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Abstract

We investigate variability in the surface ocean carbonate ion concentration ([cog‘])
on the basis of a long control simulation with a fully-coupled Earth System Model.
The simulation is run with a prescribed, pre-industrial atmospheric CO, concentration
for 1000 years, permitting investigation of natural [Cog_] variability on interannual to

multi-decadal timescales. We find high interannual variability in surface [cog‘] in the
tropical Pacific and at the boundaries between the subtropical and subpolar gyres in
the Northern Hemisphere, and relatively low interannual variability in the centers of the
subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [Cog‘]
variance and autocorrelation suggests that significant anthropogenic trends in the sat-
uration state of aragonite (€2,ag0nite) @re already or nearly detectable at the sustained,
open-ocean timeseries sites, whereas several decades of observations are required to
detect anthropogenic trends in Q,,40nite in the tropical Pacific, North Pacific, and North
Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that
for Qaragonite: due to smaller noise-to-signal ratios and lower autocorrelation in pH. In

the tropical Pacific, the leading mode of surface [Cog'] variability is primarily driven
by variations in the vertical advection of dissolved inorganic carbon (DIC) in associa-
tion with El Nifo—Southern Oscillation. In the North Pacific, surface [Cog'] variability
is caused by circulation-driven variations in surface DIC and strongly correlated with
the Pacific Decadal Oscillation, with peak spectral power at 20—-30 year periods. North
Atlantic [Cog'] variability is also driven by variations in surface DIC, and exhibits weak
correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Os-
cillation. As the scientific community seeks to detect the anthropogenic influence on
ocean carbonate chemistry, these results will aid the interpretation of trends calculated
from spatially- and temporally-sparse observations.
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1 Introduction

The global ocean has absorbed ~ 30 % of the carbon dioxide (CO,) released by hu-
man activities since 1765 (Ciais and Sabine, 2013). While ocean uptake of CO, plays
a key role in mitigating anthropogenic climate change, it also modifies ocean carbon-
ate chemistry (Feely et al., 2004). The dissolution of excess CO, in the surface ocean
drives an increase in the dissolved inorganic carbon (DIC) concentration without chang-
ing the alkalinity (Alk). The result is a surface ocean characterized by decreasing car-
bonate ion concentration ([Co?;]) and pH (Feely et al., 2009). This acidification of the
surface ocean reduces the saturation state of the calcium carbonate minerals calcite
and aragonite (Qcaieite @Nd Caragonites r€SPECtively) and may reduce biogenic calcifica-
tion and enhance calcium carbonate dissolution (Doney et al., 2009).

Observations collected at sustained open ocean timeseries stations (e.g., HOT,
BATS) indicate significant anthropogenic changes in surface DIC, [Cog'], pH, and
Qaragonite relative to background natural variability (Bates et al., 2014). The detection
of statistically robust trends in carbonate chemistry at these stations benefits from fre-
quent sampling (8—16 times per year), long records (15 to 30years), and low natural
variability (Le Quéré et al., 2000; Brix et al., 2004; Bates et al., 2014). In the rest of the
global ocean, however, sparse spatial and temporal sampling, coupled with potentially
large internal climate variability challenges the detection of anthropogenic changes in
carbonate chemistry from observations. In the equatorial Pacific, Sutton et al. (2014)
report decreasing pH from 1997 to 2011 using mooring observations, but they attribute
approximately 40 % of this decrease to natural variability. Based on measurements
from repeat hydrographic surveys, Feely et al. (2012) report an average decrease in
Qaragonite @Nd Qqaicite Of 0.34%yr™" in the Pacific Ocean. In the South Pacific, the trend
is primarily driven by uptake of anthropogenic CO,, while the trends in the North Pacific
Subtropical Gyre and the California Current are attributed to natural variability in ocean
circulation. On the global scale, Lauvset et al. (2015) find a mean rate of decrease in
surface ocean pH of 0.0018yr'1 over 1991-2011, using observations of fCO, aggre-
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gated into 17 biogeographical biomes. They find a substantial amount of interannual
variability in pH in many of the biomes (RMSE ranging from 0.01 and 0.04 pH units)
that is of a similar magnitude to the cumulative trend in pH.

Internal climate variability arises from the coupled interaction of atmospheric,
oceanic, terrestrial, and cryospheric processes (Deser et al., 2012a) and complicates
our ability to detect anthropogenically forced trends from sparse observations. In the
tropics, the dominant mode of internal climate variability is the EI Nino—Southern Os-
cillation (ENSO). In the extratropics, three major climate modes drive variability: the
North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the South-
ern Annular Mode (SAM). Studies conducted using ocean physical and biogeochemi-
cal models run in hindcast mode (i.e., forced with the historically observed atmospheric
state) suggest that ENSO, NAO, PDO, and SAM impact regional ocean biogeochem-
istry. Le Quéré et al. (2000) and Long et al. (2013) find reduced CO, outgassing in the
tropical Pacific during El Nifio events as a result of changes in dynamics reducing the
vertical advection and diffusion of DIC into the surface ocean. In the North Atlantic, the
NAO drives shifts of the subpolar/subtropical intergyre boundary that affect the verti-
cal and lateral advection of DIC and air-sea CO, flux (Thomas et al., 2008). On the
basis of seven biogeochemical models run in hindcast mode, McKinley et al. (2006)
show that the positive phase of the PDO is associated with an increased surface DIC
tendency in the subtropical and western subpolar gyres of the North Pacific. In the
Southern Ocean, multiple hindcast modeling studies find large interannual variability in
surface DIC and Alk driven by the SAM (Lenton and Matear, 2007; Lovenduski et al.,
2007; Verdy et al., 2007).

Model hindcast studies are useful for quantifying the impact of climate variability
on ocean carbonate chemistry, but are limited in their temporal scope to the period
of time for which we have abundant observations of the global atmosphere (typically
1948 to the present day). Large-scale modes of climate variability such as PDO, NAO,
and SAM have spectral power at low frequencies. As such, these hindcast studies
cannot capture the full spectrum of internal variability in the climate system. Long model
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simulations (order 1000 years) can capture multiple realizations of climate variability
on decadal and multi-decadal timescales, and have shown to be useful in the study of
ocean carbon cycle variability on these timescales (Doney et al., 2006; Séférian et al.,
2013; Resplandy et al., 2015).

Here, we assess the influence of internal climate variability on surface ocean car-
bonate chemistry by analyzing output from a 1000 year control simulation of a coupled
Earth System Model. Interaction between the model’s atmosphere, ocean, terrestrial
biosphere, and cryosphere generates internal climate variability on timescales ranging
from interannual to multi-decadal and longer. We aim to quantify and mechanistically
understand the drivers of variability in surface ocean carbonate chemistry on these
timescales. In doing so, we will gain perspective on the statistical confidence in the
anthropogenic carbonate chemistry trends reported in the literature.

Our study builds upon two recent studies of natural variability in ocean carbonate
chemistry from long integrations of Earth System Models. Friedrich et al. (2012) use
MPI-ESM to quantify the natural variability in surface €;4gonite @nd compare it to the
anthropogenic trend over the years 800—2099. They suggest that recent anthropogenic
trends in surface Q,,40nite €XC€€d natural variability by 30 times on regional scales, but
do not focus on detectability in the observational record or on the mechanisms driving
variability. Séférian et al. (2013) analyze output from a fully-coupled 1000 year control
simulation of IPSL-CM5A-LR and describe decadal to multi-decadal variability in air—
sea CO, flux and its driving factors in the North Atlantic, North Pacific, and the Southern
Ocean. They find that a large fraction of the variance in CO, flux is driven by internal
climate variability in the various regions, due to circulation-mediated variability in the
upwelling of DIC to the surface ocean, but only very briefly discuss the implications of
this for carbonate ion variability. Here, we analyze output from a 1000 year control sim-
ulation of the Community Earth System Model (CESM) with a focus on quantifying and
understanding the drivers of variability in surface ocean carbonate chemistry. Unlike the
simulation analyzed in Friedrich et al. (2012), the CESM control simulation does not in-
clude any external forcing, such as anthropogenic CO, emissions, volcanic eruptions,
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or solar variability. This allows us to cleanly ascribe surface carbonate variability to in-
trinsic natural variability of the physical climate system. Further, unlike the simulations
analyzed in Friedrich et al. (2012) and Séférian et al. (2013), we analyze output from
a simulation with constant, prescribed atmospheric CO, concentration, so variability
in ocean biogeochemistry is only affected by the physical state of the atmosphere and
ocean and not by variability in atmospheric CO,. This simplifies our quantification of the
mechanisms driving variability in carbonate chemistry. Finally, we focus on variability in
surface ocean [CO3™], as it is the primary source of variability in Qg agonite, @nd is likely

to be influenced by internal climate variability ([Cog'] ~ Alk—DIC). As such, our results
will be useful for determining the detectability of anthropogenic trends in C;agonite OVEr
background internal climate variability on a global scale.

2 Model description

We analyze output from a 1000 year pre-industrial control simulation of the Commu-
nity Earth System Model. CESM is a state-of-the-art coupled climate model consisting
of atmosphere, ocean, land, and sea ice component models (Hurrell et al., 2013). The
atmosphere model is the Community Atmosphere Model, version 4 (CAM4), with a hor-
izontal resolution of 1.25° x0.9° and 26 vertical levels (Neale et al., 2013). The Commu-
nity Land Model (Lawrence et al., 2011) operates on the same horizontal grid as CAM4.
The sea ice model is the Community Ice Code, version 4 (Hunke and Lipscomb, 2008),
and the dynamic land ice component is inactive. The ocean physical model is identical
to the ocean component of the Community Climate System Model version 4 (CCSM4)
(Danabasoglu et al., 2012), except that shortwave absorption in the ocean is computed
using prognostic chlorophyll fields, rather than a fixed satellite-derived monthly clima-
tology as in CCSM4. The ocean model has nominal 1° horizontal resolution and 60
vertical levels. Mesoscale eddy transport is parameterized with an updated version of
(Gent and McWilliams, 1990), where the eddy-induced advection coefficient, «, is di-
agnosed as a function of space and time. Diapycnal mixing is represented using the
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K-Profile Parameterization of Large et al. (1994), and mixed layer restratification by
submesoscale eddies is parameterized using the method of Fox-Kemper et al. (2011).
The biogeochemical-ecosystem ocean model incorporates multi-nutrient co-limitation
on phytoplankton growth and specific phytoplankton functional groups (Moore et al.,
2004, 2013), full carbonate system thermodynamics, sea—air CO, fluxes, and a dy-
namic iron cycle (Doney et al., 2006; Moore and Braucher, 2008). Phytoplankton cal-
cification in the model is unaffected by variations in the saturation state of calcite or
aragonite. Previous studies conducted with hindcast simulations of this model config-
uration reveal that the ocean physical state and air—-sea CO, fluxes compare favorably
with observations (Danabasoglu et al., 2012; Long et al., 2013).

Biogeochemical fields were initialized using data-based climatologies; for instance,
DIC was from the Global Ocean Data Analysis Project (GLODAP; Key et al., 2004)
and nutrients were from the World Ocean Atlas (Garcia et al., 2010). Subsequently, the
fully-coupled model was integrated for a period of 1000 years to allow the deep ocean to
approach equilibrium; the tracer fields resulting from this spin-up procedure were used
to initialize a 1000 year control simulation (Lindsay et al., 2014), in which atmospheric
CO, was held constant at preindustrial levels (,oCO‘;ltm = 284.7 ppm). By prescribing
atmospheric CO,, this control simulation generates sea—air CO, flux variance that dif-
fers slightly from a control simulation using prognostic atmospheric CO, (Lindsay et al.,
2014), owing to a lack of communication between land and ocean carbon reservoirs.
Following Doney et al. (2006), variability in the control simulation is generated entirely
from internal processes, as there is no external forcing (e.g., anthropogenic CO, emis-
sions, volcanic eruptions, solar variability) in this simulation. During the first 100 years
of the simulation, ocean [cog‘] was not saved to disk, so our analysis is limited to the

final 900 years of the simulation. Over this time, the global ocean drift in surface [COS_]
is small (0.0029 mmolm~3yr™).
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3 Model evaluation

Confidence in our interpretation of model output relies on the ability of the model to re-
produce realistic estimates of mean surface [Cog_] and its variability. We compare the

annual-mean surface [Cog'] in the pre-industrial control simulation with reconstructed,

pre-industrial surface [cog‘] in Fig. 1. Pre-industrial surface [CO§‘] is reconstructed
from observations of pre-industrial surface DIC (present-day DIC minus anthropogenic
DIC) and present-day Alk as estimated by GLODAP (Key et al., 2004), combined with
present-day estimates of temperature, salinity, silicate, and phosphate from the World
Ocean Atlas (Locarnini et al., 2010; Antonov et al., 2010; Garcia et al., 2010) using
a program developed for CO, system calculations (CO2SYS) with the preferred disso-
ciation constants. Computing [cog‘] this way is not strictly correct, owing to non-linear
relationships between [CO§‘] and state variables, but no synthesized climatology of
[cog‘] from bottle sites exists. The model captures the large-scale distribution of sur-
face [CO?‘] as estimated by the pre-industrial reconstruction (Fig. 1). Pre-industrial

surface [Cog‘] is elevated in the tropical oceans, with the exception of the tropical
Pacific cold tongue region, where persistent upwelling of DIC maintains low surface
[Cog’]. High latitude, pre-industrial surface [Cog‘] is substantially lower than that in
the tropics, due to upwelling of waters enriched in DIC and enhanced CO, solubility
in these cold regions (Feely et al., 2004; Fabry et al., 2009). The model-estimated,
pre-industrial surface [Cog_] is noticeably lower than observed. The globally-averaged

surface [Cog'] bias in the model is —16mmo|m'3, excluding the Arctic Ocean and
marginal seas. This model bias is caused by low biases in both surface Alk and DIC.
The former bias is larger in magnitude and results from a combination of the prescribed
carbonate dissolution profile, the representation of calcification, and a lack of riverine
inputs in the model (Long et al., 2013).

We investigate the vertical distribution of salinity-normalized DIC (sDIC) and salinity-
normalized Alk (sAlk) in the eastern Equatorial Pacific and compare with the vertical
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distribution of reconstructed pre-industrial sDIC and sAlk from observations in Fig. 2.
As we will see later, the response of these tracers to ENSO variability depends on the
their vertical gradients in this region. We define the eastern equatorial Pacific region
according to the corresponding location of the biogeographical biome presented in Fay
and McKinley (2014). In our model, the eastern equatorial Pacific is characterized by
a large vertical gradient in sDIC, and a relatively small vertical gradient in sAlk, in gen-
eral agreement with the observations in this region. Notably, the vertical gradient of
modeled sDIC in the upper 1000 m is ~ 25 % larger than that estimated from observa-
tions. Thus, the influence of ENSO on surface [CO;] is likely to be slightly exaggerated
in the model.

We use the approach outlined in Friedrich et al. (2012) to evaluate simulated interan-
nual variability and to compare it with observations collected at two open-ocean time-
series stations (BATS and HOT). At the model grid cells corresponding to the obser-
vational records, we generate probability density distributions of the standard deviation
of annual-mean surface [Co§‘] over a period of record sampled from the model that is
the same length as the observational time series. At BATS, we calculate the standard
deviation for 30 independent 30 year periods (Fig. 3a), and at HOT, we calculate the
standard deviation for 36 independent 25 year periods (Fig. 3b). These are compared
to the interannual standard deviation in de-trended, annual-mean surface [co?;] from
the observational record, which is 30years long at BATS and 25years long at HOT
(Bates et al., 2014). Figure 3 illustrates that the model underestimates interannual vari-
ability as compared to the observational data. This underestimate may be due to the
mis-match in the spatiotemporal scales of model and observations; we would expect
higher variance in the point-source observational record than in the smoothed model.
As a result of the model’s low variance bias, we expect our estimate of the detection
timescale for the anthropogenic trend in [Cog‘] to be conservative, discussed next.

13131

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/13123/2015/bgd-12-13123-2015-print.pdf
http://www.biogeosciences-discuss.net/12/13123/2015/bgd-12-13123-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

4 Surface carbonate variability and trend detection

We find the highest simulated interannual variability in pre-industrial surface [Cog‘]
in the eastern equatorial Pacific and at the boundaries between the subtropical and
subpolar gyres (Fig. 4a). In the eastern equatorial Pacific, our model simulates a large
vertical gradient in [cog—] (~ Alk—DIC; Fig. 2), so variability is likely driven by changes
in vertical motion here. The boundaries between the gyres exhibit the largest horizon-
tal gradients in surface [CO3 ] (Fig. 1b), so changes in the shape of these gyres could
have a large impact on local variability here (Friedrich et al., 2012). In the North Atlantic
and North Pacific, the inter-gyre regions exhibits high variance on decadal (Fig. 4b) and
longer timescales, as well, suggesting an influence from low-frequency climate vari-
ability. Finally, we note that simulated surface [cog‘] exhibits low interannual variability
in the Southern Ocean, consistent with previous modeling studies (Orr et al., 2005;
Friedrich et al., 2012; Conrad and Lovenduski, 2015).

How does the magnitude of the variability in surface [Cog_] affect the detection of
anthropogenic trends in Qagonite?” We use monthly model output to investigate the
length of the time series needed to detect an anthropogenic trend in Qg ,gonite With
90 % confidence, using the method of Weatherhead et al. (1998),

3.30 1+¢
0= N‘/1 (1)
|@o| -

At each location, we calculate the standard deviation (oy) and autocorrelation (@) in
the de-seasonalized, monthly anomalies of surface [CO§‘] and solve for the detection
time (n", Fig. 5a). This statistical technique has been applied successfully to ocean
biogeochemical data in several previous studies (Henson et al., 2010; Beaulieu et al.,
2013; Majkut et al., 2014; Lovenduski et al., 2015); it provides a way to quantify the
importance of the variance and autocorrelation on the detection of the trend. It differs in
practice from other statistical methods that estimate detectability or time of emergence

13132

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/13123/2015/bgd-12-13123-2015-print.pdf
http://www.biogeosciences-discuss.net/12/13123/2015/bgd-12-13123-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

of the trend (llyina et al., 2009; Friedrich et al., 2012; Hauri et al., 2013; Keller et al.,
2014), in that it also includes the influence of temporal autocorrelation which affects
sample size (Bretherton et al., 1999) and therefore trend detectability (Beaulieu et al.,
2013).

The estimate of the detection time is strongly influenced by the size of the anthro-
pogenic trend to be detected (®,). Since n” is proportional to (1 /@0)2/3, it takes longer
to detect smaller trends and vice versa. As the simulation we analyze here is a pre-
industrial control, carbonate chemistry is not influenced by anthropogenic factors, and

we must turn elsewhere for an estimate of @,. Bates et al. (2014) report trends in
Qaragonite fOr 7 global open-ocean timeseries stations and note that the timeseries
exhibit very consistent changes in Qg ag0nite, With an average trend of —0.0078 yr'.
Qaragonite €N be approximated as
o]
Qaragonite ~ > ) (@)
[cot]
sat, aragonite

where [Cog']sat, aragonite 1S the carbonate ion concentration in equilibrium with min-
eral aragonite, which is primarily a function of pressure. Since variability in surface
[cog‘]sat, aragonite 1S @n order of magnitude smaller than variability in surface [cog‘]

(not shown), we approximate the local, anthropogenic trend in surface [CO%"] (@) as
the product of the global-mean, anthropogenic trend in €, ,gonite (—0.0078 yr™') and
the local, model-estimated value of [Cog‘]sat, aragonite-

The length of the timeseries needed to detect an anthropogenic Qg agonite trend of
-0.0078 yr‘1 (n") is shown in Fig. 5a. This detection time is spatially heterogeneous
and ranges from 5 years at some locations to > 50 years at others. Equation (1) reveals
that detection time is influenced by the ratio of the standard deviation to the trend
(i.e., the noise-to-signal ratio, oy /®,, Fig. 6a) and the autocorrelation (¢, Fig. 6b).
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Further, the noise-to-signal ratio spatial pattern (Fig. 6a) is dominated by the noise
(i.e., the variance, Fig. 4a). Generally, we find long detection times in regions with high
variance and high autocorrelation, such as at the boundaries between the subtropical
and subpolar gyres in the Northern Hemisphere and in the Pacific cold tongue region,
and short detection times in regions with low variance and low autocorrelation, such as
in the Southern Ocean (cf. Figs. 6a and b, 5a). We note an additional area with high
detection time in the eastern North Pacific Subtropical Gyre, adjacent to the California
Current System, where variance is moderate, but autocorrelation is at a maximum.

[COi‘] and Qgagonite @re not directly measured in seawater, but rather derived from
the measurement of other carbonate system variables, such as fCO,, pH, DIC, and
Alk. It is thus of interest to know how the detection timescale for trends in [Cog_] or
Qaragonite COMpares to the detection timescale for trends in the measured parameters.
Figure 5b shows the model-estimated detection time for a spatially-uniform pH trend of
—0.0018yr'1 (the average pH trend of the 7 timeseries analyzed in Bates et al. (2014),
and the global-mean pH trend reported in Lauvset et al., 2015). As for Q,,gonite, the pH
trend detection time is elevated in the equatorial Pacific and inter-gyre regions, but we
find much shorter detection times overall for the pH trend (cf. Fig. 5a and b). Figure 6
reveals that the shorter detection time for pH results from lower noise-to-signal ratios
and lower autocorrelation than for [CO§']. Thus, results from our model suggest that
the anthropogenic trend in pH is detectable sooner than the anthropogenic trend in
Qaragonite-

We detail the model-estimated detection times for trends in Qg ag0nie @nd pH at the
seven open ocean timeseries sites (Bates et al., 2014) in Table 1. For reference, the
locations of the timeseries sites are shown as white circled xs in Fig. 5. The timeseries
sites are all located in places with relatively short detection times for both €, ,gonite
and pH, and according to our model calculations, the observational record is of suf-
ficient length to detect the anthropogenic trends in Q,,g0nite @nd pH at all stations
except Munida in the Southern Hemisphere, where the Q,,gonite trend is not yet de-
tectable (Table 1). Bates et al. (2014) report significant (at the 99 % level) decreases in
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Qaragonite @Nd pH at all stations, with the exception of the Iceland Sea, where the trend
in Qgragonite 1S NOt significant. That the model and observational records both suggest
detectable anthropogenic trends at the timeseries sites is encouraging, but the agree-
ment must be interpreted with some caution. We previously demonstrated that the
model underestimates interannual variability at two of these sites, and our calculation
of detection time from model output (see Eq. 1) assumes perfect temporal coverage at
the sites. Taken together, the model detection time at the timeseries sites is likely to be
an underestimate.

5 Modes and drivers of variability in surface carbonate

Given the important role of variance in trend detection, and the high magnitude of sur-
face [COS'] variance in the Tropical Pacific, North Pacific, and North Atlantic (Fig. 4),
it behooves us to characterize and understand the large-scale drivers of variability in
these regions. Figure 7a shows the leading empirical orthogonal function (EOF) in
tropical Pacific (18° S—18° N) surface [CO§']. This EOF captures 55 % of the interan-

nual variance in tropical Pacific surface [Cog‘] and its spatial pattern resembles that of
ENSO SST variability. The wavelet power spectrum of the leading principal component
(PC) in this region shows statistically significant spectral power on timescales associ-
ated with ENSO variability (3—7 years; Fig. 8a). We construct an ENSO index, defined
as the annual-mean SST in a box bounded by 5°S to 5°N and 120-170°W (Nino 3.4
region), from pre-industrial control simulation model output. We note that, while the
main characteristics of ENSO are well-captured by the model, the overall magnitude
of ENSO in CCSM4 is overestimated (Deser et al., 2012b). Nevertheless, the modeled
ENSO index is highly correlated with the leading PC of surface [CO?'] (r = —0.94). This

suggests that ENSO exerts a strong control on surface [Cog‘] variability in the tropical
Pacific.
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We investigate the drivers of variability in tropical Pacific surface [CO§‘] by decom-
posing the leading EOF into contributions from surface DIC, Alk, temperature (T), and
salinity (S) using a linear Taylor expansion,

2- 2— 2— 2—
—5 [GCI:D(I)(i ] ADIC + —6 [(;(j: ] AAIKk + ° [(;(7)_3 ] AT + ° [C;(;s ]

where the A terms are the perturbations in state variables associated with ENSO, which
we estimate using the regression coefficients of the local value with the leading PC of
surface [CO%"] in the tropical Pacific region, and the partial derivatives are estimated
from CO2SYS using finite difference approximation. We separate the contribution from
freshwater (fw) fluxes on DIC and Alk by expanding the derivatives to include sDIC and
sAlk (see Appendix for more details). Substituting Eqgs. (A1)—(A3) into Eq. (3) yields

alcos] = AS, (3

2- 2— 2_
afcor] = %%Asmc + %%ASAIK ¥ a[zf—ovf]mw
o[cor]  ofcof]
+——— AT+ ———=AS, (@)

whose individual terms are shown in Fig. 7.

Our analysis demonstrates that variations in sDIC are the primary driver of [Cog‘]
variability in the tropical Pacific, with smaller, opposing contributions from sAlk and
freshwater (Fig. 7). Contributions from temperature and salinity play comparatively
smaller roles. As the east/central equatorial Pacific is associated with a large verti-
cal gradient in sDIC (Fig. 2), variations in vertical exchange here likely dominate sur-
face sDIC variability. El Nifio events are associated with relaxed trade winds and less
upwelling of DIC-rich water in the east/central equatorial Pacific, raising the surface
[cog‘]; the opposite is true during La Nifia events, when we would expect anomalously

low surface [Cog'] in these regions. In our simulation, the ENSO index has a strong
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negative (positive) correlation with surface sDIC ([COi‘]) in the east/central equatorial
Pacific (not shown).
The leading EOF of surface [CO§‘] variability in the north Pacific (20-70° N) is char-

acterized by a broad, horseshoe-shaped area of [Cog‘] off the coast of North America
that is out of phase with [Cog'] in the western subtropical gyre (Fig. 9a). This EOF

explains 35 % of the variance in surface [Cog’] in the north Pacific basin and its spatial
pattern resembles the PDO. The wavelet spectrum for the associated first PC (Fig. 8b)
reveals high spectral power at 20—30 year periods, similar to the PDO, but also de-
tects significant spectral power at high frequencies (3—7 years), and low frequencies
(> 60year). We define a model PDO as the leading EOF of sea surface temperature
anomalies in the north Pacific (20-70° N); it has a generally realistic spatial pattern and
amplitude (Deser et al., 2012b). The model PDO is highly correlated with the leading
PC of surface [Cog‘] in the north Pacific (r = —0.94), suggesting that the PDO has

a large influence on surface [cog'] in this region.

We decompose the leading EOF of surface [cog‘] in the north Pacific into contribu-
tions from sDIC, sAlk, freshwater, temperature, and salinity using Eq. (4). Our analysis
reveals that sDIC contributes to most of the variability in surface [Cog'] in this region,
with smaller, opposing contributions from sAlk and freshwater, and near zero contri-
butions from temperature and salinity (Fig. 9). Positive/warm phases of the PDO are
associated with southerly winds off the coast of California, suppressing the upwelling
of carbon-rich water and elevating surface [CO%‘], while the western subtropical gyre

experiences increased upwelling of DIC and lower surface [CO§']. The opposite is true
during negative/cold phases of the PDO, when we find anomalously high (low) surface
[CO?‘] in the eastern (western) north Pacific. We find a significant positive correla-

tion between the PDO and surface [cog‘] off the coast of California and a significant

negative correlation between the PDO and surface [Cog‘] in the western north Pacific
subtropical gyre (not shown).
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In the North Atlantic (40-80° N), the leading EOF of surface [CO§‘] explains 18 % of
the variance and is characterized by a tripole pattern, with nodes centered in the sub-
polar gyre, the inter-gyre region, and the subtropical gyre (Fig. 10). The wavelet time-
frequency diagram of the leading PC (Fig. 8c) looks like a red noise process (Torrence
and Compo, 1998) with significant spectral power at 20—40year and longer periods.
A Taylor series decomposition of the variability in this region using Eq. (4) reveals that,
similar to the other two regions, sDIC variability is the dominant driver of [CO§'] vari-
ations here, with smaller, opposing contributions from sAlk, freshwater, and salinity in
the inter-gyre region (Fig. 10) where variance in [Cog'] is at a maximum (Fig. 4). The

leading PC of [CO§‘] in this region is weakly correlated with the NAO (r = —-0.16) and
the Atlantic Multi-decadal Oscillation (AMO, r = —0.33). Positive phases of the NAO
and AMO are associated with anomalously high [CO§‘] in the subpolar and subtropical

gyres and anomalously low [CO§‘] in the inter-gyre region, though the weak corre-
lations preclude further investigation of the mechanistic link between these modes of
climate variability and surface [cog‘] in this region.

6 Conclusions

We analyze output from a 1000 year, pre-industrial control simulation of an Earth Sys-
tem Model in order to quantify, characterize, and understand the drivers of variability
in the surface ocean carbonate ion concentration. We find the highest variability in
the tropical Pacific, where the model simulates large vertical gradients in [cog‘], and
at the boundaries between the subtropical and subpolar gyres in the Northern Hemi-
sphere. High variance coupled with high autocorrelation results in long detection times
(> S0years) for anthropogenic trends in Qg ag0nite at these locations, whereas we find
short detection times (~ 15 years) at the open ocean timeseries sites and in the South-
ern Ocean, where variance is at a minimum. Our results suggest that the detection
timescale for anthropogenic trends in pH is shorter than that for Q,,5onite, OWINg to
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smaller noise-to-signal ratios and lower autocorrelation in pH. We further characterize
the surface [Cog‘] variance in the Tropical Pacific, North Pacific, and North Atlantic
using EOF and wavelet analysis. The leading mode of variability in the tropical Pacific
exhibits statistically significant spectral power at 3—7 year timescales and is highly cor-
related with ENSO. In the North Pacific, the leading EOF of [Cog_] has the character-
istic horseshoe pattern of the PDO, with peak spectral power at 20—30 year timescales.
In the North Atlantic, the wavelet decomposition of the leading mode of variability ap-
pears similar to a red noise process, with weak correlations with the NAO and AMO.
In all locations, surface [Cog‘] variability is driven by variability in sDIC, with smaller
opposing contributions from sAlk and freshwater dilution. Temperature and salinity vari-
ability contribute very little to [Cog‘] variance. In all regions, climate variability imposes
changes in ocean circulation that likely mediate the vertical and lateral advection of
DIC into the surface ocean.

Our results provide meaningful perspective on the trends in €,4gonite @nd pH re-
ported in the literature. Our statistical analysis of model output suggests that, due to
low variance in [Cog_] and pH, significant anthropogenic trends in €2;54onite @and pH are
already or nearly detectable at the open-ocean timeseries sites, whereas high variabil-
ity and autocorrelation in [Cog_] may obscure the detection of anthropogenic trends in
Qaragonite IN the tropical Pacific, North Pacific, and North Atlantic. Our characterization
of the spatial pattern and frequency of natural [CO§'] variability in these high vari-
ance regions suggests that it is largely driven by large-scale modes of internal climate
variability, such as ENSO, PDO, NAO, and AMO. One should consider the phasing of
these modes of climate variability, therefore, when interpreting trends calculated from
carbonate chemistry data collected in these regions.
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Appendix: Freshwater contributions to [cog-] variability

To separate the contribution from freshwater fluxes on DIC and Alk, we use the follow-
ing two equations for the first and second terms of Eq. (3),

o [co5] 5 [cos]
— " 2ADIC = —-——1_A(S/S,sDIC)
aDIC 8(S/SysDIC)
2- 2-
_ 02|00 ]AS+£—6 % ]AsDIC (A1)
) -5, oDIC S, oDIC
6 [co%] 8 [cod]
L IAAK = ———— = A(S/SpsAlk
dAIk 0(S/S,sAlIK) (5/SosAlk)
8 [co5] 9 [cos]
sAlk 2 |©03 s 3
S oAk At s —amic oAk (A2)

We extract the first terms from Egs. (A1) and (A2), as they represent the contribution
from freshwater forcing (fw) on [Cog_],
sAlk

o_
sDIc? [003 ]
= AS +
aDIC 5y

o [cos]
v o AW=Tg

5 [cos]
oA

AS. (A3)
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Table 1. The standard deviation (o)) and autocorrelation (¢) in the de-seasonalized monthly
anomalies of surface [cog'] (mmol m'3) and pH, and the length of the timeseries in years (n")
needed to detect an Q,,qonite trend of —0.0078 yr~', and a pH trend of —0.0018yr™" with 90 %

confidence at the stations discussed in Bates et al. (2014). Boldfaced values of n" indicate that
the detection timescale is shorter than the length of the observational record at that location.

[CO3] pH
Location On o n On o n
Iceland Sea 54 069 18 1.88 0.62 17
Irminger Sea 5.5 0.30 13 126 014 9
BATS 24 0.78 12 041 058 6
ESTOC 29 0.80 15 041 066 7
HOT 23 094 20 050 077 9
CARIACO 27 081 15 0.37 081 8
Munida 72 042 17 1.85 041 14
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(a) reconstructed, pre-industrial surface [CO5*]

(b) modeled surface [CO5%]

Figure 1. (a) Reconstructed, pre-industrial and (b) model-estimated surface ocean carbonate
ion concentration (mmol m'a).
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1000

Figure 2. The vertical distribution of pre-industrial sDIC and sAlk in the eastern equatorial
Pacific as estimated by the model and reconstructed from observations.
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Figure 3. Blue bars: probability density of interannual standard deviation of simulated [cog—]
at (a) BATS, based on 30 independent 30 year periods and (b) HOT, based on 36 independent
25year periods. Black line: interannual standard deviation of surface [Cog_] at (a) BATS and

(

a) BATS

(b) HOT
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(b) HOT, based on detrended annual-mean observations.
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Figure 4. Variance in the surface ocean carbonate ion concentration for (a) annual-mean and
(b) 10 year filtered model output (logq (mmolm'3)2).
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(@) Qaragonite trend detection time, n”

(b) pH trend detection time, n"

Figure 5. Model-estimated length of time series in years needed to detect (a) an Q;,qonite trend

of —0.0078 yr‘1, and (b) a pH trend of —-0.0018 yr'1 with at least 90 % confidence. White circled
xs indicate the locations of the time series stations discussed in Bates et al. (2014).
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Noise-to-signal ratio

==

(On/Mo)

Figure 6. (1st column) The noise-to-signal ratio (oy/®,, years) and (2nd column) lag-1 au-
tocorrelation in monthly, de-seasonalized surface ocean (1st row) [Cog‘], and (2nd row) pH

anomalies.
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(a) 1st EOF of [CO327] (b) contribution from sDIC (c) contribution from sAlk

) A A
A _ hae R

(d) contribution from fw (e) contribution from T (f) contribution from S

Ve re I‘
A PRt PR N

H = 2 aaaa.

15 -10 -5 0 5 10 15

Figure 7. (a) Leading EOF of tropical Pacific surface ocean [COS‘], and the contributions from
(b) sDIC, (c) sAlk, (d) freshwater, (€) temperature, and (f) salinity as in Eq. (4) (mmolm™).
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Figure 8. The wavelet time-frequency spectrum for the leading principal component of sur-
face ocean [CO§‘] in the (a) tropical Pacific, (b) North Pacific, and (¢) North Atlantic regions
(mmol m‘3)2. Black contours indicate statistically significant (> 95 %) spectral power.
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(b) contribution
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Figure 9. As in Fig. 7, but for the North Pacific.
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Figure 10. As in Fig. 7, but for the North Atlantic.
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