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         26 November, 2015 

 

Dear Dr. Bahn, 

Thank you for overseeing the review of our manuscript, Characterizing Leaf Area Index (LAI) 

and Vertical Foliage Profile (VFP) over the United States. We are pleased to provide a revision 

of our paper. We thank the reviewers for their careful comments and have responded to all 

concerns with suitable modifications to the manuscript. The manuscript has certainly improved 

following these feedbacks from the reviewers.  

In specific, we added all relevant equations deriving LAI and its vertical profiles from ICESat 

data in the supplement for easy reference. We included statistical results into figures whenever 

necessary. We also fixed minor problems related to typo or unclear variable definition. 

We hope you will now found our paper suitable for publication. 

 

 

Sincerely, 

Hao Tang  

University of Maryland 

College Park, MD 

GEOGRAPHICAL SCIENCES 

D E P A R T M E N T  O F  

A T  T H E  U N I V E R S I T Y  O F  M A R Y L A N D ,  C O L L E G E  P A R K  



We thank the two referees for their insight and very helpful comments. Below are our detailed 

responses to their concerns respectively: 

Referee #1 

General Comments: 

A) Section 2.2. Leaf-off season is indeed from November to March, but for maximum foliage, it would be 

recommended to use May to September shots only. Can you provide a short evaluation of shots chosen 

in leaf flushing and senescence periods? This factor may be responsible for your negative LAI bias. 

The referee is correct about the bias introduced by seasonality, and a simple average of 

GLAS LAI over different months supports this hypothesis: 3.02 for May, 3.14 for June, 2.93 

for October and 2.22 for November. 

However, we did not exclude the leaf flushing/senescence periods because we tried to 

maximize the usage of GLAS shots. The GLAS/ICESat mission was not operated year 

round but deployed for three 33-day campaigns per year due to defects in laser design which 

required it to maximize its operations for ice sheets (Schutz et al., 2005). The starting dates 

of each campaign were around mid-February, mid-May and early-October. The sampling 

bias caused by not using the October data, given how few shots we would have otherwise, 

far outweighed the small potential bias of using these data for continental scale mapping.  

B) Section 2.2. An equation defining the gap profile derived from the lidar waveform, and/or the choice 

of variables, e.g. the clumping factor if used and the g function. Just a little more information about this 

would be useful. 

We thank the referee for this helpful comment. We have now included all relevant equations 

in the supplement for easy reference, while also referring readers to the original equations 

and variables in Tang et al. 2014a and 2014b. 

C) Section 3.2 paragraph 2. Figure 3 and Figure 6 should be in sync. Do not present 5 m intervals if your 

final qualitative product is in 10m intervals. Either also present the 10 m intervals or only present 10m. 

We understand this point and debated whether to show them at the same intervals before 

submission. We decided it was more informative to show different intervals for the 

following reasons. Figure 3 shows that the accuracy of vertical foliage profile (VFP) varies at 

different height layers with lowest value in the understory (0 - 5 m). This result is very 

important because there is a large uncertainty of GLAS VFP at fine vertical resolutions (5 m 

or smaller) and therefore the product may not be reliable close to the ground. Secondly, the 

comparisons between Figure 1 and Figure 3 suggest that the accuracy of VFP is also 

dependent on the length of the integration interval, and a longer interval will lead to a higher 

accuracy (see Discussion P13686L26 - P13687L5). So the take home message is that the 

product is better used at 10 m intervals vs. 5 m, but this is really only evident if we actually 

show the 5 m intervals. When we then produce the continental map we naturally want the 



maps to be as accurate as possible a depiction of reality, and this is best achieved by going to 

10 m intervals. So the two figures are serving different purposes and we still feel that it is 

probably better to keep them as they are.  

D) I agree that showing the LAI for the WWF regions is significant, and an important result. What would 

also be useful would be to present LAIs for large gridded areas over the contiguous US, e.g. 1-3 degrees 

depending on the density of the GLAS pulses. This may also tie in well with the comparisons to elevation, 

forest cover, and precipitation. In fact, these could be presented alongside. 

Thank you for the suggestion. We have calculated 1 degree maps and now present these in 

the Supplement (shown below). 

 



Specific Comments 

1) P. 13681 Lin 10. 3x3 what?  

3×3 Landsat window 

2) Figure 2 & 3. Put the RMSE and R2 and bias on these figures or on the caption.  

 Thank you. All three have been put on the figures. 

3) Figure 2 caption: ‘Each VFP point represents an integrated value of foliage density at 5m height 

interval.’ Change this to ‘. . . at each 5m height interval’ or ‘. . .for all 5m height intervals’.  

 Thank you. We have changed this to ‘. . . at each 5m height interval’ 

4) Figure 9&10. Not sure why the boxplots are of different sizes. This is cosmetic, but some would prefer 

the same sizes.  

The standard visualization for data distributions using box plots is that their length 

corresponds the quartile values, the whiskers give the extremes of the range, and the widths 

are proportional to the actual number of observations. We would prefer to keep this 

standard. 

5) Section 3.3: By Forest Ratios do you mean canopy cover defined by some passive satellite? This is not 

clear. Do you use land class products under the footprint to define forested pixels vs non forested?  

Thank you for pointing this out. The Forest Ratio uses a MODIS land cover map to derive 

the number of GLAS shots that are classified as being over forest or non-forest (and the 

ratio gives this percentage).  We have added a reference to its definition in Section 3.3 and 

Figure 9 (p13684 line 22): Each GLAS footprint was classified as either forest or non-forest 

with an overlay of MODIS land cover map, and the Forest Ratio was defined as the 

percentage of footprints classified as forests in total GLAS shots within each elevation 

group.. 

6) Are all your boxplots in Fig 9 & 10 equivalent to your ecoregions, or some predefined grid size?  

The boxplots are not related to ecoregion. In each plot, the boxes represent a range of the 

value being associated with LAI (precipitation or elevation) to illustrate the relationship of 

LAI to these variables. The relationships are much easier to see when binned into classes. 

7) P. 13686 line2. Pedantic. . .but perhaps don’t use ‘reasonable’.  

Thank you. We changed the word 'reasonable' to 'acceptable' 

8) P. 13687. Are GLAS LAIs derived from the raw waveform or the modelled 6 Gaussians? 



GLAS LAI were derived from the raw waveform. The modeled Gaussians were internal 

variables used in the algorithm. More details can be found in Tang et al. 2014a. 

 

Referee #2 

GENERAL COMMENTS 

My main concern is about the presentation of the GLAS LAI over US (Figure 5). This figure does not help 

much about our understanding of the LAI distribution but may even lead to misunderstandings, because 

of the overly simple statistics at the ecoregion level. I would suggest the authors to draw dotted maps or 

gridded maps in 65 m resolution, that may give readers a better concept of the GLAS LAI. Grassland and 

crop types may be avoided, as they are not discussed in the text and may have been severely 

underestimated. Likewise, I doubt the value of the LAI statistics in Table 1. The standard deviations are 

rather high, many times larger than the mean LAI values, because of the huge diversity over an 

ecoregion.  

While we understand the reviewer's concern about mapping at the ecoregion level, it is 

impossible to map at the suggested scale because ICESAT is a transecting mission. It does 

not provide wall-to-wall coverage, but rather only provides along track samples spaced about 

100 m apart but with cross-track distances as large as 30 km. Therefore, the only way to 

provide a continuous map of LAI intervals is by mapping the samples into strata. In our case, 

we chose ecoregions as those strata for reasons explained in our response to reviewer #1. 

Once this concept is understood (that we have samples and are mapping into strata), there 

should be no misunderstanding as to what the maps represent. We stress furthermore that 

these are the first maps to show the vertical distribution of LAI, not just total LAI, on a 

continental basis and thus represent a substantive contribution. 

In terms of the variability of LAI given in Table 1, the statistics are correct. Again, the 

mapping into strata explains why the standard deviations are large, but they are certainly not 

"many times larger than the mean LAI values" as the referee asserts. Table 1 gives 40 pairs 

of mean-s.d. values (10 ecoregions * 1 Total LAI *  3 LAI layers). None of the total LAI 

values (column 1 in Table 1) have a s.d. that exceeds the mean, and indeed the C.V. is about 

50% which is quite reasonable. For the layer values, the mean and s.d. are at about the same 

magnitude with the s.d. being larger for the highest layer. This latter point is understandable 

given that canopy shape and canopy top height variability will be a large driver of LAI 

variability in the top-most layer. Thus, the statistics given in Table 1 are consistent with the 

physical and sampling processes and provide considerable insight into the maps. 

A fine validation of the GLAS LAI over the conterminous US may only be realized through comparison 

with existing Landsat and MODIS LAI. My understanding is that the Landsat LAI was generated over 

California only (Ganguly et al. 2012). Please provide the proper reference for the Landsat LAI over the US, 

which was used in the comparison with the GLAS LAI (Figure 4). I would like to know the quality of the 



Landsat LAI maps over US. I strongly encourage the authors to further compare GLAS LAI with MODIS LAI, 

as was done in their earlier study (Tang et al. 2014). This won’t be much effort based on what has been 

done by the authors. Moreover, please note the differences between the Landsat and MODIS estimated 

LAIs and the lidar derived Plant Area Index (PAI), even though they may be numerically similar (Tang et 

al. 2014). 

 

Validation of GLAS LAI: We have presented a coherent series of papers that has addressed 

the issue of validation in the Tang et al. publications that go from physical theory to ground-

based validations to airborne lidar validations that are then linked to GLAS, to Landsat and 

to MODIS. Our experience is that the scale of MODIS is too coarse to serve as a validation 

for GLAS, and there are generally too few ICESAT samples within a MODIS pixel to make 

this comparison very illuminating (and Tang et al, 2014a show that the data sets have low 

correlation). In contrast, Landsat is much more appropriate because the spatial scales match, 

but as we have shown in the earlier Tang et al. work and again here, Landsat LAI saturates, 

not just against ICESAT, but against airborne lidar data. Therefore, really the question 

should be turned on its head: it is the GLAS data that can be used to validate the Landsat 

data, again given the progression of research we have presented over the three papers. 

Landsat LAI Validation: We have added a reference for the U.S. Landsat LAI product as "In 

Prep".  While the data set is finished it is not yet published. That accuracy of the Landsat 

data set is in part given by the results we show here in our comparison of GLAS LAI to 

Landsat. It is again obvious that Landsat saturates, as has been shown in our previous 

research. 

LAI vs. PAI: We would like to argue that the LAI derived from Landsat or MODIS is 

actually plant area index (PAI) too, because non-foliage elements can contribute to their 

reflected radiometric signal (Garrigues et al. 2008) in a similar mechanism to that of the lidar 

sensor. Because the lidar observation is in the near-IR, it is not nearly as sensitive to 

branches as leaves. Nevertheless, its contribution is generally of secondary importance, and 

we have discussed this issue in Tang et al. (2014a). 

I’m not in favor of the environmental studies in Section 3.3. It would be more interesting to look into the 

seasonal LAI and VFP variations since the multi-year data are available.  

The GLAS/ICESat mission was not operated across full year round but deployed for three 

33-day campaigns per year due to deficits in laser design (Schutz et al., 2005). The starting 

dates of each campaign were around mid-February, mid-May and early-October, and the 

ground tracks did not repeat each year. As a result, it is impossible to do an effective 

seasonal study. The environmental analyses per se showed interesting results, and therefore 

we favor their inclusion. 

DETAILED COMMENTS  



contiguous United States -> conterminous United States. The latter is more used in authoritative 

publications.  

Both terms mean the same thing (the lower 48 states) and each are widely used. We have 

added a definition of CONUS to clarify the ambiguity in P13676L6. 

P13677L24. Saturation is also an issue for lidar LAI estimations. Likewise, I disagree with the statement 

in P13687L17 "the non-saturation advantage of lidar data against passive remote sensing in observing 

high LAI forests".  

Our comparison results between airborne LVIS and destructively-sampled field data in the 

La Selva Biological Station have demonstrated that lidar-derived LAI did not saturate even 

when the LAI exceeding 10 m2/m2. We are also testing our results over other dense forests 

and do not see any saturation trend towards high LAI yet. Under the vast majority of real 

forests, it is highly unlikely that lidar will saturate, provided there is enough laser energy to 

get a return signal from the ground, but this is an entirely different issue. We are not clear 

why the referee disagrees with the statement. Everywhere we have looked, Landsat saturates 

and lidar does not. For this paper, all we can do is reference our previous work, and provide 

the results of the experiment presented. Our conclusions for the work presented in this 

paper are well-supported by the results.  

P13679L3. Full name for CONUS 

 The full name has been added. 

Section 2.2. P13680L4-9. Please briefly introduce the methods here, rather than referring to other 

papers.  

We thank the referee for this helpful comment. We have added a supplement to describe 

necessary details of the methods, since our primary focus here is the large-scale comparison 

and validation of GLAS LAI and VFP data set. 

Section 2.3 How good are the LVIS retrievals compared to field measurements? Please mark the four 

LVIS field sites in Fig. 5. Please put all resultant R2, bias, and RMSE in the figures. Only introduce them in 

the text when necessary. 

LVIS LAI have shown excellent agreement with field measurements from destructively 

sampled data, hemispherical photos, LAI-2000 and terrestrial scanning lidar across different 

landscapes (Tang et al., 2012 and 2014a; Zhao et al., 2011 and 2012). The r2 varies from 0.63 

to 0.85, and the error varies from 0.52 to 1.36. 

All four LVIS sites have been marked in Figure 5 now. 

We have added those statistical results in Figures 1 - 4 while we prefer to also repeat these 

within the text. 



P13685L7-10. The Pearsno’s correlation was not shown. Why this is relevant anyway?  

All Pearson's correlation coefficients are listed in the text specified. The analyses are relevant 

towards developing an understanding of how LAI may be correlated with environmental 

variables and how strong these are. 

P13686L11. Slope may be a factor. How’s the topography of the four validation sites? 

Slope is indeed a very important factor on the derived LAI and VFP product as we have 

discussed in this paper and previous publications (Tang et al. 2014a and 2014b). Only Sierra 

Nevada forests have very rugged topography with slopes exceeding 30°, and our previous 

work suggests that best agreement can only be achieved with slopes less than 20°. 

P13687L18-19. Fig. 4a shows that GLAS underestimates for all LAI values. Please discuss. 

We discussed this in P13687L15-26, and we think there are multiple factors contributing to 

this relative underestimation, including differences in land cover classification schemes, 

adjustment of clumping effect, and data acquisition strategy. 
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 Abstract 13 

Leaf area index (LAI) and vertical foliage profile (VFP) are among the important canopy 14 

structural variables. Recent advances in lidar remote sensing technology have demonstrated the 15 

capability of accurately mapping LAI and VFP over large areas. The primary objective of this 16 

study was to derive and validate a LAI and VFP product over the contiguous United States 17 

(CONUS) using spaceborne waveform lidar data. This product was derived at the footprint level 18 

from the Geoscience Laser Altimeter System (GLAS) using a biophysical model. We validated 19 

GLAS derived LAI and VFP across major forest biomes using airborne waveform lidar. The 20 

comparison results showed that GLAS retrievals of total LAI were generally accurate with little 21 

bias (r
2
 = 0.67, bias = -0.13, RMSE = 0.75). The derivations of GLAS retrievals of VFP within 22 

layers was not as accurate overall (r
2 

= 0.36, bias= -0.04, RMSE = 0.26), and these varied as a 23 

function of height, increasing from understory to overstory - 0 to 5 m layer: r
2 

= 0.04, bias = 24 

0.09, RMSE = 0.31; 10 to 15 m layer: r
2 
= 0.53, bias = -0.08, RMSE = 0.22; and 15 to 20 m layer: 25 

r
2 

= 0.66, bias = -0.05, RMSE = 0.20. Significant relationships were also found between GLAS 26 



2 

LAI products and different environmental factors, in particular elevation and annual precipitation. 1 

In summary, our results provide a unique insight into vertical canopy structure distribution across 2 

North American ecosystems. This data set is a first step towards a baseline of canopy structure 3 

needed for evaluating climate and land use induced forest changes at continental scale in the 4 

future and should help deepen our understanding of the role of vertical canopy structure on 5 

terrestrial ecosystem processes across varying scales. 6 

 7 

1 Introduction 8 

Accurate measurements of three dimensional canopy structure and function play a key role in 9 

global carbon dynamics, climate feedbacks as well as biodiversity studies (Heimann and 10 

Reichstein, 2008;Loreau et al., 2001;Cramer et al., 2001;Schimel et al., 2001). Spatial variations 11 

of ecosystem structure largely inform the geographical patterns of ecological processes, including 12 

species richness (Cramer et al., 2001;Goetz et al., 2007;Turner et al., 2003). These structural 13 

variables, such as canopy height, leaf area index (LAI) and vertical foliage profile (VFP), have 14 

been identified as essential climate variables (ECV), essential biodiversity variables (EBV) or 15 

both (Pereira et al., 2013;Aber, 1979;Gower and Norman, 1991;Baret et al., 2013). Yet 16 

measurements of these canopy structural data are often limited at field sites, and their spatial 17 

distributions over broader geographical areas still remain poorly characterized due to 18 

heterogeneity of natural vegetation and inexact measuring techniques (Clark and Kellner, 19 

2012;Asner et al., 2013). Improved spatial characterization of LAI and VFP at large scales may 20 

fill this observational gap and help clarify the role of spatial and vertical variability in canopy 21 

structure for carbon cycling, biodiversity and habitat quality (Houghton, 2007;Sauer et al., 2008).   22 

Several global scale LAI products have been created from passive remote sensing data for many 23 

years (Myneni et al., 2002;Ganguly et al., 2012;Deng et al., 2006;Baret et al., 2007). Most of 24 

these products are derived by exploring the correlation between canopy foliage density and the 25 

total reflected intensity of electromagnetic radiation at multiple wavelengths. Applications of 26 

these LAI products have significantly improved the representation of the dynamics of terrestrial 27 

ecosystems and their interactions with the atmosphere (Mu et al., 2007;Zhao et al., 28 

2005;Randerson et al., 2009). However, the overall accuracy of these products does not meet the 29 
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requirements as specified by Global Terrestrial Observing System (GTOS: 1 

http://www.fao.org/gtos/org.html), and a key problem is the saturation of spectral signal over 2 

dense forests with high canopy cover (Abuelgasim et al., 2006;Shabanov et al., 2005;Yang et al., 3 

2006). Saturation occurs because the solar flux decreases exponentially as it passes through a 4 

dense canopy, and the majority of the returned signal comes from the upper canopy in the form of 5 

direct reflectance and multiple scattering (Gower and Norman, 1991;Nilson, 1971). This limits 6 

the observational capabilities of passive optical sensors, such as Landsat and MODIS, to estimate 7 

LAI over dense forests. Furthermore, deriving the foliage profile as a function of height is beyond 8 

the capability of passive optical remote sensing unless multiple look angles are used (Chopping et 9 

al., 2009). We argue that spaceborne lidar (light detection and ranging) technology provides a 10 

means of overcoming this limitation and of measuring vertical structure even over dense forests. 11 

Lidar has proven effective at measuring three dimensional canopy structural information (Lefsky 12 

et al., 2002). Lidar measures the distance between a target and the sensor by the round-trip 13 

traveling time of an emitted laser pulse. It allows direct 3D measurements of canopy structural 14 

components, including foliage, branch and trunk which then be used to estimate biophysical 15 

variables, such as canopy height and biomass (Drake et al., 2002;Saatchi et al., 2011;Los et al., 16 

2012;Lefsky, 2010;Simard et al., 2011;Asner et al., 2012;Baccini et al., 2012;Strahler et al., 17 

2008), as well as LAI and VFP (Morsdorf et al., 2006;Tang et al., 2012;Zhao et al., 2013).  18 

Garcia et al. (2012) and Luo et al. (2013) demonstrated the possibility of deriving LAI and VFP 19 

data across different landscapes from Geoscience Laser Altimeter System (GLAS) on board of 20 

Ice, Cloud and land Elevation Satellite (ICESat). Tang et al. (2014a) derived LAI and VFP data 21 

from GLAS data, but using a physically based model rather than an empirical methodology. The 22 

use of a physical model greatly simplified application over large areas because site specific, 23 

statistical calibrations were not required. Further improvement of the model led to a GLAS LAI 24 

and VFP product over the entire state of California, USA (Tang et al., 2014b). However, there is 25 

still a need to further examine the relationship between vertical foliage distribution and lidar 26 

waveforms over even broader areas. Assessment of their relationship across different forest types 27 

and environmental gradients will not only strengthen our confidence in acquiring a potential 28 

global LAI and VFP measurement, but will also provide guidance on the design and science 29 
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definition of future lidar missions such as the Global Ecosystem Dynamics Investigation (GEDI) 1 

(Dubayah et al., 2014).  2 

The objective of this study is to characterize the continental scale variability of canopy structure 3 

across the United States using lidar observations from space. First, we implement our existing 4 

algorithm at the GLAS footprint level and compare the derived data with LAI and VFP products 5 

from airborne lidar in different forest types. Next we map the aggregated LAI and VFP product 6 

according to different ecoregions and land cover types over the Contiguous United States 7 

(CONUS). Finally we analyze the distribution of GLAS LAI across different environmental 8 

factors, including elevation and precipitation.  9 

 10 

2 Methods 11 

2.1  GLAS Data 12 

GLAS is a spaceborne, sampling waveform lidar sensor with the working wavelength in the near-13 

infrared band (1064 nm). It emits laser pulses at a frequency of 40 Hz and records the energy 14 

reflected from both the ground surface and canopy in an approximately 65 m diameter footprint 15 

(Abshire et al., 2005). GLAS samples the Earth surface in transects with individual footprints 16 

separated by ~ 175 m along track, and with between track spacing that varies as a function of 17 

latitude (e.g. 30 km spacing between tracks at the equator and 5 km spacing at 80° latitude 18 

(Brenner et al., 2012)). As a result of this sampling pattern, GLAS does not provide a wall-to-19 

wall observation of forests. Its spatial allocation of laser footprints is best defined as a pseudo-20 

systematic sampling or cluster sampling strategy (Stahl et al., 2011;Healey et al., 2012). To 21 

obtain a spatially continuous estimate of LAI at continental scale, footprint level GLAS data 22 

would need to be extrapolated using other remote sensing data (Dubayah et al., 2008;Lefsky, 23 

2010), or can be mapped into appropriate geographic strata such as land cover types or 24 

ecoregions.  25 
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2.2  Retrieval of GLAS LAI and VFP 1 

We collected a total of 1,100,498 cloud-free GLAS data from Campaigns GLA01 and GLA14 2 

data over the contiguous United States from 2003 to 2007. GLA01 included the complete 3 

recorded waveform at a vertical resolution of 15 cm for land surface products, and GLA14 4 

products were comprised of geographical information and various parameters calculated from the 5 

waveform (Harding and Carabajal, 2005). Low energy shots (peak energy < 0.5 Volt) were 6 

excluded from data process for retrieval quality control because those waveforms were 7 

susceptible to noise contamination. Shots during leaf-off season (November to March) were also 8 

filtered out over deciduous forests and mixed forests. LAI and its profiles (0.15 m at vertical 9 

resolution) were initially calculated for GLAS footprints based on a Geometric Optical and 10 

Radiative Transfer (GORT) model (Ni-Meister et al., 2001), and further corrected for slope 11 

effects using an iterative method (Tang et al., 2014a). Canopy VFP were calculated from 12 

integration of footprint level LAI profiles at height intervals of 0 to 5 m, 5 to 10 m, 10 to 15 m 13 

and 15 to 20 m. More details of the GLAS data processing can be found in the supplement. 14 

2.3  Comparison Data Sets 15 

We validated LAI and VFP data sets using an airborne lidar system, LVIS (Laser Vegetation 16 

Imaging Sensor). LVIS is a medium resolution (~ 25 m diameter) waveform scanning lidar 17 

system designed by NASA Goddard Space Flight Center (GSFC) (Blair et al., 1999). It can image 18 

the terrestrial surface across a 2 km wide swath and has been deployed to map many different 19 

forest structural parameters at regional scales across diverse biomes (Tang et al., 2012;Drake et 20 

al., 2002;Swatantran et al., 2012). We calculated both total LAI and VFP at 5 m height intervals 21 

from existing LVIS data using our physically based model, which has been validated using 22 

different types of field measurements (destructive sampling, LAI-2000 and hemispherical photos) 23 

(Tang et al., 2012;Tang et al., 2014a;Zhao et al., 2013). LVIS data used in this study included 24 

major forest types from eastern, central and western US, including Maine forests just north of 25 

Orono, Maine (2003), Sierra National Forest in California (2008), mixed forests along 26 

Baltimore/Washington corridor (2003) and the White River National Wildlife Refuge in Arkansas 27 

(2006). These LVIS datasets were all collected during leaf-on season. 28 
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We also included a 30 m resolution Landsat LAI map to examine the spatial distribution of 1 

GLAS total LAI. Landsat has the longest earth observation history at moderate resolution (30 m), 2 

and for decades has provided a consistent and unique measurement of terrestrial ecosystems. The 3 

Landsat LAI map was produced using Global Land Survey (GLS) 2005 orthorectified Landsat 4 

data (Ganguly et al., 2012; Ganguly et al., In Prep.).  5 

2.4  Analysis 6 

The comparison between LVIS and GLAS was performed at the GLAS footprint level. LVIS 7 

shots falling within a 32.5 m radius from a GLAS shot center were selected. We filtered GLAS 8 

footprints to have a minimum of 3 coincident LVIS shots to increase the likelihood that the LVIS 9 

data covered a sufficient portion of the larger GLAS footprints. Both LAI and the 5 m interval 10 

VFP of LVIS shots were averaged onto each coincident GLAS footprint for comparison. We also 11 

made a footprint level comparison between GLAS LAI and the Landsat LAI map. A 3 × 3 12 

Landsat window was applied to each GLAS footprint center to extract the averaged Landsat LAI 13 

pixels. Pixels with invalid values (e.g. retrieval failure or non-vegetation pixel) were excluded in 14 

the comparison. Agreements of different LAI datasets were assessed by coefficient of 15 

determination, bias and RMSE (Root Mean Square Error): 16 

       
          

 

 
            (1) 17 

       
             

  
   

 
         (2) 18 

In Eq. (1) and Eq. (2), GLASi is GLAS LAI (or VFP) value at footprint level and Refi is that 19 

extracted from LVIS or Landsat. 20 

Next, we aggregated the footprint level GLAS data into terrestrial ecoregions based on subset of a 21 

global map (Olson et al., 2001). Statistical analysis of total LAI and LAI strata (VFP aggregated 22 

at every 10 m height interval) was performed subsequently for each ecoregion. We also analyzed 23 

the GLAS LAI and VFP distribution across different environmental gradients throughout 24 

CONUS. GLAS footprints were categorized according to different environmental factors, 25 

including vegetation type, topographic data and annual measurements of climate variables. The 26 

vegetation map was derived from the MODIS Land Cover Type product (MCD12Q1) at 500 m 27 
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resolution following the IGBP scheme (Friedl et al., 2010). Elevation data was extracted from the 1 

void-filled 90 m resolution SRTM (Shuttle Radar Topography Mission) DEM data (Reuter et al., 2 

2007). Precipitation, temperature and vapor pressure deficit information originated from the 800 3 

m resolution 30yr annual normal climate data developed by the PRISM Climate Group (PRISM, 4 

2013).  5 

3 Results 6 

This section includes three major parts: the first part focuses on the validation and comparison of 7 

GLAS LAI and VFP data with existing products; the second presents the geographical 8 

distribution of GLAS LAI and VFP, and; the last part shows their relationship with 9 

environmental factors. 10 

3.1  GLAS LAI and VFP Comparisons with LVIS and Landsat 11 

The footprint level comparison between GLAS LAI and LVIS LAI had an overall r
2
 of 0.60, bias 12 

of -0.23, and RMSE of 0.82 (Fig. 1). Except for a few outliers at the lower range of LAI, most of 13 

the comparison points were distributed along the 1:1 line suggesting no systematic difference 14 

between the two data sets. No significant bias was found across individual sites either.  15 

The agreement of the 5 m height interval VFP distributions between the two data sets was lower 16 

than that of total LAI (r
2 

= 0.36, a bias = -0.04 and RMSE = 0.26). Although there was no 17 

systematic bias observed when all sites and vertical intervals are considered (Fig. 2), examination 18 

by layer showed that GLAS overestimated understory LAI (0 to 5 m) (r
2
 = 0.04, bias = 19 

0.09, RMSE = 0.31) when compared with LVIS LAI (Fig. 3) but agreement improved as the 20 

vertical height interval considered moved higher in the canopy (5 to 10 m, r
2 

= 0.33, bias = -21 

0.13, RMSE = 0.29; and 10 to 15 m, r
2
 = 0.53, bias = -0.08, RMSE = 0.22), reaching a maximum 22 

at the top of the canopy (15 to 20 m, r
2 

= 0.66, bias = -0.05, RMSE = 0.20). 23 

The comparison between Landsat LAI and GLAS LAI had a much lower agreement than that of 24 

LVIS (r
2
 = 0.18, bias = 0.18 and RMSE = 2.02) (Fig. 4). Even though the two data sets agreed 25 

well at lower LAI values, Landsat overestimated LAI at the middle range (from LAI values of 1 26 

to 3) and then saturated above a value of about 4 to 5 against GLAS data.  27 
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3.2  Aggregated GLAS LAI and VFP within Ecoregions 1 

We next mapped GLAS LAI across US ecoregions (Fig. 5). Highest LAI values were found along 2 

northern Pacific Coast while lowest values occurred in the basin and range province and the arid 3 

rains shadow region east of the Rocky Mountains. Northern California coastal forests (Pacific 4 

temperate rainforests) were found to have the highest mean LAI value of 5.24. In the eastern 5 

U.S., the mixed deciduous forests of the Appalachian-Blue Ridge province had the highest value 6 

of 3.95 while other ecogreions around north-south direction of Appalachian Mountains had 7 

similar LAI values around 3 ~ 4 (Table 1). Forest ecogreions with lowest LAI values (excluding 8 

desert, shrubland and grassland) were located in Arizona mountains forests (1.15) and Great 9 

Basin montane forests (0.90). Differences between these ecoregion-level LAI were significant 10 

based on a bonferroni adjusted t-test, except for those among Willamette Valley forests, 11 

Appalachian-Blue Ridge forests, Puget lowland forests and Appalachian mixed mesophytic 12 

forests (p-values > 0.05). 13 

LAI strata formed by VFP at each 10 m height interval were also averaged and mapped across the 14 

US (Fig. 6). We chose the 10 m height interval rather than that of 5 m because LAI strata 15 

aggregated at 10 m height interval represented a more accurate and reliable description of vertical 16 

canopy structure given the relatively lower measurement accuracy in the understory (< 5 m) we 17 

found in comparison to LVIS data. Each strata showed a generally similar geographic pattern as 18 

that of total LAI with the decreasing trend from coast to interior lands, but the specific patterns 19 

among strata differed. Northwestern forests were observed to have the highest total LAI values as 20 

well as LAI strata values. Northern California coastal forests exhibited the largest total LAI value 21 

as well as highest foliage density under 20 m height, while British Columbia mainland coastal 22 

forests showed the highest foliage density (1.13) above 20 m height with a lower total LAI value 23 

(4.74). 24 

The distribution of GLAS total LAI and profiles were examined across different land cover types 25 

(Fig. 7and Fig. 8). Not surprisingly, forests were found to have a consistently greater value than 26 

non-forest biomes in both total LAI and its strata. For example, deciduous broadleaf forests had 27 

the highest value of total LAI (mean = 4.03) as well as that of middle and upper LAI strata 28 

(height > 10 m), while open shrubland showed the lowest total LAI values of 0.77. However, 29 

vertical LAI distributions of most forests and non-forests were similar with peak foliage density 30 
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distributed around a height of 2 ~ 4 m. The only exception was deciduous broadleaf forest, of 1 

which most of leaves were distributed at middle-story level with a peak height at about 8 m. Its 2 

VFP values did not decrease significantly until reaching a height of 15 m.  3 

3.3  GLAS LAI Distributions by Environmental Factors 4 

A linear regression analysis between GLAS LAI and SRTM DEM showed that increasing altitude 5 

led to an overall decreasing, but non-monotonic, trend in LAI values (LAI = 3.60 - 0.686 × 6 

Elevation (km), r
2
 = 0.59, all P < 0.01) (Fig. 9). GLAS LAI values increased with DEM at the 7 

elevation range from 0 to 750 m and 2000 to 3000 m. The variation in the LAI-DEM relationship 8 

agreed well with Forest Ratio (LAI = 0.112 + 3.18 × Forest Ratio, r
2
 = 0.45, P < 0.01). Here each 9 

GLAS footprint was classified as either forest or non-forest with an overlay of MODIS land cover 10 

map, and the Forest Ratio was defined as the percentage of footprints classified as forests in total 11 

GLAS shots within each elevation groupForest Ratio was, defined as the percentage of footprints 12 

classified as forests in total GLAS shots (forest and non-forest). A multiple linear regression 13 

analysis showed that about 87% of total variance could be explained by a simple combination of 14 

elevation groups and Forest Ratio values: LAI = 2.59 × Forest Ratio - 0.595 × Elevation (km) + 15 

1.58. 16 

We also analyzed GLAS LAI by 30yr normal annual climate data using linear regression models 17 

(Fig. 10). It was observed that increasing precipitation significantly increased LAI values (ΔLAI 18 

= 1.84 per 1000 mm precipitation increase) but only at low and moderate precipitation levels (< 19 

2400 mm): LAI = 1.84 × precipitation (mm) × 10
-3

 + 0.774, r
2
 = 0.96, adj-r

2
 = 0.95, P < 0.01. It 20 

contributed little when exceeding that threshold (LAI = 0.22 × precipitation (mm) × 10
-3

, r
2
 = 21 

0.40, adj- r
2
 = 0.30, P = 0.09), as we found no significant LAI increase among groups greater 22 

than 2400 mm using a bonferroni adjusted t-test. GLAS LAI was also negatively but slightly 23 

correlated with minimum (maximum) vapor pressure deficit with a Pearson's correlation 24 

coefficient of -0.29 (-0.15). The correlation coefficients between GLAS LAI and annual mean / 25 

minimum / maximum temperature were even lower with values of 0.13, 0.18 and 0.08 26 

respectively.  27 

Finally, we applied multiple linear regression analysis to illustrate the combined environmental 28 

effects of altitude and precipitation the on distributions of LAI and VFP. The regression analyses 29 
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were conducted at both GLAS footprint level and aggregated scale on altitude and precipitation 1 

groups. At footprint level, altitude and precipitation together explained about 30% of variance of 2 

total LAI (LAI = 2.73 - 0.69 × Elevation (km) + 0.58 × precipitation (mm) × 10
-3

, r
2
 = 0.29, adj-3 

r
2
 = 0.29, P < 0.01). However, their correlations with footprint level VFP (0 - 10 m, 10 - 20 m 4 

and > 20 m height intervals) were not significant with r
2
 of 0.07, 0.12 and 0.08 respectively. At 5 

the aggregated scale, there was a better relationship between averaged LAI (VFP) values and 6 

environmental factors. The combination of altitude and precipitation can explain more than 60% 7 

variance in both total LAI and VFP, but explains only about 36% of variance on LAI for canopies 8 

less than 10 m height.  9 

4 Discussion 10 

In this study, we generated GLAS estimates of LAI and VFP across the United States, validated 11 

with an airborne lidar sensor, LVIS. Comparisons between LVIS and GLAS LAI and VFP 12 

estimates in different forest types across the United States show that GLAS generally provides 13 

accurate LAI and VFP estimates at footprint level. Considering the temporal offset and spatial 14 

resolution differences between LVIS and GLAS, their overall agreements on LAI and VFP are 15 

reasonable acceptable (r
2
 = 0.60, bias = -0.23, and RMSE = 0.82; and r

2
 = 0.36, bias = -0.043, 16 

and RMSE = 0.26). Our comparisons further demonstrate the efficacy of our retrieval methods 17 

over continental scales that encompass large gradients in environmental factors and variability in 18 

forest types.  19 

Measurement accuracy of GLAS VFP was lower compared to total LAI but (r
2
 = 0.36, bias = -20 

0.043, and RMSE = 0.26). Accuracies decreased for the lowest canopy layers, with the r
2
 values 21 

falling from a peak of 0.66 at upper-story (15 to 20 m) to 0.33 at middle-story (5 to 10 m), to 22 

essentially no relationship in the lowest 5 meters in the understory. There may be multiple factors 23 

contributing to this trend. First, a slope effect may reduce measurement accuracy of GLAS (Tang 24 

et al., 2014a). Slopes can blur the boundary between vegetation and topography signals in a lidar 25 

waveform, making their separation difficult and potentially leading to the error in LAI and VFP 26 

estimates. Despite methods to correct for topography (Lee et al., 2011;Tang et al., 2014a;Park et 27 

al., 2014), this effect cannot be fully mitigated, especially over steep slopes, and consequently 28 

may introduce errors and uncertainties into VFP estimates. Additionally, topographical effects 29 

can lead to a vertical misalignment of VFP between LVIS and GLAS. GLAS measures the 30 
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terrestrial surface at a larger footprint with higher topographical variations, and a direct average 1 

of LVIS VFP can possibly result in a mismatch of vertical foliage distribution up to several 2 

meters. For example, consider two adjacent LVIS shots with the same VFP distribution but a 1 m 3 

difference in ground elevation (like a signal lag in the waveform). Adding the two waveforms 4 

along the geodetic altitude would lead to a 1 m vertical offset in the averaged waveform (pseudo-5 

GLAS waveform) and produce a different VFP using the direct average method in a normalized 6 

coordinate system. But their total LAI values remain the same as long as the total energy from 7 

ground and vegetation can be separately correctly. Reducing vertical resolution of VFP can 8 

partially mitigate the mismatch effect because a lower vertical resolution requires integration over 9 

longer vertical axis which is more tolerant to ground mismatch. Take the above example again, 10 

the two VFP, at 1 m vertical resolution, do not match each other at all along the entire waveform 11 

due to the offset. However, integration at every 5 m creates a signal overlap of 4 m in each height 12 

bin with a maximum of 20% measurement error. Thus there is ultimately a tradeoff between 13 

vertical resolution and VFP accuracy. It also explains the higher agreement of total LAI 14 

(essentially an integration of VFP over the entire canopy) in the comparison between LVIS and 15 

GLAS. Lastly, measurement of near-ground understory vegetation by GLAS is difficult. By 16 

default GLAS waveforms are processed by a Gaussian decomposition method to get an 17 

approximate fit comprised of a series of Gaussian functions where the last one usually represents 18 

the ground (Hofton et al., 2000). The upper tail of the ground Gaussian peak may be mixed with 19 

signals from lower understory, and their separation is problematic, especially over slopes. All of 20 

these factors, plus the nature of high complexity and heterogeneity in canopy understory (Aubin 21 

et al., 2000;Valladares and Niinemets, 2008), may help explain the lower agreement on 22 

understory VFP between LVIS and GLAS.  23 

Comparison between GLAS and Landsat displayed a much lower agreement than that of LVIS, 24 

was somewhat biased, and showed clear signals of saturation beyond LAI values of about 5. This 25 

result, along with all previous studies (Tang et al., 2012;Tang et al., 2014b), clearly showed the 26 

non-saturation advantage of lidar data against passive remote sensing in observing high LAI 27 

forests. On the low end of LAI spectrum, GLAS values were lower as compared with Landsat. 28 

There are different factors (some in the LVIS comparison too) could possibly lead to their 29 

difference in LAI estimates such as geolocation errors of GLAS shots, observation scale 30 
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difference (65 m vs. 30 m) and misclassifications from MODIS land cover types (mainly 1 

impacting the correction of clumping effect). But this underestimation should be largely due to 2 

the fact that GLAS may not be able to adequately capture LAI values of short grassland with 3 

limited vertical structure or areas of sparse canopy cover, whereas Landsat is able measure such 4 

areas based on their total spectral response (tree and grass).  5 

Analysis of GLAS LAI and VFP across ecoregions displayed a reasonable and expected 6 

geographical distribution. The great advantage of lidar based estimates is that they can produce 7 

LAI vertical strata maps, providing a view of canopy variability across ecosystem types over 8 

large areas. Specifically, we can identify the foliage concentrations at various vertical bins and at 9 

spatial resolutions of interest (Fig. 6, Fig. 8 and Table 1; another example provided in the 10 

supplement). This approach may reduce errors that arise from assumptions of uniformly 11 

distributed foliage within canopy, and could potentially be a contribution towards continental 12 

scale ecological and biological studies of forest structure and dynamics.  13 

LAI and VFP also varied across different landscapes represented by various land cover types. As 14 

expected, we found both total LAI and maximum value of foliage density significantly increase 15 

along the vegetation gradient described by the transition from shrubland to savanna to woody 16 

savanna to forests (Fig. 7and Fig. 8). In particular, we found deciduous broadleaf forest showing 17 

a different pattern with its foliage more evenly distributed in understory and mid-story when 18 

compared with all other forests. Our results suggest the existence of canopy layering, and 19 

highlight the feasibility of quantifying these layers across landscapes (Whitehurst et al., 2013). 20 

Regardless, of whether the data are conceptualized as layers or as continuously varying profiles, 21 

they nonetheless provide the actual vertical structure, and thus should help refine current 22 

empirical assumptions about vegetation structure of different land cover types in current LAI 23 

inversion algorithms (e.g. MODIS) and in ecosystem models (Hurtt et al., 2010;Antonarakis et 24 

al., 2014).  25 

Elevation and precipitation were found to be significantly correlated with LAI at both footprint 26 

level and across aggregated groupings by elevation and forest ratio. LAI decreased with elevation 27 

and this trend was consistent with previous studies (Luo et al., 2004;Moser et al., 2007;Pfeifer et 28 

al., 2012). Variations of the trend can be largely explained (about 45 % of total variance) by the 29 

Forest Ratio (defined in Sect. 3.3). A combination of the two factors (elevation groups and Forest 30 
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Ratio) explained almost 90% variance of average LAI spatial distribution. We also found a 1 

significant but nonlinear relationship between GLAS LAI and annual precipitation (Fig. 10). This 2 

non-linear relationship agrees with previous studies in the tropics (Pfeifer et al., 2014;Spracklen 3 

et al., 2012). However, we found no significant variation of GLAS LAI with either temperature or 4 

vapor pressure deficit variables. A combined effect of elevation and precipitation explains about 5 

30% of LAI variation at GLAS footprint level, suggesting the natural complexity highly spatial 6 

variability of LAI distribution.  7 

As a direct quantification of 3D foliage distribution, GLAS LAI profiles are thus far the best 8 

representations of terrestrial ecosystem structure over broad geographical areas and suggest that 9 

ecological applications of these profiles are worth exploring. First, this data could refine large 10 

scale modeling of plant respiration and photosynthesis and consequently and improve ecosystem 11 

modeling (Houghton, 2007). Previous studies have reported a potential 50% underestimate of 12 

GPP values when vertical foliage stratification is not considered (Kotchenova et al., 13 

2004;Sprintsin et al., 2012). A consistent, global data set of VFP should thus improve 14 

initialization of ecological models (Hurtt et al., 2004), and refine estimation of GPP, in 15 

conjunction with passive remote sensing data (Turner et al., 2006). Secondly, these profiles may 16 

be important descriptors of habitat as related to biodiversity and habitat quality. Many studies 17 

have confirmed the general relationship between species richness, habitat heterogeneity and 18 

forest structural complexity across different landscapes (Swatantran et al., 2012;Goetz et al., 19 

2010;Schut et al., 2014;Ferger et al., 2014). The inclusion of LAI profiles provides spatially 20 

explicit vegetation structure data and may potentially improve current observations of species 21 

distribution at continental scale, e.g. for avian species (Sauer et al., 2008;Culbert et al., 2013), and 22 

lead to entirely new biodiversity metrics (e.g. see (Huang et al., 2014)). For example the concept 23 

of an "edge" has been traditionally defined as the boundary between forest and non-forest areas. 24 

LAI profiles provide a means of defining new edges based on differences in LAI as a function of 25 

height, so the edge is now the boundary between a rapid change in foliage density at a particular 26 

height. 27 

  28 
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5 Conclusion 1 

Accurate representation of canopy vertical structure and its dynamics has long been recognized as 2 

a priority because it represents a key interface between terrestrial surface and atmosphere and 3 

impacts the water and carbon cycles, and their transfer of energy and mass. Foliar profiles are 4 

also increasingly recognized as important determinants for habitat quality, species distribution, 5 

diversity and abundance. As ecosystems come under increasing pressure from climate and land 6 

use change, global data sets of canopy structure are needed to help better understand the 7 

consequences of these changes on ecosystem form, function and services. 8 

In this paper we have demonstrated the potential for global mapping of key canopy structures, 9 

LAI and VFP, from space. While imperfect, given their large footprint and sparse sampling, the 10 

waveforms from ICESat are currently the only such global data set of structure. Our ability to 11 

produce this data set is the end result of a series of research experiments that linked various types 12 

of observations, from destructive profiles, to ground based optical methods, to airborne lidar, to 13 

passive optical retrievals. This background gives us confidence that meaningful and useful data 14 

on LAI and VFP can be derived from future spaceborne lidar. There are still hurdles to overcome 15 

related to topography, understory accuracy, model assumptions and parameterizations, such as 16 

ground/canopy reflectance ratios and foliage clumping, among others, to achieving higher 17 

accuracy. We anticipate these will be resolved in time and lead to an even more capable model 18 

suitable for the next generation of waveform lidar observations from space, such as NASA’s 19 

Global Ecosystem Dynamics Investigation (GEDI) (Dubayah et al., 2014) and potentially 20 

ICESat-2 (Abdalati et al., 2009). 21 
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Table 1 Ecoregions with highest total LAI values (unit: m
2 

m
-2

) 1 

Ecoregions Total LAI 

Mean(±SD) 

LAI 0-10m 

Mean(±SD) 

LAI 10-20m 

Mean(±SD) 

LAI >20m 

Mean(±SD) 

Northern California 

coastal forests 

5.24±2.11 2.06±1.32 1.67±1.09 1.08±1.15 

Central Pacific coastal 

forests 

5.00±2.14 1.52±1.61 1.10±1.16 0.84±1.25 

British Columbia 

mainland coastal forests 

4.74±2.26 1.48±1.31 1.23±1.08 1.13±1.13 

Central and Southern 

Cascades forests 

4.31±2.34 1.06±1.35 0.79±1.02 0.64±1.07 

Klamath-Siskiyou forests 4.31±2.31 1.26±1.30 0.99±1.07 0.73±0.99 

Willamette Valley forests 3.99±2.24 0.73±1.09 0.60±0.89 0.75±1.31 

Appalachian-Blue Ridge 

forests 

3.95±2.03 1.04±1.27 0.82±0.99 0.47±0.82 

Puget lowland forests 3.91±2.25 0.98±1.39 0.71±1.08 0.40±0.81 

Appalachian mixed 

mesophytic forests 

3.86±2.04 1.06±1.29 0.77±0.93 0.48±0.83 

North Central Rockies 

forests 

3.67±2.27 1.61±1.55 0.84±0.89 0.47±0.72 
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  1 

Fig. 1 A comparison between two lidar derived Leaf Area Index (LAI) datasets at different sites 2 

across the US (N = 318), produced from the Laser Vegetation Imaging Sensor (LVIS) and the 3 

Geoscience Laser Altimeter System (GLAS) respectively. Each point represents a comparison at 4 

GLAS footprint while different colors and shapes indicate different sites (AR: White River 5 

National Wildlife Refuge in Arkansas; CA: Sierra National Forest in California; MD: 6 

Baltimore/Washington corridor in Maryland; ME:  Maine forests to the north of Orono, Maine). 7 

The comparison produces r
2
 of 0.60, bias of -0.23, and RMSE of 0.82). Dashed line is the 1:1 line. 8 

 9 



28 

   1 

Fig. 2 A comparison of Vertical Foliage Profile (VFP) density derived from LVIS and GLAS 2 

over different sites in the US (same sites as Fig.1 but with N = 1272). Each VFP point represents 3 

an integrated value of foliage density at each 5 m height interval. 4 
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1 

   2 

Fig. 3 Comparison between LVIS and GLAS VFP density integrated at every 5 m height interval 3 

(from ground to canopy top).  4 
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1 

  2 

Fig. 4 Comparison between Landsat LAI and GLAS LAI over contiguous US: a) density scatter 3 

plot of Landsat and GLAS LAI (r
2
 = 0.18, bias = 0.18 and RMSE = 2.02); b) Difference between 4 

Landsat and GLAS LAI. Darker kernel density color refers to more clustered distribution of LAI 5 

pairs. 6 
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  2 

Fig. 5 GLAS LAI distributions by ecoregion. All LVIS sites are marked with red stars. 3 
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 1 

Fig. 6 LAI strata distributions by WWF ecoregions. Despite similar total LAI values, the 2 

southeastern forests show different LAI values at stratified height intervals.  3 
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 1 

Fig. 7 Distribution of total GLAS LAI across different land cover types. The width of the boxes is 2 

proportional to the number of observations for each type (N = Evergreen Needleleaf: 45207, 3 

Evergreen Broadleaf: 438, Deciduous Needleleaf: 123, Deciduous Broadleaf: 48283, Mixed 4 

Forest: 62053, Closed Shrubland: 4087, Open Shrubland: 7364, Woody Savanna: 43536, 5 

Savanna: 3051). Notches show the approximate 95% confidence interval of the median. 6 
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 1 

Fig. 8 Averaged GLAS VFP for different land cover types across US: non-forest vegetation types 2 

(left) and forest types (right). Mean values are central lines within the color-filled 95% CI 3 

envelope. 4 
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 1 

Fig. 9 Distribution of GLAS LAI (left axis) and Forest Ratio - GLAS shots over forest divided by 2 

total shot numbers - (right axis). Overall, there is a decreasing trend of LAI values as elevation 3 

increases, but deviations occur from this trend that are associated with elevational variation in 4 

Forest Ratio. , which was defined as the percentage of footprints classified as forests in total GLAS 5 

shots within each elevation group.. 6 
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 1 

Fig. 10 Distribution of GLAS LAI as a function of precipitation. A linear regression analysis of 2 

LAI values averaged by precipitation groups shows an increasing trend up to areas of about 2400 3 

mm (blue line). Beyond this value the rate of change slows considerably (magenta line) but the 4 

trend is only weakly significant (P = 0.09). 5 
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