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Abstract

Correct representation of seasonal leaf dynamics is crucial for Terrestrial Biosphere
Models (TBMs), but many such models cannot accurately reproduce observations of
leaf onset and senescence. Here we optimized the phenology-related parameters of
the ORCHIDEE TBM using satellite-derived Normalized Difference Vegetation Index
data (MODIS NDVI v5). We found the misfit between the observations and the model
decreased after optimisation for all boreal and temperate deciduous Plant Functional
Types, primarily due to an earlier onset of leaf senescence. The model bias was only
partially reduced for tropical deciduous trees and no improvement was seen for natural
C4 grasses. Spatial validation demonstrated the generality of the posterior parameters
for use in global simulations, with an increase in global median correlation of 0.56
to 0.67. The simulated global mean annual GPP decreased by ~ 10 Pg Cyr‘1 over the
1990-2010 period due to the substantially shortened Growing Season Length (up to 30
days in the Northern Hemisphere), thus reducing the positive bias and improving the
seasonal dynamics of ORCHIDEE compared to independent data-based estimates.
Finally, the optimisations led to changes in the strength and location of the trends in the
simulated GSL and mean annual fAPAR, suggesting care should be taken when using
un-calibrated models in attribution studies. We suggest that the framework presented
here can be applied for improving the phenology of all global TBMs.

1 Introduction

Leaf phenology, the timing of leaf onset, growth and senescence, is a critical com-
ponent of the coupled soil-vegetation—atmosphere system as it directly controls the
seasonal exchanges of carbon, C, as well as affecting the surface energy balance and
hydrology through changing albedo, surface roughness, soil moisture and evapotran-
spiration. In turn leaf phenology is largely governed by the climate, as leaf onset and
senescence are triggered by seasonal changes in temperature, moisture and radia-
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tion. Leaf phenology is therefore sensitive to inter-annual climate variability and future
climate change (Cleland et al., 2007; Kérner and Basler, 2010; Reyer et al., 2013), as
well as to increasing atmospheric CO, concentrations (Reyes-Fox et al., 2014), and
will feedback on both (Richardson et al., 2013). It is expected that climate warming
will advance leaf onset in temperature limited northern biomes. Such trends have al-
ready been observed in the Northern Hemisphere (NH) using either satellite or in-situ
observations (Badeck et al., 2004; Delbart et al., 2008; Jeong et al., 2011; Myneni
et al., 1997; Parmesan, 2007). However, increasing temperatures may either advance
or delay senescence, depending on species-specific responses to other environmental
variables (Hanninen and Tanino, 2011; Piao et al., 2007). Future changes of precipita-
tion in a warming climate will also likely affect tropical and semi-arid ecosystems that
are more controlled by moisture availability (e.g. Anyamba and Tucker, 2005; Dardel
et al., 2014; Fensholt et al., 2012).

In order to improve predictions of the impact of future climate change on vegetation
and its interaction with the global C and water cycles, it is crucial to have prognostic leaf
phenology schemes in process-based Terrestrial Biosphere Models (TBMs) that con-
stitute the land component of Earth System Models (ESMs) (Kovalskyy and Henebry,
2012b; Levis and Bonan, 2004). Many such models exist in the literature, especially
for temperate and boreal forests (e.g. Arora and Boer, 2005; Caldararu et al., 2014;
Chuine, 2000; Hanninen and Kramer, 2007; Knorr et al., 2010; Kovalskyy and Hene-
bry, 2012a) and have been included in most TBMs. However, model evaluation studies
have shown that there are biases in the growing season length and magnitude of the
leaf area index (LAI) predicted by TBMs when compared to ground-based observations
of leaf emergence and LAI (Kucharik et al., 2006; Richardson et al., 2012) or satellite-
derived measures of vegetation greenness and LAl (Kim and Wang, 2005; Lafont et al.,
2012; Maignan et al., 2011; Murray-Tortarolo et al., 2013). This can result in system-
atic errors in model predictions of the seasonal carbon, water and energy exchanges
(Kucharik et al., 2006; Richardson et al., 2012; Walker et al., 2014).
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As is always the case prior to model parameter calibration, it is unclear whether
the misfit between modelled and observed measures of leaf phenology is the result
of inaccurate parameter values, model structural error, or both. In order to answer this
question, the parameters first need to be optimized using Data Assimilation (DA) tech-
niques, and if the models cannot reproduce the data within defined uncertainties we
expect to gain insights into possible directions for model improvement. DA is also a use-
ful way to better characterize and possibly reduce uncertainty in model simulations, and
to determine the relative influence of parametric, structural and driver uncertainty (e.g.
Migliavacca et al., 2012).

Many studies have optimized the parameters of phenology models for a range
of species with ground-based observations of the date of leaf onset (Blimel and
Chmielewski, 2012; Chuine et al., 1998; Fu et al., 2012; Jeong et al., 2012), the “green
fraction” derived from ground-based digital photography (Migliavacca et al., 2011) or
with spring onset dates derived from carbon fluxes taken at flux tower sites (Melaas
et al., 2013). Melaas et al. (2013) went further and demonstrated the transferability of
parameters in time and between sites by including multiple sites in the optimisation.
All of these studies have used DA to test different phenology model structures, thereby
contributing significantly to the debate about whether a simple classical temperature-
driven budburst model is sufficient, or whether more complex chilling and/or photope-
riodic cues are needed to best predict leaf onset. Several studies also investigated the
impacts of optimizing phenology on the resulting C and water budgets (Migliavacca
et al., 2012; Picard et al., 2005; Richardson and O’Keefe, 2009).

Pefiuelas et al. (2009) noted that medium- to coarse-resolution satellite data might
be more appropriate for optimizing the phenology in TBMs, due to the large difference
in scale between the resolution of a typical model grid cell (1° x 1°) and ground-based
data, which may cause representation errors (Rayner, 2010). A few studies to date have
performed a global optimisation of model phenology using satellite data, in the sense
that multiple sites and/or Plant Functional Types (PFTs) are included in the assimilation
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(Forkel et al., 2014; Knorr et al., 2010; Stoéckli et al., 2011). In this study we aim to
reinforce this line of research and to answer the following questions:

i. Can we constrain the phenology-related parameters and processes of a typical
process-based TBM at global scale using satellite “greenness” index data?

ii. Does this produce a generic parameter set that results in improved simulations of
the seasonal cycle of the vegetation, or are further model structural developments
required?

iii. What is the impact of the optimisation on mean patterns and trends in vegetation
productivity (mean fAPAR, amplitude and GSL) at regional and global scales?

To achieve this we performed a global, multi-PFT, multi-site optimisation of the phenol-
ogy model parameters for the six non-agricultural deciduous PFTs of the ORCHIDEE
TBM. The phenology models in ORCHIDEE are common to many process-based
TBMs. Note there is no specific phenology model associated to evergreen PFTs, where
leaf turnover is simply a function of climate and leaf age.

Some of the carbon cycle-related parameters of ORCHIDEE (including phenology-
related parameters) have previously been optimized using in situ flux measurements
(e.g. Kuppel et al., 2014; Santaren et al., 2014; Bacour et al., 2015). Here we focus
purely on improving the timing of both spring onset and autumn senescence of OR-
CHIDEE at global scale, by using a novel approach to assimilate normalized medium-
resolution satellite-derived vegetation “greenness” index data (MODIS NDVI collec-
tion 5). The aim of a multi-site (MS) (i.e. model grid cell) assimilation is to find a unique
parameter set for each PFT that results in a similar improvement as a single-site (SS)
optimisation, as the range of posterior parameter values for individual sites/species can
be large (Richardson and O’Keefe, 2009). We hypothesize that the MS approach may
average out the site-based variability, and thus provide one consistent PFT-generic
parameter vector that can be used for global simulations (e.g. Kuppel et al., 2014).

13315

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
R ] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/13311/2015/bgd-12-13311-2015-print.pdf
http://www.biogeosciences-discuss.net/12/13311/2015/bgd-12-13311-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2 Methods and data
2.1 ORCHIDEE Terrestrial Biosphere Model

ORCHIDEE is a global process-oriented TBM (Krinner et al., 2005) and is the land sur-
face component of the IPSL-CM5 Earth System Model (Dufresne et al., 2013). In this
study we used the “AR5” version that was used for the IPCC Fifth Assessment Report
(Ciais et al., 2013). The model calculates carbon, water and energy fluxes between the
land surface and the atmosphere at a half-hourly time step. The water and energy mod-
ule computes the major biophysical variables (albedo, roughness height, soil humidity)
and solves the energy and hydrological budgets. The carbon module controls the up-
take of carbon into the system and respiration following cycling of C through the litter
and soil pools. Carbon is assimilated via photosynthesis depending on light availability,
CO, concentration and soil moisture, based on the work of Farquhar et al. (1980) for
C3 plants and. Collatz et al. (1992) for C4 plants. The module includes the calculation
on a daily time step of a prognostic LAl and allocation of newly-formed photosynthates
towards leaves, roots, sapwood, reproductive structures and carbohydrate reserves,
depending on the availability of moisture, light availability and heat (Friedlingstein et al.,
1999). The phenology models that control the timing of leaf onset and senescence in
ORCHIDEE, depending on PFT, were described in Botta et al. (2000) and Maignan
et al. (2011) but are described in more detail in Appendix A. The simulated fAPAR can
be calculated from the model LAI using the following Beer—Lambert extinction law, as-
suming a spherical leaf angle distribution and that the sun is at nadir (following Bacour
et al., 2015):

fAPAR = 1 — @ 0-5LAl (1)

ORCHIDEE’s functioning relies on the concept of Plant Functional Types (see

Woullschleger et al. (2014) for a review). A PFT groups plants that have the same phys-

iological behaviour under similar climatic conditions. ORCHIDEE uses 13 PFTs that

are listed in Table 1 (along with the phenology model used). Different PFTs share the
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same processes but usually with different parameter values, except for the phenolog-
ical models that are PFT-dependent (Table 1). The model is driven by meteorological
variables related to temperature, precipitation, short- and long-wave incident radiation,
specific humidity, surface pressure and wind speed. Soil texture and PFT fraction are
also prescribed per grid cell.

2.2 Satellite data
2.2.1 Observing the seasonal cycle of vegetation

The seasonal cycle of the terrestrial vegetation is observed daily, cloud cover permit-
ting, at a global scale and medium-scale spatial resolution (250 m) from several polar
orbiting spectroradiometers. Studies have shown that considerable discrepancies exist
between so-called “high-level” satellite products such as LAl or fAPAR, especially when
considering their magnitude (D’Odorico et al., 2014; Garrigues et al., 2008; Pickett-
Heaps et al., 2014). This is because radiative transfer models are used to derive these
products, which introduces uncertainty due to undetermined parameters or potentially
incomplete descriptions of the radiative transfer model physics. Instead therefore, we
considered a vegetation greenness index, the Normalized Difference Vegetation Index
(NDVI), that is directly related to the near infrared (NIR) and red (RED) surface re-
flectance, (o0NDVI = pNIR - pRED/pNIR + pRED), and has been shown to be linearly
related to fAPAR, though with uncertainties related to the issues mentioned above
(Fensholt et al., 2004; Knyazikhin et al., 1998; Myneni and Williams, 1994). NDVI is
not directly related to a vegetation parameter, but it does capture its seasonal cycle
together with inter-annual anomalies. In order to compare the seasonality (but not the
magnitude) of modelled fAPAR to the NDVI data, we normalize both to their maximum
and minimum values of the whole time series at each site (following Bacour et al.,
2015).
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2.2.2 MODIS NDVI data and processing

NDVI observations are derived from the MODO9CMG collection 5 (v5) surface red
(620—670 nm) and Near-Infrared (841-876 nm) daily global reflectance products avail-
able at 5km from the MODerate resolution Imaging Spectrometer (MODIS) on-board
the NASA'’s Terra satellite. The reflectances were cloud-screened and corrected for at-
mospheric and BRDF effects following Vermote et al. (2009), and the corresponding
NDVI was calculated for the 2000—2008 period. The time series were interpolated on
a daily-basis, in order to account for any missing values due to cloud, using a third
degree polynomial and considering the ten nearest valid acquisitions, with a maximum
allowed difference of fifteen days. The NDVI values were then spatially averaged at the
model forcing spatial resolution (0.72°) for each timestep. The data has a noise range
of ~ 0.025 to 0.03, with highest values in densely forested areas (Vermote et al., 2009).
However, in this study the daily model and observation uncertainty used in the assimi-
lation was defined as the RMSE between the normalized prior model fAPAR simulation
(using default ORCHIDEE values) and the normalized NDVI observations, following
(Kuppel et al., 2012). This error thus accounts for the spatial and temporal averaging,
the error of the NDVI retrieval and the model structural error.

2.3 Data assimilation procedure
2.3.1 System description

The ORCHIDEE Data Assimilation System (http://orchidas.lsce.ipsl.fr) is based on
a variational data assimilation procedure that has been described in detail in previous
studies using ground-based net surface CO, and energy fluxes (Kuppel et al., 2012;
Santaren et al., 2007; Verbeeck et al., 2011). Kuppel et al. (2012) presented the first
results using a multi-site (MS) version of the system at selected eddy-covariance flux
tower locations, where data from all sites were used to optimize the model parameters
at the same time for each PFT. As with most statistical data assimilation approaches it
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follows a Bayesian framework, where prior knowledge of the parameter values is up-
dated based on new information from the observations. Assuming that the probability
distribution functions (PDFs) of the model parameter and observation uncertainties are
Gaussian, the optimal parameter vector x can be found by minimizing the following
cost-function J(x) (Tarantola, 1987):

= 2[00 -3) R (HO) - )T+ 00 x) P - x,)T] @)

where y is the observation vector, H(x) the model outputs, given parameter vector x, R
the uncertainty matrix of the observations (including observation and model errors), x,,
the a priori parameter values (the standard values of ORCHIDEE) and P, the a priori
uncertainty matrix of the parameters. Hence, the cost function describes the misfit be-
tween the observations and corresponding model outputs, plus the misfit between the
current and prior parameter vectors, weighted by prior information on the parameter
and observation uncertainties. Observation and model errors are assumed to be un-
correlated in space and time, and parameters are assumed to be independent; hence
R and P, are diagonal matrices. The cost function is iteratively minimized using the
gradient-based L-BFGS-B algorithm (Byrd et al., 1995), which allows the definition of
boundary constraints for the parameters. The gradient of the J(x) is estimated using
the Tangent Linear model, except for parameters that impose a threshold on the model
processes. For these, the finite difference method is used.

The posterior parameter covariance can be approximated from the inverse of the
second derivative (Hessian) of the cost function around its minimum, which is calcu-
lated using the Jacobian of the TBM model with respect to fAPAR at the minimum of
J(x) (for the set of optimized parameters), H,, following Tarantola (1987):

B
Poost = [HT R 'H,, +P;’ (3)

The posterior parameter covariance can then be propagated into the model state vari-
ables (fAPAR or net C flux) space given the following matrix product and the hypothesis
13319
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of local linearity (Tarantola, 1987):
|:{post =H- Ppost -HT (4)

The square root of the diagonal elements of Ry, corresponds to the posterior error
(standard deviation o), on the state variables considered of each grid cell. In order to
appraise the knowledge improvement brought by the assimilation, the error reduction
is determined as 1 — Rpoet/Ropyior-

2.3.2 Parameters to be optimized

Figure 1 shows a general schematic of how the parameters of the phenological equa-
tions used in ORCHIDEE (Botta et al., 2000) control the timing of the seasonal cycle of
the LAl as well as the rate of leaf growth and fall. The parameters that are optimized for
each PFT are given in Table 2 and are briefly described here. A more detailed descrip-
tion can be found in Appendix A. The start of the seasonal cycle of temperature-driven
PFTs is constrained by optimizing the Growing Degree Day threshold, GDDj,eshold
(Egs. A1 and A2), the threshold for the Number of Growing Days, NGDyesholq @nd
the LAlyeshoiq (EQ. A4) parameters, which all play a part in controlling leaf onset and
rate of canopy growth. As the GDDy,.shoiq IS Calculated in different ways depending on
the PFT-dependent phenology model used, and as the NGDy,esholg @Cts in a similar
way to the GDD models, we introduced one single multiplicative effective parameter,

Koheno_crits 10 optimize the GDDyyegholg @Nd NGDypesnoig fO all phenology models. Thus
the GDDy eshoig @Nd the NGDyresnolg PECOME:

GDDthreshoId = Kpheno_crit ' GIDD'[hreshoId (5)
NGDthreshoId = Kphenofcrit : NGDthreShoId (6)

with an a priori value of 1. In a similar manner a new effective parameter, Ky nappy
was introduced to compute the LAl esnoiq Parameter, which is the LAl below which the
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carbohydrate reserves are used for leaf growth at the beginning of the growing season,
following the equation:

LAlthreshold = Klai_happy LAl max (7)

Although it is not strictly a phenology model parameter, we optimise Ki nappy as it is
partly responsible for the rate of leaf growth. LAl,,, is a fixed parameter in this study
as we only examine the seasonal cycle of the vegetation, not its magnitude.

The end of the seasonal cycle is constrained by optimizing the critical leaf age for
senescence, L 5400t (EQ. A5) , the senescence temperature threshold, Ty esnoig (EQ- AB)
and the rate of leaf fall, L, (Eq. A8) parameters. L ygecrit @nd Ly, are optimized directly,
and Tinresholg 1S Optimized through the C, parameter (Eq. A6) , and is henceforth called
Tsenes-

For phenology models that are driven by soil moisture conditions (“MOI” models —
see Appendix A and Table 1) the parameter that controls leaf onset is the “minimum
time since the last moisture minimum” (Moistrmm, Eq. A3), and the parameters that
control senescence are Moistgg,os and Moist,, ¢enes (EQ. A7), the critical moisture lev-
els below and above which senescence does and does not occur, respectively. These
PFT-dependent parameters are optimized directly, i.e. no effective parameters are in-
troduced to scale the original ORCHIDEE parameter.

The prior parameter values are taken from the ORCHIDEE standard (non-optimized)
version and are detailed in Table 2. The maximum and minimum bounds of the pa-
rameters were set based on literature and “expert” knowledge. Prior uncertainty on the
parameters was taken to be 40 % of the parameter range following Kuppel et al. (2012).

2.3.3 PFTs optimized and site selection

The six deciduous, non-agricultural PFTs of ORCHIDEE are optimized in this study.

For each of the PFTs that were optimized we selected thirty sites (where one site is

equal to one model grid cell at 0.72° resolution — see Sect. 2.4) that fulfilled several

constraints (Fig. 2). First the grid cells have to be representative of the considered
13321
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PFT and thus contain a high fraction of the PFT in question. This was mostly > 0.6
except for the Boreal Broadleaved Deciduous (BoBD) PFT where the fractional cover
is never greater than 0.4. For this PFT, all the grid points selected contained 40 %
BoBD trees and high fractions (0.5-0.6) of natural C3 grasses (NC3), thus both PFTs
were optimized for these grid cells simultaneously. Second, the site locations were as
representative as possible of the PFT spatial distribution. This is achieved by a random
sampling of grid cells with a fractional coverage above the given threshold. Lastly each
NDVI time series was visually inspected and discarded if it was too noisy or contained
an incomplete seasonal cycle. Whilst we could not be 100 % certain that no land cover
change or disturbance had taken place for the grid cells selected, none of the time
series showed discernible signs of a shift in vegetation. Fifteen of the sites were used
in the optimisation, and the other fifteen were kept for spatial validation following the
optimisations (see Fig. 2).

2.4 Optimisations and simulations performed

In this study ORCHIDEE was used in forced offline mode and was driven by 3 hourly
ERA-Interim meteorological fields (Dee et al., 2011), on a regular 0.72° grid, which are
linearly interpolated to a half hour timestep within ORCHIDEE. We used the Olson land
cover classification, which contains 96 classes at a resolution of 5 km, to derive the PFT
fractions at 0.72° (following Vérant et al., 2004). The soil texture classes were derived
from Zobler (1986). The impact of land use change, forest management, harvesting
and fires were not included in any simulation.

2.4.1 Multi-site optimisation

For each PFT optimized, the fifteen optimisation sites (see Sect. 2.3.3) were first opti-
mized simultaneously (i.e. all sites were included in the same cost function), over the
2000—2008 period using the multi-site (MS) approach detailed in Kuppel et al. (2012).
Following (Santaren et al., 2014) we tested the ability of the algorithm to find the global
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minimum of the cost function by starting at different points in the parameter space,
choosing twenty random “first guess” parameter vectors and performing a MS optimi-
sation for each. The results of these tests are presented in Sect. 3.1.

2.4.2 Single-site optimisation

A single site (SS) optimisation was then performed for each of the same fifteen op-
timisation sites. The assimilations were exactly the same as for the MS optimisation,
except each site was optimized separately. The posterior parameter vector resulting
from the “best” random first guess MS optimisation (taken as the greatest % reduction
in the cost function) was used as the first guess for the SS optimisation.

2.4.3 Site-based validation

The same MS posterior parameter vector for each PFT was then used to perform
a simulation at each of the fifteen extra spatial validation sites (see Sect. 2.3.3) over the
same time period. In addition, prior and posterior simulations at all thirty optimisation
and validation sites were extended to cover the 2009—-2010 period in order to perform
a temporal validation.

2.4.4 Global-scale evaluation

Finally two global-scale simulations (with increasing atmospheric CO, concentration
and changing climate) were performed for the 1990-2010 period with both the prior and
MS posterior parameter values, in order to evaluate the impact of the optimisation on
the global mean patterns and trends in annual mean fAPAR, amplitude and GSL. The
same ERA-Interim 0.72° forcing data were used as for the site-based optimisations.
Note that no spinup of the soil C pools was needed for this study.
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2.5 Post-processing and analysis

The prior and posterior RMSE and correlation coefficient, R, were calculated for both
the MS and SS optimisations at all sites for a comparison. The values for the spatial
and temporal validation simulations were evaluated to assess the spatial and temporal
generality of the posterior vectors. For all the analyses performed in this study, metrics
given per PFT at global scale were derived for grid cells that contained > a certain PFT
fraction following the rules used to select the optimisation sites (see Sect. 2.3.3).

2.5.1 Calculation of the start of leaf onset and senescence, GSL and trend
analysis

The curve-fitting method of Thoning et al. (1989) was used to fit a function to the
daily time series of observations and model output as described in Maignan et al.
(2008). The function consists of two parts; a second-order polynomial that is used to
account for the long-term trend, and a fourth order Fourier function to approximate
the annual cycle. The residuals of the fit to this function were filtered with two low
pass filters in Fourier space (80 and 667 cut-off days) and then added back to the
function to produce a smoothed function that captures the seasonal and inter-annual
variability and long-term trend. The detrended curve can be calculated by subtracting
the trend from the smoothed function. The Start of Season (SOS — leaf onset) and
End of Season (EOS - the start of leaf senescence) were defined as the upward and
downward crossing points of the “zero-line” of the de-trended curve per calendar year
(see Fig. 1 in Maignan et al., 2008). These values were calculated for all grid cells with
only one seasonal cycle per year (this includes grid cells in the SH where the growing
season spans two calendar years). The GSL was calculated as the number of days
per calendar year when the detrended curve is greater than zero. Therefore unlike the
SOS and EOS, the GSL was also calculated for grid cells that contain multiple growing
seasons within a calendar year.
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For the trend analysis, a linear least squares regression was used to calculate the
long-term trend in the annual fAPAR amplitude, Growing Season Length (GSL) and the
mean fAPAR time series.

2.5.2 Global evaluation with MODIS NDVI

The global simulations were evaluated with the same MODIS NDVI data as were used
at site-level for the optimisation, following the protocol of (Maignan et al., 2011). The
following metrics were used for evaluation of both the prior and posterior simulations:

— The correlation between the normalized simulated fAPAR and MODIS NDVI
weekly time series.

— The bias (in days) between the modelled and observed SOS and EOS dates
(model — observations) were also examined so as to investigate the impact on the
timing of the phenology more directly (a positive bias indicates the model date is
later than the date calculated from the observations).

The above metrics were calculated for each grid cell. Following this a global median
value was calculated, as well a median correlation and bias per PFT.

3 Results
3.1 Convergence of the optimisation algorithm

We initially tested the ability of the MS optimisation to find the global minimum of the
cost function J(x) by starting at 20 different random “first guess” points in the parame-
ter space. For the forest PFTs and natural C3 grasses the final cost function value was
mostly within ~ 30 % of the minimum (lowest) cost function value (up to 50 % for TeBD
— Table 3, 2nd column), and in the majority of cases a 30—60 % reduction in the cost
function was achieved (Table 3, 3rd column). The skill of the optimisation algorithm is
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highly dependent on the PFT in question; the lowest final value of the cost function
and the highest % reduction (normalized to the value of J(x) for the default parameters
of ORCHIDEE) across all 20 random tests was seen for the BoND PFT. There was
a higher spread in the % reduction for natural C3 grasses and the TeBD PFTs, sug-
gesting the cost function is not as smooth (i.e. contains more local minima) as for the
BoND PFT (for example). This is possibly linked to the need for a greater number of
species for certain PFTs or due to differing parameter sensitivities under different cli-
mate regimes (the NC3 sites have a particularly wide global distribution). Nevertheless,
examining these results we feel confident that for these PFTs the assimilation system
converges to a value of the cost function that is reasonably close to the likely global
minimum. Thus for the SS optimisations, the site-based validation and the global-scale
evaluation we used the MS posterior vector that resulted in the minimum value of the
cost function.

However the picture is different for natural C4 grasses (NC4). Only 2 out of the 20
random first guess tests resulted in a > 10% reduction in the cost function, and al-
though the spread of final values of the cost function was low and close to the mini-
mum value (Table 3, column 2), the final value was between 2 and 10 times higher than
that achieved for other PFTs (Table 3, column 1). This suggests that the optimisation
algorithm cannot find a better fit to the data than with the default parameter values. It is
possible that the BFGS algorithm is not adequate for exploring the parameter space for
NC4 grasses, but given that none of the random tests resulted in a noticeable reduction
in the cost function, it is more likely that the model sensitivity to the parameters is lower
than for other PFTs. This in turn suggests that the phenology model structure itself is
inadequate for NC4 grasses.
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3.2 Improvement in the model-data fit at site level
3.2.1 Temperate and boreal PFTs

There is an improvement in the model-data fit after both SS and MS optimisations
for all temperate and boreal broadleaved and needleleaved deciduous forests (TeBD,
BoND, BoBD) and for natural C3 grasses (NC3), largely resulting from an earlier onset
of senescence in the model and therefore a substantially shortened growing season
length (Figs. 3 and 4). The shift in the start of leaf growth is much smaller, which is
not surprising as the prior model more closely matches the observations. Of the four
PFTs listed above, only TeBD trees have a slightly later leaf onset as a result of the
optimisation. Figure 3 shows the full time-series at one site of both the normalized
and un-normalized fAPAR and NDVI, together with the simulated LAI, for the BoND
PFT. This site is provided as an example of the typical changes in temporal behaviour
seen for the four PFTs listed above. Figure 4 shows the mean seasonal cycle of the
normalized fAPAR/NDVI across all sites and years (2000-2008) for each of the four
PFTs and demonstrates that the patterns seen in Fig. 3 are similar for all the boreal
and temperate deciduous PFTs.

The optimisations resulted in a significant reduction in the RMSE (34-61 %) and
increase in correlation (posterior R > 0.82) between the normalized modelled fAPAR
and MODIS NDVI data for all four temperate and boreal PFTs (Table 4). The variation
in the RMSE and R at each site for prior, multi-site optimisation and the spread for all
the single-site optimisations for all four PFTs are shown in Fig. S1. The improvement
is greatest for the Boreal PFTs (median reduction in RMSE across all sites for both
SS and MS optimisations of ~50-60% and an increase in R from 0.41 to 0.9), but
nonetheless the optimisations of the temperate broadleaved deciduous (TeBD) and
natural C3 grasses (NC3) PFTs result in a median reduction of uncertainty of between
~ 20-40% and an increase in R of up to ~ 0.2.

There is a discernible slowing down in the rate of leaf growth towards the end of
the leaf onset after the assimilation, which particularly results in an improved fit to
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the observations for the TeBD, BoND and NC3 PFTs. However it is noticeable that
although parameters that partially control the rate of leaf growth and fall are included in
the optimisation, the model generally grows and sheds leaves too fast compared to the
observations, except for the BoBD PFT, which results in the model having an unnatural
“box-like” temporal profile (Fig. 4 and see Sect. 4.3 for further discussion).

The MS optimisation (red line in Figs. 3 and 4) largely results in a similar reduction
in RMSE and increase in R as the SS optimisations at each individual site except for
TeBD trees, although a similar magnitude of improvement is achieved for this PFT as
for the others (Table 4 and Fig. S1). This suggests that the MS parameter vector is
universal enough to be used to perform global simulations.

3.2.2 Tropical deciduous forest and C4 grasses

For both the tropical broadleaved raingreen (TrBR) and natural C4 grass (NC4) PFTs,
the median prior fAPAR simulation performs reasonably well compared to the obser-
vations, with RMSEs of 0.29 and 0.23 and R of 0.73 and 0.81 respectively (Table 4
and Fig. S1). Following optimisation there is an improvement in the median model-
data misfit both for the SS and MS optimisation for TrBR trees across all sites, but the
spread in posterior RMSE and R values remains high (Fig. S1). Figure 5a shows an
example of the typical issues seen for some TrBR sites that have not been resolved
by optimizing the phenological parameters. The growing season is always slightly out
of phase, even after the optimisation, with the simulated SOS and EOS lagging that
of the observations. The observed start of leaf growth coincides with the start of in-
creased precipitation, as would be expected, but the simulated onset does not, despite
the fact that the onset phenology model is solely driven by soil water availability. Pos-
sible causes of inconsistencies in the model will be discussed in Sect. 4.4. At the end
of the growing season the optimisation results in a more gradual start of leaf turnover
at many sites, thus better matching the observation temporal profile, but still the end
of the leaf fall lags that of the observations (Fig. 5a). Finally at some of the sites the
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observations show a smaller, second period of growth in some years (not shown), but
the model also does not capture this.

There is no change in the median RMSE and R for the NC4 PFT with the MS op-
timisation, although the prior model-data misfit is relatively small (Fig. S1). The SS
optimisations do result in a small reduction in the median RMSE (0.21) but no improve-
ment in the median correlation. This is not surprising given the results of the random
first guess tests presented in Sect. 3.1. A comparison of the observed and modelled
time-series of NDVI and fAPAR at each site again reveals where the model is not able to
fully reproduce the seasonality seen in the observations. At many sites the model pre-
dicts a negatively biased (i.e. too late) SOS, followed by a drop in fAPAR in the first half
to middle of the year that is not seen in the observations, and does not correspond to
a decline in precipitation (e.g. Fig. 5b). The optimisation can result in the partial removal
of this feature, particularly for SS optimisations at certain sites, but at the expense of
a further delay to the start of leaf growth. Neither the SS or MS optimisations are able
to reduce the model-data misfit by forcing an earlier start of senescence at any of the
sites. As there is no discernible improvement after the MS optimisation of the NC4 PFT,
the posterior parameters are not used in the further analysis of global changes to the
GPP, GSL or trends. It is likely that the phenology models that are used in water limited
ecosystems (TrBR and NC4) need revising (see discussion in Sect. 4.4).

3.3 Validation of the optimised phenology

3.3.1 Spatial and temporal validation

Table 4 also shows the RMSE and R for the extra 15 sites that were not included in the
optimisation (spatial validation), and for all sites for the period 2009-2010 that were not
included in the optimisation (temporal validation). These validation exercises were per-
formed with just the MS posterior parameter vector for each PFT. Similar magnitudes
and patterns of improvement are observed between the PFTs as for the sites used
for optimisation — the largest improvement is seen for the BoND PFT, and there is no
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improvement for NC4 grasses. These results again give confidence in the generality of
the MS posterior vector and its use in regional and global scale simulations, except for
the NC4 PFTs for which there was insufficient improvement post-optimisation.

3.3.2 Validation at global scale with MODIS NDVI

The global median correlation between the model and the MODIS NDVI data has in-
creased from 0.56 to 0.67 after the optimisation, demonstrating an overall improvement
in the simulated fAPAR time series. As seen at site level, the largest increase in cor-
relation between the modelled and observed time series is for the boreal PFTs. There
is also a modest improvement for natural C3 grasses (Table 5). Figure 6 shows the
spatial distribution of the correlation for the both posterior simulation and the difference
after optimisation (posterior — prior). The difference map shows that R has mainly im-
proved for boreal regions in the north of Canada and in Siberia, the C3 grasslands in
central Asia and western North America, and the high altitude regions of the Andes
(due to improvements in BoBD, BoND and NC3 PFTs) with slight changes for tropical
raingreen trees in savannah-dominated regions in Africa. A decrease in R was seen
in part of the drylands of western North America and along the western boundary of
South America.

The global median End of Season (EOS) bias (model — observations) between
the model and MODIS data was reduced dramatically as a result of the optimisa-
tion (prior: 33 days; posterior: 5 days). Note that a positive bias indicates the model
date is later than the date derived from the MODIS data. Again, boreal PFTs and NC3
grasses showed considerable improvement, as expected from the site-level behaviour
(Sect. 3.2), but grid cells containing high fractions of temperate and boreal evergreen
trees were also positively affected (Table 6). The bias in the Start of Season (SOS)
dates also decreased (prior and posterior global median bias of 22 and 14 days, re-
spectively), with improvements seen for all PFTs except TeBD trees and crops (Ta-
ble 6).
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3.4 Posterior parameters and processes constrained

The prior value, prior range and posterior value from the MS optimisation for each
parameter (per PFT) are shown in Table 2. Figure 7 shows the prior and posterior pa-
rameter values for both the SS and MS optimisation for each parameter and each PFT.
In Fig. 7 the mean and standard error of the mean of the SS posterior parameters are
shown (circle with error bars), together which the value obtained at each individual site
(crosses). For the prior simulation and MS optimisation the error bar corresponds to the
standard deviation of the parameter value (calculated using Eq. 3). The MS uncertainty
is lower than spread of SS posterior values, suggesting that it underestimates the true
uncertainty of the posterior parameters. This may be the case given the assumptions
of linearity of the model and of Gaussian and uncorrelated errors.

The lower posterior values of K,pen, crit Feduced the positive bias in the SOS dates for
temperate and boreal deciduous trees and natural C3 grasses, thus providing a better
fit to the model. For all temperate and boreal PFTs the posterior value of the K, nappy
parameter, which is used to calculate the LAl value below which leaf growth is sup-
ported by the carbohydrate reserves, decreases for both the SS and MS optimisation.
In ORCHIDEE the rate of leaf growth slows down when this LAI threshold reached.
Lower values of K4 nappy therefore result in an earlier end to the period of rapid canopy
growth at the beginning of the season and thus a smoother temporal profile follows
during the final stages of growth. This partially compensates for the “box-like” model
behaviour, but structural deficiencies related to spatial variability need to be addressed
further (see Sect. 4.3).

The earlier start of senescence is overwhelmingly caused by an increase of Tggpes
for all temperate and boreal trees and natural C3 grasses in both the SS and MS opti-
misations, as well as a lowering of the critical leaf age (L 5gecrit), though this is not the
case for BoBD trees (Fig. 7). It is important to remember however that the optimisations
at BoBD sites also included high fractions of natural C3 grass that were optimized at
the same time (see methods Sect. 2.3.3) and therefore the same parameter can have
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strong interactions between the two PFTs, as can be seen in for the L 5yt Parameter
in the correlation matrices in Fig. S2. The L, parameter has not changed considerably
after the optimisation, suggesting that the rate of leaf fall matches that of the observa-
tions when parameters that govern the start of leaf senescence have been optimized.
The exception is that of TeBD trees, where the rate of leaf fall has decreased following
optimisation (Fig. 4a) and thus the model better matches the observations.

The phenology of C3 grasses is also controlled by soil moisture availability. The
moisture-related leaf onset parameter, Moist;_, does not appear to be as important
as the temperature-related leaf onset parameter (Kgpeno crit)- HOwever, the increase
in the value of both 7g,,es and Moistg,,es pOSt-optimisation show that both moisture
and temperature conditions are responsible for the marked shortening of the growing
season length for natural C3 grasses (Fig. 4), as would be expected given the wide
geographical distribution of this PFT.

For the tropical raingreen forests (TrBR), there is a decrease in the posterior SS
and MS values of Moist; and an increase for the Moists,.s parameter, which results
in an earlier start of both leaf growth and senescence, again reducing the positive
bias in the SOS and EOS dates predicted by the model. However the parameters are
“edge-hitting”, which suggests the optimisation has not necessarily found the optimum
solution. This may explain why the model remains out of phase with the observations
as described above (Fig. 5a).

Although the phenology of C4 grasses is governed by both temperature and mois-
ture conditions, the fact that there is no change in the value and uncertainty of the
temperature-related parameters, Kjneno crit @Nd Tgenes ShOws a lack of sensitivity to
both (Fig. 7), which is not surprising as the location of the C4 grasses pixels used in
this study are mainly located in moisture-limited tropical regions. The SS and MS poste-
rior values of the moisture-related parameters, Moist; _and Moistgg,es, have changed
(increased), but the spread of the SS optimized parameter values is large, which ac-
counts for the lack of improvement in the median RMSE and correlation between the
time series of the model and observations (Table 4).
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3.5 Change in global patterns and trends of mean annual fAPAR, amplitude
and GSL

Figure 8 shows the change (posterior — prior) in the mean annual GSL, fAPAR am-
plitude and mean simulated fAPAR globally over the 1990-2010 period. As expected
from the site-level results for temperate and boreal PFTs (Fig. 4 and Table 4), there was
a strong decrease in the mean GSL in the high latitudes and grasslands across much of
the NH (median of —30 and —10days for boreal (60-90° N) and temperate (30—60° N)
regions respectively), as well as in equatorial Africa (median of —28 days) (Fig. 8a). An
increase in the GSL of ~ 7 days was mostly observed in the Sahel and Miombo savan-
nah regions of Africa. A decrease in fAPAR amplitude was also seen in Siberia and
in water-limited grasslands in southern Africa, the western United States and central
Asia (Fig. 8b). Although the primary aim of the assimilation was to constrain the timing
of the phenology, changes in the amplitude are the result of the interplay between pa-
rameters controlling the rate of leaf growth and fall and the timing of senescence. The
combined result was a strong decrease in the annual mean fAPAR in most regions of
the globe that are not dominated by evergreen trees, crops or bare soil, except for the
Sahelian region in Africa (Fig. 8c).

Figure 9 shows the linear trend (yr‘1) in the annual mean fAPAR for the 1990-2010
period, both for the prior and posterior simulation and their difference. The trends of
the annual mean are shown as it is a more comprehensive metric compared to the
daily/monthly time-series of fAPAR, the GSL or fAPAR annual amplitude. The large-
scale spatial patterns of positive and negative trends over the 1990-2010 period were
not altered significantly after the assimilation, however the strength of the trend is gen-
erally reduced. This can be seen in Fig. 9 as positive “greening” trends mostly corre-
spond to regions where there was a decrease in the slope of the trend after optimisation
(orange areas in Fig. 9c), and vice versa for negative “browning” trends (purple areas
in Fig. 9c). This was not always the case however, for example the “greening” trend in
central Siberia (around 60° N) and the “browning” trend in parts of the Sahel both in-
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crease in strength following the assimilation. Note that an examination of the trends in
other metrics (SOS, EOS, GSL or annual amplitude) did reveal different changes in the
spatial patterns following the assimilation. For example the increase in GSL actually
increased slightly in north-western Siberia, and the decline in GSL in Mongolia (also
seen as a browning trend in the annual mean in Fig. 9) increased by ~ 2-3 days after
the optimisation (results not shown). Further details are not discussed here.

We chose not to compare the simulated trends with that of the MODIS NDVI. This
was partly because the 2000-2010 period is likely too short to calculate a robust trend,
as the influence of inter-annual variability will be stronger; indeed the trends over the
longer 1990-2010 period are more geographically distinct. Secondly it was not the
aim of this study to validate the modelled trends, nor would it be appropriate, be-
cause we have used a version of the model that does not include land use change,
disturbance and other effects that will contribute to changes in vegetation greenness
at global scale. The results presented here serve to highlight that different parameter
values can change the strength, sign and location of the trends. However, it is worth
noting that the sign of the simulated trend does not always match the MODIS data,
especially for drier, warmer semi-arid regions. For example, the browning trend seen
in the Kazakh Steppe in the MODIS data is stronger in ORCHIDEE and extends fur-
ther east into Mongolia (results not shown). Similarly, the model predicts a decline in
fAPAR across much of sub-Sahelian Africa that is not seen in the MODIS NDVI. The
optimisation did not result in a change in the trend direction for this region, though gen-
erally it did reduce its strength. Overall the greening trend in the NH (>~ 30° N) was
well captured by the model both before and after optimisation.
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4 Discussion
4.1 Optimisation performance

Whilst the SS optimisations result in a reduction in the model-data misfit across a range
of sites, this study has shown that a MS optimisation can achieve a similar improve-
ment with one unique parameter vector. This is an important result, and reinforces the
conclusion of (Kuppel et al., 2014) that the MS posterior parameters can be used with
confidence to perform global simulations. Previous site-level optimisations of phenol-
ogy models have resulted in a wide range of parameterisations of growing degree day
sum, chilling requirements and light availability (Migliavacca et al., 2012; Richardson
and O’Keefe, 2009), therefore it is difficult to know which values to use for regional-to-
global scale simulations. In most cases the MS optimisation averages out the variability
due to specific site characteristics. The validation at site and global scale using daily
MODIS NDVI data demonstrates the generality of the MS posterior parameter vectors
given the ORCHIDEE model structure. This gives confidence in using these values
in regional-to-global scale simulations of the carbon and water fluxes and for future
predictions with this model.

Although the optimisation resulted in a dramatic improvement in the seasonal leaf
dynamics for temperate and boreal ecosystems, the impact in the inter-annual variabil-
ity (IAV) as a result of the optimisation for any variable — mean annual fAPAR, mean
spring/autumn fAPAR, GSL, SOS, EOS — was minimal (results not shown). This was
disappointing as generally there is a low correlation in the 1AV between ORCHIDEE
and the MODIS data, and IAV in spring phenology has been shown to be a dominant
control on C flux anomalies (Keenan et al., 2012).

4.2 Validity of the posterior parameters and optimised phenology models

As data assimilation schemes are expected to result in a reduction in the prior data-
model misfit it is useful to assess if the posterior parameter values are indeed real-
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istic, which is conditioned on the prior range as well as the interaction (correlation)
between the parameters. However validating these values remains difficult, as there
is no database that corresponds directly to phenology model parameters, which may
have a different meaning in different models.

Leaf lifespan (LL) however can more easily be measured and therefore can be found
in the literature and in plant trait databases (Kattge et al., 2011; Wright et al., 2004).
Although leaf lifespan is not the same as the critical age for senescence parameter
(L agecrit), the leaf lifespan should be similar to L ,geqits @nd thus serves as a bench-
mark to a certain degree. Reich (1998) gave 4-6 months for cold-temperate and bo-
real broad- and needleleaved deciduous trees, similar to the mean values for the same
functional types in the TRY database (Kattge et al., 2011). These values encompass
the range of optimized values for temperate and boreal broadleaved (TeBD and BoBD)
PFTs (160 and 240 days respectively, Table 2). The posterior value of L 4.t for the
boreal needleleaved (BoND) PFT was lower than this range at 90 days, and was at
the lower boundary of the parameter range. The TRY database gives a mean value of
3.85 and 1.68 months for C3 and C4 grasses, respectively (Kattge et al., 2011). These
values are higher than the posterior value of the C3 grasses (60 days) and lower than
the posterior value for C4 grasses (166 days). The values of L et for NC3 and BoND
PFTs were therefore too low and it is also notable that the values of Tg,,.s Were also
at their upper bounds for these two PFTs. Assuming the prior range of the parameters
does encompass the likely variability, such “edge-hitting” posterior parameter values
can indicate that other processes may be missing. Indeed certain studies (Galvagno
et al., 2013; Rosenthal and Camm, 1997) have suggested that photoperiod is also im-
portant in determining autumnal senescence in deciduous conifers (e.g. BoND PFT).

Most of the posterior values for the moisture-related phenology parameters for the
Tropical Broadleaved Raingreen and natural C4 grasses (TrBR and NC4) PFTs were
also at their upper or lower bounds, even with liberal parameter bounds due to lack
of prior knowledge. For example the posterior value of Moist;__, the number of days
since the last moisture minimum before leaf onset, was unrealistically low at 10 days
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for TrBR trees. In turn the threshold of relative soil moisture needed for senescence
(Moistgg,es) Was 0.8 and 0.7 % for TrBR and NC4 PFTs respectively, which is likely too
high. Possible deficiencies in the models that control tropical deciduous phenology are
discussed further in Sect. 4.4.

In order to better evaluate the model parameterisations, we suggest that the phe-
nology observation and modelling community could engage in an elicitation exercise
(O’Hagan, 1998, 2012; http://www.tonyohagan.co.uk/shelf/). This would involve gath-
ering knowledge on parameter ranges of typical phenological model parameters from
experts in the field, in order to derive probability distributions of the parameter values.
However, even if this exercise is carried out, measurements made at the species and
site level will be difficult to scale across species and to the coarse resolution used in
TBMs.

The onset models used for temperate and boreal PFTs in ORCHIDEE are mostly
simple spring warming models, though some include a chilling requirement (Table 1).
Their comparative ability to reproduce the observations could add to evidence that
more complex representations including light availability may not be needed (Fu et al.,
2012; Picard et al., 2005; Richardson and O’Keefe, 2009). Other studies however have
showed improved performance when a photoperiod term was included for species
with a late leaf onset (Hunter and Lechowicz, 1992; Migliavacca et al., 2012; Schaber
and Badeck, 2003). Several authors (e.g. Fu et al., 2012; Linkosalo et al., 2008) have
pointed out that whilst the simple warming onset models may perform well under cur-
rent climate conditions, future predictions may require additional complexity; for exam-
ple the model-defined chilling period may not be sufficient in warmer conditions. More
importantly perhaps, any model that requires a fixed start date from which thresholds
are calculated may be inconsistent under increased temperatures, as warming will start
before the defined start date (Blimel and Chmielewski, 2012). Ideally therefore these
models should also be tested under future warming scenarios, although (Wolkovich
et al., 2012) showed the magnitude of species’ phenological response to temperature
increases is lower in warming experiments compared to historical observations.
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4.3 Accounting for spatial variability

The coarse-resolution observations used in this study will include the spatial variabil-
ity in the timing of phenological events for different species within a PFT, or even due
to specific site characteristics (edaphic conditions, terrain/slope, local meteorological
effects) within the same species (Fisher and Mustard, 2007). During senescence in
particular, spatial variability in the rate of leaf fall, and to some extent the leaf coloura-
tion, will likely contribute to the decline in “greenness” seen in NDVI observations. OR-
CHIDEE does not explicitly represent this variability, instead vegetation is represented
as a mean stand (which is also responsible for the unnatural “box-like” temporal pro-
file seen for some sites/PFTs) and thus the posterior value of Ly, parameter likely
accounts for such missing structural processes and sub-grid variability. This could ex-
plain why the SS optimisations for the TeBD PFT result in a wide variety of values for
this parameter (Fig. 7). This leads us to question whether phenology should be opti-
mized at the species level (Chuine et al., 2000; Olsson et al., 2013), and/or whether
there is a need to include a term that accounts for spatial variability in the model (e.g.
Knorr et al., 2010). If the phenology models were optimized at species level there would
need to be an increase in the number of points included in the optimisation in order to
properly account for the variability between grid cells, which may result in strong corre-
lations between the same parameters shared by the different species (e.g. Fig. S2c).
On the other hand, prescribing a spatial variability term is a non-trivial issue, as it
would not only encompass physiological differences between species but also varia-
tion in other site characteristics, as mentioned above. These issues have previously
been discussed in Morisette et al. (2009) and Bacour et al. (2015).

4.4 Phenology in ecosystems driven by water availability

The processes that govern leaf phenology in ORCHIDEE cannot reproduce the obser-
vations as well in regions where moisture availability, and not temperature, is likely the
dominant control. The optimisation has revealed structural deficiencies as the proba-
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ble cause of inaccurate simulations, rather than incorrect parameter values. In addition
to problematic, “edge-hitting” posterior parameter values (see Sect. 4.2) the prior and
posterior model incorrectly simulates a strong decline in vegetation productivity in the
Sahelian region, which is opposite to that seen in satellite observations (results not
shown, but see Traore et al., 2014a). Traore et al. (2014a) suggested that incorrect
trends predicted by ORCHIDEE could be related to the phenology models, however
this study shows that is not the case. Even without a comparison to observations, OR-
CHIDEE does not always appear to have the correct response to precipitation, with two
periods of simulated growth seen in one rainy season but without any decline in rain-
fall. This unexpected model behaviour is not corrected by the optimisation and needs
investigating.

It is likely that the phenology models in ORCHIDEE are too simplistic for these re-
gions and/or that the computation of soil water availability or the plant water stress
function are inadequate. Such issues are likely encountered in other TBMs as they rely
on similar models. Knorr et al. (2010) pointed out that evaporative demand, and not just
moisture availability, should be considered in phenology models. Traore et al. (2014b)
evaluated the inter-annual variability of the soil moisture of ORCHIDEE across Africa
using satellite-derived estimates, and found that the new 11-layer hydrology version
performed better than the 2-layer version that was used in this study. The latest version
of ORCHIDEE (Naudts et al., 2015) has a more mechanistic representation of plant
water stress using water potential in the soil-plant continuum, which may lead to better
predictions of leaf dynamics in drought-prone regions.

Although there are fewer studies focusing on the modelling of plant moisture-
availability driven phenology, some models do exist for the dry tropics/semi-arid re-
gions. Such models aim to simulate the vegetation response to soil and groundwater
availability or atmospheric demand, both empirically (Archibald and Scholes, 2007;
Do et al., 2005), or in a more mechanistic way by including non-linear feedbacks via
transpiration (Choler et al., 2010). Similar approaches could be included in TBMs in or-
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der to better represent leaf growth and turnover in semi-arid grassland and savannah
ecosystems in the dry tropics.

4.5 Importance of constraining phenology for global change studies

Observed increases in GSL and/or increases in vegetation density have been shown to
result in concurrent impacts on the C surface fluxes on seasonal time scales (Dragoni
et al., 2011; Piao et al., 2007; Richardson et al., 2009), although the magnitude and
sign of the effect on net C fluxes is still a topic of debate (see Barichivich et al., 2013;
Keenan et al., 2014; Piao et al., 2008; Richardson et al., 2010; White and Nemani,
2003). An in-depth analysis of the impact of the modified leaf phenology on the C, wa-
ter and energy cycles and the subsequent feedbacks to the atmosphere was beyond
the scope of this study. However, the changes in leaf phenology described above re-
sulted in a ~ 10PgCyr‘1 decrease in the simulated global mean annual GPP (uptake
of C) over the 1990-2010 period (prior: 172.2 PgCyr'1, posterior: 162.5 PgCyr'1 —re-
sults not shown). The decrease in GPP per day change in the GSL (AGPP/AGSL) was
~ 3—4ng'2d'1 for boreal and temperate regions and an increase of ~ ZQCm'Zd'1
in the Sahel. Large variations in this ratio are seen across the NH depending on the
PFT in question, owing to their different physiologies (TeBD: 31 ng'zd'1; BoBN:
1Ong_2d_1; BoBD: 590m‘2d‘1; NCS3: Sng‘zd‘1). The reduction in the mean
annual GPP (1990-2010) partially accounts for the large positive bias in ORCHIDEE
compared to data-driven global estimates of ~ 120 PgCyr‘1 (Jung et al., 2011). Note
also that the increase in time series correlation and reduction in the bias of SOS and
EOS dates have resulted in a improvement in the timing and magnitude of the simu-
lated GPP and ET compared to the data-driven product (Jung et al., 2009). We suggest
therefore that the bias in the timing of simulated onset and senescence and GPP esti-
mates in other TBMs, as seen in the Richardson et al. (2012) model intercomparison
for example, would be reduced if the phenology-related parameters were optimized
using a similar framework. Also, the impact on energy and water fluxes in particular
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could result in strong feedbacks to climate (Pefuelas et al., 2009), possibly leading to
different predictions under future warming.

Aside from making predictions of the carbon, water and energy budgets, TBMs are
routinely used in trend attribution studies. A good example in this context would be the
exploration of the causes of “greening” or “browning” trends in vegetation productivity
(Hickler et al., 2005; Piao et al., 2006), or the impact of such trends on resource use
efficiency (Traore et al., 2014b) or the C cycle (Piao et al., 2007). The fact that the
optimisation resulted in changes in the strength and location of these trends (Fig. 9)
demonstrates that such analyses are partly dependent upon model parameters, which
can be a considerable source of uncertainty (Enting et al., 2012).

5 Conclusions

This study has demonstrated that a time series of normalized coarse-resolution satel-
lite NDVI data can be used to optimize the parameters of phenology models commonly
used in TBMs, and crucially that a multi-site optimisation can find a unique parameter
vector that enables better predictions of the seasonal leaf dynamics at global scale.
This type of model calibration framework is thus imperative for earth system model
development. The results also highlight that optimizing the parameters allows model
developers to distinguish between inaccurate model representations resulting from in-
correct parameter values and model structural deficiencies. In ORCHIDEE the mod-
els used for predicting the leaf phenology in temperate and boreal regions are able
to reproduce the seasonal cycle of the vegetation well after calibration, but ecosys-
tems driven by water availability require further modification, particularly for natural C4
grasses. The optimisation also led to changes in the strength and location of “greening”
and “browning” trends in the model, suggesting caution should be exercised when us-
ing un-calibrated models for trend attribution studies. Furthermore, the observed trends
were not well captured in some regions, which is a key aspect to improve upon when
considering future simulations of climate, CO, and anthropogenic change.
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Appendix A: Phenology models in ORCHIDEE
A1 Leaf onset

In temperate and boreal regions the onset of leaves is mainly driven in the spring
by an accumulation of warm temperatures (see the review of Hanninen and Kramer,
2007). The well-known Growing Degree Days (GDD) model (Chuine, 2000) sums up
the temperatures above a given temperature threshold, T, (for example 0°C), starting
at a given date (for example the first of January in the Northern Hemisphere). The onset
of leaves starts when the GDD reaches a plant/PFT-specific threshold. In ORCHIDEE,
T, is =5°C, and the GDD sum is calculated from the beginning of the dormancy pe-
riod, which starts when the leaves were lost or when GPP decreased below a certain
threshold.

This simple model may be refined. For example the GDD threshold has been re-
ported to depend on a “chilling requirement” for some species, i.e. their physiology
requires cold temperatures to trigger the mechanism that will allow budburst to occur
(e.g. Orlandi et al., 2004). This ensures that the dormancy has been broken after a re-
quired cold period, and thus prevents a too early awakening. The Number of Chilling
Days (NCD) GDD model initiates leaf onset earlier with an increase in the number
of chilling days, defined as a day with a daily mean air temperature below a PFT-
dependent threshold accumulated after a given starting date (e.g. Botta et al., 2000;
Cannell and Smith, 1986; Murray et al., 1989). The GDD threshold therefore decreases
as NCD increases. This experimental relationship is a negative exponential with three
PFT-specific parameters (Botta et al., 2000):

Ao

GDD =——-A
threshold 9A1 NCD 2

(A1)
where Ag, A; and A, are parameters that have been calibrated against satellite data
(Botta et al., 2000). The growing season begins if the daily calculated GDD is higher
than the calculated GDDyy,egnoig- 1his model (hereafter referred to as the “NCD_GDD”
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model) is used for the temperate and boreal broadleaved deciduous (TeBD and BoBD)
PFTs in ORCHIDEE.

The start of the growing season for the boreal needleleaved deciduous (BoND) PFT
occurs when the number of growing days (NGD), i.e. days with a mean daily temper-
ature above the threshold temperature, T, (-5°C), has exceeded a PFT-dependent
threshold (NGDyyesnoig)- The NGD is calculated from the beginning of the dormancy
period. This model (hereafter referred to as the “NGD” model) was proposed by Botta
et al. (2000) for boreal and arctic biomes, and is designed to initiate leaf onset after the
end of the soil frost.

For C3 and C4 natural grasses and crops (NC3, NC4, AC3, AC4), the GDD thresh-
old is given by a second-degree polynomial of the long term mean annual air surface
temperature 7,:

GDDyhyreshoid = Bo + B1Ty + BoT? (A2)

where By, By and B, are PFT-dependent parameters. In addition, leaf onset is initiated
only when a moisture availability criterion is met, namely when the moisture minimum
occurred a sufficiently long time ago, as specified by a PFT-dependent threshold pa-
rameter (Moistrmm):

time since moisture minimum > moist; (A3)

This moisture availability criterion corresponds to Model 4b in Botta et al. (2000), who
assume leaf onset in tropical biomes requires a certain amount of accumulation of
water in the soil. Both the moisture availability and GDD threshold criteria (hereafter
referred to the “MOI_GDD” model) must be met for leaf onset to occur in grasses and
crops.

For the tropical broadleaved raingreen (deciduous) (TrBR) PFT, the start of the grow-
ing season depends only on the moisture availability criterion (hereafter referred to as
the “MOI” model) previously described for grasses and crops.
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When the onset of leaves is declared, the allocation module first allocates car-
bon from the carbohydrate reserves towards leaves and roots as long as the LAl is
lower than a given threshold, which is a function of the maximum LAI, LAl ., a PFT-
dependent value:

I-Althreshold =0.5- I-Almax (A4)
The onset parameter values are listed in Table 2.
A2 Leaf age and leaf senescence

To account for the fact that the photosynthetic efficiency of leaves depends on their
age, L ,4¢, they are separated into four age classes. Biomass newly allocated to leaves
goes into the first age class and leaf biomass, B, is then transferred from one class
to the next based on a PFT-specific critical leaf age value, L gqct- The long-term ref-
erence temperature modulates the critical leaf age of grasses in order to account for

the fact that leaves can live longer in colder climates. The leaf age continually affects
the turnover of the leaves both during the growing season and once senescence has
begun. Different turnover processes control leaf fall, the first one is a simple aging pro-
cess based on the L 4.t Parameter. For trees, when leaf age is greater than half the
critical leaf age a turnover rate is applied following:
. At
AB, = B,-min | 0.99, " (A5)
La ecri
Lagecrit' ( Lig;)

where AB, is the leaf biomass lost through this aging process and At is the daily time
step.

The second turnover process is a senescence process (the end of the growing sea-
son and the shedding of leaves) that is based on climatic conditions. This only exists for
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deciduous PFTs. For tree PFTs whose senescence is driven by sensitivity to cold tem-
peratures (TeBD, BoND, BoBD and grasses), senescence begins when the monthly air
surface temperature goes below a threshold temperature, defined as a second order
polynomial of the long-term mean annual air surface temperature 7:

Tinreshold = Co + C1T) + CZT|2 (A6)

where C,, Cy and C, are PFT-dependent parameters.

For tropical raingreen trees, the start of leaf senescence is controlled by a lack of
availability of water, where the critical moisture availability is calculated as a function of
last year's minimum (Moist; ) and maximum (Moist,,,) moisture availability using the
following equation:

Moistg,y = MIN (MAX (Moist i, + 0.5(Moist,ax — MOist,i,), MOiStsgnes) , MOiSt 1 senes)
(A7)

where Moistgg,os and Moist,,, ¢ones are the PFT-dependent critical moisture levels below

and above which senescence does and does not occur, respectively. Once senescence

has begun, a fixed turnover rate is applied. Trees lose their fine roots at the same rate

as their leaves:

AB=B- AL (A8)
fall

All remaining leaves are shed when leaf biomass becomes too low.
For grasses, the climatic senescence is controlled by both temperature and moisture
conditions. The senescence parameter prior values are listed in Table 2.

The Supplement related to this article is available online at
doi:10.5194/bgd-12-13311-2015-supplement.
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Table 1. Standard PFTs used in ORCHIDEE, their short name and corresponding phenology
model (see Appendix A for a full description of the phenology models). Evergreen and agricul-
ture PFTs do not have a specific phenology model in the ORCHIDEE TBM.

PFT Description

Short name  Phenology Model

©Co~NOOOBA~hWwWN =

Bare Soll

Tropical Broadleaved Evergreen
Tropical Broadleaved Raingreen
Temperate Needleleaf Evergreen
Temperate Broadleaved Evergreen
Temperate Broadleaved Deciduous
Boreal Needleleaf Evergreen
Boreal Broadleaved Deciduous
Boreal Needleleaf Deciduous
Natural C3 grass

Natural C4 grass

C3 crops (agriculture)

C4 crops (agriculture)

BS
TrBE
TrBR
TeNE
TeBE
TeBD
BoNE
BoBD
BoND
NC3
NC4
AC3
AC4

MOl

NCD_GDD

NCD_GDD
NGD

MOI_GDD
MOI_GDD
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Table 2. ORCHIDEE parameters optimized. For each PFT the prior values, minimum and max-
imum values (in squared brackets) and multi-site posterior mean values (in bold) are given.
Note the prior uncertainty on the parameters is defined as 40 % of the full parameter range.

Parameter TrBR TeBD BoBD BoND NC3 NC4
L agecrit (days) 180 [120, 240] 180[90,240] 180 [90, 240] 180 [90, 240] 120 [60, 180] 120 [60, 180]
120 160.6 240 90 60 165.9
Koheno it (<) - 1.0[0.7,1.8] 1.0[0.7,1.8] 1.0[0.7,1.8] 1.0[0.7, 1.8] 1.0[0.7, 1.8]
1.13 0.87 1.1 0.77 0.9
Kai_happy () 0.5[0.35,0.7] 0.5[0.35,0.7] 0.5[0.35,0.7] 0.5[0.35,0.7] 0.5[0.35, 0.7] 0.5[0.35, 0.7]
0.7 0.4 0.36 0.35 0.35 0.47
Teenes (CC) - 12.0[2,22] 7.0[-3,17] 20[-8,12] -1.375[-11.38,9.38] 5.0[-1, 11]
16.6 14.6 12 9.375 0.85
Lar (=) 10.0 [2, 50] 10.0 [2, 50] 10.0 [2, 50] 10.0 [2, 50] - -
10.0 29.5 4.7 9.0
Moist; i, (days) 50 [10, 100] - - - 35.0 [5, 70] 35.0 [5, 70]
10 36.4 55.95
MoisStygnes, 0.3[0.2,0.8] - - - - -
no_senes (-) - - - - 0.3[0.25, 0.7] 0.3[0.25, 0.7]
0.8 0.65 0.39
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Table 3. Metrics to describe the ability of the optimization algorithm to find the global minimum
of the cost function for the MS optimization using 20 twenty different random “first guess” pa-
rameters. The 1st column shows the final value (after 25 iterations of the BFGS optimizer) for
the random test that resulted in the lowest value of J(x) (the cost function), which corresponds
to the highest % reduction in J(x). The 2nd column gives an indication of the distribution of the
final values for all 20 tests with respect to the lowest value obtained (given in column 1). This
is represented as the difference between the final value of J(x) for each test and the minimum
value of J(x), divided by the same minimum value. The 3rd column shows the % reduction of
J(x) normalized to the value of J(x) for the default parameters of ORCHIDEE. The two values
for the 2nd and 3rd column represent the interquartile range (25th to 75th percentiles) for the
spread across the 20 random tests.

PFT Minimum J(x)

Fractional Difference from J,

% Reduction (J/J,)

TBR 9720
TeBD 4730
BoBD 4260
BoND 2000
NC3 6590
NC4 19160

0.24-0.25
0.2-0.5
0.07-0.32
0.02-0.31
0.08-0.34
0.03-0.1

44.1-44.6
28-44
54-63
77-82
29-44
4-11
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Table 4. Prior and posterior median (across sites) RMSE and R (and median reduction of
RMSE in % in brackets) for the fifteen sites included in the optimization and for the fifteen sites
used for spatial validation, for each PFT. For the temporal validation all thirty sites are included,
but only for the 2009-2010 period. For the spatial and temporal validation, the posterior MS

parameter vector was used.

PFT Optimization Spatial validation Temporal Validation

Prior SS MS Prior SS MS Prior Post Prior  Post. | Prior Post Prior  Post.

RMSE Post RMSE Post RMSE R Post. B Post. R | RMSE RMSE R R RMSE RMSE R R
TrBR | 0.29 0.18 (39) 0.22 (24) 0.73 0.87 0.82 0.28 0.18(32) 0.76 0.88 | 0.28 0.18(33) 0.75 0.88
TeBD | 0.20 0.12 (39) 0.16 (21) 0.90 0.97 0.93 0.20 0.16 (19) 0.91 0.94 | 0.20 0.17 (18) 0.92 0.94
BoBD | 0.30 0.14 (57) 0.14 (52) 0.54 0.91 0.91 0.29 0.15(47) 0.59 0.89 | 0.31 0.23(26) 0.56 0.67
BoND | 0.39 0.15 (61) 0.16 (57) 0.41  0.90 0.89 0.38 0.16(59) 0.42 0.90 | 0.39 0.16 (58) 0.40 0.88
NC3 | 0.31 0.20 (34) 0.20 (32) 0.62 0.82 0.85 0.30 0.22(26) 0.65 0.77 | 0.31 0.21(35) 0.61 0.79
NC4 | 0.23 0.21 (11) 0.24 (0) 0.81 0.82 0.81 0.24 023(7) 0.75 0.79 | 0.24 0.23(3) 0.80 0.86
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Table 5. Median prior and posterior correlation between modelled fAPAR and satellite NDVI improve the leaf
daily time series and inter-annual anomalies of the annual mean. The metrics are computed for phenology
each PFT for grid cells that contained > fraction that was used to select the sites for the PFT in g
question (see Sect. 2.3.3). o N. MacBean et al.
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Table 6. Median prior and posterior bias between model- and observation-derived Start Of
Season (SOS) and End Of Season (EOS) dates (model — observations). The metrics are com-

puted for each PFT for grid cells that contained > fraction that was used to select the sites for
the PFT in question (see Sect. 2.3.3). A negative bias indicates the modelled date is earlier 2 N. MacBean et al.
than the one calculated from the observations. 5
2
PFT SOS bias EOS bias %
Prior Posterior Prior Posterior 2 _
[©)
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TrBR 30 13 9 12 —
TeNE 38 20 41 33 _ N
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TRE 70 S - | Tables  Figures
BoNE 38 29 52 13 @,
BoBD 18 10 43 8 o [ =N
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Figure 3. Time-series (zoom to 2003—2007) for one example BoND PFT site (72° N, 120.24° E)
of (a) the normalized modelled total fAPAR and MODIS NDVI data; (b) the un-scaled model
total fAPAR and MODIS NDVI data; (c) the corresponding modelled LAl for the BoND PFT
only. The black curve corresponds to the MODIS NDVI data, the blue curve is the prior model
simulation, the orange curve shows the model simulation using the posterior parameters from
the SS optimization, and the red curve corresponds to the model simulation at this site using
the MS posterior parameter values. The prior and posterior RMSE and R are given in the upper
left box. The MODIS NDVI and model fAPAR time series were normalized to their maximum
and minimum value over the 20002008 period for the optimization (see Sect. 2.2.1).
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Figure 4. The mean seasonal cycle of the normalized modelled fAPAR before and after op-
timization, compared to that of the MODIS NDVI data, for the temperate and boreal decidu-
ous PFTs (TeBD, BoBD, BoND and NC3). Black = MODIS NDVI data; blue = prior model; or-
ange = single-site optimization; red = multi-site optimization.
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Figure 5. Example time-series (2002—-2008 period) for the tropical deciduous PFTs for which
phenology is driven by moisture availability. The two panels compare the normalized simulated
fAPAR to the normalized MODIS NDVI (black curve) prior to (blue curve) and after the opti-
mizations (orange curve = SS optimizations; red curve = MS optimization) for a (a) TrBR tree
site (5.77° S, 25.92° E) and a (b) NC4 grass site (10.08° N, 4.32° W). The prior and posterior
RMSE and R are given in the upper left boxes. The grey vertical lines show the daily precipita-
tion.
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Figure 7. The prior (blue), MS posterior (red) and SS posterior (orange) parameter values
(circles) and uncertainty (error bars — variance calculated in Eq. 3) for each parameter and each
PFT. For the SS optimizations the circle and error bars represent the mean and standard error
of the mean of all sites, and the crosses give the posterior values for each site. Refer to Table 1
for a description of the PFTs and Fig. 1 and Appendix A for a description of each parameter.
The y axis range represents the maximum upper and lower bounds for each parameter across
all PFTs, and the horizontal dashed lines represent the parameter range for each individual
PFT.
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