant species and sampling sites

260 We selected seven plant species with contrasting phylogeny and root structure (Table S1) in

- tropical and subtropical forests in south China. Three species were sampled at the Heshan
- Hilly Land Interdisciplinary Experimental Station (22°41′N, 112°54′E), Guangdong province.
- 263 The species were: Dicranopteris dichotoma (Gleicheniaceae) (a fern), Cunninghamia
- 264 *lanceolata* (Taxodiaceae) (a conifer) and *Acacia auriculiformis* (Leguminosae) (a tree).
- 265 Another tree species, Paramichelia baillonii (Magnoliaceae), was sampled in Wutongshan
- 266 National Forest Park (22°27′-22°52′N, 113°37′-114°37′E) in Shenzhen, Guangdong province.
- 267 Three other tree species, Gordonia axillaris (Theaceae), Endospermum chinense
- 268 (Euphorbiaceae) and Cryptocarya chinensis (Lauraceae), were sampled in Jianfengling
- 269 Nature Reserve (18°23'-18°50'N, 108°36'-109°05'E), Hainan province. Roots of these species
- are mycorrhizedas. Including plant species from the fern, conifer to angiosperms could
- 271 <u>extrapolate to some extent our idea of root economic strategies across different groups of</u>
- 272 plant species. In addition, anatomical structures of some species have been explored in one of
- 273 our previous studies (see Long et al., 2013) and their results may be instructive for our current
- 274 <u>study.</u> More information on sites and species can be found in Table S1 and <u>in</u> Long et al.
- 275 (2013).

277 2.2 Root sampling

278	Roots were collected at a soil depth of 0-10 cm in June and July 2011. For each species, at
279	least three mature trees were selected. We first tracked the main lateral roots by carefully
280	removing surface soil at the base of each plant with a specially manufactured fork. Root
281	branch order was defined according to Pregitzer's study with the most terminal branch as the
282	first-order (Pregitzer et al., 2002). The intact roots were collected and soil adhering to the
283	roots was carefully removed. We distinguished all four root orders for <i>D. dichotoma</i> and the
284	first five orders for the other species. A portion of each root sample was immediately put into
285	Formalin-Aceto-Alcohol (FAA) solution (90 ml 100% ethanol, 10 ml 100% glacial acetic
286	acid) for later anatomical assessments. The remaining unwashed part of each root sample was
287	placed in plastic bags and transported in a cooler to the laboratory. These root samples were
288	then frozen until measurements of root morphology and chemistry (Pregitzer et al., 2002).

289

290 2.3 Root tissue density

291 For each species, 50 root segments for the first order, 30 segments for the second order, and 20 segments for the third to the fifth order were randomly picked for measuring root diameter 292 293 and length. Depending on root size, the root diameter was measured under a $40 \times \text{or } 20 \times$ 294 stereomicroscope (MZ41-2B, MshOt, Guangzhou, China). The length of comparatively short 295 roots was assessed using a stereomicroscope with an ocular micrometer (± 0.025 mm) while a measuring tape with the minimum scale of 0.5 mm was used for relatively long roots (Guo et 296 297 al., 2008). After root diameter and length were recorded, roots were oven-dried at 65 °C for 298 48 h and weighed. Root tissue density was calculated by dividing root dry mass by root

299 volume assuming roots are cylindrically shaped (Kong et al., 2014). In addition, specific root

300 length (SRL) was calculated as the root length divided by its dry mass.

301

302 2.4 Root anatomy

303 Root segments from the FAA solution were cleaned with deionized water (4 °C) and then 304 transferred to glass Petri dishes for dissection into different branch orders. Root anatomy was 305 determined according to Long et al. (2013). Briefly, a minimum of 10 root segments were 306 randomly chosen for each root order. All root segments were dehydrated in an ethanol 307 solution series to absolute ethanol, purified in 100% xylene and embedded in paraffin. Root 308 cross-sections were then cut into slices of 8 µm thick using a microtome (Rotary Microtome 309 KD-2258, Zhejiang, China). After deparaffinage, the root slices were stained first by safranine 310 and then by fast green. Following this staining procedure, the cortex and epidermis was in 311 blue and the stele was in red. The root slices were then photographed by a light microscope 312 (Carl Zeiss Axioscop 20, Jena, Germany). The size of anatomical structures including 313 epidermis, cortex and stele was measured using Image J software (NIH Image, Bethesda, MD, 314 USA). Absorptive roots in a root branch were defined based on root anatomy (Guo et al., 315 2008). Here, root orders were classified as absorptive roots when they had no or little 316 secondary xylem (Long et al., 2013). Specifically, absorptive roots referred to the first two orders for D. dichotoma, the first three orders for A. auriculiformis, G. axillaris, C. lanceolata, 317 E. chinense and C. chinensis, and the first four orders for P. baillonii, respectively (Fig. S1). 318 319

带格式的: 字体: 非倾斜 **带格式的:**字体:非倾斜 带格式的:字体:非倾斜

321	The frozen root samples were put into deionized water to carefully remove any soil particles
322	or dead organic matter that adhered to but was not a part of the root (Pregitzer et al., 2002).
323	The samples of each root branch order were then oven-dried (65 $^{\circ}$ C for 24 h), milled (ZM200,
324	Retsch, Germany), and mixed homogeneously for chemical analyses. Root C and N
325	concentrations were determined using an element analyzer (VarioEl, Elementar
326	Analysen-systeme GmbH, Germany). Root C fractions (extractive, acid-soluble fraction,
327	acid-insoluble fraction) were determined by a sulfuric acid digestion method. First, we
328	separated the extractive and labile C fraction from other C fractions. A subsample of c. 100
329	mg (m_0) was extracted with 15 ml of cetyl trimethylammonium bromide (CTAB) solution for
330	3 h, filtered, repeatedly washed with de-ionized water until pH was 7.0, and then oven-dried
331	at 60 ${}^{\rm C}$ to a constant weight (m1). Second, the filtered residue was digested with 30 ml
332	sulfuric acid (72 %) at 22 °C for 3 h, filtered, repeatedly washed (until pH was 7.0), dried and
333	weighed (m_2) . After the acid-digestion step, the ash content (m_3) , was determined by
334	combusting 15-30 mg of sample at 550 °C for 4 h. Finally, the extractive-fraction, acid-soluble-
335	fraction, and acid-insoluble fractions were calculated as 100% $\times (m_0-m_1)/(m_0-m_3)$, 100% \times
336	(m ₁ -m ₂)/(m ₀ -m ₃), and 100% \times (m ₂ -m ₃)/(m ₀ -m ₃), respectively. Here, the extractive fraction
337	was considered as the labile C fraction while acid-soluble and acid-insoluble fractions were
338	considered as the recalcitrant C fraction.
339	An about 5mg subsample of residue left after the above acid-digestion procedure was used
340	to measure N concentration and N allocation in the acid-insoluble C fraction. The N in the
341	extractive fraction was too low to measure. Thus, estimates of N in the acid-soluble fraction
342	were calculated as the difference between total N and N in the acid-insoluble fraction.

344	2.6 Statistical Data analyses
345	Relationships between root tissue density and root N concentration and each of the three C
346	fractions were assessed by linear regressions. Here, we introduced a new term, 'root EC'
347	referring to tissues outside the stele including the epidermis plus and cortex. Root EC was
348	used for two reasons. First, the thickness of root EC can be a proxy of the size of root
349	diameter (R^2 =0.91 and R^2 =0.99 for linear regressions in this study and in Kong et al. (2014),
350	respectively). Second, root EC can be used as an indicator of root chemical composition as
351	the storage of root labile C and most of root N is found in root EC (Chen et al., 2013). The
352	relationships between the thickness of root EC and root tissue density and root chemical
353	fractions were also investigated with linear regressions. In addition, the relationship between
354	SRL and thickness of root EC was fitted by exponential regression.
355	To explore the effect of root diameter on root ecological strategies, the above analyses were
356	repeated for thin and thick absorptive roots, respectively. A mean thickness of 247 μm was
357	used for root EC as the cut-off point between thin and thick absorptive roots. The mean
358	thickness of root EC was used because the thickness of root EC for absorptive roots followed
359	a normal distribution (p >0.05, indicating that thickness was statistically no different from a
360	normal distribution; Fig. S2a). To avoid the influence of biological N fixation on relationships
361	between root N and root tissue density and root EC, a legume species, A. auriculiformis, was
362	excluded in these analyses. In addition, the relationship between the extractive C fraction and
363	root tissue density was further explored by a quadratic polynomial regression using moving
364	average data (Fig. S4). Polynomial regressions were run both for the thin and thick absorptive

365	roots. The moving average data were obtained as follows. First, the extractive C fraction was
366	sorted along with the ascending order of root tissue density. Then, the extractive C fraction
367	and root tissue density were averaged by bins (Reich and Oleksyn, 2004), with bins referring
368	to each of the two neighboring data of extractive C fraction or root tissue density, respectively.
369	Moving average analyses were used as it improved the goodness of fit. No polynomial
370	regression relationships were found for the other two C fractions.
371	We acknowledge that the seven species we used represent a relative small species pool. To
372	validate the results of our study, another dataset of 96 woody species from one of our
373	previous studies was used where only the first-order roots were included-measured (Kong et
374	al., 2014). For these 96 species, we did not use the average root EC thickness as the cut-off
375	between thin and thick absorptive roots. This was because root EC of these species followed a
376	skewed normal distribution with abundant species having thinner root EC (p <0.05, indicating
377	that thickness was statistically different from a normal distribution; Fig. S2b). In the case of a
378	skewed normal distribution, the cut-off point based on mean root EC might cause bias for-in
379	separating thin and thick absorptive roots. Here, a thickness of 182.8 μ m for root EC was used
380	as a cut-off between thin and thick absorptive roots for these species (Kong et al., 2014). The
381	thickness of 182.8 µm for root EC corresponded to a transition from lower to higher
382	mycorrhizal colonization with increasing root diameter (Kong et al., 2014). This transition
383	may also indicate a divergence of strategy between thin absorptive roots (depending mainly
384	on roots themselves for resource acquisition) and thick absorptive roots (depending mainly on
385	mycorrhizal fungi for resource acquisition, or the mycotrophy) (Baylis, 1975; Eissenstat et al.,
386	2015; Liu et al., 2015; St John, 1980). In this dataset, relationships between root tissue density 19

and root N concentration and thickness of root EC were examined for both the thin and thickabsorptive roots.

- 389 To test interspecific differences of root chemical fractions among root orders, two-way
- 390 ANOVAs were used with plant species and root order as fixed factors. Tukey's HSD test was
- 391 conducted to evaluate differences in chemical fractions among root branch orders within
- species (Long et al., 2013). All statistical analyses were carried out in SPSS (version 13.0;
- 393 SPSS Inc. Chicago, USA) with significant level at p < 0.05.
- 394
- 395 3 Results

396 **3.1 Root trait relationships for thin and thick absorptive roots**

- 397 Root tissue density was negatively correlated with root N concentration for total and thin but
- 398 not for thick absorptive roots (Fig. 1). Similarly, using a larger species pool, negative
- 399 relationships between root tissue density and root N concentration were found for total and
- 400 thin but not for thick absorptive roots (Fig. S3).
- 401 For thin absorptive roots, the extractive C fraction peaked at medium root tissue density
- 402 (Fig. 2a). Moving average analysis revealed a quadratic relationship between the extractive C
- 403 fraction and root tissue density in thin absorptive roots (Fig. S4a), while no relationships were
- 404 found between acid-soluble and acid-insoluble fractions and root tissue density. The

405 recalcitrant C fraction (acid-soluble C + acid insoluble C) in thin absorptive roots showed a

- 406 quadratic relationship with root tissue density (Fig. S4b). It was also noted that in the thin
- 407 absorptive roots, the acid-soluble and <u>acid-insoluble fractions</u> were relatively higher in the

408	higher and lower range of root tissue density, respectively (Fig. 2b,c). For thick absorptive
409	roots, none of the three C fractions were correlated with root tissue density (Fig. 2, Fig. S4).
410	Across total absorptive roots, thickness of root EC was positively correlated with total root
411	N concentration (Fig. 3a) and negatively with root N in the acid-insoluble fraction (Fig. 3b).
412	Thickness of root EC was also positively correlated with the extractive C fraction (Fig. 3c)
413	and negatively with the acid-insoluble fraction (Fig. 3e). However, in each of thin and thick
414	absorptive roots, no relationships were found between thickness of root EC and either of these
415	chemical fractions (all <i>p</i> values>0.05, Fig. 3a-e).
416	Thickness of root EC decreased linearly with root tissue density (Fig. 4), but no
417	relationships were found when separated between thin and thick absorptive roots. Using a
418	large species pool we found a very similar pattern: a significant relationship between
419	thickness of root EC and root tissue density for total absorptive roots, a weaker relationship
420	for thin absorptive roots and no relationship for thick absorptive roots (Fig. S5). In addition,
421	we found exponential relationships between SRL and thickness of root EC for the species in
422	our current study as well as for the larger species pool from a previous study (Fig. S6).
423	
424	3.2 Effects of plant species and root order on root C and N fractions
425	All chemical fractions except the extractive fraction showed significant differences among
426	species and root orders (p values<0.05, Table 1), and there were significant interactions for all

427 chemical fractions (all *p* values<0.05) indicating plant species-specific effects of root order on
428 plant chemical traits.

429	The extractive C fraction tended to increase with increasing root order for species with thin
430	absorptive roots such as D. dichotoma and A. auriculiformis, but decreased for species with
431	thick absorptive roots, except for C. lanceolata (Fig. 5a). For both acid-soluble and
432	acid-insoluble fractions, patterns were largely idiosyncratic, including both increases and
433	decreases with increasing root branch order (Fig. 5b,c). For all species, root N concentration
434	decreased with increasing root branch order (Fig. 6a), whereas N in the acid-insoluble fraction
435	increased with increasing root branch order, except for C. chinensis (Fig. 6b).

437 4 Discussion

438	The acquisition conservation tradeoff in plants has been suggested to be consistent across-
439	plant organs (roots, leaves, and stems), as such constituting a key ecological axis, i.e., the-
440	[·] plant economics spectrum' (Freschet et al., 2010; Prieto et al., 2015; Reich, 2014). The
441	negative relationship between root tissue density and root N concentration across total-
442	absorptive roots-supports the acquisition-conservation tradeoff, and hence, the existence of
443	economic strategies in absorptive roots. This is because absorptive roots with higher tissue
444	density usually have longer lifespan (Eissenstat and Yanai, 1997; Ryser, 1996; Withington et
445	al., 2006), while their lower N concentration would be associated with indicates slow resource
446	acquisition (Kong et al., 2010; Mommer and Weemstra, 2012; Reich et al., 2008). However,
447	our results further showed that the negative relationship between root tissue density and root
448	N concentration held for thin but not for thick absorptive roots (Fig. 1). Although these results
449	were based on a relatively small number of species, reanalysis of data from a previous study
450	including 96 species (Kong et al., 2014) revealed very similar patterns (Fig. S1). As such, trait 22

451	relationship between root N concentration and root tissue density supports our first hypothesis
452	of different economics strategies for the thin and thick absorptive roots.
453	The trait relationships between root tissue density and root C fractions provide further
454	support for <u>ourthe</u> hypothesis. Theoretically, absorptive roots with lower tissue density would
455	have higher activity, while higher root activity also consumes more labile C thus leaving less
456	labile and more recalcitrant C fractions in these roots. In contrast, in absorptive roots with
457	higher tissue density, more C is used for structural tissues demanding recalcitrant C fractions
458	(Fan and Guo, 2010). Therefore, we would expect an inverted U-shaped relationship for labile
459	C fractions and a U-shaped relationship for recalcitrant C fractions when these C fractions
460	would be correlated with root tissue density. As expected, for thin absorptive roots we found
461	an inverted U-shaped relationship between the labile C fraction and root tissue density (Fig.
462	S4a) and a U-shaped relationship between recalcitrant C fractions (acid-soluble C + acid
463	insoluble C) and root tissue density (Fig. S4b). The higher acid-soluble C fraction with
464	increasing root tissue density (Fig. 2b) suggest that thin absorptive roots with higher tissue
465	density are constructed with more acid-soluble C compounds, such as cellulose, rather than
466	acid-insoluble C compounds, such as lignin, possibly because of higher energy demands for
467	the production of lignin than for the production of cellulose (Novaes et al., 2010) However,
468	different from thin absorptive roots, there were no relationships between root C fractions and
469	root tissue density for thick absorptive roots (Fig. 2, Fig. S4). Therefore, trait relationships
470	between root C fractions and root tissue density provides further evidence for an
471	acquisition-conservation tradeoff economies strategy infor thin absorptive roots, but not for
472	thick absorptive roots.

473	Furthermore, observed relationships between thickness of root EC and root C and N
474	fractions provides the third piece of support for our hypothesis of different contrasting
475	economic strategies with root diameter. Across total absorptive roots, thickness of root EC
476	was positively correlated with root N concentration and the extractive C fraction while being-
477	negatively correlated with the acid-soluble C fraction and N in the acid-soluble C fraction.
478	This suggests that compared with thin absorptive roots, thick absorptive roots acquire
479	resources at higher rates as indicated by their higher N concentration and lower C and N in
480	recalcitrant fractions. Meanwhile, thick absorptive roots may also have longer lifespan
481	because of their larger root diameter (Adams et al., 2013; Anderson et al., 2003; McCormack
482	et al., 2012; Wells and Eissenstat, 2001). These findings seem to contrast with an
483	acquisition-conservation tradeoff. Further, we showed that relationships between thickness of
484	root EC and root chemical fractions only heeld across the full spectrum from thin to thick
485	absorptive roots. Nevertheless, it was also noted that root tissue density showed a greater
486	range of variation for thin than for thick absorptive roots. For thin absorptive roots, variation
487	in root tissue density might arise from secondary thickening of root EC cell walls (Eissenstat
488	and Achor, 1999; Long et al., 2013; Ryser, 2006; Wahl and Ryser, 2000). This could be
489	associated with lower root activity and hence lower root N concentration (Fig. 1, Fig. S3). As
490	such, and an acquisition-conservation tradeoff in thin absorptive roots ewould be expected.
491	However, for thick absorptive roots, the cell size, as well as the cortical cell file number
492	(Chimungu et al., 2014a, b), may be more important than cell wall thickening in determining
493	root activity. If so, root activity may be less affected by thickening of root EC cell walls than

494	by changing the size or number of these cells. As such, and there would thus be no clear-
495	obvious economic strategies for thick absorptive roots.
496	Recent studies have revealed different nutrient foraging strategies for thin and thick
497	absorptive roots with the former depending on roots themselves and the latter depending more
498	on mycorrhizal fungi (Baylis, 1975; Eissenstat et al., 2015; Liu et al., 2015). These
499	observations are supported by the SRL-thickness relationship we found in our study where
500	thin roots had larger SRL and SRL of than thick roots was constantly smaller (Fig. S6). Here,
501	our results further indicate that thin and thick absorptive roots may follow different economic
502	strategies when foraging for nutrients. These findings may have important implications for the
503	emerging debate on the root economics spectrum. For example, the existence of an economic
504	strategyies for plant roots has been commonly accepted (Craine et al., 2005; Espeleta et al.,
505	2009; Freschet et al., 2010; Reich, 2014). However, some recent studies have challenged the
506	ubiquity of root economics spectra by showing no (Chen et al., 2013) or positive (Kong et al.,
507	2014) relationships between root diameter and root N concentration. One possible explanation
508	for these contrasting conflicting findings of these studies is the inclusion of many species with
509	thick absorptive roots. Including these species may potentially obscure trait relationships
510	indicating acquisition-conservation tradeoffs. On the other hand, the lack of evidence of an
511	acquisition-conservation tradeoff may have resulted from the larger proportion of root
512	cross-section area accounted for by root EC compared to the stele (Table S2; Kong et al.,
513	2014). Notabley, for species like monocots, the area of root stele is much larger than the area
514	of root EC. We did not included monocots in our study, but it would be interesting to test
515	whether the contrasting economic strategies for thin and thick absorptive roots, as presented 25

-	
516	here, can be applied across mono-dicots. Furthermore, our findings of different economic
517	strategies for thin and thick absorptive roots are important for understanding plant impacts on
518	soil processes. Acquisitive species are usually associated with bacterial-dominated soil
519	microbial communities, faster carbon and nutrient cycling, and stronger plant-soil feedbacks,
520	while conservative species are usually associated with fungal-dominated soil microbial
521	communities, slower carbon and nutrient cycling, and weaker plant-soil feedbacks (Bardgett
522	et al., 2014; Kardol et al., 2015; Wardle et al., 2004). This suggests that the impacts of
523	absorptive roots on soil processes would depend on root diameter.
524	Besides the prominent role in influencing root strategy, root thickness may also affect
525	patterns of root chemical traits among root branch orders. The extractive C fraction increased
526	with increasing root order for species with thin absorptive roots, whereas it declined for
527	species with thick absorptive roots. Although both the acid-soluble and acid-insoluble
528	fractions showed no consistent trends across root branch orders, the total recalcitrant fraction
529	(sum of acid-soluble and acid-insoluble fractions) showed a pattern opposite to that of the
530	extractive fraction. On the other hand, root N concentration and N in recalcitrant C fractions
531	showed relative consistent patterns across root orders. Thus As such, our the findings provided
532	only partial support of our second hypothesis. These patterns of root chemical fractions,
533	however, are important in understanding soil ecosystem processes. For example, it is
534	increasingly recognized that lower-order roots, compared with higher-order woody roots, are
535	faster in root turnover but slower in root decomposition which makes the former a
536	disproportionally greater source of soil organic matter (Clemmensen et al., 2013; Fan and
537	Guo, 2010; Goebel et al., 2011; Xiong et al., 2013). This has been ascribed to higher

538	recalcitrant C fractions in lower-order compared with higher-order woody roots (Goebel et al.,	
539	2011). However, our results may challenge the generality of slower decomposition of	
540	lower-order relative to higher-order roots as some lower-order roots had less recalcitrant C	
541	fractions and hence faster decomposition than higher-order roots.	
542	In conclusion, the results of our study suggest an acquisition-conservation tradeoff for thin	
543	absorptive roots but not for thick absorptive roots. In addition, we found different patterns of	
544	root chemical fractions with root diameter and root order. The contrasting economic strategies	
545	between thin and thick absorptive roots are important in advancing our understanding of root	
546	ecology and the links with aboveground plant counterparts. Yet, our knowledge on the	
547	functioning of plant roots and their roles in driving soil ecosystem processes is still limited.	
548	We hope that our study presents an instructive perspective on the root economics spectrum	
549	that will stimulate further research in this field. Future studies may test to what extent our	
550	results hold for other (groups of) plant species (e.g., monocots, ferns, or conifers), includinge	
551	a larger spectrum of functional traits (including those associated with interactions with	
552	rhizosphere biota), and unravel the mechanisms underlying the 'non-economics strategy' for	
553	thick absorptive roots. Further, we <u>anticipate</u> that the mycotrophy (i.e., <u>plant</u> species	
554	association with mycorrhizal fungi for resource acquisition) may underlie economics	
555	strategies in thick absorptive roots; however, empirical studies are needed to confirm this.	
556		
557	References	
558	Adams, T. S., McCormack, M. L., and Eissenstat, D. M.: Foraging strategies in trees of	
559	different root morphology: the role of root lifespan, Tree Physiology, 33, 940-948, 2013.	

560	Anderson, L. J., Comas, L. H., Lakso, A. N., and Eissenstat, D. M.: Multiple risk factors in				
561	root survivorship: a four-year study in Concord grape, New Phytologist, 158, 489-501, 2003.				
562	Atkinson, R. R. L., Burrell, M. M., Osborne, C. P., Rose, K. E., and Rees, M.: A non-targeted				
563	metabolomics approach to quantifying differences in root storage between fast- and				
564	slow-growing plants, New Phytologist, 196, 200-211, 2012.				
565	Bardgett, R., D., , Mommer, L., and De Vries, F., T.: Going underground: root traits as drivers				
566	of ecosystem processes, Trends in Ecology and Evolution, 29, 692-699, 2014.				
567	Baylis, G.: Magnolioid mycorrhiza and mycotrophy in root systems derived from it. In:				
568	Endomycorrhizas, Sanders, F. E., Mosse, B., and Tinker, P. B. (Eds.), Academic Press, 1975.				
569	Berg, B. and McClaugherty, C.: Plant litter: decomposition, humus formation, carbon				
570	sequestration, Springer, 2008.				
571	Birouste, M., Zamora-Ledezma, E., Bossard, C., Pérez-Ramos, I., and Roumet, C.:				
572	Measurement of fine root tissue density: a comparison of three methods reveals the potential				
573	of root dry matter content, Plant and Soil, 374, 299-313, 2014.				
574	Chapin III, F. S.: The mineral nutrition of wild plants, Annual Review of Ecology, Evolution				
575	and Systematics, 11, 233-260, 1980.				
576	Chen, W., Zeng, H., Eissenstat, D. M., and Guo, D.: Variation of first-order root traits across				
577	climatic gradients and evolutionary trends in geological time, Global Ecology and				
578	Biogeography, 22, 846-856, 2013.				
579	Chimungu, J. G., Brown, K. M., and Lynch, J. P.: Large root cortical cell size improves				
580	drought tolerance in maize, Plant Physiology, 166, 2166-2178, 2014a.				
581	Chimungu, J. G., Brown, K. M., and Lynch, J. P.: Reduced root cortical cell file number 28				

582	improves drought tolerance in maize, Plant Physiology, 166, 1943-1955, 2014b.
583	Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H.,
584	Stenlid, J., Finlay, R. D., Wardle, D. A., and Lindahl, B. D.: Roots and associated fungi drive
585	long-term carbon sequestration in boreal forest, Science, 339, 1615-1618, 2013.
586	Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy,
587	O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M.,
588	Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P.,
589	Brovkin, V., Chatain, A., Callaghan, T. V., D áz, S., Garnier, E., Gurvich, D. E., Kazakou, E.,
590	Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M.:
591	Plant species traits are the predominant control on litter decomposition rates within biomes
592	worldwide, Ecology Letters, 11, 1065-1071, 2008.
593	Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J., and Johnson, L. C.: Environmental
594	constraints on a global relationship among leaf and root traits of grasses, Ecology, 86, 12-19,
595	2005.
596	Diaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A.,
597	Montserrat-Mart í G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S.,
598	Castro-D éz, P., Funes, G., Hamzehee, B., Khoshnevi, M., P érez-Harguindeguy, N.,
599	P érez-Rontom é, M. C., Shirvany, F. A., Vendramini, F., Yazdani, S., Abbas-Azimi, R.,
600	Bogaard, A., Boustani, S., Charles, M., Dehghan, M., de Torres-Espuny, L., Falczuk, V.,
601	Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Mart nez,
602	M., Romo-D éz, A., Shaw, S., Siavash, B., Villar-Salvador, P., and Zak, M. R.: The plant traits
603	that drive ecosystems: Evidence from three continents, Journal of Vegetation Science, 15,

604	295-304, 2004.

605	Eissenstat, D. M. and Achor, D. S.: Anatomical characteristics of roots of citrus rootstocks
606	that vary in specific root length, New Phytologist, 141, 309-321, 1999.

- Eissenstat, D. M., Kucharski, J. M., Zadworny, M., Adams, T. S., and Koide, R. T.: Linking
 root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest, New
 Phytologist, 208, 114-124, 2015.
- Eissenstat, D. M. and Yanai, R. D.: The ecology of root lifespan, Advances in Ecological
 Research 27, 1-60, 1997.
- Espeleta, J. F., West, J. B., and Donovan, L. A.: Tree species fine-root demography parallels
 habitat specialization across a sandhill soil resource gradient, Ecology, 90, 1773-1787, 2009.
- Fan, P. and Guo, D.: Slow decomposition of lower order roots: a key mechanism of root
 carbon and nutrient retention in the soil. , Oecologia, 163, 509-515, 2010.
- 616 Feng, Y. L., Lei, Y. B., Wan, R. F., Callaway, R. M., Valiente-Banuet, I., Li, Y. P., and Zheng,
- Y. L.: Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an
 invasive plant, Proceedings of the National Academy of Sciences USA, 106, 1853-1856,

619 2009.

- Freschet, G. T., Cornelissen, J. H., Van Logtestijn, R. S., and Aerts, R.: Evidence of the 'plant
 economics spectrum'in a subarctic flora, Journal of Ecology, 98, 275-301, 2010.
- 622 Goebel, M., Hobbie, S. E., Bulaj, B., Zadworny, M., Archibald, D. D., Oleksyn, J., Reich, P.
- 623 B., and Eissenstat, D. M.: Decomposition of the finest root branching orders: linking
- 624 belowground dynamics to fine-root function and structure, Ecological Monographs, 81,

625 89-102, 2011.

626	Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y., and Wang, Z.: Anatomical traits associated				
627	with absorption and mycorrhizal colonization are linked to root branch order in twenty-three				
628	Chinese temperate tree species, New Phytologist, 180, 673-683, 2008.				
629	Hidaka, A. and Kitayama, K.: Allocation of foliar phosphorus fractions and leaf traits of				
630	tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu,				
631	Borneo, Journal of Ecology, 99, 849-857, 2011.				
632	Kardol, P., Veen, G. F., Teste, F. P., and Perring, M. P.: Peeking into the black box: a				
633	trait-based approach to predicting plant-soil feedback, New Phytologist, 206, 1-4, 2015.				
634	Kong, D., Ma, C., Zhang, Q., Li, L., Chen, X., Zeng, H., and Guo, D.: Leading dimensions in				
635	absorptive root trait variation across 96 subtropical forest species, New Phytologist, 203,				
636	863-872, 2014.				
637	Kong, D., Wu, H., Wang, M., Simmons, M., Lü, X., Yu, Q., and Han, X.: Structural and				
638	chemical differences between shoot- and root-derived roots of three perennial grasses in a				
639	typical steppe in Inner Mongolia China, Plant and Soil, 336, 209-217, 2010.				
640	Kong, D. L. and Ma, C. E.: Acquisition of ephemeral module in roots: a new view and test,				
641	Scitific Reports, 4, 5078, 2014.				
642	Laughlin, D. C., Leppert, J. J., Moore, M. M., and Sieg, C. H.: A multi-trait test of the				
643	leaf-height-seed plant strategy scheme with 133 species from a pine forest flora, Functional				
644	Ecology, 24, 493-501, 2010.				
645	Liu, B., Li, H., Zhu, B., Koide, R. T., Eissenstat, D. M., and Guo, D.: Complementarity in				
646	nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across				
647	14 coexisting subtropical tree species, New Phytologist, 208, 125-136, 2015.				

648	Long, Y., Kong, D., Chen, Z., and Zeng, H.: Variation of the linkage of root function with root				
649	branch order, PLoS ONE, 8, e57153, 2013.				
650	Lux, A., Luxova, M., Abe, J., and Morita, S.: Root cortex: structural and functional variability				
651	and responses to environmental stress, Root Research, 13, 117-131, 2004.				
652	McCormack, M. L., Adams, T. S., Smithwick, E. A., and Eissenstat, D. M.: Predicting fine				
653	root lifespan from plant functional traits in temperate trees, New Phytologist, 195, 823-831,				
654	2012.				
655	Meier, C. L. and Bowman, W. D.: Links between plant litter chemistry, species diversity, and				
656	below-ground ecosystem function, Proceedings of the National Academy of Sciences USA,				
657	105, 19780-19785 2008.				
658	Mommer, L. and Weemstra, M.: The role of roots in the resource economics spectrum, New				
659	Phytologist, 195, 725-727, 2012.				
660	Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., and Sederoff, R.: Lignin and biomass:				
661	a negative correlation for wood formation and lignin content in trees., Plant Physiology, 154,				
662	555-561, 2010.				
663	Osnas, J. L., Lichstein, J. W., Reich, P. B., and Pacala, S. W.: Global leaf trait relationships-				
664	mass, area, and the leaf economics spectrum, Science, 340, 741-744, 2013.				
665	Poorter, H. and Bergkotte, M.: Chemical composition of 24 wild species differing in relative				
666	growth rate, Plant Cell and Environment, 15, 221-229, 1992.				
667	Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., and Villar, R.: Causes and consequences				
668	of variation in leaf mass per area (LMA): a meta-analysis, New Phytologist, 182, 565-588,				
669	2009. 32				

670	Pregitzer, K. S., DeForest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W., and Hendrick, R. L.:				
671	Fine root architecture of nine North American trees, Ecological Monographs, 72, 293-309,				
672	2002.				
673	Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J. H., Maeght, J. L., Mao,				
674	Z., Pierret, A., Portillo, N., Roupsard, O., Thammahacksa, C., and Stokes, A.: Root functional				
675	parameters along a land-use gradient: evidence of a community-level economics spectrum,				
676	Journal of Ecology, 103, 361-373, 2015.				
677	Reich, P. B.: The world-wide 'fast-slow' plant economics spectrum: a traits manifesto,				
678	Journal of Ecology, 102, 275-301, 2014.				
679	Reich, P. B. and Oleksyn, J.: Global patterns of plant leaf N and P in relation to temperature				
680	and latitud, Proceedings of the National Academy of Sciences USA, 101, 11001-11006, 2004.				
681	Reich, P. B., Tjoelker, M. G., Pregitzer, K. S., Wright, I. J., Oleksyn, J., and Machado, J. L.:				
682	Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants, Ecology				
683	Letters, 11, 793-801 2008.				
684	Roumet, C., Urcelay, C., and D áz, S.: Suites of root traits differ between annual and perennial				
685	species growing in the field, New Phytologist, 170, 357–368, 2006.				
686	Ryser, P.: The Importance of Tissue Density for Growth and Life Span of Leaves and Roots: A				
687	Comparison of Five Ecologically Contrasting Grasses, Functional Ecology, 10, 717-723,				
688	1996.				
689	Ryser, P.: The mysterious root length, Plant and Soil, 286, 1-6, 2006.				
690	Shipley, B., Lechowicz, M. J., Wright, I. J., and Reich, P. B.: Fundamental trade-offs				
691	generating the worldwide leaf economics spectrum, Ecology, 87, 535-541, 2006. 33				

692	St John, T. V.: Root size, root hairs and mycorrhizal infection: a re- examination of Baylis's				
693	hypothesis with tropical trees, New Phytologist, 84, 483-487, 1980.				
694	Wahl, S. and Ryser, P.: Root tissue structure is linked to ecological strategies of grasses, New				
695	Phytologist, 148, 459-471, 2000.				
696	Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Set äl ä, H., van der Putten, W. H., and Wall,				
697	D. H.: Ecological Linkages Between Aboveground and Belowground Biota, Science, 304,				
698	1629-1633, 2004.				
699	Wells, C. E. and Eissenstat, D. M.: Marked Differences in Survivorship among Apple Roots				
700	of Different Diameters, Ecology, 82, 882-892, 2001.				
701	Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., and Wright, I. J.: Plant ecological				
702	strategies- some leading dimensions of variation among species, Annual Review of Ecology,				
703	Evolution and Systematics, 33, 125-159, 2002.				
704	Withington, J. M., Reich, P. B., Oleksyn, J., and Eissenstat, D. M.: Comparisons of structure				
705	and life span in roots and leaves among temperate trees, Ecological Monographs, 76, 381-397,				
706	2006.				
707	Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F.,				
708	Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E.,				
709	Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J.				
710	J., Navas, ML., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L.,				
711	Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R.:				
712	The worldwide leaf economics spectrum, Nature, 428, 821-827, 2004.				
713	Xiong, Y. M., Fan, P. P., Fu, S. L., Zeng, H., and Guo, D. L.: Slow decomposition and limited 34				

nitrogen release by lower order roots in eight Chinese temperate and subtropical trees., Plant
and Soil, 363, 19-31, 2013.

716

717 Acknowledgements

- 718 We thank Dr. Zhengxia Chen and Ms Yingqian Long for their assistance in measuring root
- 719 chemicals and anatomical structures, and Dr. Chengen Ma and Dr. Xin Jing (Peking
- 720 University) for their valuable contribution to this work. We also appreciate two anonymous
- 721 reviewers, <u>Dr. Alexandra Weigelt</u> and the editor Michael Bahn for their valuable comments
- 722 on discussion earlier versions of this manuscript. This study was sponsored by the open fund
- 723 of Key Laboratory of Tropical Forest Ecology in Xishuangbanna Tropical Botanical Garden,
- 724 Chinese Academy of Sciences and Natural Science Foundation of China (No. 31200344).

带格式的:字体:(默认)Times New Roman,小四,字体颜色:自 动设置,检查拼写和语法,图案: 清除

725 **Table 1.** *F* values of two-way ANOVAs testing effects of plants species and root branch

726 order on the extractive C fraction, acid-soluble C fraction, acid-insoluble C fraction, N

concentration, and N in acid-insoluble C fraction. *, **, *** arewere significant level at 0.05,

728 0.01, 0.001, respectively.

					N in
	Extractive	Acid-soluble	Acid-insoluble	Ν	acid-insoluble C
	C fraction	C fraction	C fraction	concentration	fraction
Species	132.97***	51.57***	188.51***	1578.85***	142.40***
Root order	1.63	11.76***	17.78***	521.22***	19.61***
Species ×	4.46***	2.59**	3.53***	29.33***	3.83***
Root order					

729 Figures

Fig. 1 Relationships between root tissue density and root N concentration for total (black line),

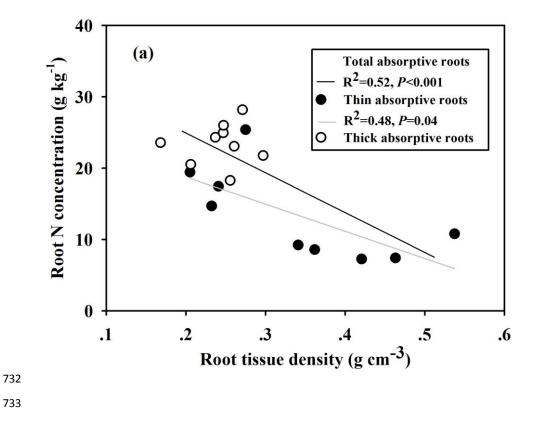


Fig. 2 Relationships between root tissue density and extractive C fraction (a), acid-soluble C

raction (b) and acid-insoluble C fraction (c), for thin (solid circles) and thick (open circles)

737 absorptive roots.

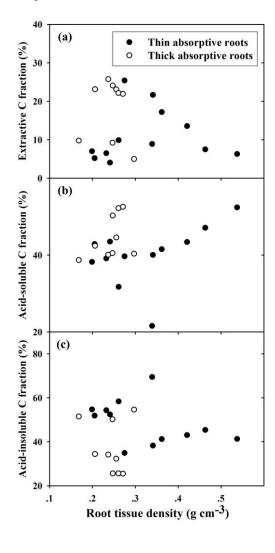


Fig. 3 Relationships between thickness of root EC and root N concentration (a), N in
acid-insoluble C fraction (b), extractive C fraction (c), acid-soluble C fraction (d) and
acid-insoluble C fraction (e) for total (black line), thin (solid circles) and thick (open circles)
absorptive roots.

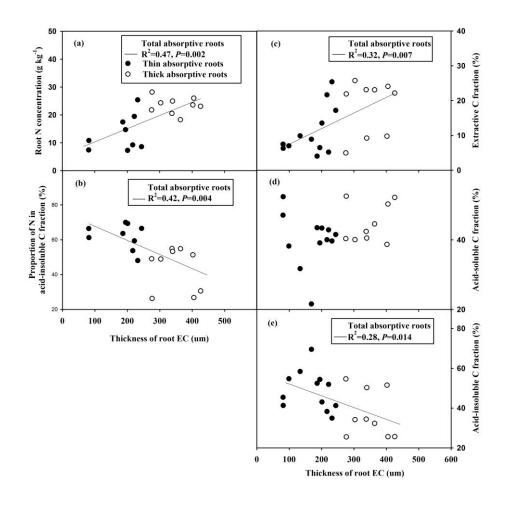
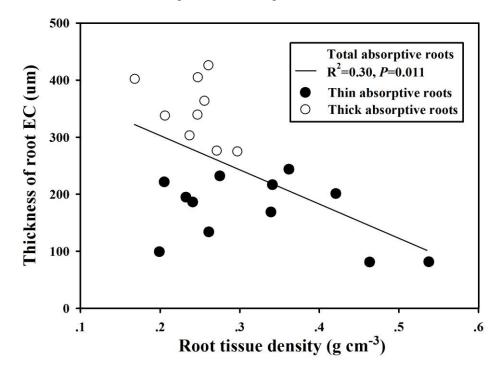
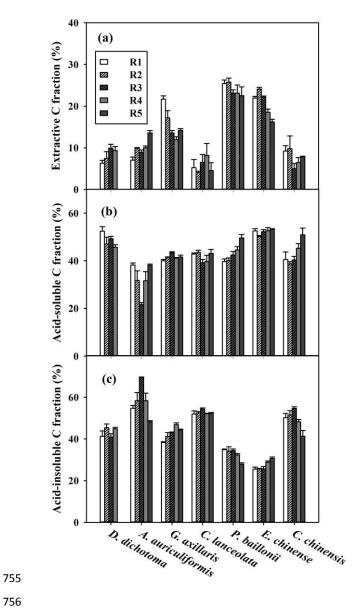
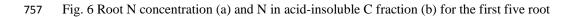
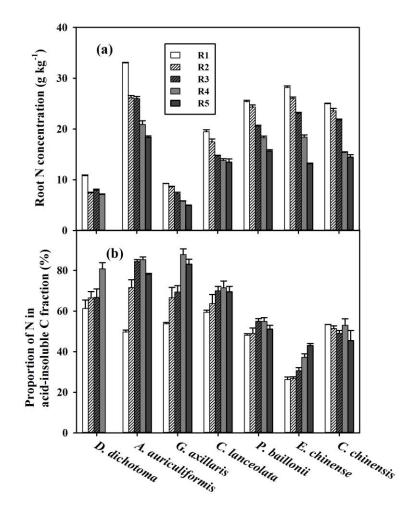





Fig. 4 Relationships between root tissue density and thickness of root EC for total, thin (solid

rate circles, black line) and thick (open circles) absorptive roots.





(c) for the first five root orders for each of seven plant species. R1-R5 refer to the first to fifth

order.

branch orders for each of seven plant species. R1-R5 refer to the first to fifth order.

