1	Primary production in the Chukchi Sea with potential effects
2	of freshwater content
3	
4	Mi Sun Yun ^a , Terry E. Whitledge ^b , Dean Stockwell ^b , SeungHyun Son ^c , Jang Han Lee ^a , Jung Woo
5	Park ^a , Da Bin Lee ^a , Jinku Park ^a , Sang H. Lee ^{a,*}
6	
7	
8	^a Department of Oceanography, Pusan National University, 30, Jangjeon-dong, Geumjeong-gu, Busan
9	609-735, Korea
10	^b Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK 99775-7220, USA
11	^c CIRA, Colorado State University, Fort Collins, Colorado, USA
12	
13	
14	
15	*Corresponding author. Tel.: +82 51 510 2256; fax: +82 51 581 2963.
16	E-mail address: sanglee@pusan.ac.kr
17	

18 Abstract

19 The *in situ* primary production rates and various environmental variables were investigated in the 20 Chukchi Sea during the RUSALCA expedition, which was conducted in 2012, to identify the current 21 status of primary production. A ¹³C-¹⁵N dual tracer technique was used to measure the daily primary production rates, which ranged from 0.02 to 1.61 g C m⁻² d⁻¹ (mean \pm SD = 0.42 \pm 0.52 g C m⁻² d⁻¹). The 22 primary production rates showed large regional differences, with the southern region (0.66 \pm 0.62 g C m⁻² 23 d^{-1}) producing approximately five times as much as the northern region (0.14 ± 0.10 g C m⁻² d⁻¹), which 24 25 was primarily due to the differences in phytoplankton biomasses induced by regional nutrient conditions. The primary production rates in the Chukchi Sea were averaged using data acquired during the three 26 different RUSALCA expeditions (2004, 2009, and 2012) as 0.33 g C $m^{-2} d^{-1}$ (SD = 0.40 g C $m^{-2} d^{-1}$), 27 28 which was significantly lower than previously reported rates. In addition to strong seasonal and 29 interannual variations in primary production, recent decreases in the concentrations of major inorganic 30 nutrients and chlorophyll a could be among the reasons for the recent low primary production in the 31 Chukchi Sea because the primary production is mainly affected by nutrient concentration and 32 phytoplankton biomass. The nutrient inventory and primary production appear to be largely influenced by 33 the freshwater content (FWC) variability in the region due to the significant relationships between FWC, 34 nitrate concentrations (r = 0.54, p < 0.05) and primary production rates (r = 0.56, p < 0.05). Moreover, we 35 found highly significant relationships between the nutrient levels and the primary production rates (r =

41	Keywords:
40	
39	nutrient inventory in the euphotic zone of the Chukchi Sea.
38	increase in freshwater accumulation might cause a decrease in primary production by lowering the
37	nutrient availability which is strongly related to the FWC variability. Our results imply that the predicted
36	0.75, $p < 0.001$). In conclusion, the primary production in the Chukchi Sea is primarily controlled by

- 42 Phytoplankton, Primary production, Chukchi Sea, Freshwater content, Arctic

45 **1. Introduction**

Over recent years, the Arctic Ocean has undergone drastic changes in the extent and thickness of sea 46 47 ice (Stroeve et al., 2008; Comiso et al., 2008; Kwok et al., 2009; Overland and Wang, 2013). The 48 continuing loss of sea ice may result in changes to various physical and chemical environmental 49 conditions in the Arctic Ocean. For example, the loss in sea ice cover allows more sunlight to enter the 50 surface layer of the Arctic Ocean, which results in a longer growing season for phytoplankton growth 51 (Arrigo et al., 2008; Ardyna et al., 2014). Stroeve et al. (2014) reported that the arctic melt season has lengthened at a rate of 5 days decade⁻¹ from 1979 to 2013, due to later autumn freeze-up. In accordance 52 53 with their findings, Ardyna et al. (2014) documented the development of a second bloom in the Arctic 54 Ocean during the fall, which coincides with the delayed freeze-up and the increased exposure to wind 55 stress. 56 However, the loss in sea ice can cause an increase in the input of freshwater (McPhee et al., 2009). In fact, the freshwater volumes in the Canada and Makarov Basins increased by of 8500 km³ in 2008 due to 57 increased sea ice melting and river discharge (McPhee et al., 2009; Rabe et al., 2011). This phenomenon 58 59 can enhance the stratification in the upper ocean (Yamamoto-Kawai et al., 2009) and consequently reduce 60 vertical mixing, thereby preventing nutrient inputs from deep waters to the euphotic zone. In fact, 61 McLaughlin and Carmack (2010) found a deepening of the nutricline due to the accumulation of surface 62 freshwater in the Canada Basin.

63	In the Chukchi Sea as inflow shelf, there was an increased volume flux of 50% in 2011 (~ 1.1Sv)
64	relative to 2001 (~ 0.7 Sv), which was accompanied by increases in heat and freshwater fluxes (Woodgate
65	et al., 2012). Though the volume flux may vary both seasonally and annually under the influence of the
66	local wind fields, the recent increases in freshwater fluxes in the region may have important implications
67	for phytoplankton in terms of nutrient availability for their growth (Woodgate et al., 2005a, 2005b, 2006).
68	Thus, it is important to identify how phytoplankton respond to these environmental changes in the region
69	in terms of production and/or community structure. According to Li et al. (2009), the phytoplankton
70	community has changed under the freshening and stratifying condition in the Canada Basin. Notably, the
71	abundance of small phytoplankton (< 2 μ m) has increased, whereas the abundance of large phytoplankton
72	(2-20 $\mu m)$ has decreased. Yun et al. (2014) also found that compared with previous reports, the small
73	phytoplankton were more abundant on the Chukchi Sea shelf, which is dominated by low nutrients and
74	freshening conditions. Therefore, the changes in recent phytoplankton production under the rapidly
75	changing environmental conditions need to be monitored because the changes in phytoplankton
76	production could have important implications for understanding ecosystem changes in the Arctic Ocean.
77	In order to understand climate and ecosystem change in the Pacific Arctic Ocean which is a region
78	summer sea ice cover was declining dramatically (Crane and Ostrovskiy, 2015), the RUSALCA (Russian-
79	American Long-term Census of the Arctic) expedition, which is a joint US-Russian research program,
80	started from 2004 as multidisciplinary investigations in the Bering and Chukchi Seas. Three RUSALCA

81	expeditions (2004, 2009, and 2012) provided a good opportunity for continuous measurements of the
82	primary production in the entire Chukchi Sea, including the Exclusive Economic Zone of the Russian
83	Federation. The 2004 RUSALCA expedition was conducted from 8 to 24 August, 2004 (Lee et al., 2007).
84	The 2009 RUSALCA expedition was executed from 1 to 30 September, 2009 (Yun et al., 2014). The 2012
85	RUSALCA expedition was carried out from 27 August to 16 September, 2012. This study is part of the
86	2012 RUSALCA expedition.
87	In this study, we addressed the regional characteristics of primary production by examining the main
88	driving factors responsible for the regional variability in the Chukchi Sea based on measurements taken in
89	2012. In addition, we investigated the recent trends in primary production in the Chukchi Sea based on
90	the results of the three RUSALCA expeditions (2004, 2009, and 2012) in the Chukchi Sea. Finally, we
91	emphasized the potential effects of freshwater accumulation on the primary production in the Chukchi
92	Sea because changing amounts and distributions of freshwater content could lead to changes in the
93	primary production rates.
94	
95	2. Materials and methods

96 2.1. Study area and sampling

97	The RUSALCA expedition in 2012 was conducted onboard the Russian vessel Professor Khromov in
98	the Chukchi Sea from 27 August to 16 September. The study area was comprised of several sections

99	between the Bering Strait and the vicinity of Herald Canyon (Fig. 1). To understand the regional
100	characteristics of primary production, the study area was divided into two geographic regions
101	(northern/southern) following Yun et al. (2014). The northern region consisted of stations in the vicinity
102	of Herald Canyon (CEN and HC sections) (Fig. 1). The stations in the Chukchi South and Cape Lisburne
103	(CS and CL sections) were included in the southern region. Most of the bathymetric depths in the entire
104	study area were quite shallow, with a mean of 55 m (SD = \pm 11 m). Between the production stations, the
105	depth of euphotic zone from the surface to 1% light depth varied between 20 and 46 m, with a mean of 29
106	± 10 m (Table 1).
107	Oceanographic/biological samples were taken from a total of 54 conductivity-temperature-depth
108	(CTD) stations. The vertical profiles of water temperature and salinity were obtained using a Sea-Bird
109	model SBE911plus CTD profiler. Water samples were collected with a stainless-steel rosette sampler that
110	was equipped with 21 10-liter bottles at every CTD station. The data from the previous RUSALCA
111	expeditions (in 2004 and 2009) were included to understand the recent trends in primary production in the
112	Chukchi Sea.
113	
114	2.2. Physical and chemical variables

115 The stratification index of the water column ($\Delta \sigma_t$) (in kg m⁻³) was determined as the difference in $\Delta \sigma_t$ 116 values between the surface and the bottom depth according to Yun et al. (2014). The surface mixed layer

7

117 (Z_m) was defined as the depth at which the density (sigma-*t*) gradient was 0.05 kg m⁻³ higher than the 118 surface density, as in Coupel et al. (2015). The depth of the euphotic zone (Z_{eu}) in this study was defined 119 as the depth receiving 1% of the surface PAR value, as in Lee et al. (2007) and Yun et al. (2014), and was 120 obtained from a Biospherical QSP-2300 PAR sensor (Biospherical Instruments Inc.) that was lowered 121 with the CTD/rosette sampler. The nitracline (Z_{nit}) was determined as the depth at which the nitrate 122 gradient was greater than 0.1 µM m⁻¹ according to the definition of Coupel et al. (2015).

123

124 2.3. Fresh Water Content (FWC)

To assess the surface water freshening, the freshwater content (FWC) was calculated followingCarmack et al. (2008):

127

$$FWC = \int_{z_{lim}}^{0} (1 - S(z)/S_{ref}) dz$$

128

where S and S_{*ref*} are the *in situ* and reference salinities, respectively, and Z_{lim} is the depth where S equals S_{*ref*} (34.8 on the practical salinity scale). We used a reference salinity of 34.8 following Aagaard and Carmack (1989) to computing freshwater since it has been considered as the mean salinity for the Arctic Ocean.

134 2.4. Nutrient concentration measurements

135	The discrete water samples used in measuring the nutrient concentrations were obtained from 5 to 9
136	different depths depending on the water depths. The dissolved inorganic nutrient concentrations
137	(nitrite+nitrate, ammonium, phosphate, and silicate) were analyzed onboard immediately after collection
138	using an automated nutrient analyzer (ALPKEM RFA model 300) following the method of Whitledge et
139	al. (1981).

140

141 2.5. Chlorophyll a concentration measurements

142 The water samples used for measuring the chlorophyll a concentration were obtained from 4 to 7 143 different depths at most stations. The water samples were filtered through Whatman GF/F filters (24 mm), 144 and the filters were then kept frozen until analysis in the laboratory. The filters were subsequently 145 extracted in a 3:2 mixture of 90% acetone and DMSO in a freezer for 24 h, followed by centrifugation 146 (Shoaf and Lium, 1976). The chlorophyll a concentrations were measured using a Turner Designs model 10-AU fluorometer, which was calibrated using commercially available preparations of purified 147 148 chlorophyll a (Turner Designs, USA). The methods and calculations used to determine the chlorophyll a 149 concentrations followed the procedure of Parsons et al. (1984).

150

151 2.6. In situ primary production measurements

152 The water samples used to measure primary production were collected at six photic depths (100, 50,

153	30, 12, 5, and 1% penetration of the surface irradiance, PAR). At 11 selected morning stations, the <i>in situ</i>
154	primary productions of phytoplankton were measured using a ¹³ C- ¹⁵ N dual tracer technique (Lee and
155	Whitledge, 2005; Lee et al., 2007). This method could be useful for distinguish the relative importance of
156	nitrate and ammonium as nitrogen sources for the cell and population (Dugdale and Goering, 1967). We
157	followed the same analytical procedure of Lee et al. (2007) and Yun et al. (2014) to the measure primary
158	production to consistently compare the primary production levels determined in the three studies. Briefly,
159	heavy isotope-enriched (98-99%) carbon (NaH ¹³ CO ₃), nitrate (K ¹⁵ NO ₃), and ammonium (¹⁵ NH ₄ Cl)
160	substrates were inoculated in polycarbonate bottles (1 L) and then incubated on deck in a large
161	polycarbonate incubator cooled with running surface seawater under natural light conditions. After
162	approximately 4 to 5 h of incubation , all samples were filtered using pre-combusted (450°C, 4 h) glass
163	fiber filters (Whatman GF/F; diameter = 25 mm). After HCl fume treatment, the samples were sent to the
164	Alaska Stable Isotope Laboratory of the University of Alaska, Fairbanks, USA. The abundances of ¹³ C
165	and ¹⁵ N and the total amounts of particulate organic carbon (POC) and nitrogen (PON) were determined
166	using a Thermo Finnigan Delta+XL mass spectrometer. Finally, the carbon and nitrogen production rates
167	were calculated based on Hama et al. (1983) and Dugdale and Goering (1967), respectively.
168	

3. Results

3.1. Physical conditions

171 The surface temperature (T_{sur}) varied from -2 to 9 °C in the study area in 2012 (Fig. 2a). The higher 172 temperatures were found in the eastern side of the southern Chukchi Sea due to the strong influence of the 173 Alaskan Coastal Water (warmer and less saline). The freezing temperatures were observed in the vicinity 174 of the Herald Canyon and gradually decreased toward the northward. At the surface, the salinity varied 175 between 21 and 33 psu. The surface salinity (Ssur) was considerably lower in the southwestern side 176 compared with the northeastern side of the southern Chukchi Sea (Fig. 2b). The stratification index ($\Delta \sigma_t$) in the study area ranged from 0.7 to 9.7 kg m⁻³, with a mean of 3.8 ± 2.2 kg m⁻³. The stratification in the 177 178 southern region was higher than in the northern region (Fig. 2c). The general distribution of the 179 stratification index was similar to that of surface salinity because it tended to be high in areas where 180 surface salinity was low. The surface mixed layer (Zm) was thinner than 15 m over the entire study area 181 (Fig. 2d). In the study area, the depths of nitracline (Znit) ranged from 2.5 m to 35 m (Fig. 2e), with a 182 mean nitracline depth of 12.8 ± 7.7 m.

183

184 3.2. Nutrient distribution

Since the mean depths of euphotic zone in this study was about 30 m, the distribution of ambient nutrient concentrations integrated from surface to 30 m of the water column is shown in Fig. 3. The inventory of nitrite+nitrate ranged from 21.51 to 355.43 mmol m^{-2} , whereas the ammonium inventory ranged from 15.36 to 109.51 mmol m^{-2} (Figs. 3a and 3b). High nitrite+nitrate inventory that exceeded 200 mmol m⁻² were observed at the center of the CL section (Fig. 3a). The inventories of these nutrients in the southern region $(134.15 \pm 98.41 \text{ mmol m}^{-2} \text{ for nitrite+nitrate and } 61.22 \pm 20.55 \text{ mmol m}^{-2} \text{ for ammonium},$ respectively) were approximately two times higher than their inventories in the northern region (75.01 ± 52.01 mmol m⁻² for nitrite+nitrate and 40.49 ± 20.69 mmol m⁻² for ammonium) (see Table 2). The inventory of phosphate in the study area was fairly uniform, with a mean of 24.03 ± 8.30 mmol m⁻² (Fig. 3c). The silicate inventory was generally higher in the southern region than in the northern region (Fig. 3d).

196

197 *3.3. Chlorophyll a concentration*

198 The distribution of the chlorophyll a concentration in the upper 30 m (i.e., mean depth of euphotic 199 zone in this study) of the entire study area is shown in Fig. 4. High chlorophyll a concentrations of over 80 mg m⁻² were observed in the western side of the CL section (from st. CL5 to st. CL8), and low 200 201 chlorophyll a concentrations were shown in the western side of the CS section (Fig. 4). The highest concentration (286.4 mg m⁻²) was obtained at station CL8. Over the entire study area, the mean 202 chlorophyll *a* concentration integrated from the surface to 30 m was 42.7 mg m⁻² (SD = \pm 57.4 mg m⁻²). 203 The average concentrations were 21.7 mg m⁻² (SD = \pm 19.6 mg m⁻²) and 54.5 mg m⁻² (SD = \pm 67.7 mg m⁻² 204 ²) for the northern and southern regions, respectively. 205

206

207 3.4. Primary production rates

208 Overall, the hourly carbon production rates integrated over the euphotic zone from six light depths ranged from 1.1 to 108.6 mg C m⁻² h⁻¹, with a mean of 27.7 mg C m⁻² h⁻¹ (SD = 34.7 mg C m⁻² h⁻¹). The 209 highest primary production rates were found at station CL8 (108.6 mg C m⁻² h⁻¹) followed by station 210 CL5A (82.1 mg C m⁻² h⁻¹) (Fig. 5). In the northern region, the carbon production rates ranged from 1.1 to 211 18.7 mg C m⁻² h⁻¹, with a mean of 9.0 mg C m⁻² h⁻¹ (SD= \pm 6.4 mg C m⁻² h⁻¹). In comparison, the average 212 213 rates in the southern region were approximately five times higher than the average rates in the northern region $(43.3 \pm 41.7 \text{ mg C m}^{-2} \text{ h}^{-1})$. 214 215 The vertically integrated nitrate production rates ranged from 0.14 to 18.77 mg NO₃ m⁻² h⁻¹, with a mean of 2.72 mg N m⁻² h⁻¹ (SD = \pm 5.51 mg N m⁻² h⁻¹), whereas the ammonium production rates ranged 216 from 1.16 mg NH₄ m⁻² h⁻¹ to 16.16 mg NH₄ m⁻² h⁻¹, with a mean of 4.66 mg NH₄ m⁻² h⁻¹ (SD = \pm 4.38 mg 217 NH₄ m⁻² h⁻¹) (Fig. 6). The total nitrogen (nitrate+ammonium) production rates ranged from 1.31 mg N m⁻¹ 218 2 h⁻¹ to 34.94 mg N m⁻² h⁻¹, with a mean of 7.38 mg N m⁻² h⁻¹ (SD = ± 9.71 mg N m⁻² h⁻¹). At most stations 219 220 except for stations of CL8 and CS8R, the ammonium production rates were generally higher than the nitrate production rates (Fig. 6). The average nitrate production rate was 0.41 mg NO₃ m⁻² h⁻¹ (SD = \pm 221 $0.51 \text{ mg NO}_3 \text{ m}^{-2} \text{ h}^{-1}$) in the northern region, whereas the average nitrate production rate for the southern 222 region was 4.64 mg NO₃ m⁻² h⁻¹ (SD = \pm 7.13 mg NO₃ m⁻² h⁻¹). In comparison, the average ammonium 223 production rates for the northern and southern regions were 2.56 mg NH₄ m⁻² h⁻¹ (SD = \pm 1.74 mg NH₄ 224

225
$$m^{-2} h^{-1}$$
) and 6.41 mg NH₄ $m^{-2} h^{-1}$ (SD = ± 5.28 mg NH₄ $m^{-2} h^{-1}$), respectively.

226

227 3.5. Statistical analysis of environmental variables according to geographic regions

228 One-way analysis of variance (ANOVA) was performed to assess significant regional differences in the environmental and biological variables of the two geographic regions (i.e., northern and southern). 229 230 One-way ANOVA revealed significant regional differences for some of the environmental and biological 231 variables in the study area (Table 2). The temperature and salinity of the surface were significantly 232 different due to the effects of various water masses in the region. The stratification also exhibited a 233 significant regional variability due to the higher accumulation of freshwater in the southern region (p < p234 0.05). However, the mean mixed layer depths were not significantly different, with means of 7.6 m (SD= 235 \pm 2.8 m) and 8.4 m (SD = \pm 2.4 m) for the northern and southern regions, respectively (Table 2). The 236 mean depths of nitracline were similar between the regions, although there were differences between the 237 stations. The ambient nutrient concentrations of the upper 30 m showed highly significant differences, with higher concentrations in the southern region, although the phosphate concentration was not 238 239 significantly different between the regions (Fig. 3 and Table 2). In addition, the chlorophyll a concentrations were significantly different (p < 0.05), with a value that was approximately two times 240 241 higher in the southern region than in the northern region.

242

243 3.6. FWC distribution

244 To understand the potential effects of recent changes in the FWC on the primary production in the 245 Chukchi Sea, the FWC data obtained from the three RUSALCA expeditions were used for a comparison. 246 In 2012, the FWC in the study area were ranged from 2.1 to 8.5 m, with a mean of 4.5 m (SD = 1.2 m) 247 (Fig. 7a). The strongest freshwater accumulation was observed in the western side of the CS section and 248 north of the Herald Canyon (FWC = 6.7-8.5 m), whereas the lowest freshwater accumulation was 249 observed at the center of the CL section in the southern region (FWC = 2.8-3.7 m) (Fig. 7a). The FWC in 250 2009 ranged from 2.6 to 11.8 m, with a mean of 5.1 m (SD = \pm 1.7 m) (Fig. 7b). The mean value in 2009 was a little higher than that of 2012 due to the high accumulation of FWC from the East Siberian Sea and 251 252 the region north of Herald Canyon (Fig. 7b). In 2009, the FWC in the southern region was evenly 253 distributed with an accumulation of below 6 m. In 2004, the mean FWC was 4.7 ± 1.3 m and ranged from 254 2.0 to 9.9 m (Fig. 7c). Unlike the observations from 2012 and 2009, the FWC in the southern region in 255 2004 indicated a low accumulation in the western side and a progressive increase in FWC toward the 256 eastern side (Fig. 7c).

257

258 4. Discussion

259 4.1. Regional carbon and nitrogen production rates in 2012

260 In this study, there were large differences in the carbon and nitrogen production rates the between

261	southern and northern regions (Figs. 5, 6 and Table 2). The average rate of carbon production in the
262	southern region was about five times higher than that of the northern region (Fig. 5 and Table 2).
263	Similarly, the total nitrogen (nitrate+ammonium) production rates were approximately four times higher
264	in the southern region than in the northern region (Fig. 6). In particular, the regional differences were
265	much higher for the nitrate production rate than the ammonium production rate (Table 2). We also found
266	that the carbon production rates obtained from all of the RUSALCA expeditions (2004, 2009 and 2012)
267	showed highly significant differences between the regions ($p < 0.001$, n = 43) (data not shown).
268	The regional differences in phytoplankton production rates may have resulted from the different
269	environmental conditions, as revealed the statistical analysis (Table 2). Especially, the different nutrient
270	conditions and thereby different phytoplankton biomasses may be an important reason for the regional
271	differences in the production rates of phytoplankton, since there was a positive relationship between the
272	ambient nutrient concentrations (nitrate) and the chlorophyll a concentrations integrated from surface to
273	30 m (r = 0.6468, $p < 0.0001$, n = 41) (Fig. 8a). Moreover, we found that the carbon, nitrate and
274	ammonium production rates were significantly correlated with the chlorophyll a concentration (r = 0.9234,
275	r = 0.9641 and $r = 0.9798$, $p < 0.0001$, $n=11$, respectively) (Fig. 8b). Even though the regional differences
276	in temperature are quite similar to that in primary production rates, there was no significant relationship
277	between temperature and primary production rates in this study. According to Gosselin et al. (1997), the
278	latitudinal variability in the phytoplankton production and biomass were primarily regulated by changes

in the surface ice cover and the depths of the surface mixed layer, which determine the amount of light 280 available to the phytoplankton in the water column. However, this was not the case in our study, as the 281 mixed-layer depths were not significantly different between the southern and northern regions of the

282 Chukchi Sea (Table 2).

279

283 The production/biomass ratio (P/B ratio), which was calculated by dividing the daily carbon production rate (mg C m⁻² d⁻¹) by the integrated chlorophyll *a* concentration (mg chl m⁻²), in the southern 284 region $(9.61 \pm 4.26 \text{ mg C} (\text{mg chl-a})^{-1} \text{d}^{-1})$ was somewhat higher than the P/B ratio in the northern region 285 $(5.46 \pm 1.27 \text{ mg C} (\text{mg chl-a})^{-1} \text{d}^{-1})$. This result indicated better carbon production efficiency by the 286 phytoplankton in the southern region. Therefore, the regional differences in the primary production rates 287 may have been affected by different production efficiencies in addition to the different phytoplankton 288 289 biomasses induced under different nutrient conditions.

290

291 4.2. Primary production rate in 2012 compared to the previous RUSALCA expeditions

292	Based on a 15-hour photo period in the Chukchi Sea (Hansell and Goering 1990; Lee et al. 2007; Yun
293	et al. 2014) and the hourly carbon production rates measured in this study, in 2012, the daily carbon
294	production rates integrated from the surface to 1 % light depth ranged from 0.02 to 1.61 g C m ⁻² d ⁻¹ . The
295	daily carbon production rate in 2012 (mean \pm SD = 0.42 \pm 0.52 g C m ⁻² d ⁻¹), which was averaged from the
296	values from all the productivity stations, was quite similar to the daily carbon production rate of 2004

 $(\text{mean} \pm \text{SD} = 0.41 \pm 0.53 \text{ g C m}^{-2} \text{ d}^{-1})$ reported by Lee et al. (2007). The production rates (mean $\pm \text{SD} =$ 297 0.26 ± 0.24 g C m⁻² d⁻¹) obtained in 2009 and presented by Yun et al. (2014) were significantly lower than 298 299 those from 2012 and 2004, which is believed to be due to the different sampling times among the three 300 cruises because the seasonal variation in primary productivity is quite large in this region (Springer and 301 McRoy 1993; Wang et al. 2005; Hill et al., 2013). These differences in the primary production rates 302 obtained by the three cruises also may have been due to interannual variations in primary productivity in 303 the Chukchi Sea, as Hirawake et al. (2012) used satellite remote sensing data obtained from 2002 to 2010 304 to show that the Chukchi Sea experiences strong interannual variation in August and September. 305 In 2012, the average daily carbon production rates were 0.66 g C m⁻² d⁻¹ (SD = \pm 0.62 g C m⁻² d⁻¹) in the southern region and 0.14 g C m⁻² d⁻¹ (SD = ± 0.10 g C m⁻² d⁻¹) in the northern region. By comparison, 306 the average daily carbon production rates in the southern and northern regions were 0.57 g C m⁻² d⁻¹ (SD 307 $= \pm 0.64 \text{ g C m}^{-2} \text{ d}^{-1}$) and 0.16 g C m⁻² d⁻¹ (SD = $\pm 0.18 \text{ g C m}^{-2} \text{ d}^{-1}$) in 2004, respectively, and 0.38 g C m⁻² 308 d^{-1} (SD = ± 0.26 g C m⁻² d⁻¹) and 0.14 g C m⁻² d⁻¹ (SD = ± 0.16 g C m⁻² d⁻¹) in 2009, respectively. From 309 310 the regional comparisons, we found that the pattern of primary production in the Chukchi Sea is largely 311 different depending on regions. The primary production rates in the northern region were consistently low, 312 since the regionally low nutrient conditions and phytoplankton biomass. Thus, they were not largely 313 changed among the three cruises. In contrast, the primary production rates for the southern region were 314 considerably variable among the three cruises, although they including seasonal and interannual

316	production, the recent change in primary production for the southern region could be induced by changes
317	in nutrient conditions in the region. The changes in freshwater inputs in the region may have been closely
318	related to the nutrient and primary production variability (detailed in section 4.3).
319	
320	4.3. The effects of FWC on the nutrients and primary production in the southern Chukchi Sea
321	FWC plays an important role in determining the nutrient distribution/inventory and, therefore, the
322	availability of nutrients for phytoplankton growth in the Arctic Ocean. Coupel et al. (2015) showed that
323	the strong freshening of the Canada Basin resulted in the deepening of the nitracline, which had a
324	negative impact on primary production. In addition, Yun et al. (2014) reported that the low primary
325	production rate in the Chukchi Sea could be due to the decreases in the nutrient and chlorophyll a
326	concentrations that resulted from the increased input of fresh waters. In 2012, we found that the
327	freshwater had strongly accumulated in the western side of the southern Chukchi Sea and especially in the
328	CS section (Fig. 7a) due to an inflow of fresh Siberian Coastal Water or sea ice meltwater. This could
329	have resulted in the low primary production rates observed in the western region and the CS section of the
330	southern Chukchi Sea (Fig. 5). In contrast, relatively high production rates were observed in the center of
331	the CL section, the region with the lowest accumulation of freshwater (Figs. 5 and 7a). The strong inflow
332	of Siberian Coastal Water from the East Siberian Sea into the Chukchi Sea was also found in 2009,

variations. Since this study revealed that the nutrient is an important factor in controlling primary

315

333	though it was not detected in 2004 (Figs. 7b and 7c). These inputs of freshwater presumably influenced
334	the nutrient reservoir and its replenishment from deeper layers by altering stratification of the water
335	column (Coupel et al., 2015), eventually driving the observed changes in primary production in the region
336	Based on data obtained from southern region during three cruises, we found that FWC had a significant
337	negative effect on the nitrate concentrations (r = 0.5363, $p < 0.05$) and primary production rates (r =
338	0.5645, $p < 0.05$) (Figs. 9a and 9b). As a result, the primary production rates in the Chukchi Sea could be
339	highly significantly correlated with the nitrate concentrations (r = 0.7482, $p < 0.001$) (Fig. 9c). Therefore,
340	we might conclude that the primary production in the Chukchi Sea could be primarily controlled by
341	nutrient availability related to FWC variability, as reported in previous studies conducted in different
342	regions of the Arctic Ocean (Tremblay and Gagnon, 2009; Tremblay et al., 2002, 2006, Coupel et al.,
343	2015). However, the influence of ocean circulations should be examined further because the ocean
344	circulation such as pacific inflow and Beaufort Gyre can redistribute the amount of freshwater (Giles et
345	al., 2012), eventually leading to regional differences in FWC (Giles et al., 2012; Morison et al., 2012).
346	Additionally, we need to consider the local wind field, as the spatial distribution of FWC is largely
347	dependent on the wind and is controlled by atmospheric pressure patterns (Anderson et al., 2011).
348	
349	4.4. Current status of the primary production in the Chukchi Sea

351	primary production in the region in recent years were plotted with those from the previous studies in
352	decades ago (Fig. 10). The average carbon production rate from the three RUSALCA cruises in the
353	Chukchi Sea was 0.33 g C m ⁻² d ⁻¹ (SD = 0.40 g C m ⁻² d ⁻¹). In addition, Hill and Cota (2005) reported that
354	the mean daily production rate during the initial ice breakup was 0.8 g C m ⁻² d ⁻¹ in 2002. The daily
355	production rates obtained by Lee et al. (2012) and Lee et al. (2013) were 0.54 and 0.86 g C m ⁻² d ⁻¹ ,
356	respectively (Fig. 10). Even though the different sea ice condition could affect difference in the
357	productivity, these recent measurements of primary production (Hill and Cota 2005; Lee et al., 2007,
358	2012 and 2013; Yun et al., 2014; This study) showed significantly lower rates compared with the
359	previously reported rates from the region (Hameedi, 1978; Korsak, 1992; Zeeman, 1992) (t-test, $p < 0.01$).
360	Moreover, it is obviously shown a decreasing trend of primary production (r = 0.7689, $p < 0.01$) (Fig. 10).
361	This is very interesting because primary production could be expected to increase in the region due to the
362	increased light availability to the phytoplankton. For example, based on satellite ocean color data, Arrigo
363	et al. (2008) found large increases in the annual net primary production on the continental shelves of the
364	Chukchi Sea as well as Siberian and Laptev seas due to increased open water areas and longer growing
365	seasons. However, the <i>in situ</i> measurements of primary production in recent years (Hill and Cota 2005;
366	Lee et al., 2007, 2012 and 2013; Yun et al., 2014; This study) have shown consistently lower primary
367	production rates compared to those in previous studies.

368 The strong seasonal and interannual variation in the region could be suggested for reason causing the

369	low primary production, as discussed above. Hill et al. (2013) found that the seasonal variations in
370	primary production in the southern Chukchi Sea peaked in July and then progressively declined in August
371	and September. In fact, the lowest primary production rates given by Yun et al. (2014) were obtained from
372	the late summer season (i.e., from 1 to 30, September, 2009) compared with the rates found in the present
373	study (from 30 August to 14 September, 2012) or in Lee et al. (2007) (from 11 to 22 August, 2004). In
374	comparison, previous studies (Hameedi, 1978; Korsak, 1992; Zeeman, 1992) included the measurements
375	obtained from July to August (Fig. 10). However, their measurements just starting from the end of July
376	were mostly done during August (Korsak, 1992; Zeeman, 1992). Although recent measurements from the
377	three RUSALCA cruises (2004, 2009 and 2012) may not have reflected the highest values (i.e., July) of
378	primary production, the measurements from Hill and Cota (2005) or Lee et al. (2012 and 2013) include
379	the values in the mid-July and early August. Therefore, the recent low rates of primary production might
380	be reflected by decreasing trend rather than results of seasonal and interannual variations.
381	More plausible reason for the recent low primary production in the Chukchi Sea could be due to the
382	decreased concentrations of nutrients and chlorophyll a. According to Whitledge and Lee (unpublished
383	data), in recent years, there have been significant decreases of 30-50% in nutrient concentrations and
384	approximately 40% in the integrated chlorophyll a concentration in the Bering Strait and the Chukchi Sea.
385	Based on the significant relationships between primary production and the nutrient and FWC (discussed
386	in section 4.3), the recent decrease in nutrient and chlorophyll a concentrations may have been closely

387	related to the changes in freshwater inputs in the region. According to Serreze et al. (2006), there was
388	recently larger import of freshwater through the Bering Strait compared with previous estimates.
389	Therefore, the recent decreases in the concentrations of major inorganic nutrients and chlorophyll a may
390	have resulted in lower primary production rates in the Chukchi Sea.
391	Recently, the freshwater content in the Arctic Ocean, which includes river discharge, pacific water
392	inflow through the Bering Strait, sea ice melt water and net precipitation (Jones et al., 2008), has
393	increased over the past few decades. If the increased freshwater content in the Chukchi Sea are
394	continuously observed, the Chukchi Sea might have become less productive region compared with
395	previous decades.

396

5. Conclusions 397

398 This study reported the regional characteristics of primary production in the Chukchi Sea and recent trend of primary production based on in situ measurements. The different nutrient conditions and 399 400 phytoplankton biomass could be an important reason for the regional differences in the production rates 401 of phytoplankton. Based on comparison between previous studies in decades ago and recent 402 measurements, we found that recent primary production in the Chukchi Sea showed a decreasing trend. 403 The changes in freshwater inputs in the region may have been closely related to the nutrient and primary production variability. Although Coupel et al. (2015) reported that the recent freshening of the Arctic 404

405	Ocean does not significantly affect primary production in the Chukchi shelf based on comparison with
406	measurements in the deep Canada Basin, our results showed that the freshwater variability in the Chukchi
407	Sea has had a large influence on the recent changes in primary production by controlling the nutrient
408	inventory. If the increased freshwater inflow persists, the primary production in the region will
409	considerably decrease, ultimately resulting in changes in the regional characteristics of primary
410	production. However, a large interannual variability of primary production remains despite the statistical
411	significance observed in this study. Therefore, more measurements under various environmental
412	conditions are needed to better understand the recent variations in the primary production in the Chukchi
413	Sea. In particular, there could be some changes in the phytoplankton community structures because the
414	smaller cells benefit more than the larger cells under increased freshening conditions (Li et al., 2009).

415

416 Acknowledgments

417 We thank the captain and crew of the Professor Khromov for their outstanding assistance during the cruise. 418 We gratefully acknowledge the physical oceanographers from Woods Hole Oceanographic Institute (M. 419 Swartz, S. Mills and J. Pietro), who provided the CTD data. We also appreciate NOAA for supporting the 420 RUSALCA program. This study was financially supported by the "2015 Post-Doc. Development Program" 421 of Pusan National University, Korea. This work was also supported by grants from the Korea-Polar Ocean 422 in Rapid Transition (K-PORT; PM14040) program funded by the Ministry of Oceans and Fisheries, Korea.

424 **References**

425

426	Anderson,	L.G	. Björk,	G.,	Jutterström,	S.,	Pipko,	I.,	Shakhova,	N.,	, Semiletov,	I., and	Wählström,	I.:	East
-----	-----------	-----	----------	-----	--------------	-----	--------	-----	-----------	-----	--------------	---------	------------	-----	------

- 427 Siberian Sea, an Arctic region of very high biogeochemical activity, Biogeosciences, 8, 1745–1754,
 428 doi:10.5194/bg-8-1745-2011, 2011.
- 429 Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., and Tremblay, J.-É.: Recent Arctic Ocean
- 430 sea ice loss triggers novel fall phytoplankton blooms, Geophys. Res. Lett., 41, 6207–6212,
- 431 doi:10.1002/2014GL061047, 2014.
- 432 Arrigo, K.R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine primary

433 production, Geophys. Res. Lett., 35, L19603, doi:10.1029/2008GL035028, 2008.

- 434 Carmack, E., McLaughlin, F., Yamamoto-Kawai, M., Itoh, M., Shimada, K., Krishfield, R., and
- 435 Proshutinsky, A.: Freshwater storage in the Northern Ocean and the special role of the Beaufort
- 436 Gyre, in: Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, edited
- 437 by: Dickson, R. R., Meincke, J., and Rhines, P., Springer, New York, 145 169, 2008.
- 438 Comiso, J.C., Parkinson, C.L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover,
- 439 Geophys. Res. Lett, 35, L01703, doi:10.1029/2007GL031972, 2008.
- 440 Coupel, P., Ruiz-Pino, D., Sicre, M.A., Chen, J.F., Lee, S.H., Schiffrine, N., Li, H.L., and Gascard, J.C.:
- 441 The impact of freshening on phytoplankton production in the Pacific Arctic Ocean, Prog. Oceanogr.,

442 131, 113-125, 2015.

- 443 Crane, K., and Ostrovskiy, A.: Introduction to the special issue: Russian-American Long-term Census of
- 444 the Arctic (RUSALCA). Oceanography, 28(3), 18(3), <u>http://dx.doi.org/10.5670/oceanog.2015.54</u>,
- 445 2015.
- Dugdale, R.C., and Goering, J.J.: Uptake of new and regenerated forms of nitrogen in primary
 productivity, Limnol. Oceanogr., 12, 196-206, 1967.
- 448 Giles, K.A., Laxon, S.W., Ridout, A.L., Wingham, D.J., and Bacon, S.: Western Arctic Ocean freshwater
- storage increased by wind-driven spin-up of the Beaufort Gyre, Nat. Geosci., 5, 194–197, 2012.
- 450 Gosselin, M., Levasseur, M., Wheeler, P.A., Horner, R.A., and Booth, B.C.: New measurements of
- 451 phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. Part II, 44, 1623–1644,
- 452 1997.
- 453 Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A., and Ichimura, S.:
- 454 Measurement of photosynthetic production of a marine phytoplankton population using a stable ¹³C
- 455 Isotope, Mar. Biolo., 73, 31-36, 1983.
- Hameedi, M.J.: Aspects of water column primary productivity in the Chukchi Sea during summer, Mar.
 Biol., 45, 37–46, 1978.
- 458 Hansell, D.A., and Goering, J.J.: Pelagic nitrogen flux in the northern Bering Sea, Cont. Shelf Res., 10,

459 501–519, 1990.

- 460 Hill, V., and Cota, G.F.: Spatial patterns of primary production on the shelf, slope and basin of the western
- 461 Arctic in 2002, Deep-Sea Res. Part II, 52, 3344-3354, 2005.
- 462 Hill, V.J., Matrai, P.A., Olson, E., Suttles, S., Steele, M., Codispoti, L.A., and Zimmerman, R.C.:
- 463 Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed
- 464 estimates, Prog. Oceanogr., 110, 107–125, http://dx.doi.org/10.1016/j.pocean.2012.11.005, 2013.
- 465 Hirawake, T., Shinmyo, K., Fujiwara, A., and Saitoh, S.: Satellite remote sensing of primary productivity
- in the Bering and Chukchi Seas using an absorption-based approach, ICES J. Mar.Sci., 69, 1194–
- 467 1204, 2012.
- 468 Jones, E.P., Anderson, L.G., Jutterstrom, S., Mintrop, L., and Swift, J.H.: Pacific freshwater, river water
- 469 and sea ice meltwater across Arctic Ocean basins: results from the 2005 Beringia Expedition, J.
- 470 Geophys. Res., 113, C08012, 2008.
- 471 Korsak, M.N.: Primary production of organic matter, in: Results of the Third Joint US-USSR Bering and
- 472 Chukchi Seas Expedition (BERPAC): Summer 1988, edited by: Nagel, P.A., US Fish and Wildlife
- 473 Service, Washington, DC, 215–218, 1992.
- 474 Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi, D.: Thinning and volume
- 475 loss of Arctic sea ice: 2003–2008, J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312,.
 476 2009.
- 477 Lee, S.H., and Whitledge, T.E.: Primary and new production in the deep Canada Basin during summer

- 478 2002, Polar Biol., 28, 190-197, 2005.
- 479 Lee, S.H., Whitledge, T.E., and Kang, S.H.: Recent carbon and nitrogen uptake rates of phytoplankton in
- 480 Bering Strait and the Chukchi Sea, Cont. Shelf Res., 27, 2231-2249, 2007.
- 481 Lee S.H., Joo, H.M., Liu, Z., Chen, J., and He, J.: Phytoplankton productivity in newly opened waters of
- the western Arctic Ocean, Deep Sea Res. Part II, 81–84, 18–27, 2012.
- 483 Lee, S.H., Yun, M.S., Kim, B.K., Saitoh, S., Kang, C.-K., Kang, S.H., and Whitledge, T.E.: Latitudinal
- 484 carbon productivity in the Bering and Chukchi Seas during the summer in 2007, Cont. Shelf Res., 59,
- 485 28-36, 2013.
- 486 Li, W.K.W., McLaughlin, F.A., Lovejoy, C., and Carmack, E.C.: Smallest algae thrive as the Arctic

487 Ocean freshens, Science, 326,539, doi:10.1126/science.1179798, 2009.

- 488 McLaughlin, F.A., and Carmack, E.C.: Deepening of the nutricline and chlorophyll maximum in the
- 489 Canada Basin interior, 2003-2009, Geophys. Res. Lett., 37, L24602, doi:10.1029/2010GL045459,
- 490 2010.
- 491 McPhee, M.G., Proshutinsky, A., Morison, J.H., Steele, M., and Alkire, M.B.: Rapid change in freshwater
- 492 content of the Arctic Ocean, Geophys. Res. Lett., 36, L10602, 2009.
- 493 Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen, R., and Steele, M.: Changing
- 494 Arctic Ocean freshwater pathways, Nature, 481, 66–70, 2012.
- 495 Overland, J.E., and Wang, M.: When will the summer Arctic be nearly sea ice free?, Geophys. Res.

496 Lett., 40, 2097-2101, DOI: 10.1002/grl.50316, 2013.

- 497 Parsons, T.R., Maita, Y., and Lalli, C.M.: A manual of chemical and biological methods for seawater
- 498 analysis, Pergamon Press, New York, pp 173, 1984.
- 499 Proshutinsky, A., Krishfield, R., Timmermans, M.-L., Toole, J., Carmack, E., McLaugh lin, F., Williams,
- 500 W.J., Zimmermann, S., Itoh, M., and Shimada, K.: Beaufort Gyre freshwater reservoir: state and
- 501 variability from observation, J. Geophys. Res., 114, doi:10.1029/2008JC005104, 2009.
- 502 Rabe, B., Karcher, M., Schauer, U., Toole, J.M., Krishfield, R.A., Pisarev, S., Kauker, F., Gerdes, R., and
- 503 Kikuchi, T.: An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006–
- 504 2008 period, Deep-Sea Res. Part I, 58, 173–185, 2011.
- 505 Serreze, M.C., Barrett, A.P., Slater, A.G., Woodgate, R.A., Aagaard, K., Lammers, R.B., Steele, M.,
- 506 Moritz, R., Meredith, M., and Lee, C.M.: The large-scale freshwater cycle of the Arctic, J. Geophys.
- 507 Res., 111, C11010, 2006.
- 508 Shoaf, W.T., and Lium, B.W.: Improved extraction of chlorophyll-a and -b from algae using dimethyl
- 509 sulfoxide, Limnol. Oceanogr., 21, 926–928, 1976.
- 510 Springer, A.M., and McRoy, C.P.: The paradox of pelagic food webs in the northern Bering Sea-III.
- 511 Patterns of primary production, Cont. Shelf Res., 13, 575–599, 1993.
- 512 Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M., Maslanik, J., Meier, W., and Scambos, T.:
- 513 Arctic sea ice extent plummets in 2007, EOS Trans., AGU, 89(2), 13–14, 2008.

514	Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt season and
515	implications for sea ice loss, Geophys. Res. Lett., 41, 1216–1225, doi:10.1002/2013GL058951, 2014.
516	Tremblay, JE., and Gagnon, J.: The effects of irradiance and nutrient supply on the productivity of
517	Arctic waters: a perspective on climate change, Nato Sci Peace Secur, http://dx.doi.org/10.1007/978-
518	1-4020-9460-6_7,73-93, 2009.
519	Tremblay, J.E., Gratton, Y., Fauchot, J., and Price, N.M.: Climatic and oceanic forcing of new, net, and
520	diatom production in the North Water, Deep-Sea Res. Part II, 49, 4927-4946, 2002.
521	Tremblay, J.E., Michel, C., Hobson, K.A., Gosselin, M., and Price, N.M.: Bloom dynamics in early
522	opening waters of the Arctic Ocean, Limnol. Oceanogr., 51, 900-912, 2006.
523	Wang, J., Cota, G.F., and Comiso, J.C.: Phytoplankton in the Beaufort and Chukchi Seas: Distribution,
524	dynamics, and environmental forcing, Deep-Sea Res. Part II, 52, 3355-3368, 2005.
525	Whitledge, T.E., Malloy, S.C., Patton, C.J., and Wirick, C.D.: Automated nutrient analysis in seawater.

- Brookhaven National Laboratory Technical Report BNL 51398, 1981. 526
- 527 Woodgate, R.A., Aagaard, K., and Weingartner, T.J.: A year in the physical oceanography of the Chukchi
- 528 Sea: Moored measurements from autumn 1990-1991, Deep-Sea Res. Part II, 52, 3116-3149,
- doi:10.1016/j.dsr2.2005.10.016, 2005a. 529

- 530 Woodgate, R.A., Aagaard, K., and Weingartner, T.J.: Monthly temperature, salinity, and transport
- variability of the Bering Strait throughflow, Geophys. Res. Lett., 32, 531 L04601,

532 doi:10.1029/2004GL021880, 2005b.

- 533 Woodgate, R.A., Aagaard, K., Weingartner, T.J.: Interannual changes in the Bering Strait fluxes of
- volume heat and freshwater between 1991 and 2004, Geophys. Res. Lett., 33, L15609,
- 535 doi:10.1029/2006GL026931, 2006.
- 536 Woodgate, R.A., Weingartner, T.J., and Lindsay, R.: Observed increases in Bering Strait oceanic fluxes
- 537 from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water
- 538 column, Geophys. Res. Lett., 39, L24603, doi:10.1029/2012GL054092, 2012.
- 539 Yamamoto-Kawai, M., McLaughlin, F.A., Carmack, E.C., Nishino, S., Shimada, K., and Kurita, N.:
- 540 Surface freshening of the Canada Basin, 2003-2007: River runoff versus sea ice meltwater, J.
- 541 Geophys. Res., 114, C00A05, doi:10.1029/2008JC005000, 2009.
- 542 Yun, M.S., Whitledge, T.E., Gong, M., and Lee, S.H.: Low primary production in the Chukchi Sea shelf,
- 543 2009, Cont. Shelf Res., 76, 1-11, 2014.
- 544 Zeeman, S.I.: The importance of primary production and CO₂, in: Results of the Third Joint US–USSR
- 545 Bering and Chukchi Seas Expedition (BERPAC): Summer 1988, edited by: Nagel, P.A., US Fish and
- 546 Wildlife Service, Washington, DC, 39–49, 1992.

Figure Legends

Fig. 1. Locations of sampling stations during the 2012 RUSALCA expedition in the Chukchi Sea. The primary production rates were measured at the stations identified by blue circles. The st. CS8R location represents a revisit to st. CS8.

Fig. 2. The distribution of surface temperature $[T_{sur}][^{\circ}C]$ (a), surface salinity $[S_{sur}]$ (b), stratification index $[\Delta \sigma_t][\text{kg m}^{-3}]$ (c), surface mixed layer depth $[Z_m][m]$ (d), and nitracline depth $[Z_{nit}][m]$ (e) during the 2012 RUSALCA.

Fig. 3. The distributions of the integrated concentrations of ambient nitrite+nitrate $[NO_2+NO_3][mmol m^{-2}]$ (a), ammonium $[NH_4][mmol m^{-2}]$ (b), phosphate $[PO_4][mmol m^{-2}]$ (c), and silicate $[SiO_4][mmol m^{-2}]$ (d) from surface to 30 m during the 2012 RUSALCA.

Fig. 4. The chlorophyll a concentrations integrated from surface to 30 m [mg m⁻²] during the 2012 RUSALCA.

Fig. 5. Hourly carbon uptake rates $[mg C m^{-2} h^{-1}]$ integrated from the surface to 1% light depth during the 2012 RUSALCA.

Fig. 6 Hourly nitrate and ammonium uptake rates $[mg N m^{-2} h^{-1}]$ integrated from the surface to 1% light depth during the 2012 RUSALCA.

Fig. 7. The distributions of Fresh Water Content (FWC in m) in the Chukchi Sea in 2012 (a), 2009 (b) and 2004 (c).

Fig. 8. Relationships between nitrate concentrations (mmol m⁻²) and chlorophyll a concentrations (mg m⁻²) integrated from surface to 30 m (a) (n = 41); chlorophyll a concentrations (mg m⁻²) and daily carbon (g C m⁻² d⁻¹) and nitrogen production rate (mg N m⁻² d⁻¹) over the euphotic zones (b) (n = 11). All data obtained

during the 2012 RUSALCA.

Fig. 9. Relationships between FWC (m) and nitrate concentrations (mmol m^{-2}) (a); FWC (m) and daily primary production rate (g C $m^{-2} d^{-1}$) (b); nitrate concentrations (mmol m^{-2}) and daily primary production rate (g C $m^{-2} d^{-1}$) (c). All data obtained from southern region during the three RUSALCA cruises.

Fig. 10. A recent trend of primary production based on *in situ* carbon uptake measurements (13 C or 14 C) in the Chukchi Sea. All Chukchi Sea represents southern and northern Chukchi Sea.

Region	Station	Date	Loc	Depth	Z_{eu}	
Region	Station	(mm/dd/yr)	Latitude (°N)	Longitude (°W)	(m)	(m)
	CEN4	09/05/12	69.9828	-175.6857	63	34
	CEN1A	09/06/12	70.7085	-178.2988	38	20
Northern	HC2	09/07/12	70.9000	-175.0127	74	36
	HC26	09/08/12	71.7878	-174.3945	55	46
	G12	09/11/12	71.3980	-171.2597	55	46
	CS8	08/30/12	67.4312	-169.6030	51	24
	CS17	09/01/12	68.2983	-167.0418	40	22
C	CL5A	09/02/12	68.6407	-170.9423	59	20
Southern	CL3R	09/12/12	69.0048	-168.9000	57	26
	CL8	09/13/12	67.8692	-172.5482	53	24
	CS8R	09/14/12	67.4312	-169.6030	51	26

Table 1 Location, water depth (m) and euphotic depth (Z_{eu}) for primary productivity stations in the Chukchi Sea in 2012.

Table 2 Summary of one-way analysis of variance (ANOVA) for environmental variables in two geographic regions of the Chukchi Sea in 2012. The mean values (ranges in parentheses) and their significant differences (> or <) between northern and southern regions are given for surface temperature (T_{sur}), surface salinity (S_{sur}), stratification index ($\Delta \sigma_t$), surface mixed layer depth (Z_m), nitracline depth (Z_{nit}), fresh water content (FWC), nitrite+nitrate concentration of the upper 30 m (NO₂+NO₃), ammonium concentration of the upper 30 m (NH₄), phosphate concentration of the upper 30 m (PO₄), silicate concentration of the upper 30 m (SiO₄) and chlorophyll *a* concentration of the upper 30 m (Chl-a). *: *p* < 0.05, **: *p* < 0.01, ***: *p* < 0.001, ns: not significant. n = 52. Also given are mean and range values for carbon production (CP), nitrate production (NP) and ammonium production (AP) (all mg C or N m⁻² d⁻¹). n=11.

Variables	Northern		Southern
T _{sur} (°C)	0.62 (-1.33 ~ 4.13)	<***	3.89 (1.60 ~ 8.53)
S _{sur}	29.27 (27.30 ~ 32.04)	>*	27.48 (21.48 ~ 32.35)
$\Delta\sigma_t$ (kg m ⁻³)	3.15 (0.79 ~ 5.34)	<*	4.47 (0.71 ~ 9.71)
$Z_{m}\left(m ight)$	7.6 (4.0 ~ 14.0)	ns	8.4 (4.0 ~ 14.0)
$Z_{nit}(m)$	13.0 (2.5 ~ 30.0)	ns	12.6 (2.5 ~ 35.0)
NO ₂ +NO ₃ (mmol m ⁻²)	75.01 (21.51 ~ 218.22)	<*	134.15 (21.82 ~ 355.43)
NH ₄ (mmol m ⁻²)	40.49 (15.36 ~ 86.93)	<**	61.22 (28.54 ~ 109.51)
$PO_4 (mmol m^{-2})$	22.19 (5.43 ~ 34.26)	ns	25.95 (8.30 ~ 43.57)
SiO ₄ (mmol m ⁻²)	245.49 (104.79 ~ 800.49)	<***	410.86 (129.17 ~ 669.94)
Chl-a (mg/m ⁻²)	21.7 (2.2 ~ 69.3)	<*	54.5 (3.1 ~ 286.4)
$CP (mg C m^{-2} d^{-1})$	134.7 (16.3 ~ 280.7)		649.1 (151.3 ~ 1628.9)

NP (mg N $m^{-2} d^{-1}$)	6.1 (2.2 ~ 19.9)	69.7 (4.5 ~ 281.6)
AP (mg N $m^{-2} d^{-1}$)	38.4 (17.4 ~ 83.6)	96.2 (45.0 ~ 242.4)

