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 Abstract 31 

 32 

Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric 33 

ozone depletion over Antarctica, has caused changes in climate across the extra-tropics. Here we 34 

present evidences that the Brazilian coast (Southwestern Atlantic) may have been impacted from both 35 

winds and sea surface temperature changes derived from this process. Skeleton analysis of massive 36 

coral species living in shallow waters off Brazil are very sensitive to air-sea interactions, and seem to 37 

record this impact. Growth rates of Brazilian corals show a trend reversal that fits the ozone depletion 38 

evolution, confirming that ozone impacts are far reaching and potentially affect coastal ecosystems in 39 

tropical environments.   40 

 41 
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1. Introduction 61 

 62 

Sensitivity of coral species to change in sea surface temperature (SST) has become a focus of 63 

attention in the context of modern climate change (Coles and Jokiel, 1978; Howe and Marshall, 2002; 64 

Cantin et al., 2010). Response to thermal stress ranges from growth rate alteration to bleaching and 65 

eventually death. SST has long been recognized as an important environmental driver for coral growth 66 

pattern and calcification (Lough and Barnes, 1997). In a scenario of a warming planet, it is expected 67 

that until 2050, approximately 95% of global reefs will be under pressure from thermal stress and that 68 

only 15% will remain in areas of adequate aragonite saturation that are considered ideal for coral 69 

development (Burke, 2011). Brazilian coral species have high level of endemism and are predominantly 70 

found in shallow waters, with the scleractinian coral Siderastrea stellata (Verril, 1868) being one of the 71 

main reef builders. It is a colonial, massive, and symbiotic coral (Lins-de-Barros and Pires, 2007) with a 72 

spatial distribution that encloses all Brazilian reefs and coral communities from nearly 0°S to 23°S 73 

(Castro and Pires, 2001). For Siderastrea stellata, that often grows in shallow water in reef tidal pools 74 

(where temperatures normally range between 25
o
C and 31

o
C), optimum calcification has been 75 

observed at temperatures between 28
o
C and 30

o
C.  For this particular species, the aragonite saturation 76 

seems to play a less relevant role than SST for calcification, especially when SST reaches ~26
o
C (da 77 

Silva et al., 2009). 78 

 79 

Several factors can induce change in SST that will ultimately impact coral communities. One of them is 80 

the change in wind circulation patterns. Several authors have reported a close relationship between 81 

wind-stress and SST (Lindzen and Nigam, 1987; Hashizume et al., 2001; Chelton et al., 2007) through 82 

modulation of surface heat flux and upper ocean mixing. In general, warmer SST can be associated 83 

with deeper boundary layers and higher wind stress (Cayan, 1992; O'Neill et al., 2010). The Southern 84 

Hemisphere mid-to-high latitude circulation has undergone marked changes in wind dynamics over the 85 

past few decades. One of the most pronounced changes is the poleward displacement of the Southern 86 

Hemisphere westerly jet, which has been accompanied by a poleward shift and intensification of 87 

oceanic circulation (Thompson et al., 2000; Hartmann et al., 2000). These changes have been 88 

attributed in part to external factors such as increased air temperature due to greenhouse gases 89 

(GHG), but also to the Southern Annular Mode (SAM) variability enhanced by the Antarctic ozone 90 
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depletion. The polar stratospheric ozone depletion is also believed to affect the entire Southern 91 

Hemisphere, resulting in a broadening of the Hadley cell and a poleward extension of the subtropical 92 

dry zone (Polvani et al., 2011). Trends in the Southern Hemisphere tropospheric circulation indicate 93 

that the strengthening of the westerly winds is linked to ozone loss (Thompson et al., 2011). Earlier 94 

studies (Sexton, 2001; Thompson and Solomon, 2002) postulated that the Antarctic ozone depletion 95 

was the primary cause for tropospheric circulation changes in the Southern Hemisphere that occurred 96 

in the late 1970s. Another impact of polar ozone depletion on subtropical regions was examined using 97 

The Canadian Middle Atmosphere Model (CMAM) and the National Center for Atmospheric Research 98 

(NCAR) Community Atmospheric Model (CAM3). Kang et al. (2011) showed that the ozone depletion 99 

area evolution has caused a poleward shift of the extratropical circulation, resulting a substantial 100 

increase in subtropical precipitation in austral summer. According to Thompson et al. (2011), the 101 

influence of the ozone hole on the Southern Annular Mode has led to a range of significant summertime 102 

surface climate changes not only over Antarctica and the Southern Ocean, but also over New Zealand, 103 

Patagonia, and southern regions of Australia. All in all, ozone depletion appears to have large and far-104 

reaching impacts and to potentially be an important player in the Southern Hemisphere climate system. 105 

 106 

One question arising is whether changes in surface winds and SST, triggered in the South Polar region, 107 

could affect the Tropical South Atlantic coastal ecosystems. Considering that a warming in surface 108 

waters has been detected at the Southwestern Atlantic since the 70’s decade and such elevation may 109 

have implications over coral metabolism and health, potentially compromising the sustainability of coral 110 

reefs, we here compared time series of coral growth rate and climate-oceanography modeled data to 111 

investigate impacts in costal environments, especially over the highly sensitive coral communities living 112 

in Abrolhos National Park of Brazil (17º25’ to 18º09’ S ; 038º33’ to 039º05’ W), the most important coral-113 

reef site in the Southwestern Atlantic.  114 

 115 

2. Materials and Methods 116 

 117 

2.1. Coral sampling 118 

 119 
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Massive coral skeleton cores were retrieved within the scope of the Brazil-France projects RECORD 120 

(REconstructing the Climate from cORal Drilling), LMI PALEOTRACES and the IRD-CNPq 121 

(CLIMPAST). Corals were drilled using a custom-made pneumatic corer with a ~5 cm diameter barrel. 122 

Samples were collected in the National Park of Abrolhos, State of Bahia/Brazil. A Siderastrea stellata, 123 

labelled CS1, was sampled at Chapeirão do Sueste (17
o
57’S; 038

o
38’W) on March 5

th
, 2007, water 124 

depth was 8.5 m and core length is 53 cm. The sample labeled UFBA was retrieved from a colony of 125 

Favia leptophylla, at Abrolhos (17
o
52’S; 039

o
38’W) in the winter of 1977 at approximately 5 m water 126 

depth. The core is 28.5 cm long and is hosted at the Department of Geology of the Universidade 127 

Federal da Bahia. The chronology of this coral core is described in Evangelista et al. (2007). A Favia 128 

leptophylla coral labeled P1 was sampled in the vicinity of CS1, at Chapeirão do Pierre, on March 4
th
, 129 

2007; core length is 51 cm. In the laboratory, CS1 and P1 cores were washed with Milli-Q water by 130 

sonication and then cut in half with a circular saw. One half was sectioned to produce a 1 cm thick slab 131 

that was washed again before drying at 40
o
C. 132 

 133 

2.2. Coral skeleton chronology  134 

 135 

Sections of coral cores were X-rayed to generate a chronology based on yearly density band counting 136 

(Knutson et al., 1972). X-ray images were digitized and their original contrast was slightly improved in 137 

order to enhance the recognition of high and low density growth bands. Band counting took the year 138 

(and the season) of sampling as reference for chronology. In order to validate the chronology based on 139 

X-ray radiography, we dated the CS1 core with the U/Th technique, as proposed by Shen et al. (2008). 140 

For coral skeletons, the U/Th dating method is a robust absolute chronological tool due to the high 141 

precision mass spectrometric technology and to the commonly high uranium levels (in the order of ppm) 142 

in coral skeletons. Four sub-samples of ~0.1 g were taken from the core with approximately equal 143 

spacing from the top to the base. Age corrections were calculated using an estimated radionuclide 144 

230
Th/

232
Th ratio of 4±2 ppm. All radiometric analyses were carried out using a SF-ICP-MS at the High-145 

precision Mass Spectrometry and Environmental Change Laboratory (HISPEC), Department of 146 

Geosciences, National Taiwan University (NTU) (Shen et al., 2008; Shen et al., 2010). Figure 1 shows 147 

the comparison of both methods. 148 

 149 
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 150 

Figure 1 - Comparison of chronologies obtained from X-ray radiography, named stratigraphy, and 151 

U/Th dating for a coral core of Siderastrea stellate (CS1) from Abrolhos National Park/Brazil. Error 152 

bars refer to 3 sd.  153 

 154 

2.3. Instrumental data and model outputs 155 

Coral growth data were compared to the extent of the ozone depleted area, the wind stress, the zonal 156 

wind, the SST, and the PDO (Pacific Decadal Oscillation). The extent of the ozone depleted area over 157 

Antarctica (in million km
2
) is defined as the maximum daily area in October of each year between 1979 158 

and 2008. Data were obtained from NASA Ozone Watch (ozonewatch.gsfc.nasa.gov). Ozone depletion 159 

over Antarctica was discovered in the mid 80’s (Farman et al., 1985) and was attributed to the positive 160 

trend in atmospheric halogenated hydrocarbons released by human activities (Albritton & Kuijpers 161 

1999; Solomon 1999). Gradual ozone depletion recover occurred just from the beginning of the XXI 162 

century (almost 10 years after the implementation of the Montreal Protocol in 1989 that controls 163 

emissions of ozone depleting substances). Annual mean wind stress data used here is from ERA-40 164 

(Uppala et al., 2005) and zonal wind from NCEP-NCAR reanalysis. The NCEP/NCAR Reanalysis 165 

Project is a joint project between the National Centers for Environmental Prediction and the National 166 

Center for Atmospheric Research (NCAR). It uses a state-of-the-art analysis/forecast system to perform 167 

data assimilation using past data from 1948 to the present. Its latest products have time coverage of 4 168 

times daily while data from 1948-1957 are presented in the regular (non-Gaussian) gridded data format. 169 
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SST and sea level were provided by NCEP-NCAR reanalysis and the Simple Ocean Data Assimilation - 170 

SODA (Carton & Giese 2008) product. These parameters spanned the full existing database since 171 

1948. PDO data is available at http://www.jisao.washington.edu/aao/. PDO is a robust, recurring pattern 172 

of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin, which influences a 173 

significant part of the globe, especially South America. It is a long-lived (at decadal scale) El Niño-like 174 

pattern of the Pacific climate. This parameter was considered here, since previous works have detected 175 

El Niño-like signals on growth rate of tropical Atlantic corals at Abrolhos, Evangelista et al. (2007). 176 

 177 

3. Results and discussions  178 

 179 

The three coral cores collected in Abrolhos exhibit a decline in annual growth rate towards the 180 

present (Figure 2a,2b,2c). Corals used in this study were found in a healthy condition, with no 181 

sign of bleaching at the time of sampling. To blend data from the 3 coral cores, we used a 182 

simple Gaussian z-score transformation (Figure 2d). Growth anomaly from individual coral cores 183 

exhibits a transition from positive to negative approximately after the mid-60’s and the 70’s, a 184 

trend highlighted by the z-score compilation. Figure 2d indicates that the decline in coral growth 185 

follows the SST anomaly, Figure 2e, inversely, for Abrolhos site. A temporal difference exists at 186 

the time when patterns change from positive to negative phases and vise-versa; nevertheless it 187 

is within the uncertainties of the modeled SST and z-score of growth rate. Also, slops of linear 188 

trends of SST and coral growth also differ, being steeper for SST. Other works have suggested 189 

that mean annual SSTs throughout the tropics and subtropics have increased between 0.4° and 190 

1°C in the past four decades (Kleypas et al., 2008). For Abrolhos, the mean annual SST 191 

changed from ~24.8°C to ~25.8°C between 1948 and 2006 (NCEP-NCAR reanalysis). Evidence 192 

of sharp decline in coral growth rate since the late 1970’s was also reported in comparable 193 

latitudes away from South America, like that reported for genus Porites from 44 reefs in 194 

Australia (Lough et al., 2002). In a subsequent work, these authors have expanded their 195 

database to include 5 other reef sites (Lough, 2008). Their average time series depicts a sharp 196 

drop in the calcification rate (g/cm
2
/y) starting in the late 1970’s. The transition of both SST and 197 

coral growth were concomitant with zonal wind changes around Antarctica as depicted in Figure 198 

3a. 199 
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 200 

Figure 2 - (a) SST anomaly for Abrolhos National Park/Brazil based on NCEP-NCAR reanalysis; (b) z-201 

score for sample P1 (c), sample Abrolhos/UFBA (d) and sample CS1 (e). 202 

 203 

The 70’s was a decade when major climatic processes, largely involving the ocean, shifted phases. For 204 

example, there was a negative to positive phase transition of the Pacific Decadal Oscillation (PDO), 205 

which is associated with more frequent El Niño events (Miller et al., 1994). The atmospheric dynamics 206 

around the Antarctic continent also experienced important changes. The westerly winds increased by 207 

the end of the 70’s (Polvani et al., 2011). This intensification was coeval with the positive trend of the 208 

Antarctic Oscillation (evidenced by the AAO Index) that is the dominant pattern of non-seasonal 209 

tropospheric circulation variations south of 20°S and is an observation-based Southern Hemisphere 210 
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Annular Mode index used to derive the zonal wind means from 40°S to 65°S (Marshall, 2003). The 211 

positive phase of AAO is generally associated with stronger cyclones at high southern latitudes (Pezza 212 

and Ambrizzi, 2003). The intensification of the westerlies in conjunction with the positive trend of the 213 

AAO has been documented in observations, reanalysis, and climate models simulations from the mid-214 

1960’s to present (Thompson and Solomon, 2002; Gillett and Thompson, 2003; Baldwin et al., 2007). 215 

New climatic observations have provided consistent information on the influence of the Antarctic Ozone 216 

depletion in the intensification of the westerlies (Albritton and Kuijpers, 1999; Solomon, 1999). 217 

Atmospheric temperature shifts concomitant with ozone depletion have been measured at several 218 

coastal Antarctic stations from meteorological balloon profiles (Randel and Wu, 1999). One 219 

consequence of this lowering in temperature is an increase of the cold-core low pressure area over 220 

Antarctica, the Antarctic circumpolar vortex - ACV. The intensification of the ACV may contribute to 221 

strengthening the polar-to-subtropics pressure and the air temperature gradient between Central 222 

Antarctica and the surroundings affecting the westerlies. Known impacts are the poleward shift of the 223 

mid-latitudes jet and of the Hadley cell that ultimately will affect tropical SST. Figure 3 shows our 224 

calculations (based on NCEP-NCAR) of main parameters related to ozone-induced climatology and 225 

oceanography.   226 

 227 

Southern tropospheric wind changes associated with ozone depletion have been largely 228 

discussed in the literature (Gillett and Thompson, 2003; Shindell and Schmidt, 2004; Baldwin et 229 

al., 2007; Son et al., 2008, 2009; Purich and Son, 2012). What is new here is the way winds and 230 

Tropical Atlantic SSTs are impacted by ozone depletion. Based on the NCEP-NCAR reanalysis, 231 

the tropical Brazilian coast presumably experienced since 1979 changes of zonal wind direction 232 

(from East to West) as depicted in Figure 3e. Taking into account the correlations observed 233 

between ozone depletion area (Figure 3d), and wind stress (represented here by the length of 234 

the arrows at Figure 3c), it points to an impact of the winds over  the latitudinal band that 235 

encloses the tropical South Atlantic sector, from Africa to the Brazilian coast, reaching the 236 

Abrolhos site. A potential impact of that is the piling up of warm waters against the Brazilian 237 

continental shelf that would result in increasing SST. The U.K. Meteorological Office Hadley 238 

Centre SST climatology (the best spatial and temporal resolved database which dates back to 239 

1870, Rayner et al., 2003) shows a clear moderate stepwise positive change of SST since 1980 240 
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on the Brazilian continental shelf (Belking, 2009). An average SST change of ~1°C was found 241 

for the period 1981-2006 with respect to 1957-1980. Long tide gauge time series (calibrated 242 

with satellite altimetry) at Cananéia (25°S) and Ilha Fiscal Stations (22°S), both on the Brazilian 243 

tropical coast, exhibit sea level increase of ~100 mm between 1976 and 2005 with respect to 244 

1954-1975 and of ~160 mm between 1971 and 2004 with respect to 1963-1970, respectively 245 

(Dalazoana et al., 2005). Figure 3b, based on NCEP, also depict a positive anomaly at Abrolhos 246 

before and after 1979.  247 

 248 

Figure 3 - Calculations based on NCEP-NCAR reanalysis for : (a) the zonal winds changes around 249 

Antarctica before and after 1979, previously published in 2013 (Cataldo et al. 2013); (b) sea level 250 

pressure difference (also before and after 1979, but with emphasis to the Southern Atlantic); (c) 251 

correlation of wind stress and the ozone depletion area (arrow lengths correspond to r-Pearson values); 252 

(d) ozone depletion area; and (e) the zonal wind anomalies calculated to Abrolhos site. 253 

 254 

These instrumental data combined with the high positive correlation found between ozone 255 

depletion area and SST in the Southwestern Atlantic sector, as shown in Figure 4, indicate that 256 

an active mechanism links Antarctica and the tropics.  257 

 258 
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 259 

Figure 4 - Correlation map between ozone depletion area in Antarctica and Southwestern Atlantic SST. 260 

 261 

In addition, the interdecadal (PDO) is a significant climate variability mode when considering the 1970’s 262 

climate shift being its magnitude unprecedented high since mid-20
th
 century. Several studies postulate 263 

a great contribution of the PDO to this climate shift, particularly in the Northern Hemisphere (e.g.: 264 

Mantua et al., 1997). Nevertheless, according to Agosta and Compagnucci (2008), in the regional 265 

context of Southern South America and adjacent Southern Atlantic, changes in the basic atmospheric 266 

circulation of the late 1970’s climate transition cannot be solely attributed to the PDO or associated El 267 

Niño-like variability. In Figure 5 we show the correlation map between SST and PDO. The result indeed 268 

shows an impact of the PDO in the South Atlantic with significant correlation coefficients mostly 269 

occurring at a latitude band from ~35°S to 65°S.  270 
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 271 

 272 

Figure 5 - (a) Correlation map (SST x PDO) and; (b) PDO (Pacific Decadal Oscillation) anomaly time 273 

series.    : Abrolhos region. 274 

 275 

The fact here is that significant correlation coefficients found in Figure 5 (ozone depletion area and 276 

SST) are observed where coral communities live in the Brazilian coastal line, while the higher 277 

correlations with PDO is confined to subtropics and central Atlantic. Since r-Pearson values between 278 

SST and ozone at the Brazilian coral site varied from +0.6 to + 0.7, the explained variance of SST 279 

(~40%) due to the climate-induced effects (changes in atmospheric circulation) of the ozone depletion is 280 

much higher than the PDO influence at that site.  281 

 282 

Both processes (depletion of stratospheric ozone in Antarctica and GHG - Greenhouse Gases 283 

emissions) account for reduced surface pressure over the high latitudes accompanying increase of 284 

surface pressure at mid-latitudes. This is associated with the meridional temperature gradient and the 285 

position of mid-latitude upper level jet that modulates the tropospheric circulation (winds) and ultimately 286 

impact the SST spatial distribution. The near-surface ocean temperature is forced by winds, radiation, 287 

and freshwater fluxes. The ocean then impacts the atmosphere via latent, sensible, and radiative heat 288 
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losses that are dependent on SST and fundamentally on the wind-stress. Since SST is closely related 289 

to the mixing layer variability, SST variations are intimately connected with the heat budget of the mixed 290 

layer (McPhaden and Hayes, 1991; Chen et al., 1994; Wang and McPhaden, 2000; Foltz et al., 2003). 291 

Furthermore, atmospheric circulation anomalies have been shown to precede the development of 292 

basin-wide SST patterns for the tropical Atlantic (Nobre and Shukla, 1996).  293 

 294 

 4. Conclusions 295 

 296 

Records of coral growth anomaly for Abrolhos site/Brazil evidenced changes (from positive to negative 297 

growth rate anomaly) concomitant with SST increases at the coral living site which in turn were 298 

concomitant with the evolution of the area of ozone depletion. This potential teleconnected process as 299 

described above is of concern to tropical coastal environments at Southern Atlantic, since it would 300 

constitute a factor of SST increase on a scenario of expected global warming due to GHG. Ozone 301 

levels in the stratosphere are expected to recover by the end of the century (Perlwitz et al., 2008), and 302 

that should theoretically weaken westerly winds (Arblaster and Meehl, 2006; Turner et al., 2009) and 303 

contribute to a trend reversal in zonal wind and consequently SST anomalies.  304 

 305 
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