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 Abstract 31 

 32 

Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric 33 

ozone depletion over Antarctica, has caused changes in climate across the extra-tropics. Here we 34 

present evidences that the Brazilian coast (Southwestern Atlantic) may have been impacted from both 35 

winds and sea surface temperature changes derived from this process. Skeleton analysis of massive 36 

coral species living in shallow waters off Brazil are very sensitive to air-sea interactions, and seem to 37 

record this impact. Growth rates of Brazilian corals show a trend reversal that fits the ozone depletion 38 

evolution, confirming that ozone impacts are far reaching and potentially affect coastal ecosystems in 39 

tropical environments.   40 

 41 
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1. Introduction 61 

 62 

Sensitivity of coral species to change in sea surface temperature (SST) has become a focus of 63 

attention in the context of modern climate change (Coles and Jokiel, 1978; Howe and Marshall, 2002; 64 

Cantin et al., 2010). Response to thermal stress ranges from growth rate alteration to bleaching and 65 

eventually death. SST has long been recognized as an important environmental driver for coral growth 66 

pattern and calcification (Lough and Barnes, 1997). In a scenario of a warming planet, it is expected 67 

that until 2050, ~95% of global reefs will be under pressure from thermal stress and that only 15% will 68 

remain in areas of adequate aragonite saturation for proper coral growth (Burke, 2011). Brazilian coral 69 

species have high level of endemism and are predominantly found in shallow waters, with the 70 

scleractinian coral Siderastrea stellata (Verril, 1868) being one of the main reef builders. It is a colonial, 71 

massive, and symbiotic coral (Lins-de-Barros and Pires, 2007) with a spatial distribution that encloses 72 

all Brazilian reefs and coral communities from nearly 0°S to 23°S (Castro and Pires, 2001). For 73 

Siderastrea stellata, that often grows in shallow water in reef tidal pools (where temperatures normally 74 

range between 25
o
C and 31

o
C), optimum calcification has been observed at temperatures between 75 

28
o
C and 30

o
C.  For this particular species, the aragonite saturation seems to play a less relevant role 76 

than SST for calcification, especially when SST reaches ~26
o
C (da Silva et al., 2009). 77 

 78 

Several factors can induce change in SST that will ultimately impact coral communities. One of them is 79 

the change in wind circulation patterns. Several authors have reported a close relationship between 80 

wind-stress and SST (Lindzen and Nigam, 1987; Hashizume et al., 2001; Chelton et al., 2007) through 81 

modulation of surface heat flux and upper ocean mixing. In general, warmer SST can be associated 82 

with deeper boundary layers and higher wind stress (Cayan, 1992; O'Neill et al., 2010). The Southern 83 

Hemisphere mid-to-high latitude circulation has undergone marked changes in wind dynamics over the 84 

past few decades. One of the most pronounced changes is the poleward displacement of the Southern 85 

Hemisphere westerly jet, which has been accompanied by a poleward shift and intensification of 86 

oceanic circulation (Thompson et al., 2000; Hartmann et al., 2000). These changes have been 87 

attributed in part to external factors such as increased air temperature due to greenhouse gases 88 

(GHG), but also to the Southern Annular Mode (SAM) variability enhanced by the Antarctic ozone 89 

depletion. The polar stratospheric ozone depletion is also believed to affect the entire Southern 90 
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Hemisphere, resulting in a broadening of the Hadley cell and a poleward extension of the subtropical 91 

dry zone (Polvani et al., 2011). Trends in the Southern Hemisphere tropospheric circulation indicate 92 

that the strengthening of the westerly winds is linked to ozone loss (Thompson et al., 2011). Earlier 93 

studies (Sexton, 2001; Thompson and Solomon, 2002) postulated that the Antarctic ozone depletion 94 

was the primary cause for tropospheric circulation changes in the Southern Hemisphere that occurred 95 

in the late 1970s. Another impact of polar ozone depletion on subtropical regions was examined using 96 

The Canadian Middle Atmosphere Model (CMAM) and the National Center for Atmospheric Research 97 

(NCAR) Community Atmospheric Model (CAM3). Kang et al. (2011) showed that the ozone depletion 98 

area evolution has caused a poleward shift of the extratropical circulation, resulting in substantially 99 

increase in subtropical precipitation in austral summer. According to Thompson et al. (2011), the 100 

influence of the ozone hole on the Southern Annular Mode has led to a range of significant summertime 101 

surface climate changes not only over Antarctica and the Southern Ocean, but also over New Zealand, 102 

Patagonia, and southern regions of Australia. All in all, ozone depletion appears to have large and far-103 

reaching impacts and to potentially be an important player in the Southern Hemisphere climate system. 104 

 105 

One question arising is whether changes in surface winds and SST, triggered in the South Polar region, 106 

could affect the Tropical South Atlantic coastal ecosystems. Considering that warming of surface waters 107 

may have implications over coral metabolism and health, potentially compromising the sustainability of 108 

coral reefs, we here combined measurements of coral growth rate and climate-oceanography modeled 109 

data to investigate wind driven impacts in costal environments, especially over the highly sensitive coral 110 

communities living in Abrolhos National Park of Brazil (17º25’ to 18º09’ S ; 038º33’ to 039º05’ W), the 111 

most important coral-reef site in the Southwestern Atlantic.  112 

 113 

2. Materials and Methods 114 

 115 

2.1. Coral sampling 116 

 117 

Massive coral skeleton cores were retrieved within the scope of the Brazil-France projects RECORD 118 

(REconstructing the Climate from cORal Drilling), LMI PALEOTRACES and the IRD-CNPq 119 

(CLIMPAST). Corals were drilled using a custom-made pneumatic corer with a ~5 cm diameter barrel. 120 
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Samples were collected in the National Park of Abrolhos, State of Bahia/Brazil. A Siderastrea stellata, 121 

labelled CS1, was sampled at Chapeirão do Sueste (17
o
57’S; 038

o
38’W) on March 5

th
, 2007, water 122 

depth was 8.5 m and core length is 53 cm, Figure 2a. The sample labeled UFBA was retrieved from a 123 

colony of Favia leptophylla, at Abrolhos (17
o
52’S; 039

o
38’W) in the winter of 1977 at approximately 5 m 124 

water depth. The core is 28.5 cm long and is hosted at the Department of Geology of the Universidade 125 

Federal da Bahia. The chronology of this coral core is described in Evangelista et al. (2007), Figure 2b. 126 

A Favia leptophylla coral labelled P1 was sampled in the vicinity of CS1, at Chapeirão do Pierre, on 127 

March 4
th
, 2007; core length is 51 cm, Figure 2c. In the laboratory, CS1 and P1 cores were washed with 128 

Milli-Q water by sonication and then cut in half with a circular saw. One half was sectioned to produce a 129 

1 cm thick slab that was washed again before drying at 40
o
C. 130 

 131 

2.2. Coral skeleton chronology  132 

 133 

Sections of coral cores were X-rayed to generate a chronology based on yearly density band counting 134 

(Knutson et al., 1972). X-ray images were digitalized and their original contrast was slightly improved in 135 

order to enhance the recognition of high and low density growth bands. Band counting took the year 136 

(and the season) of sampling as reference for chronology. In order to validate the chronology based on 137 

X-ray radiography, we dated the CS1 core with the U/Th technique, as proposed by Shen et al. (2008). 138 

For coral skeletons, the U/Th dating method is a robust absolute chronological tool due to the high 139 

precision mass spectrometric technology and to the commonly high uranium levels (in the order of ppm) 140 

in coral skeletons. Four sub-samples of ~0.1 g were taken from the core with approximately equal 141 

spacing from the top to the base. Age corrections were calculated using an estimated radionuclide 142 

230
Th/

232
Th ratio of 4±2 ppm. All radiometric analyses were carried out using a SF-ICP-MS at the High-143 

precision Mass Spectrometry and Environmental Change Laboratory (HISPEC), Department of 144 

Geosciences, National Taiwan University (NTU) (Shen et al., 2008; Shen et al., 2010). Figure 1 show 145 

the comparison of both methods. 146 

 147 
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 148 

Figure 1 - Comparison of chronologies obtained from X-ray radiography (right) and U/Th radiometry 149 

(left) for a coral core of Siderastrea stellate (CS1) from Abrolhos National Park/Brazil. 150 

 151 

2.3. Instrumental data and model outputs 152 

Coral growth data were compared to the extent of the ozone depleted area, the wind stress, the zonal 153 

wind, the SST, and the PDO (Pacific Decadal Oscillation). The extent of the ozone depleted area over 154 

Antarctica (in million km
2
) is defined as the maximum daily area in October of each year between 1979 155 

and 2008. Data were obtained from NASA Ozone Watch (ozonewatch.gsfc.nasa.gov). Ozone depletion 156 

over Antarctica was discovered in the mid 80’s (Farman et al., 1985) and was attributed to the positive 157 

trend in atmospheric halogenated hydrocarbons released by human activities (Albritton & Kuijpers 158 

1999; Solomon 1999). Gradual ozone depletion recover occurred just from the begging of the XXI 159 

century (almost 10 years after the implementation of the Montreal Protocol in 1989 that controls 160 

emissions of ozone depleting substances). Annual mean wind stress data used here is from ERA-40 161 

(Uppala et al., 2005) and zonal wind from NCEP-NCAR reanalysis. SST and sea level were provided by 162 

NCEP-NCAR reanalysis and the Simple Ocean Data Assimilation - SODA (Carton & Giese 2008) 163 

product. These parameters spanned the full existing database since 1948. PDO data is available at 164 

http://www.jisao.washington.edu/aao/. PDO is a robust, recurring pattern of ocean-atmosphere climate 165 

variability centered over the mid-latitude Pacific basin, which influences a significant part of the globe, 166 
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especially South America. It is a long-lived (at decadal scale) El Niño-like pattern of the Pacific climate. 167 

This parameter was considered here, since previous works have detected El Niño-like signals on 168 

growth rate of tropical Atlantic at Abrolhos, Evangelista et al. (2007). 169 

 170 

3. Results and discussions  171 

 172 

The three coral cores collected in Abrolhos exhibit a decline in annual growth rate towards the 173 

present (Figure 2a,2b,2c). Corals used in this study were found in a healthy condition, with no 174 

sign of bleaching at the time of sampling. To blend data from the 3 coral cores, we used a 175 

simple Gaussian z-score transformation (Figure 2d). Growth anomaly from individual coral cores 176 

exhibits a transition from positive to negative approximately after the mid-60’s and the 70’s, a 177 

trend highlighted by the z-score compilation. Figure 2d indicates that the decline in coral growth 178 

is quite coincident with SST anomaly for Abrolhos, Figure 2e, from negative to positive above 179 

average. Other works have suggested that mean annual SSTs throughout the tropics and 180 

subtropics have increased between 0.4° and 1°C in the past four decades (Kleypas et al., 181 

2008). For Abrolhos, the mean annual SST changed from ~24.8°C to ~25.8°C between 1948 182 

and 2006 (NCEP-NCAR reanalysis). Evidence of sharp decline in coral growth rate since the 183 

late 1970’s was also reported in comparable latitudes away from South America, like that 184 

reported for genus Porites from 44 reefs in Australia (Lough et al., 2002). In a subsequent work, 185 

these authors have expanded their database to include 5 other reef sites (Lough, 2008). Their 186 

average time series depicts a sharp drop in the calcification rate (g/cm
2
/y) starting in the late 187 

1970’s. The transition of both SST and coral growth were concomitant to zonal wind changes 188 

around Antarctica as depicted in Figure 2a. 189 

 190 
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 191 

Figure 2 - Time variability and linear trends of annual coral growth anomaly for samples a (CS1), b 192 

(Abrolhos/UFBA) and c (P1); (d) z-score for a , b and c ; (e) SST anomaly for Abrolhos National 193 

Park/Brazil based on NCEP-NCAR reanalysis.   194 

 195 

The 70’s was a decade when major climatic processes, largely involving the ocean, shifted phases. For 196 

example, there was a negative to positive phase transition of the Pacific Decadal Oscillation (PDO), 197 

which is associated with more frequent El Niño events (Miller et al., 1994). The atmospheric dynamics 198 

around the Antarctic continent also experienced important changes. The westerly winds increased by 199 

the end of the 70’s (Polvani et al., 2011). This intensification was coeval with the positive trend of the 200 
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Antarctic Oscillation (evidenced by the AAO Index) that is the dominant pattern of non-seasonal 201 

tropospheric circulation variations south of 20°S and is an observation-based Southern Hemisphere 202 

Annular Mode index used to derive the zonal wind means from 40°S to 65°S (Marshall, 2003). The 203 

positive phase of AAO is generally associated with stronger cyclones at high southern latitudes (Pezza 204 

and Ambrizzi, 2003). The intensification of the westerlies in conjunction with the positive trend of the 205 

AAO has been documented in observations, reanalysis, and climate models simulations from the mid-206 

1960’s to present (Thompson and Solomon, 2002; Gillett and Thompson, 2003; Baldwin et al., 2007). 207 

New climatic observations have provided consistent information on the influence of the Antarctic Ozone 208 

depletion in the intensification of the westerlies (Albritton and Kuijpers, 1999; Solomon, 1999). 209 

Atmospheric temperature shifts concomitant with ozone depletion have been measured at several 210 

coastal Antarctic stations from meteorological balloon profiles (Randel and Wu, 1999). One 211 

consequence of this lowering in temperature is an increase of the cold-core low pressure area over 212 

Antarctica, the Antarctic circumpolar vortex - ACV. The intensification of the ACV may contribute to 213 

strengthening the polar-to-subtropics pressure and the air temperature gradient between Central 214 

Antarctica and the surroundings affecting the westerlies. Known impacts are the poleward shift of the 215 

mid-latitudes jet and of the Hadley cell that ultimately will affect tropical SST. Figure 3 shows our 216 

calculations (based on NCEP-NCAR) of main parameters related to ozone-induced climatology and 217 

oceanography.   218 
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 219 

Figure 3 - Calculations based on NCEP-NCAR reanalysis for : (a) the zonal winds around Antarctica 220 

(before and after 1979), previously published in 2013 (Cataldo et al. 2013); (b) sea level pressure 221 

difference (also before and after 1979, but with emphasis to the Southern Atlantic); (c) correlation of 222 

wind stress and the ozone depletion area (arrow lengths correspond to r-Pearson values); (d) ozone 223 

depletion area; and (e) the zonal wind anomalies calculated to Abrolhos site. 224 

 225 

Southern tropospheric wind changes associated with ozone depletion have been largely 226 

discussed in the literature (Gillett and Thompson, 2003; Shindell and Schmidt, 2004; Baldwin et 227 

al., 2007; Son et al., 2008, 2009; Purich and Son, 2012). What is new here is the way winds and 228 

Tropical Atlantic SSTs are impacted by ozone depletion. Based on the NCEP-NCAR reanalysis, 229 

the tropical Brazilian coast presumably experienced since 1979 increased zonal winds (from 230 

East to West) as depicted in Figure 3e. Taking into account the correlations observed between 231 

ozone depletion area, Figure 3d, and wind stress (represented here by the length of the arrows 232 

at Figure 3c), it points to an impact of the winds over  the latitudinal band that encloses the 233 

tropical South Atlantic sector, from Africa to the Brazilian coast, reaching the Abrolhos site. A 234 

potential impact of that is the piling up of warm waters against the Brazilian continental shelf 235 
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that would result in increasing SST. The U.K. Meteorological Office Hadley Centre SST 236 

climatology (the best spatial and temporal resolved database which dates back to 1870, Rayner 237 

et al., 2003) shows a clear moderate stepwise positive change of SST since 1980 on the 238 

Brazilian continental shelf (Belking, 2009). An average SST change of ~1°C was found for the 239 

period 1981-2006 with respect to 1957-1980. Long tide gauge time series (calibrated with 240 

satellite altimetry) at Cananéia (25°S) and Ilha Fiscal Stations (22°S), both on the Brazilian 241 

tropical coast, exhibit sea level increase of ~100 mm between 1976 and 2005 with respect to 242 

1954-1975 and of ~160 mm between 1971 and 2004 with respect to 1963-1970, respectively 243 

(Dalazoana et al., 2005). Figure 3b, based on NCEP, also depict a positive anomaly at Abrolhos 244 

before and after 1979. These instrumental data combined with the high positive correlation 245 

found between ozone depletion area and SST in the Southwestern Atlantic sector, as shown in 246 

Figure 4, indicate that an active mechanism links Antarctica and the tropics.  247 

 248 

 249 

Figure 4 - (a) Correlation map (SST x PDO) and; (b) PDO (Pacific Decadal Oscillation) 250 

anomaly since 1948.  251 

 252 
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In addition, the PDO is a significant parametrization when considering the 1970’s climate shift. Several 253 

studies postulate a great contribution of the PDO to this climate shift, particularly in the Northern 254 

Hemisphere (e.g.: Mantua et al., 1997). Nevertheless, according to Agosta and Compagnucci (2008), in 255 

the regional context of Southern South America and adjacent Southern Atlantic, changes in the basic 256 

atmospheric circulation of the late 1970’s climate transition cannot be solely attributed to the PDO or 257 

associated El Niño-like variability. In Figure 4 we show the correlation map between SST and PDO. The 258 

result indeed shows an impact of the PDO in the South Atlantic with significant correlation coefficients 259 

mostly occurring at a latitude band from ~35°S to 65°S. The fact here is that significant correlation 260 

coefficients found in Figure 5 (ozone depletion area and SST) are observed where coral communities 261 

live in the Brazilian coastal line, while the higher correlations with PDO is confined to subtropics and 262 

central Atlantic. Since r-Pearson values between SST and ozone at the Brazilian coral site varied from 263 

+0.6 to + 0.7, the explained variance of SST (~40%) due to the climate-induced effects (changes in 264 

atmospheric circulation) of the ozone depletion is much higher than the PDO influence at that site.  265 

 266 

 267 

Figure 5 - Correlation map between ozone depletion area in Antarctica and Southwestern Atlantic SST. 268 
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 269 

Both processes (depletion of stratospheric ozone in Antarctica and GHG - Greenhouse Gases 270 

emissions) account for reduced surface pressure over the high latitudes accompanying increase of 271 

surface pressure at mid-latitudes. This is associated with the meridional temperature gradient and the 272 

position of mid-latitude upper level jet that modulates the tropospheric circulation (winds) and ultimately 273 

impact the SST spatial distribution. The near-surface ocean temperature is forced by winds, radiation, 274 

and freshwater fluxes. The ocean then impacts the atmosphere via latent, sensible, and radiative heat 275 

losses that are dependent on SST and fundamentally on the wind-stress. Since SST is closely related 276 

to the mixing layer variability, SST variations are intimately connected with the heat budget of the mixed 277 

layer (McPhaden and Hayes, 1991; Chen et al., 1994; Wang and McPhaden, 2000; Foltz et al., 2003). 278 

Furthermore, atmospheric circulation anomalies have been shown to precede the development of 279 

basin-wide SST patterns for the tropical Atlantic (Nobre and Shukla, 1996).  280 

 281 

 4. Conclusions 282 

 283 

Records of coral growth anomaly at Abrolhos site/Brazil evidenced changes (from positive to negative 284 

growth rate anomaly) concomitant to ozone area evolution which in turn was highly correlated to SST 285 

increases at coral living sites. Herein we point the ozone depletion area as a potential causal 286 

parameter. This teleconnected process is of concern to the regional coastal environments, since it 287 

would constitute an additional forcing in the SST increase on a scenario of expected global warming 288 

due to GHG. Ozone levels in the stratosphere are expected to recover by the end of the century 289 

(Perlwitz et al., 2008), and that should theoretically weaken westerly winds (Arblaster and Meehl, 2006; 290 

Turner et al., 2009) and contribute to a trend reversal in zonal wind and SST anomalies.  291 

 292 
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