Southwestern Tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica Heitor Evangelista^{a*}, Ilana Wainer^b, Abdelfettah Sifeddine^{c,d}, Thierry Corrège^e, Renato C. Cordeiro^c, Saulo Lamounier^a, Daniely Godiva^{a,c}, Chuan-Chou Shen^f, Florence Le Cornec^d, Bruno Turcq^d, Claire E. Lazareth^d and Ching-Yi Huf ^a LARAMG/IBRAG/Uerj. Pav. HLC, Subsolo. Rua São Francisco Xavier 524, Maracanã – Rio de Janeiro. 20550-013. Brazil. Phone and fax 55 21 2334 0133. ^b Universidade de São Paulo – USP/IO/Departamento de Oceanografia Física. Praça do Oceanográfico 191. 05508-120 São Paulo, SP, Brazil. ^c Departamento de Geoquímica, Instituto de Química – UFF. Outeiro de São João Batista s/n, Centro – Niterói. 24020-007. Brazil. ^d IPSL/LOCEAN, UPMC/CNRS/IRD/MNHN, Centre IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy cedex, France. ^e Université de Bordeaux . UMR CNRS 5805 EPOC. Allée Geoffroy St Hilaire, 33615 Pessac cedex, France. [†] High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences. National Taiwan University. Roosevelt Rd., Taipei 10617, Taiwan ROC *: to whom correspondence should be addressed (E-mail: evangelista.uerj@gmail.com) Primary Research Article

Abstract Climate changes induced by stratospheric ozone depletion over Antarctica have been recognized as an important consequence of the recently observed Southern Hemisphere atmospheric circulation. Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric ozone depletion over Antarctica, has caused changes in climate across the extra-tropics. Here we present evidences that the Brazilian coast (Southwestern Atlantic) may have been impacted from both winds and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air-sea interactions, and seem to record this impact. Growth rates of Brazilian corals show a trend reversal that fits the ozone depletion evolution, confirming that ozone impacts are far reaching and potentially affect coastal ecosystems in tropical environments. Keywords: ozone depletion; corals; climate change; South Atlantic; Antarctica; Brazil

1. Introduction

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

61

Sensitivity of coral species to change in sea surface temperature (SST) has become a focus of attention in the context of modern climate change (Coles and Jokiel, 1978; Howe and Marshall, 2002; Marshall, 2003; Cantin et al., 2010). Response to thermal stress ranges from growth rate alteration to bleaching and eventually death. SST has long been recognized as an important environmental driver for coral growth pattern and calcification (Lough and Barnes, 1997). In a scenario of a warming planet, it is expected that until 2050, ~95% of global reefs will be under pressure from thermal stress and that only 15% will remain in areas of adequate aragonite saturation for proper coral growth (Burke, 2011). Brazilian coral species have high level of endemism and are predominantly found in shallow waters. with the scleractinian coral Siderastrea stellata (Verril, 1868) being one of the main reef builders. It is a colonial, massive and symbiotic coral (Lins-de-Barros and Pires, 2007) with a spatial distribution that encloses all Brazilian reefs and coral communities from nearly 0 °S to 23 °S (Castro and Pires, 2001). For Siderastrea stellata, that often grows in shallow water in reef tidal pools (where temperatures normally range between 25°C and 31°C), optimum calcification has been observed at temperatures between 28°C and 30°C. For this particular species, the aragonite saturation seems to play a less relevant role than SST for calcification, especially when SST reaches ~26°C (da Silva et al., 2009). Several factors can induce change in SST, that will ultimately impact coral communities. One of them is the change in wind circulation patterns. Several authors have reported a close relationship between wind-stress and SST (Lindzen and Nigam, 1987; Hashizume et al., 2001; Chelton et al., 2007) through modulation of surface heat flux and upper ocean mixing. In general, warmer SST can be associated with deeper boundary layers and higher wind stress (Cayan, 1992; O'Neill et al., 2010). The Southern Hemisphere mid-to-high latitude circulation has undergone marked changes in wind dynamics over the past few decades. One of the most pronounced changes is the poleward displacement of the Southern Hemisphere westerly jet, which has been accompanied by a poleward shift and intensification of oceanic circulation (Thompson et al., 2000; Hartmann et al., 2000). These changes have been attributed to external factors such as increased air temperature due to greenhouse gases (GHG) but also to the Southern Annular Mode (SAM) variability enhanced by the Antarctic ozone depletion. and the Antarctic ezene depletion. The polar stratospheric ezone depletion is also believed to affect not only

the polar temperature and the latitudinal position of the mid-latitude jet, but also the entire Southern
Hemisphere, resulting in a broadening of the Hadley cell and a poleward extension of the subtropical
dry zone (Polvani et al., 2011). Trends in the Southern Hemisphere tropospheric circulation have been
shown to indicate that the strengthening of the westerly winds was linked to ozone loss (Thompson et
al., 2011) (Zazulie et al., 2010). Earlier studies (Sexton, 2001; Thompson and Solomon, 2002)
postulated that the Antarctic ozone depletion was the primary cause for tropospheric circulation
changes in the Southern Hemisphere that occurred in the late 1970s. Another impact of polar ozone
depletion on subtropical regions was examined <u>using</u> by The Canadian Middle Atmosphere Model
(CMAM) and the National Center for Atmospheric Research (NCAR) Community Atmospheric Model
(CAM3). Kang et al. (2011) They showed that the ozone depletion area evolution has caused a
poleward shift of the extratropical circulation (Kang et al., 2011), resulting in substantially increase in
subtropical precipitation in austral summer. According to Thompson et al. (2011), the influence of the
ozone hole on the Southern Annular Mode has led to a range of significant summertime surface climate
changes not only over Antarctica and the Southern Ocean, but also over New Zealand, Patagonia and
southern regions of Australia. All in all, ozone depletion appears to have large and far-reaching impacts
and to potentially be an important player in the Southern Hemisphere climate system.

One question arising is whether changes in surface winds and SST, triggered in the South Polar region could affect the Tropical South Atlantic coastal ecosystems. Taking into account Considering that warming of surface waters may have implications over coral metabolism and health, potentially compromising the sustainability of coral reefs, we here combined here measurements of coral growth rate and climate-oceanography modeled data to investigate wind driven impacts in costal environments, especially over the highly sensitive coral communities living in Abrolhos National Park of Brazil (17°25' to 18°09' S; 038°33' to 039°05' W), the most important coral-reef site in the Southwestern Atlantic.

2. Materials and Methods

2.1. Coral sampling

Massive coral skeleton cores were retrieved within the scope of the Brazil-France projects RECORD (REconstructing the Climate from cORal Drilling), LMI PALEOTRACES and the IRD-CNPq (CLIMPAST). Corals were drilled using a custom-made pneumatic corer with a ~5 cm diameter barrel. Samples were collected in the National Park of Abrolhos, State of Bahia/Brazil. A Siderastrea stellata, labelled CS1, was sampled at Chapeirão do Sueste (17°57'S; 038°38'W) on March 5th, 2007. Water depth was 8.5 m and core length is 53 cm. Figure 2a. A Favia leptophylla, labelled P1, was sampled in the vicinity of CS1, at Chapeirão do Pierre, on March 4th, 2007. The core length is 51 cm. The third sample, labeled UFBA, was retrieved from a colony of Favia leptophylla, at Abrolhos (17°52'S; 039°38'W) in the winter of 1977 at approximately 5 m water depth. The sample labeled UFBA was retrieved from a colony of Favia leptophylla, at Abrolhos (17°52'S; 039°38'W) in the winter of 1977 at approximately 5 m water depth. The core is was 28.5 cm long, and is was hosted at the Department of Geology of the Universidade Federal da Bahia. The chronology of this coral third core is completed described in Evangelista et al. (2007), Figure 2b. A Favia leptophylla coral labelled P1 was sampled in the vicinity of CS1, at Chapeirão do Pierre, on March 4th, 2007; core length is 51 cm, Figure 2c. In the laboratory, CS1 and P1 cores were washed with Milli-Q water by sonication and then cut in half with a circular saw. One half was sectioned to produce a 1 cm thick slab that was washed again before drying at 40°C.

2.2. Coral skeleton chronology

Sections of coral cores were X-rayed to generate a chronology based on yearly density band counting (Knutson et al., 1972). X-ray images were digitalized and their original contrast was slightly improved in order to enhance the recognition of high and low density growth bands. Band counting took the year (and the season) of sampling as reference for chronology. In order to validate the chronology based on X-ray radiography, we dated the CS1 core with the U/Th technique, as proposed by Shen et al. (2008). For coral skeletons, tThe U/Th dating method is a robust absolute chronological tool for calcitic or aragonitic marine organisms due to the high precision mass spectrometric technology and to the commonly high uranium levels (in the order of ppm) in coral skeletons. Four sub-samples of ~0.1 g were taken from the core with approximately equal spacing from the top to the base. Age corrections were calculated using an estimated radionuclide ²³⁰Th/²³²Th ratio of 4±2 ppm. All radiometric analyses

were carried out using a SF-ICP-MS at the High-precision Mass Spectrometry and Environmental Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University (NTU) (Shen et al., 2008; Shen et al., 2010). Figure 1 show the comparison of both methods.

153

150

151

152

154 Figure 1

155

2.3. Instrumental data and model outputs

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

156

Coral growth data were compared to the extent of the ozone depleted area, the wind stress, the zonal wind, the SST and the PDO (Pacific Decadal Oscillation). The extent of the ozone depleted area over Antarctica (in million km²) is defined as the maximum daily area in October of each year between 1979 and 2008. Data were obtained from NASA Ozone Watch (ozonewatch.gsfc.nasa.gov). Ozone depletion over Antarctica was discovered in the mid 80's (Farman et al., 1985) and was attributed to the positive trend in atmospheric halogenated hydrocarbons released by human activities (Albritton & Kuijpers 1999; Solomon 1999). Gradual ozone depletion recover occurred just from the begging of the XXI century (almost 10 years after the implementation of the Montreal Protocol in 1989 that controls emissions of ozone depleting substances). This "ozone hole" has been gradually recovering since the implementation in 1989 of the Montreal Protocol that controls emissions of ozone depleting substances. Annual mean wind stress data used here is from ERA-40 (Uppala et al., 2005) and zonal wind by NCEP-NCAR reanalysis. SST and sea level were provided by NCEP-NCAR reanalysis and the Simple Ocean Data Assimilation - SODA (Carton & Giese 2008) product. PDO data is available at http://www.jisao.washington.edu/aao/. PDO data is available at http://www.jisao.washington.edu/aao/. PDO is a robust, recurring pattern of ocean-atmosphere climate variability centered over the midlatitude Pacific basin, which influences a significant part of the globe, especially South America. It is a long-lived (at decadal scale) El Niño-like pattern of the Pacific climate. This parameter was considered here, since previous works have detected El Niño-like signals on growth rate of tropical Atlantic at Abrolhos, Evangelista et al. (2007). Projected IPCC-AR4 scenarios A2 and B1 for SST were derived from the National Center for Atmospheric research Coupled Climate Model version 3 (NCAR-CCSM3). The model employs the atmosphere, ocean, sea ice and land surface as interactive components, all linked through a coupler that exchanges fluxes and state information (Collins et al., 2006). For the 20th

century, integrations in the model are forced by observed variations of solar radiation, volcanic outputs, aerosols and GHG. The 21st century integrations continue for 100 years from the end of the 20th century runs, and span years 2000–2099 (Meehl et al., 2006).

183

180

181

182

3. Results

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

184

The three coral cores collected in Abrolhos exhibit a decline in annual growth rate (Figure 2) towards the present (Figure 2a,2b,2c). Corals used in this study were found in a healthy condition, with no sign of bleaching at the time of sampling. To blend data from the 3 coral cores, we used a simple Gaussian z-score transformation (Figure 2d). Growth anomaly (i.e. annual growth compared to the average growth for each coral) from individual coral cores exhibited a transition from positive to negative approximately after the mid-60's and the 70's, a trend highlighted by the z-score compilation. Changes in growth patterns were quite coincident with SST anomaly observed for Abrolhos. It has been suggested that mean annual SSTs throughout the tropics and subtropics have increased between 0.4° and 1°C in the past four decades (Kleypas et al., 2008). For Abrolhos NCEP-NCAR reanalysis estimated an increase in mean annual SST from ~24.8 ℃ to ~25.8 ℃ between 1948 and 2006. Figure 2 indicates that the decline in coral growth may have started before the 70's. Figure 2d indicates that the decline in coral growth is guite coincident with SST anomaly for Abrolhos, Figure 2e, from negative to positive above average. Other works have suggested that mean annual SSTs throughout the tropics and subtropics have increased between 0.4° and 1 °C in the past four decades (Kleypas et al., 2008). For Abrolhos, the mean annual SST changed from ~24.8 ℃ to ~25.8 ℃ between 1948 and 2006 (NCEP-NCAR reanalysis). Evidence of sharp decline in coral growth rate since the late 1970's was also reported in comparable latitudes away from South America, like that reported for genus Porites from 44 reefs in Australia (Lough et al., 2002). In a subsequent work, these authors have expanded their database to include 5 other reef sites (Lough, 2008). Their average time series depicts a sharp drop in the calcification rate (g/cm²/y) starting in the late 1970's. The transition of both SST and coral growth were concomitant to zonal wind changes around Antarctica as depicted in Figure 2a.

208209

210 Figure 2

211

212

4. Conclusions

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

The 70's was a decade when major climatic processes largely involving the ocean shifted phases. For example, there was a negative to positive phase transition of the Pacific Decadal Oscillation (PDO), which is associated with more frequent El Niño events (Miller et al., 1994); the Atlantic Multidecadal Oscillation (AMO) index became negative and continued to be throughout the end of the 90's, reflecting a warming trend of the Northern Atlantic SST (Grossmann and Klotzbach, 2009). The atmospheric dynamics around the Antarctic continent also experienced important changes. The westerly winds increased significantly by the end of the 70's (Polvani et al., 2011). This intensification was coeval with the positive trend of the Antarctic Oscillation (evidenced by the AAO Index) that is the dominant pattern of non-seasonal tropospheric circulation variations south of 20°S and . The AAO index data is an observation-based Southern Hemisphere Annular Mode index used (http://www.antarctica.ac.uk/met/gjma/sam.html - last revised in October, 2011) derived from 12 stations around Antarctica to derive the zonal means from 40 °S to 65 °S (Marshall, 2003). The positive phase of AAO is generally associated with stronger cyclones at high southern latitudes (Pezza and Ambrizzi, 2003). The intensification of the westerlies in conjunction with the positive trend of the AAO has been documented in observations, reanalysis and climate models simulations from the mid-1960's to present (Thompson and Solomon, 2002; Gillett and Thompson, 2003; Baldwin et al., 2007). New climatic observations have provided consistent information on the influence of the Antarctic Ozone depletion in the intensification of the westerlies (Albritton and Kuijpers, 1999; Solomon, 1999). Since ozone in the stratosphere is associated to exothermal chemical reactions, its depletion in the Southern Hemisphere high latitudes triggers the decrease of the Antarctic air temperature in the lower stratosphere. Atmospheric temperature shifts concomitant with ozone depletion have been measured at several coastal seaside Antarctic stations from meteorological balloon profiles (Randel and Wu, 1999). One consequence of this lowering in temperature is an increase of the cold-core low pressure area over Antarctica, the Antarctic circumpolar vortex - ACV. The intensification of the ACV may contribute to strengthening the polar-to-subtropics pressure and the air temperature between Central Antarctica and the surroundings affecting the westerlies gradient that affects surface winds. Known impacts are the

poleward shift of the mid-latitudes jet and of the Hadley cell that ultimately will affect tropical SST.

Figure 3 shows our calculations based on NCEP-NCAR of main parameters related to ozone induced climatology and oceanography.

243

240

241

242

244 Figure 3

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

Southern tropospheric wind changes associated with ozone depletion have been largely discussed in the literature (Gillett and Thompson, 2003; Shindell and Schmidt, 2004; Baldwin et al., 2007; Son et al., 2008, 2009; Purich and Son, 2012). What is new here is the way winds and the Tropical Atlantic SSTs are impacted by this phenomenon. Based on the NCEP-NCAR reanalysis, since 1979 the tropical Brazilian coast presumably experienced since 1979 increased zonal winds (from East to West) as depicted in Figure 3e. Taking into account the positive correlations observed between ozone depletion area, Figure 3d, and wind stress (represented here by the length of the arrows at Figure 3c), it points to a response of winds over in the latitudinal band that encloses the tropical South Atlantic sector, from Africa to the Brazilian coast, reaching the Abrolhos site. A potential impact of that is the piling up of warm waters from the Brazil current against the continental shelf that would increase the SST. Based en Tthe U.K. Meteorological Office Hadley Centre SST climatology (the best spatial and temporal resolved database which dates back to 1870, Rayner et al., 2003), it shows a clear moderate stepwise positive change of SST since 1980 on the Brazilian continental shelf (Belking, 2009). An average SST change of ~1 °C was found for the period 1981-2006 with respect to 1957- 1980. Long tide gauge time series (calibrated with satellite altimetry) at Cananéia (25°S) and Ilha Fiscal Stations (22°S) both on the Brazilian tropical coast exhibit sea level increase shifts of ~100 mm between 1976 and 2005 with respect to 1954-1975 and ~160 mm between 1971 and 2004 with respect to 1963-1970, respectively (Dalazoana et al., 2005). Figure 3b, based on NCEP, also depict a positive anomaly at Abrolhos before and after 1979. These instrumental data combined with the high positive correlation found between ozone depletion area and SST in the Southwestern Atlantic sector, as shown in Figure 4, indicate that anA active mechanism links ing Antarctica and the tropics is active.

268269

270 Figure 4

In addition, the PDO is a significant parametrization when considering the 1970's climate shift. Several studies postulate a great contribution of the PDO to this climate shift, particularly in the Northern Hemisphere (e.g.: Mantua et al., 1997). Nevertheless, according to Agosta and Compagnucci (2008), in the regional context of Southern South America and adjacent Southern Atlantic, changes in the basic atmospheric circulation of the late 1970's climate transition cannot be solely attributed to the PDO or associated El Niño-like variability. In Figure 5 we show the correlation map between SST and PDO. The result indeed shows an impact of the PDO in the South Atlantic with significant correlation coefficients mostly occurring at a latitude band from ~35°S to 65°S. The fact here is that significant correlation coefficients found in Figure 5_4 (ozone depletion area and SST) are observed where coral communities live in the Brazilian coastal line, while the higher correlations with PDO is confined to subtropics and central Atlantic. Since r-Pearson values between SST and ozone at the Brazilian coral site varied from +0.6 to +0.7, the explained variance of SST (~40%) due to the climate induced effects (changes in atmospheric circulation) of the ozone depletion is much higher compared with the PDO influence at that site.

287 Figure 5

Both processes (depletion of stratospheric ozone in Antarctica and GHG - Greenhouse Gases emissions) account for reduced surface pressure over the high latitudes accompanying increase of surface pressure at mid-latitudes. This is associated with the meridional temperature gradient and the position of mid-latitude upper level jet that modulates the tropospheric circulation (winds) and ultimately impact the SST spatial distribution. The near-surface ocean temperature is forced by winds, radiation and freshwater fluxes. The ocean then impacts the atmosphere via latent, sensible and radiative heat losses that are dependent on SST and fundamentally on the wind-stress. Since SST is closely related to the mixing layer variability, SST variations are intimately connected with the heat budget of the mixed layer (McPhaden and Hayes, 1991; Chen et al., 1994; Wang and McPhaden, 2000; Foltz et al., 2003). Furthermore, atmospheric circulation anomalies have been shown to precede the development of basin-wide SST patterns for the tropical Atlantic (Nobre and Shukla, 1996).

4. Conclusions

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

300

Taking into account the present database Records of coral growth anomaly for Abrolhos site/Brazil evidenced changes (from positive to negative growth rate anomaly) concomitant to ozone area evolution which in turn was highly correlated to SST increases at coral living sites (Figure 2), it is (first) the timing of the registered change (dominantly positive to dominantly negative growth rate anomaly) with respect to ozone area evolution and (second) the high SST and ozone correlation, that points the ozone depletion area as the most probable causal parameter. If ozone depletion triggers changes in wind structure at the Southern Atlantic with consequences to SST elevation at the Brazilian coral sites it is a factor of great concern to the coastal environments, since it would constitute an additional SST increase on a scenario of expected global warming due to GHG. Evidence of sharp decline in growth rate since the late 1970's can also be noted in comparable latitudes away from South America, e.g. by examining the trends of growth rates in the genus Porites from 44 reefs in Australia (Lough et al., 2002). In a subsequent work these authors have expanded their database to include 5 other reef sites (Lough, 2008). Their average time series depicts a sharp drop in the calcification rate (g/cm²/y) starting in the late 1970's. Herein we point the ozone depletion area as a potential causal parameter. This teleconnected process is of concern to the regional coastal environments, since it would constitute an additional forcing in the SST increase on a scenario of expected global warming due to GHG. Ozone levels in the stratosphere are expected to recover by the end of the century (Perlwitz et al., 2008), and that should theoretically weaken westerly winds (Arblaster and Meehl, 2006; Turner et al., 2009) and contribute to a trend reversal in zonal wind and SST anomalies. However, GHG concentrations will continue to rise and that could override the trend reversal due to the ozone recovery. The IPCC Reports consider future predictions for global SST in the context of the scenario families. Herein we present projections with respect to the A2 and B1 storylines (IPCC, Working Group contributions to the AR4, 2007). The A2 storyline and scenario family describe a very heterogeneous world, with a continuously increasing global population where economic development is primarily

326327

328

slower. B1 describes a world with more rapid changes in economic structures and improved

regionally oriented and per capita economic growth and technological change are more fragmented and

developments, i.e. a scenario towards a global environmental sustainability. Taking into account the

declining growth rate pattern of Brazilian corals to the present and using the projected IPCC-AR4 scenarios A2 and B1 and the Version 3 of the Community Climate System Model (CCSM3) from the National Center for Atmospheric Research, we predict coral growth condition until 2099 (Figure 6), by using the SST model outputs specifically for the Abrolhos site. In the B1 scenario, the decline develops very closely to its present trend, in relation to a smoother SST increase. In this condition, by the end of the century coral growth rate will be slowed by half the value estimated for the mid-twentieth century. A2 scenario depicts a far worst situation, where corals would practically stop growing near 2100. The perspective found here is somewhat similar to the declining skeletal growth rate of the massive reefbuilding coral *Diploastrea heliopera* in the central Red Sea, (Cantin et al., 2010). We believe that our results and interpretation may encourage deeper investigations on how climate-ocean coupled processes may remotely impact ecosystems worldwide. Here we pointed to a climate induced process triggered in Antarctica with potential implications to the temperature of the Southern Atlantic tropical waters, that is a link poorly investigated till now.

343

344

330

331

332

333

334

335

336

337

338

339

340

341

342

345 Author contributions:

346

- A. All co-authors provided significant contributions to the discussions and the final version of the text;
- 348 B. Prof. Heitor Evangelista, Dr. Abdelfettah Sifeddine and Dr. Bruno Turcq were the leaders of the
- RECORD project that generated the coral database;
- 350 C. Dr. Ilana Wainer provided the modeling in the manuscript;
- 351 D. Dr. Thierry Corrège, Dr. Daniely Godiva and Dr. Renato Campello Cordeiro made the coral drillings
- at the Brazilian coast. Dr. Thierry Corrège made the final revision of the text and significatively
- improved that;
- 354 E. Dr. Florence Le Cornec and Dr. Claire E. Lazareth were responsible by Sr/Ca and U/Ca
- measurements at IRD-France and comments in the tex;
- 356 F. Dr. Chuan-Chou Shen and Dr. Ching-Yi Hu made the radioisotope analysis for dating;
- 357 G. MS. Luiza Oliveira provided data of coral growth.

358

359

Acknowledgements

360	
361	We thank IBAMA for coral sampling licenses (N° 283/2006 and 040/2007CGREP); Fundação de
362	Amparo à Pesquisa do Estado de São Paulo-FAPESP; Coordenação de Aperfeiçoamento de Pessoal
363	de Nível Superior-CAPES, Conselho Nacional de Pesquisa-CNPq grant 300223/93-5 and CNPq-
364	MCTI/INCT-Criosfera 573720/2008 grant. The Brazil-France scientific programs LMI PALEOTRACES
365	and the IRD-CNPq (CLIMPAST).
366	
367	Authors declare not exist any competing financial interests in this work.
368	
369	References
370	
371	Agosta, E.A and Compagnucci, R. H.: The 1976/77 Austral summer climate transition e_ects
372	on the atmospheric circulation and climate in southern South America, J. Climate, 21, 4365-
373	<u>4383, 2008.</u>
374	
375	Albritton, D. and Kuijpers, L.: Synthesis of the Reports of the Scientific, Environmental E_ects,
376	and Technology and Economic Assessment Panels of the Montreal Protocol: a Decade of
377	Assessments For Decision Makers Regarding the Protection of the Ozone Layer: 1988–
378	1999, UNEP/Earthprint, Nairobi, Kenya, 1999.
379	
380	Arblaster, J. and Meehl, G.: Contributions of external forcings to southern annular mode trends,
381	J. Climate, 19, 2896–2905, 2006.
382	
383	Baldwin, M., and Dameris, M.: Climate-ozone connections, Chapter 5, Scientific Assessment
384	of Ozone Depletion: 2006, World Meteorological Organization Global Ozone Research and
385	Monitoring Project, Report No. 50, Geneva, WHO, 5.1–5.49, 2007.
386	
387	Belkin, I. M.: Rapid warming of large marine ecosystems, Prog. Oceanogr., 81, 207–213, 2009.
388	
389	Burke, L.: Reefs at Risk Revisited, World Resources Institute, Washington DC, 2011.

390	
391	Cantin, N., Cohen, A., Karnauskas, K., Tarrant, A., and McCorkle, D.: Ocean warming slows
392	coral growth in the central red sea, Science, 329, 322-325,doi:10.1126/science.1190182,
393	<u>2010.</u>
394	
395	Castro, C. B. and Pires, D. O.: A bleaching event on Brazilian coral reef, Revista Brasileira de
396	Oceanografia, 47, 87–90, 1999.
397	
398	Castro, C, B. and Pires, D. O.: Brazilian coral reefs: what we already know and what is still
399	missing, B. Mar. Sci., 69, 357–371, 2001.
400	
401	Cataldo, M., Evangelista, H., Simões, J.C., Godoi, R.H.M., Simmonds, I., Hollanda, M.H.
402	Wainer, I., Aquino, E.A., Van Grieken, R.: Mineral dust variability in central West Antarctica
403	associated with ozone depletion. Atmospheric Chemistry and Physics, 13, 2165 - 2175, 2013.
404	
405	Cayan, D.: Latent and sensible heat flux anomalies over the northern oceans: driving the sea
406	surface temperature, J. Phys. Oceanogr., 22, 859–881, 1992.
407	
408	Chelton, D., Schlax, M., Samelson, R., and de Szoeke, R.: Global observations of large oceanic
409	eddies, Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812, 2007.
410	
411	Chen, D., Busalacchi, A., and Rothstein, L.: The roles of vertical mixing, solar radiation, and
412	wind stress in a model simulation of the sea surface temperature seasonal cycle in the trop-
413	ical Pacific Ocean, J. Geophys. Res, 99, 20345–20359, 1994.
414	
415	Coles, S. and Jokiel, P.: Synergistic e_ects of temperature, salinity and light on the hermatypic
416	coral montipora verrucosa, Mar. Biol., 49, 187–195, 1978.
417	
418	Corrège, T.: Sea surface temperature and salinity reconstruction from coral geochemical
419	tracers, Palaeogeogr. Palaeocl., 232, 408-428, 2006.

420	
421	Dalazoana, R., Luz, R. T., and Freitas, S. R. C.: Estudos do NMM a partir de séries temporais
422	maregráficas e de altimetria por satélite visando a integração da rede vertical brasileira ao
423	SIRGAS, Revista Brasileira de Cartografia, 57, 140–153, 2005.
424	
425	da Silva, L., Júnior, G., and Amaral, F.: Estudo do branqueamento do coral (Siderastrea stellata
426	verrill, 1868) da praia de Porto de Galinhas-PE, in: Jornada de Pesquisa, Ensino e Extensão,
427	Annals of JEPEX, Recife, 2009.
428	
429	Evangelista, H., Godiva, D., Sifeddine, A., Leão, Z.M.A.N., Rigozo, N.R., Segal, B., Ambrizzi, T.
430	Kampel, M., Kikuchi, R., and Le Cornec, F.: Evidences linking ENSO and coral growth in the
431	Southwestern-South Atlantic. Climate Dynamics, 29: 869–880, 2007.
432	
433	Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica
434	reveal seasonal CIOx=NOx interaction, Nature, 315, 207–210, 1985.
435	
436	Foltz, G., Grodsky, S., Carton, J., and McPhaden, M.: Seasonal mixed layer heat budget of the
437	tropical Atlantic ocean. J. Geophy. Res, 108, 3146, doi:10.1029/2002JC001584, 2003.
438	
439	Gillett, N. and Thompson, D.: Simulation of recent Southern Hemisphere climate change,
440	Science, 302, 273–275, doi:10.1126/science.1087440, 2003.
441	
442	Hartmann, D., Wallace, J., Limpasuvan, V., Thompson, D., and Holton, J.: Can ozone depletion
443	and global warming interact to produce rapid climate change?, P. Natl. Acad. Sci. USA, 97,
444	1412–1417, doi:10.1073/pnas.97.4.1412, 2000.
445	
446	Hashizume, H., Takeuchi, K., Xie, S., and Liu, W.: Local and remote atmospheric response to
447	tropical instability waves – a global view from space, J. Geophys. Res., 106, 173–185, 2001.
448	
449	Howe, S. and Marshall, A.: Temperature e ects on calcification rate and skeletal deposition in

450	the temperate coral, <i>Plesiastrea versipora</i> (Lamarck), J. Exp. Mar. Biol. Ecol., 275, 63–81,
451	<u>2002.</u>
452	
453	Kang, S. M., Polvani, L. M., Fyfe, J. C., and Sigmond, M.: Impact of polar ozone depletion on
454	subtropical precipitation, Science, 332, 951–954, 2011.
455	
456	Kleypas, J. A., Danabasoglu, G., and Lough, J. M.: Potential role of the ocean thermostat in
457	determining regional di erences in coral reef bleaching events, Geophys. Res. Lett., 35,
458	L03613, doi:10.1029/2007GL032257, 2008.
459	
460	Knutson, D. W., Buddemeier, R. W., and Smith, S. V.: Coral chronologies: seasonal growth
461	bands in reef corals, Science, 177, 270–272, 1972.
462	
463	Le Cornec, F. and Corrège, T.: Determination of uranium to calcium and strontium to calcium
464	ratios in corals by Inductively Coupled Plasma Mass Spectrometry, J. Anal. Atom. Spectrom.,
465	<u>12, 969–973, 1997.</u>
466	
467	Lindzen, R. and Nigam, S.: On the role of sea surface temperature gradients in forcing low-level
468	winds and convergence in the tropics, J. Atmos. Sci., 44, 2418–2436, 1987.
469	
470	Lins-de-Barros, M. and Pires, D. O.: Comparison of the reproductive status of the scleractinian
471	coral Siderastrea stellata throughout a gradient of 20 of latitude, Braz. J. Oceanogr., 55,
472	<u>67–69, 2007.</u>
473	
474	Lough, J.: Shifting climate zones for australia's tropical marine ecosystems, Geophys. Res.
475	Lett., 35, L14708, doi:10.1029/2008GL034634, 2008.
476	
477	Lough, J. and Barnes, D.: Several centuries of variation in skeletal extension, density and
478	calcificationin massive porites colonies from the Great Barrier Reef: a proxy for seawater

480	Mar. Biol. Ecol., 211, 29–67, 1997.
481	
482	Lough, J., Barnes, D., and McAllister, F.: Luminescent lines in corals from the Great Barrier
483	Reef provide spatial and temporal records of reefs a_ected by land runo_, Coral Reefs, 21,
484	<u>333–343, 2002.</u>
485	
486	Mantua, N. J., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific interdecadal climate
487	oscillation with impacts on salmon production, B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
488	Marshall, G.: Trends in the southern annular mode from observations and reanalysis, J.
489	Climate, 16, 4134–4143, 2003.
490	
491	McPhaden, M. and Hayes, S.: On the variability of winds, sea surface temperature, and surface
492	layer heat content in the western Equatorial Pacific, J. Geophys. Res., 96, 3331–3342, 1991.
493	Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E., and Oberhuber, J. M.: The 1976–77
494	climate shift of the Pacific Ocean, Oceanography, 7, 21–26, 1994.
495	
496	Nobre, P. and Shukla, J.: Variations of sea surface temperature, wind stress, and rainfall over
497	the tropical Atlantic and South America, J. Climate, 9, 2464–2479, 1996.
498	
499	O'Neill, L., Chelton, D., and Esbensen, S.: The e ects of sst-induced surface wind speed and
500	direction gradients on midlatitude surface vorticity and divergence, J. Climate, 23, 255–281,
501	<u>2010.</u>
502	
503	Perlwitz, J., Pawson, S., Fogt, R., Nielsen, J., and Ne_, W.: Impact of stratospheric ozone hole
504	recovery on antarctic climate, Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317,
505	<u>2008.</u>
506	
507	Pezza, A. B. and Ambrizzi, T.: Variability of Southern Hemisphere cyclone and anticyclone
508	behavior: further analysis, J. Climate, 16, 1075–1083, 2003.
509	

510	Polvani, L., Waugh, D., Correa, G., and Son, S.: Stratospheric ozone depletion: the main driver
511	of 20th century atmospheric circulation changes in the Southern Hemisphere, J. Climate, 24,
512	<u>795–812, 2011.</u>
513	
514	Purich, A. and Son, S.: Impact of Antarctic ozone depletion and recovery on Southern
515	Hemisphere precipitation, evaporation and extreme changes, J. Climate, 25, 3145–3154, 2012.
516	
517	Randel, W. J. and Wu, F.: Cooling of the Arctic and Antarctic Polar Stratospheres due to ozone
518	depletion, J. Climate, 12, 1467–1479, 1999.
519	
520	Shen, CC., Li, KS., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam,
521	D. D., Hsieh, YT., Fan, TY., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, HW., and
522	Kilbourne, K. H.: Variation of initial 230Th=232Th and limits of high precision U-Th dating of
523	shallow-water corals, Geochim. Cosmochim. Ac., 72, 4201–4223, 2008.
524	
525	Shen, CC., Kano, A., Hori, M., Lin, K., Chiu, TC., and Burr, G. S.: East Asian monsoon
526	evolution and reconciliation of climate records from Japan and Greenland during the last
527	deglaciation, Quaternary Sci. Rev., 29, 3327–3335, 2010.
528	
529	Solomon, S.: Stratospheric ozone depletion: a review of concepts and history, Rev. Geophys.,
530	<u>37, 275–316, 1999.</u>
531	
532	Son, S., Polvani, L. M., Waugh, D. W., Akiyoshi, H., Garcia, R., Kinnison, D., Pawson,
533	S., Rozanov, E., Shepherd, T. G., and Shibata, K.: The impact of stratospheric
534	ozone recovery on the Southern Hemisphere westerly jet, Science, 320, 1486–1489,
535	doi:10.1126/science.1155939, 2008.
536	
537	Son, S., Tandon, N., Polvani, L., and Waugh, D.: Ozone hole and Southern Hemisphere climate
538	change, Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671, 2009.
539	

540	Son, S. W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo, K. H., Eyring, V.,
541	Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin, J., Baumgaertner, A., Bekki, S., Braesicke,
542	P., Brühl, C., Butchart, N., Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S.,
543	Garny, H., Garcia, R., Hardiman, S.C., Jöckel, P., Lamarque, J. F., Mancini, E., Marchand,
544	M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G., Plummer, D. A., Pyle, J., Rozanov,
545	E., Scinocca, J. F., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., and Yamashita, Y.: The
546	impact of stratospheric ozone on Southern Hemisphere circulation changes: a multimodel
547	assessment, J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271, 2010.
548	
549	Sexton, D.: The e_ect of stratospheric ozone depletion on the phase of the Antarctic oscillation
550	Geophys. Res. Lett., 28, 3697–3700, 2001.
551	
552	Shindell, D. and Schmidt, G.: Southern Hemisphere climate response to ozone changes and
553	greenhouse gas increases, Geophys. Res. Lett., 31, L18209, doi:10.1029/2004GL020724,
554	<u>2004.</u>
555	
556	Thompson, D. and Solomon, S.: Interpretation of recent Southern Hemisphere climate change,
557	Science, 296, 895–899, doi:10.1126/science.1069270, 2002.
558	
559	Thompson, D., Wallace, J., and Hegerl, G.: Annular modes in the extratropical circulation, Part
560	II: trends, J. Climate, 13, 1018–1036, 2000.
561	
562	Thompson, D., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., and Karoly, D. J.:
563	Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change.
564	Nat. Geosci., 4, 741–749, doi:10.1038/ngeo1296, 2011.
565	
566	Turner, J., Comiso, J. C., Marshall, G. J., Lachlan-Cope, T. A., Bracegirdle, T., Maksym, T.,
567	Meredith, M. P., Wang, Z., and Orr, A.: Non-annular atmospheric circulation change induced
568	by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent,
569	Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524, 2009.

Wang, W. and McPhaden, M.: The surface-layer heat balance in the equatorial Pacific Ocean, Part II: interannual variability, J. Phys. Oceanogr., 30, 2989-3008, 2000. Zazulie, N., Rusticucci, M., and Solomon, S.: Changes in climate at high southern latitudes: a unique daily record at Orcadas spanning 1903-2008, J. Climate, 23, 189-196, 2010. Figure captions Fig. 1. Comparison of chronologies obtained from X-ray radiography (right) and U/Th radiometry (left) for a coral core of Siderastrea stellate (CS1) from Abrolhos National Park/Brazil. Fig. 2. Time variability and linear trends of annual coral growth anomaly for samples a (CS1), b (Abrolhos/UFBA) and c (P1); (d) z-score for a, b and c; (e) SST anomaly for Abrolhos National Park/Brazil based on NCEP-NCAR reanalysis. Fig. 3. Figure 3 shows our calculations based on NCEP-NCAR reanalysis for: (a) the zonal winds around Antarctica (before and after 1979), previously published in 2012 (Cataldo et al. 2012); (b) sea level pressure difference (also before and after 1979, but with emphasis to the Southern Atlantic); (c) correlation of wind stress and the ozone depletion area (arrow lengths correspond to r-Pearson values); (d) ozone depletion area; and (e) the zonal wind anomalies calculated to Abrolhos site. Calculations based on NCEP-NCAR reanalysis for: (a) the zonal winds around Antarctica (before and after 1979), previously published in 2013 (Cataldo et al. 2013); (b) sea level pressure difference (also before and after 1979, but with emphasis to the Southern Atlantic); (c) correlation of wind stress and the ozone depletion area (arrow lengths correspond to r-Pearson values); (d) ozone depletion area; and (e) the zonal wind anomalies calculated to Abrolhos site.

600	
601	
602	Fig. 4. Correlation map between ozone depletion area in Antarctica and Southwestern Atlantic SST
603	(a) Correlation map (SST x PDO) and; (b) PDO (Pacific Decadal Oscillation)
604	anomaly since 1948.
605	
606	
607	Fig. 5. (a) Correlation map (SST x PDO) and; (b) PDO (Pacific Decadal Oscillation)
608	anomaly since 1948.
609	
610	Fig. 6. Abrolhos/Brazil coral growth rate (CS1 sample) and projected growth based on IPCC-AR4
611	scenarios A2 and B1 from the National Center for Atmospheric research Coupled Climate Model
612	version 3 (NCAR-CCSM3).
613	
614	
615	