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Abstract 9 

We present a generic flux limiter to account for mass limitations from an arbitrary 10 

number of substrates in a biogeochemical reaction network. The flux limiter is based on the 11 

observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models 12 

can be represented as to ensure mass conservative and non-negative numerical solutions to the 13 

governing ordinary differential equations. Application of the flux limiter includes two steps: 14 

(1) formulate the biogeochemical processes with a matrix of stoichiometric coefficients and 15 

(2) apply Liebig’s law of the minimum using the dynamic stoichiometric relationship of the 16 

reactants. This approach contrasts with the ad hoc down-regulation approaches that are 17 

implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate 18 

Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are 19 

error prone when adding new processes, even for experienced modelers. Through an example 20 

implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, 21 

and phosphorus, we show that our approach (1) produced almost identical results to that from 22 

the ad hoc down-regulation approaches under non-limiting nutrient conditions; and (2) 23 

properly resolved the negative solutions under substrate-limited conditions where the simple 24 

clipping approach failed; and (3) successfully avoided the potential conceptual ambiguities 25 

that are implied by those ad hoc down-regulation approaches. We expect our approach will 26 

make future biogeochemical models easier to improve and more robust.  27 

 28 
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1 Introduction 1 

 Biogeochemical modeling has been one of the major themes in developing earth 2 

system models (Hurrell et al., 2013), yet developing numerically robust and mathematically 3 

consistent biogeochemical models has been challenging (Broekhuizen et al., 2008). In 4 

biogeochemical modeling, the systems of interest, such as terrestrial ecosystems, are often 5 

nutrient limited under a wide range of conditions (Vitousek and Howarth, 1991; Vitousek et 6 

al., 2010). Therefore, proper modeling of nutrient limitation is a prerequisite for credible 7 

predictions of carbon-climate feedbacks (Bouskill et al., 2014; Thomas et al., 2015). In the 8 

Earth System Models (ESMs) joining phase 5 of the Coupled Model Intercomparison Project 9 

(CMIP5), only CLM-CN (Thornton et al., 2007) considered carbon and nitrogen interactions, 10 

although observations indicate nitrogen has significantly limited the terrestrial carbon sink 11 

(Arora et al., 2013). Further, many analyses indicate phosphorus is critical for improving 12 

carbon-climate feedback predictions (Vitousek et al., 2010; Yang et al., 2014; Wieder et al., 13 

2015), and other nutrients (e.g., sulfur, potassium, molybdenum) may also be important 14 

(Schmidt et al., 2013; Moro et al., 2014). Therefore, we expect that as more processes are 15 

included in future biogeochemical models, more substrates will limit different 16 

biogeochemical processes under different conditions.  17 

 To develop numerically accurate biogeochemical models, it is important to develop a 18 

robust formulation of the biogeochemical processes, such that modelers can safely add or 19 

remove biogeochemical processes without degrading the numerical solution. This capability 20 

would allow users to focus only on deriving the governing ordinary differential equations 21 

(ODEs) of the biogeochemical processes. If the model uses a standard operator splitting 22 

approach (as is common, e.g., Tang et al., 2013), which solves the transport and chemistry 23 

separately, then the numerical solver could resolve the numerical details, such as maintaining 24 

mass conservation and avoiding nonphysical values, without knowing the details of the 25 

ODEs. 26 

 Existing terrestrial biogeochemical models often describe substrate limitation as 27 

occurring when the total available substrate cannot satisfy the demand from all consuming 28 

fluxes over a particular time step. For nitrogen limitation, many BGC models impose 29 

substrate limitation when the total potential ecosystem nitrogen demand (i.e., demand in the 30 

absence of nitrogen limitation; Thornton et al., 2007; Wang et al., 2010; Thomas et al., 2015) 31 

exceeds the total available mineral nitrogen, provided nitrogen from nitrogen fixers is 32 
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supplied in mineral form over that time step and contributions from organic nitrogen are 1 

assumed negligible (the latter of which could be incorrect, see Chapin et al., 1993). However, 2 

this conceptual model (which served as the basis for those ad hoc down-regulation 3 

approaches) is not mathematically consistent with the ODE that governs nitrogen limitation: 4 

!!
dNmin
dt

=Nmin,sup −Nmin,up  
(1) 

 

where !!Nmin  (gN), !!Nmin,sup  (gN s-1), and !!Nmin,up  (gN s-1) represent mineral nitrogen, mineral 5 

nitrogen supply (e.g., fixation, deposition), and mineral nitrogen uptake, respectively. 6 

Mathematically, Eq. (1) implies that nitrogen limitation occurs only when the numerical 7 

approximation to !!Nmin t +Δt( )  is negative after accounting for mineral nitrogen supply and 8 

demand over the numerical time step !Δt . Therefore, considering that negative mineral 9 

nitrogen concentration is unphysical, imposing nitrogen limitation should be mathematically 10 

interpreted as a means to ensure !!Nmin t +Δt( ) = Nmin,sup −Nmin,up( )Δt +Nmin t( )≥0 , rather than 11 

imposing the constraint !!Nmin,upΔt ≤Nmin t( )  as it is often done in current BGC models. Another 12 

requirement to ensure correct numerical solutions to the ODEs of the biogeochemical model 13 

is to maintain mass conservation for different chemical elements involved in the 14 

biogeochemical processes. The mass conservation could be violated if one uses the popular 15 

clipping method (e.g. Sandu, 2001) to reset negative solutions or by setting the derivative of 16 

the negative to-be variable to zero, as is done for some explicit ODE solvers. For example, the 17 

MATLAB function odenonnegative, which is used in the explicit solver ODE45 to avoid 18 

negative solutions, resets the derivative for a negative to-be variable to zero. In either 19 

implementation, clipping will artificially introduce new mass into the model and such mass 20 

will accumulate and grow throughout the model integration, resulting in incorrect model 21 

predictions (Sandu et al., 2001). 22 

 In this note, we show that by ensuring mass conservation and non-negative solutions 23 

to the governing equations of a given biogeochemical model, it is possible to obtain a 24 

universal solution to the mass limitation for an arbitrary number of substrates. We organize 25 

the remaining of this paper as follows: section 2 describes the technical details of our method; 26 

section 3 presents an evaluation of the method based on a CENUTRY-like organic matter 27 

decomposition model (Parton et al., 1988; Appendix A, Table 1 and Table 2); and section 4 28 
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summarizes our findings. Note that, even though our evaluation of the approach is based on a 1 

soil biogeochemical model, the approach is generic and could be applied to any 2 

biogeochemical models. 3 

2 Methods 4 

 Our approach makes use of the reaction-based formulation of a biogeochemical model 5 

(e.g., Reichert et al., 2001; Batstone et al., 2002; Fang et al., 2013). Mathematically, for the j-6 

th reaction, we have 7 

!!
ν i , j

− Ai , j
i
∑ → νm, j

+ Bm, j
m
∑  (2) 

 

where !!ν i , j
−  and !!νm, j

+  are stoichiometric coefficients for the i-th reactant !!Ai , j  and m-th product 8 

!!Bm, j , respectively. Hereforth we assume the units of all chemical species are consistently 9 

defined depending on the specific problem. 10 

 By defining reaction rate !
rj  of the j-th reaction as the consumption rate of the master 11 

species in Eq. (2), for instance, !!A1, j , whose stoichiometric coefficient is one, we calculate the 12 

temporal variation of any chemical species due to the j-th reaction as 13 

!!

dxi
dt

⎛

⎝⎜
⎞

⎠⎟ j

= vi , jrj  
(3) 

 

where !!vi , j  is the stoichiometric coefficient for chemical !xi  in the j-th reaction. For reactants, 14 

!!vi , j  is negative, for products !!vi , j  is positive, and !!vi , j  is zero when a chemical species is not 15 

involved in the reaction. 16 

 We describe the generic model structure using the Peterson matrix form (e.g. Russell, 17 

2006) as: 18 

!!
dx
dt

= Sr  
(4) 

where !!!S = vi , j{ }  is the matrix of stoichiometric coefficients and !x  and !r  are vectors of the 19 

state variables and reaction rates, respectively. 20 
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 We now separate !S  into two parts, !S+  and !S− , which, respectively, contain product  1 

(!!ν
+
i , j ; >0) and reactant (!!ν

−
i , j ; ≥0) stoichiometric coefficients, such that 2 

!!
dx
dt

= S+ −S−( )r  
(5) 

 

In finding the numerical solution to Eq. (5) over a certain number time step, if some reaction 3 

rates are too high, certain state variables will become negative unless those reaction rates are 4 

reduced. 5 

 Several approaches (other than clipping) have been proposed to ensure non-negative 6 

and mass conservative solutions to equations such as Eq. (5). For instance, Sandu (2001) 7 

proposed two projection-based approaches to post-correct the negative solution using the null 8 

space of !!ST  (here T denotes transpose). Although his approaches overcome the barriers that 9 

non-negativity either restricts the order of the method to one or restricts the step size to 10 

impractically small values (Bolley and Crouzeix, 1978), they require matrix inversion, which 11 

may become computationally intensive as the problem size increases or impractical because 12 

not every model formulation allows negative state variables in the intermediate step when a 13 

high order scheme is employed. Broekhuizen et al. (2008) ensured the solution non-negativity 14 

of Eq. (5) by applying a single flux limiter (i.e., a scalar modifier that reduces the reaction 15 

rate) to all reaction rates in the governing equations (aka, the mBBKS scheme). However, as 16 

we will show below, the mBBKS approach will fail for models such as CENTURY-like 17 

organic matter decomposition models (Parton et al., 1988; Appendix A, Table 1) when 18 

multiple substrates are limiting under different conditions. We also note that the occurrence of 19 

negative-solution is not unique to the CENTURY-like model that calculates the reaction rates 20 

using the linear kinetics. Michaelis-Menten kinetics based soil biogeochemical models (e.g., 21 

Gerber et al., 2010; Bouskill et al., 2012) would similarly suffer from the negative solution 22 

problem when many substrates could limit the reaction rates, and such problem cannot be 23 

easily solved by simply resorting to adaptive time stepping algorithms, therefore the solution 24 

strategy proposed below resolves a common issue for any biogeochemical models.  25 

 To propose a simple solution to ensure non-negative numerical solutions to Eq. (5), we 26 

restrict our ODE integrator to the first order and apply a vector of flux limiters that are 27 

dependent on the reactant stoichiometry !S− , which controls the total substrate demand. 28 

Forcing the flux limiter solution to depend linearly on !S−  maintains the stoichiometric 29 



 6 

relationship for all reactions and thus mass balance over the time step. Specifically, we 1 

calculate and apply the flux limiter for each reaction according to the Fortran 90 code: 2 

  

!M1 is number of state variables.
!N1 is number of reactions.
!xt  is vector of state variables at current time step.
!xtnew is vector of temporary state variables for next time step.
!q is vector of flux limiters for all reactions.
!dt  is time step size.
lneg = . false.  !Initialize negative state variable indicator to zero
do m =  1,  M1 !Loop over all state variables

  xtnew m( )  =  xt m( )
  Fp =  0.0        !Initialize production flux accumulator to zero
   Fm =  0.0       !Initialize consumption flux accumulator to zero
  do n =  1,  N1 !Loop over all reactions

      xtnew m( )  =  xtnew m( )  +  sp m,n( )− sm m,n( )( )*r n( )  *  dt

     Fp =  Fp +  sp m,n( )*r n( )
     Fm =  Fm +  sm m,n( )*r n( )
  enddo
  if xtnew m( )  < 0( )  then !The state variable tends to be negative

     !Calculate the limiting factor

     p m( )  =  xt m( ) +  Fp * dt( ) / dt * Fm( )
     lneg  =  .true.
  endif
enddo
!Now compute and apply the flux limiter 
!when there is any negative state variable

if lneg( )then

  do n =  1,  N1
     !minp finds the minimum of p,  
     !where the corresponding entry in sm is >  0.

     q n( )  =  minp p 1: M1( ),  sm 1: M1,n( )( )
     r n( )  =  r n( )*q n( )
  enddo
endif

                 (6) 3 
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where the function minp is defined in Appendix B. In rare situations, one has to apply the 1 

above flux limiting procedure several times to ensure solution non-negativity, but the 2 

computation is much quicker and simpler than the matrix inversion required in Sandu’s 3 

projection methods (2001), and can be paralleled easily. In addition, for a single 4 

biogeochemical reaction, one can verify that our approach is equivalent to Liebig’s law of the 5 

minimum as applied to a generic biogeochemical reaction, which can be re-stated for a high-6 

frequency BGC model to imply that the mean reaction rate during a numerical time step is 7 

controlled by the most limiting substrate. It is also noted that our approach avoids the explicit 8 

formulation of the law of the minimum in calculating the reaction rates, as is often done in 9 

many existing biogeochemical models (e.g. CLM-CNP, Yang et al., 2014), which when 10 

combined with their ad hoc down-regulation method leads to double counting of substrate 11 

limitation. We further note that traditional ODE solvers only require the temporal derivatives 12 

of the state variables from the biogeochemical model. To apply our approach in an ODE 13 

solver, however, requires the biogeochemical model to return the reaction rates, and the 14 

positive and negative parts of the stoichiometry matrix 	S .  15 

 In our evaluation, we compared the performance of our new approach to the mBBKS 16 

approach (Broekhuizen et al., 2008) and two ad hoc down-regulation formulations derived 17 

based on the nitrogen limitation scheme in CLM4.5 (CLM-1 and CLM-2). During a particular 18 

numerical time step, CLM-1 assumes complete independence between nutrient mobilizers and 19 

immobilizers, while CLM-2 assumes complete coupling between nutrient mobilizers and 20 

immobilizers (see details in Appendix C). We analyzed scenarios where the organic matter 21 

decomposition is (1) not nutrient limited (Case-1) and (2) nitrogen and phosphorus limited 22 

(Case-2 and Case-3); the latter situations are where a direct solution (without flux limitation) 23 

to Eq. (5) may produce negative values, and clipping will be triggered in methods like 24 

ODE45. We evaluated the difference between simulations for predicted mineral nitrogen 25 

!!Nmin , mineral phosphorus !!Pmin , total litter carbon, and total soil organic carbon. We note that 26 

all litter-decomposing reactions in the CENTURY-like model immobilize nitrogen and 27 

phosphorus; therefore, when SOM pools (SOM1, SOM2, and SOM3) are nil, a non-zero pool 28 

size must be assigned to both soil mineral nitrogen and mineral phosphorus to initialize litter 29 

decomposition (such as for Case-2 and Case-3; Table 3). We describe the initial conditions 30 

for our model runs in Table 3: Case-1 represents nutrient non-limiting decomposition; Case-2 31 

represents nutrient limited decomposition with zero initial SOM pools; and Case-3 represents 32 
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nutrient limited decomposition with non-zero initial SOM pools. We also conducted Case-4 to 1 

reveal that the conceptual ambiguity in those ad hoc down-regulation approaches will result in 2 

model uncertainties that could be avoided in our new approach. Case-4 differs from Case-3 3 

with the addition of a first order loss term for both mineral nitrogen and mineral phosphorus 4 

and a continuous litter input for the first 1500 days of the 3000-day integration (Table 3). 5 

These mineral nutrient loss terms are used to mimic nutrient demand from other processes as 6 

would occur in a BGC model in ESMs. Because there are no analytical solutions to the 7 

CENTURY-like model, Case-1 also serves as a benchmark for our implementation of 8 

different numerical solution strategies with respect to ODE45, which has been very well 9 

tested by the MATLAB developers for problems that have no non-negativity constraint on 10 

their solutions. We coded all our methods as MATLAB scripts and all ODE integrations are 11 

carried out using an adaptive time stepping strategy (Appendix D) with a relative error 10-4.  12 

3 Results and discussions 13 

3.1 Method evaluation 14 

In simulations for the decomposition of nutrient-sufficient organic matter (i.e., no 15 

nutrient limitation; Figure 1), we found our new approach (Fortran 90 code (6)), mBBKS, 16 

CLM-1 and CLM-2 predicted almost identical time series for the various pools when 17 

compared to that from ODE45, indicating the four approaches are implemented correctly as 18 

benchmarked with ODE45.  19 

However, for Case-2 (Figure 2, Table 3) where both nitrogen and phosphorus are 20 

insufficient to support decomposition (because it has even less mineral nutrients available 21 

than the nutrient-limited Case-3), mBBKS failed to predict any organic matter decomposition 22 

after the mineral nutrients are consumed in the first few time steps and predicted that all 23 

decomposition pathways were phosphorus limited thereafter (cyan line in Figure 2b). In 24 

contrast, the two ad hoc down-regulation approaches, CLM-1 and CLM-2, and our new 25 

approach all predicted visually identical time series of the different pools and correctly 26 

indicated that the decomposition of SOM pools (SOM1, SOM2, and SOM3 as derived from 27 

litter decomposition using the non-zero initial pools of mineral nutrients) released small 28 

amounts of mineral nutrients to support further litter organic matter decomposition (as can be 29 

inferred from Table 2, which shows that the decomposition of litter pools are all nutrient 30 

limited by stoichiometry). This response was missed by mBBKS, because it applied a single 31 
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flux limiter to all decomposition pathways, preventing the release of nutrients from 1 

mineralizing pathways to support further decomposition. Besides mBBKS, ODE45 also failed 2 

to predict meaningful decomposition dynamics, because by clipping the derivatives of the 3 

negative to-be state variables to zero it introduced artificial mass into some state variables 4 

during the integration. Specifically, ODE45 predicted the final total nitrogen and total 5 

phosphorus (including both mineral and organic pools) as 0.8066 gN and 0.0511 gP, as 6 

compared to the correct values 0.4445 gN and 0.0175 gP, whereas CLM-1, CLM-2, and our 7 

new approach all conserved carbon, nitrogen, and phosphorus mass within the machine round 8 

off error.  9 

For Case-3 (Figure 3, Table 3), where non-zero SOM pools were introduced to release 10 

nitrogen and phosphorus to support litter decomposition, mBBKS again predicted no visible 11 

decomposition because of its use of a single flux limiter to all fluxes (based on the nutrient 12 

limited litter decomposition), even though the SOM decomposition should not be nutrient 13 

limited. ODE45 also failed for Case-3, and predicted very different time series for the various 14 

pools as compared to CLM-1, CLM-2, and our new approach. By day 300, ODE45 predicted 15 

the total nitrogen and total phosphorus (including both mineral and organic pools) as 3.2164 16 

gN and 0.2338 gP as compared to their correct values 3.1046 gN and 0.2273 gP, respectively.   17 

3.2 The conceptual ambiguity of implementing nutrient limitation 18 

 Although we found little differences between our new method, CLM-1, and CLM-2 in 19 

predicted decomposition dynamics for the three simple cases analyzed (Figure 1, Figure 2, 20 

and Figure 3), we acknowledge that differences should be expected when applying our new 21 

method and the two ad hoc down-regulation approaches CLM-1 and CLM-2 for modeling 22 

ecosystem dynamics because they define nutrient limitation differently (Fortran 90 code (6) 23 

and Appendix C; Figure 4 and Figure 5). As one would infer from Eq. (1), mathematically, 24 

nutrient limitation occurs only when the state variable that represents a certain nutrient 25 

becomes negative if the reaction rates are not limited during a given numerical integration 26 

time step. However, (as we implemented in the Fortran 90 code (6)), this situation is 27 

equivalent to assuming that a released mineral nutrient from the mobilizers will be 28 

instantaneously available to all immobilizers that demand this nutrient. Although the existing 29 

mineral nutrient pool and the newly released mineral nutrients will be tapped proportionally 30 

by the immobilizers, this assumption may still be too strong if a given grid cell covers a too 31 

large spatial domain to support this assumption of homogeneity (Manzoni et al., 2008). CLM-32 
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1 and CLM-2 represent the two extremes of this coupling between mineral nutrient mobilizers 1 

(who release nutrients) and mineral nutrient immobilizers (who take up nutrients) in that 2 

CLM-1 assumes the mobilizers and immobilizers are completely independent during the 3 

calculation of mineral nutrient uptake, whereas CLM-2 assumes the nutrients released by 4 

mobilizers are first assimilated by immobilizers and if there is additional demand, the 5 

remaining comes from the mineral nutrient pool (thus CLM-2 adopts an even stronger 6 

mobilizer and immobilizer coupling than our new approach). Indeed the difference between 7 

CLM-1 and CLM-2 is already discernible for Case-3 (Figure 4), and when the decomposition 8 

model is coupled with other nutrient consumers in an ecosystem model, one would potentially 9 

find very different predictions of carbon dynamics (see Case-4 in Figure 5 as a model with 10 

slightly more complicated dynamics than Case-3). With slight modification, our new 11 

approach will allow a consistent representation of the coupling between mobilizers and 12 

immobilizers, including both the CLM-1 and CLM-2 assumptions regarding nutrient 13 

competition. This approach will provide a new tool to analyze prediction uncertainty from the 14 

ambiguity of defining the coupling strength between nutrient mobilizers and immobilizers.  15 

 Another advantage of our new approach, compared to the ad hoc down-regulation 16 

approaches (e.g. CLM-1 and CLM-2 discussed above), is that it can handle limitation from an 17 

arbitrary number of substrates, as long as the matrix of stoichiometric coefficients is 18 

formulated. In principle, any biogeochemical reaction can be formulated into reaction form 19 

(e.g. Fang et al., 2013), thus our approach will avoid the ordering problem often encountered 20 

in those ad hoc approaches. In this context, the “ordering problem” refers to the situation that 21 

different answers are calculated depending on the order of nutrient limitation (e.g., resolving 22 

nitrogen limitation first, and then phosphorus limitation). For example, following the nutrient 23 

limitation definition in CLM-1, when nitrogen and phosphorus limitation are treated 24 

sequentially, the predicted decomposition dynamics differ significantly from when the 25 

opposite order is applied (CLM-1NP vs CLM-1PN in Figure 5). The implementation where 26 

nitrogen limitation occurs before phosphorus limitation (CLM-1NP, cyan circles in Figure 5) 27 

predicted stronger litter decomposition than when phosphorus limitation is applied before 28 

nitrogen limitation (CLM-1PN, black dots that overlap with blue line in Figure 5c). 29 

Analogously, in the current CLM4.5 soil biogeochemical formulation (Oleson et al., 2013), 30 

organic matter decomposition and methane oxidation are often limited by oxygen (Riley et al. 31 

2011), and nitrogen limitation is imposed after accounting for oxygen limitation, which 32 

potentially would result in different predictions were nitrogen limitation imposed before 33 
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oxygen limitation. This ordering issue can become more severe if more nutrients (e.g., 1 

phosphorus, sulfur) are to be introduced in future biogeochemical formulations, and our 2 

approach relieves numerical inaccuracies associated with this ordering ambiguity. 3 

4 Conclusions 4 

 In this study, we proposed a generic law of the minimum based flux limiter to handle 5 

substrate limitation in biogeochemical models. Evaluations indicate our method could 6 

produce as accurate results as those ad hoc down-regulation approaches implemented in 7 

existing biogeochemical models for simple decomposition dynamics that only include 8 

decomposers. Additionally, our new approach provides a way to resolve some conceptual 9 

ambiguities implied in those ad hoc down-regulation approaches. We expect our new 10 

approach to help the community to develop more robust and easier to maintain 11 

biogeochemical codes to better predict carbon-climate feedbacks.   12 

 13 

Appendix A: Governing equations for the CENTURY-like decomposition model 14 

 The soil biogeochemical model used in this study adopts the form from the 15 

CENTURY-model, which uses a turnover pool based formulation of soil organic matter 16 

decomposition (Parton et al., 1988). The model includes three pools of litter, one pool of 17 

coarse wood debris (CWD) and three pools of SOM. The model calculates the non-nutrient 18 

limited decomposition of a given organic matter pool 	X  using the first order kinetics, 19 

	rX = −kX X , where 	kX  (yr-1) is the decay parameter (and is equal to the reciprocal of the 20 

turnover time). In most applications 	kX  is a function of temperature and moisture, however, it 21 

is taken as constant in this study. Following CLM4.5 BGC (Oleson et al., 2013), the turnover 22 

times are 0.066 yr, 0.25 yr and 0.25 yr, respectively, for the three litter pools LIT1, LIT2 and 23 

LIT3. For the three SOM pools, the turnover times are 0.17 yr, 6.1 yr and 270 yr, respectively, 24 

for SOM1, SOM2 and SOM3. CWD has a turnover time of 4.1 yr. The decomposed organic 25 

matter released from linear decay is redistributed through the seven organic matter pools 26 

according to the reaction stoichiometry in Table 1. Mathematically, the CENTURY-like 27 

decomposition model is summarized with the following governing equations  28 

!!
dLIT1
dt

= −rLIT1 + ILIT1      (A-1) 29 
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!!
dLIT2
dt

= −rLIT2 +0.76rcwd + ILIT2    (A-2) 1 

!!
dLIT3
dt

= −rLIT3 +0.24rcwd + ILIT3    (A-3) 2 

!
dCWD
dt

= −rCWD + ICWD      (A-4) 3 

!!
dSOM1
dt

= −rSOM1 +0.45rLIT1 +0.5rLIT2 +0.42rSOM2 +0.45rSOM3 + ISOM1  (A-5) 4 

!!
dSOM2
dt

= −rSOM2 +0.5rLIT3 + f1rSOM1 + ISOM2    (A-6) 5 

!!
dSOM3
dt

= −rSOM3 +0.03rSOM2 + f2rSOM1 + ISOM3    (A-7) 6 

!!

dNmin
dt

= 1
CNLIT1

− 0.45
CNSOM1

⎛

⎝⎜
⎞

⎠⎟
rLIT1 +

1
CNLIT2

− 0.5
CNSOM1

⎛

⎝⎜
⎞

⎠⎟
rLIT2 +

1
CNLIT3

− 0.5
CNSOM2

⎛

⎝⎜
⎞

⎠⎟
rLIT3

!!!!!!!!!!!!!!!+ 1
CNCWD

− 0.76
CNLIT2

− 0.24
CNLIT3

⎛

⎝⎜
⎞

⎠⎟
rCWD +

1
CNSOM1

−
f1

CNSOM2
−

f2
CNSOM3

⎛

⎝⎜
⎞

⎠⎟
rSOM1

!!!!!!!!!!!!!!+ 1
CNSOM2

− 0.42
CNSOM2

− 0.03
CNSOM3

⎛

⎝⎜
⎞

⎠⎟
rSOM2 +

1
CNSOM3

− 0.45
CNSOM1

⎛

⎝⎜
⎞

⎠⎟
rSOM3 −qNminNmin

 (A-8) 7 

!!

dPmin
dt

= 1
CPLIT1

− 0.45
CPSOM1

⎛

⎝⎜
⎞

⎠⎟
rLIT1 +

1
CPLIT2

− 0.5
CPSOM1

⎛

⎝⎜
⎞

⎠⎟
rLIT2 +

1
CPLIT3

− 0.5
CPSOM2

⎛

⎝⎜
⎞

⎠⎟
rLIT3

!!!!!!!!!!!!!!!+ 1
CPCWD

− 0.76
CPLIT2

− 0.24
CPLIT3

⎛

⎝⎜
⎞

⎠⎟
rCWD +

1
CPSOM1

−
f1

CPSOM2
−

f2
CPSOM3

⎛

⎝⎜
⎞

⎠⎟
rSOM1

!!!!!!!!!!!!!!+ 1
CPSOM2

− 0.42
CPSOM2

− 0.03
CPSOM3

⎛

⎝⎜
⎞

⎠⎟
rSOM2 +

1
CPSOM3

− 0.45
CPSOM1

⎛

⎝⎜
⎞

⎠⎟
rSOM3 −qPminPmin

 (A-9) 8 

where !!qNmin  (s-1) and !!qPmin  (s-1) are, respectively, the loss rates for mineral nitrogen and 9 

mineral phosphorus; 
!
I
X( )  (gC s-1)designates the input rate for organic matter !X ; all other 10 

symbols are explained in Table 1.  11 

Appendix B: Pseudo code for  minp  12 

 For two vectors !x  and !y  of size !n , 		 p= minp x , y( )  (assuming !!p≤1 ) is calculated as 13 



 13 

 

		

p=1
do	i =1,	n
				if ( y i( ) >0)then
							p=min x i( ) ,p( )
				endif
enddo

                                                             (B1) 1 

 2 

Appendix C: Two ad hoc down-regulation formulations of nutrient limitation 3 

 The first ad hoc down-regulation approach (CLM-1) follows the implementation of 4 

nitrogen down regulation in CLM4.5 (Oleson et al., 2013), where all nitrogen immobilization 5 

fluxes !Nimmob  within the time step !Δt  are summed and compared to available nitrogen (!!Nmin ). 6 

The flux limiter from mineral nitrogen is: 7 

!!
γ N =min

Nmin
NimmobΔt

,1⎛

⎝⎜
⎞

⎠⎟
                                                                         (C1) 8 

Similarly for mineral phosphorus: 9 

!!
γ P =min

Pmin
PimmobΔt

,1⎛

⎝⎜
⎞

⎠⎟
                                                                          (C2) 10 

Then for reactions (Table 1) that are only nitrogen limited, we multiply their reaction rates 11 

with !γ N , for reactions that are only phosphorus limited, we multiply their reaction rates with 12 

!γ P , and for reactions that are both nitrogen and phosphorus limited, we multiply their 13 

reaction rates with !!min γ N ,γ P( ) . 14 

 The second ad hoc down-regulation approach (CLM-2) is similar to the first one, 15 

except that it first subtracts the mobilizing fluxes from the immobilizing fluxes, such that 16 

!!
γ N =min max Nmin

Nimmob −Nmob( )Δt ,0
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
,1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                        (C3) 17 

!!
γ P =min max Pmin

Pimmob −Pmob( )Δt ,0
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
,1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                           (C4) 18 



 14 

Therefore, it can be inferred that (under similar conditions) nutrient limitation would 1 

(theoretically) occur more frequently in the first (CLM-1) than in the second (CLM-2) ad hoc 2 

down-regulation approach. 3 

 One can further define 4 

!!
γ N =min max Nmin +NmobΔt

NimmobΔt
,0⎛

⎝⎜
⎞

⎠⎟
,1

⎛

⎝
⎜

⎞

⎠
⎟    (C5) 5 

!!
γ P =min max Pmin +PmobΔt

PimmobΔt
,0⎛

⎝⎜
⎞

⎠⎟
,1

⎛

⎝
⎜

⎞

⎠
⎟     (C6) 6 

which can be verified to be identical to that calculated in the pseudo code (6) in the main text 7 

when only one nutrient is limiting. Because this last definition does not change the conclusion 8 

of our study, we only analyzed the first two ad hoc down-regulation approaches (CLM-1 and 9 

CLM-2) in our comparison. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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 25 
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Appendix D: MATLAB pseudo code for the adaptive time stepping integration 1 

For a certain time step 2 

		

%hscal 	is	the	time	step	scaling	factor.
%xold 	is	the	state	variable	at	current	time	step.
%t 	is	current	time,	and	Δt 	is	time	step.
xnew = ode xold ,Δt ,t( )
xnew
* = ode xold ,Δt /2,t( )
xnew
* = ode xnew

* ,Δt /2,t +Δt /2( )
%Find	the	maximum	relative	error	across	all	state	varibles.

rerr =max
i

xnew
* i( )− xnew i( )
xnew
* i( ) +eps

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

if	rerr <0.5*rerrtol
		hscal =2;	accept =1
elseif	rerr < rerrtol
		hscal =1;	accept =1
elseif	rerr <2*rerrtol
		hscal =0.5;	accept =1
else
		hscal =0.5;	accept =0
end
xold = 1−accept( )xold +accept * xnew*
t = t +accept *Δt ;Δt =max Δt *hscal ,Δtmin( )
loop

                                           (D1) 3 

where !
ode ⋅( )  represents the numerical solver of the ODEs, !eps  represents the floating-point 4 

relative accuracy in MATLAB, the relative error tolerance !rerrtol  is 10-4 in all simulations in 5 

this study. Other symbols in (D1) should be self-explanatory. 6 

 7 

 8 

 9 

 10 



 16 

Author contributions 1 

 JYT developed the theory, conducted the analyses, and wrote the paper. WJR discussed the 2 

analyses and wrote the paper.  3 

Acknowledgements 4 

This research is supported by the Director, Office of Science, Office of Biological and 5 

Environmental Research of the US Department of Energy under contract no. DE-AC02-6 

05CH11231 as part of the Next-Generation Ecosystem Experiments (NGEE-Arctic) and the 7 

Accelerated Climate Model for Energy project in the Earth System Modeling program. We 8 

thank Dr. Niall Broekhuizen and an anonymous reviewer for their constructive comments, 9 

which improved the paper significantly. 10 

11 



 17 

References 1 

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., 2 

Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, 3 

T.: Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models, J 4 

Climate, 26, 5289-5314, 2013. 5 

Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., 6 

Sanders, W. T. M., Siegrist, H., and Vavilin, V. A.: The IWA Anaerobic Digestion Model No 7 

1 (ADM1), Water Sci Technol, 45, 65-73, 2002. 8 

Bolley, C. and Crouzeix, M.: Conservation de la positivite lors de la discretization des 9 

problemes d’evolution parabolique, R.A.I.R.O. Numer. Anal. 12(3), 237 (1978). 10 

Bouskill, N. J., Tang, J.Y., Riley, W. J., and Brodie, E. L.: Trait-based representation of 11 

biological nitrification: model development testing, and predicted community composition, 12 

Front Microbiol, 3, 2012. 13 

Bouskill, N. J., Riley, W. J., and Tang, J. Y.: Meta-analysis of high-latitude nitrogen-addition 14 

and warming studies implies ecological mechanisms overlooked by land models, 15 

Biogeosciences, 11, 6969-6983, 2014. 16 

Broekhuizen, N., Rickard, G. J., Bruggeman, J., and Meister, A.: An improved and 17 

generalized second order, unconditionally positive, mass conserving integration scheme for 18 

biochemical systems, Appl Numer Math, 58, 319-340, 2008. 19 

Chapin, F. S., Moilanen, L., and Kielland, K.: Preferential Use of Organic Nitrogen for 20 

Growth by a Nonmycorrhizal Arctic Sedge, Nature, 361, 150-153, 1993. 21 

Fang, Y., Huang, M., Liu, C., Li, H., and Leung, L. R.: A generic biogeochemical module for 22 

Earth system models: Next Generation BioGeoChemical Module (NGBGC), version 1.0, 23 

Geosci Model Dev, 6, 1977-1988, 2013. 24 

Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., and Shevliakova, E.: Nitrogen 25 

cycling and feedbacks in a global dynamic land model, Global Biogeochem Cy, 24, 2010. 26 

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. 27 

F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., 28 

Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., 29 



 18 

Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model A Framework 1 

for Collaborative Research, B Am Meteorol Soc, 94, 1339-1360, 2013. 2 

Manzoni, S., Porporato, A., and Schimel, J. P.: Soil heterogeneity in lumped mineralization-3 

immobilization models, Soil Biol Biochem, 40, 1137-1148, 2008. 4 

Moro, H., Kunito, T., Saito, T., Yaguchi, N., and Sato, T.: Soil microorganisms are less 5 

susceptible than crop plants to potassium deficiency, Arch Agron Soil Sci, 60, 1807-1813, 6 

2014. 7 

Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, 8 

S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S., Thornton, P. E., Bozbiyik, A., Fisher, R., 9 

Heald, C. L., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb,W., 10 

Muszala, S. P., Ricciuto, D. M., Sacks,W. J., Sun, Y., Tang, J., and Yang, Z.-L.: Technical 11 

description of version 4.5 of the Community Land Model (CLM), NCAR Technical Note 12 

NCAR/TN-503+STR, 420 pp., doi:10.5065/D6RR1W7M, 2013. 13 

Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C, N, P and S in Grassland 14 

Soils - a Model, Biogeochemistry, 5, 109-131, 1988. 15 

Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyody, L., and 16 

Vanrolleghem, P.: River water quality model no. 1 (RWQM1): II. Biochemical process 17 

equations, Water Sci Technol, 43, 11-30, 2001. 18 

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., 19 

Mahowald, N. M., and Hess, P.: Barriers to predicting changes in global terrestrial methane 20 

fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, 21 

Biogeosciences, 8, 1925-1953, 2011. 22 

Russell: Practical wastewater treatment, John Wiley & Sons, Inc. ISBN: 978-471-78044-1, 23 

2006. 24 

Schmidt, F., De Bona, F. D., and Monteiro, F. A.: Sulfur limitation increases nitrate and 25 

amino acid pools in tropical forages, Crop Pasture Sci, 64, 51-60, 2013. 26 

Sandu, A.: Positive numerical integration methods for chemical kinetic systems, J Comput 27 

Phys, 170, 589-602, 2001. 28 



 19 

Tang, J. Y., Riley, W. J., Koven, C. D., and Subin, Z. M.: CLM4-BeTR, a generic 1 

biogeochemical transport and reaction module for CLM4: model development, evaluation, 2 

and application, Geosci Model Dev, 6, 127-140, 2013. 3 

Thomas, R. Q., Brookshire, E. N. J., and Gerber, S.: Nitrogen limitation on land: how can it 4 

occur in Earth system models?, Global Change Biol, 21, 1777-1793, 2015. 5 

Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of 6 

carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate 7 

variability, Global Biogeochem Cy, 21, 2007. 8 

Vitousek, P. M. and Howarth, R. W.: Nitrogen Limitation on Land and in the Sea - How Can 9 

It Occur, Biogeochemistry, 13, 87-115, 1991. 10 

Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.: Terrestrial phosphorus 11 

limitation: mechanisms, implications, and nitrogen-phosphorus interactions, Ecol Appl, 20, 5-12 

15, 2010. 13 

Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus 14 

cycles for the terrestrial biosphere, Biogeosciences, 7, 2261-2282, 2010. 15 

Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K.: Future productivity and 16 

carbon storage limited by terrestrial nutrient availability, Nat Geosci, 8, 441-U435, 2015 17 

Yang, X., Thornton, P. E., Ricciuto, D. M., and Post, W. M.: The role of phosphorus 18 

dynamics in tropical forests - a modeling study using CLM-CNP, Biogeosciences, 11, 1667-19 

1681, 2014. 20 

Zhu, Q., Riley, W. J., Tang, J., and Koven, C. D.: Multiple soil nutrient competition between 21 

plants, microbes, and mineral surfaces: model development, parameterization, and example 22 

applications in several tropical forests, Biogeosciences Discuss., 12, 4057-4106, 23 

doi:10.5194/bgd-12-4057-2015, 2015. 24 

 25 

 26 

 27 

 28 

 29 



 20 

Table 1. A list of biogeochemical reactions as represented in the century-like organic matter 1 

decomposition model (Appendix A). The decomposition is calculated as in Parton et al. 2 

(1988). Here we use CN to represent carbon to nitrogen ratio, and CP to represent carbon to 3 

phosphorus ration. The subscript “min” designates mineral pool for a nutrient, such as 4 

nitrogen (N) and phosphorus (P). The three litter pools are 		LIT1 , 		LIT2 and 		LIT3. The three 5 

SOM pools are 		SOM1 , 		SOM2  and 		SOM3 . 	CWD  is the pool of coarse wood debris. 6 

ID Reactions 

1 
LIT1→ 0.45SOM1+ 0.55CO2 +

1
CNLIT1

− 0.45
CNSOM1

⎛
⎝⎜

⎞
⎠⎟
Nmin +

1
CPLIT1

− 0.45
CPSOM1

⎛
⎝⎜

⎞
⎠⎟
Pmin  

2 
LIT 2→ 0.5SOM1+ 0.5CO2 +

1
CNLIT 2

− 0.5
CNSOM1

⎛
⎝⎜

⎞
⎠⎟
Nmin +

1
CPLIT 2

− 0.5
CPSOM1

⎛
⎝⎜

⎞
⎠⎟
Pmin  

3 
LIT 3→ 0.5SOM 2 + 0.5CO2 +

1
CNLIT 3

− 0.5
CNSOM 2

⎛
⎝⎜

⎞
⎠⎟
Nmin +

1
CPLIT 3

− 0.5
CPSOM 2

⎛
⎝⎜

⎞
⎠⎟
Pmin  

4 
CWD→ 0.76LIT 2 + 0.24LIT 3+ 1

CNCWD

− 0.76
CNLIT 2

− 0.24
CNLIT 3

⎛
⎝⎜

⎞
⎠⎟
Nmin +

1
CPCWD

− 0.76
CPLIT 2

− 0.24
CPLIT 3

⎛
⎝⎜

⎞
⎠⎟
Pmin  

5* SOM1→ f1SOM 2 + f2SOM 3+ 1− f1 − f2( )CO2

+ 1
CNSOM1

− f1
CNSOM 2

− f2
CNSOM 3

⎛
⎝⎜

⎞
⎠⎟
Nmin +

1
CPSOM1

− f1
CPSOM 2

− f2
CPSOM 3

⎛
⎝⎜

⎞
⎠⎟
Pmin

 

6 SOM 2→ 0.42SOM1+ 0.03SOM 3+ 0.55CO2

+ 1
CNSOM 2

− 0.42
CNSOM1

− 0.03
CNSOM 3

⎛
⎝⎜

⎞
⎠⎟
Nmin +

1
CPSOM 2

− 0.42
CPSOM1

− 0.03
CPSOM 3

⎛
⎝⎜

⎞
⎠⎟
Pmin

 

7 
SOM 3→ 0.45SOM1+ 0.55CO2 +

1
CNSOM 3

− 0.45
CNSOM1

⎛
⎝⎜

⎞
⎠⎟
Nmin +

1
CPSOM 3

− 0.45
CPSOM1

⎛
⎝⎜

⎞
⎠⎟
Pmin  

* In this study, we set f1 = 0.6235  and f2 = 0.0025 . 7 
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Table 2. Parameter values used in this study. These values are based on syntheses from Parton 1 

et al. (1988), Yang et al. (2014) and Zhu et al. (2015). 2 

Parameters Values 

(CNLIT1 , CPLIT1 ) (90, 1600) 

(CNLIT 2 , CPLIT 2 ) (90, 2000) 

(CNLIT 3 , CPLIT 3 ) (90, 2500) 

(CNCWD , CPCWD ) (90, 4500) 

(CNSOM1 , CPSOM1 ) (13, 110) 

(CNSOM 2 , CPSOM 2 ) (16, 320) 

(CNSOM 3 , CPSOM 3 ) (7.9, 114) 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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Table 3. Initial conditions and integration length (#days) for the analyzed model simulations. 1 

Variables Case-1 Case-2 Case-3 Case-4* 

!!LIT1  10 gC 10 gC 10 gC 10 gC 

!!LIT2 10 gC 10 gC 10 gC 10 gC 

!!LIT3 10 gC 10 gC 10 gC 10 gC 

!CWD  10 gC 10 gC 10 gC 10 gC 

!!SOM1  10 gC 0 gC 10 gC 10 gC 

!!SOM2  10 gC 0 gC 10 gC 10 gC 

!!SOM3  10 gC 0 gC 10 gC 10 gC 

!!Nmin  10 g N 10-4 gN 10-4 gN 10-3 gN 

!!Pmin  10 g P 10-8 gP 10-8 gP 10-7 gP 

!!qNmin  0 s-1 0 s-1 0 s-1 10-6 s-1 

!!qPmin  0 s-1 0 s-1 0 s-1 10-6 s-1 

#days 300 days 300 days 300 days 3000 days 

*For Case-4, there were rates of 0.04 gC day-1, 0.04 gC day-1 and 0.02 gC day-1 input for 2 

!!LIT1 , !!LIT2 and !!LIT3 in the first 1500 days.3 
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Figure 1 Simulated decomposition dynamics for Case-1 in Table 3. In all panels, all results 2 

overlap each other. 3 
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Figure 2 Simulated decomposition dynamics for Case-2 in Table 3. Note that the ODE45 2 

scheme (shown on the right hand y-axes) predicted wrong results that are of much large 3 

magnitude than the other methods. 4 
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Figure 3 Simulated decomposition dynamics for Case-3 in Table 3. In all panels, the result 2 

from CLM-1 overlaps with that from our new method.  3 
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Figure 4 Differences between simulated decomposition dynamics by CLM-1 and CLM-2 for 3 

Case-3.  4 

 5 



 27 

0

0.5

1
x 10

−3

(a) N
min

g
 N

 

 

0

1

2

3
x 10

−3

(b) P
min

g
 P

0

50

100

(c) Litter carbon

g
 C

0 500 1000 1500 2000 2500 3000
20

40

60

80

(d) SOM carbon

g
 C

Ordinal day

CLM−1 CLM−2 New CLM−1NP CLM−1PN

 1 

Figure 5. Simulated decomposition dynamics for Case-4 in Table 3. CLM-1NP performs 2 

nitrogen down-regulation before phosphorus down-regulation, whereas CLM-1PN reverses 3 

the order. Similarly to CLM-1 (Appendix C), both CLM-1NP and CLM-1PN assume the 4 

nutrient mobilizer and immobilizer are independent within a numerical time step. In all 5 

panels, CLM-1PN predictions overlap with CLM-1 predictions. 6 
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