

1 **Climate-Driven Shifts in Continental Net Primary**
2 **Production Implicated as a Driver of a Recent Abrupt**
3 **Increase in the Land Carbon Sink**

4 **W. Buermann¹, C. Beaulieu², B. Parida³, D. Medvigy⁴, G.J. Collatz⁵,**
5 **J. Sheffield⁶, and J.L. Sarmiento⁴**

6

7 ¹Institute for Climate and Atmospheric Science, School of Earth and Environment,
8 University of Leeds, Leeds LS2 9JT, UK.

9 ²Ocean and Earth Science, National Oceanography Centre Southampton
10 University of Southampton, Southampton SO14 3ZH, UK

11 ³Civil Engineering Department, Shiv Nadar University, Dadri, 203207 UP, India

12 ⁴Atmospheric and Oceanic Sciences Program, Princeton University, 08540 Princeton,
13 New Jersey, USA.

14 ⁵National Aeronautics and Space Administration, Goddard Space Flight Center, 20771
15 Greenbelt, Maryland, USA.

16 ⁶Department of Civil and Environmental Engineering, Princeton University, 08540
17 Princeton, New Jersey, USA.

18

19

20 Correspondence to W. Buermann (w.buermann@leeds.ac.uk)

21
22

1 **Abstract**

2 The World's ocean and land ecosystems act as sinks for anthropogenic CO₂, and over the
3 last half century their combined sink strength grew steadily with increasing CO₂
4 emissions. Recent analyses of the global carbon budget, however, uncovered an abrupt,
5 substantial (~1 PgC yr⁻¹) and sustained increase in the land sink in the late 1980s whose
6 origin remains unclear. In the absence of this prominent shift in the land sink, increases in
7 atmospheric CO₂ concentrations since the late 1980s would have been ~30% larger than
8 observed (or ~12 ppm above current levels). Global data analyses are limited in regards
9 to attributing causes to changes in the land sink because different regions are likely
10 responding to different drivers. Here, we address this challenge by using terrestrial
11 biosphere models constrained by observations to determine if there is independent
12 evidence for the abrupt strengthening of the land sink. We find that net primary
13 production has significantly increased in the late 1980s (more so than heterotrophic
14 respiration) consistent with the inferred increase in the global land sink, and that large-
15 scale climate anomalies are responsible for this shift. We identify two key regions in
16 which climatic constraints on plant growth have eased: northern Eurasia experienced
17 warming, and northern Africa received increased precipitation. Whether these changes in
18 continental climates are connected is uncertain, but North Atlantic climate variability is
19 important. Our findings suggest that improved understanding of climate variability in the
20 North Atlantic may be essential for more credible projections of the land sink under
21 climate change.

1 **1 Introduction**

2 The world's land ecosystems act as a major sink in the contemporary global carbon cycle
3 and, hence, alleviates the rise of atmospheric CO₂ concentrations from global CO₂
4 emissions and as a consequence climate change (IPCC, 2013). Yet, while critical for
5 society our present understanding of the evolution of the land carbon sink under global
6 change is still severely limited (Le Quéré et al., 2009). This is in part because multiple
7 complex factors can influence the carbon balance of terrestrial ecosystems, including
8 climate change, land-use and land-cover change (forest regrowth, fire suppression etc.),
9 nitrogen deposition, and CO₂ fertilization (Ciais et al., 2013). In this regard, it has been
10 well documented that the land carbon sink (typically inferred as the 'residual' in the
11 global carbon mass balance of fossil fuel and net land use change (LUC) emissions, the
12 atmospheric CO₂ growth rate and oceanic uptake) is quite variable at decadal time scales
13 (Denman et al., 2007). But, in recent global carbon budget (GCB) studies with longer (~
14 last 5 decades) and annually resolved records a rather abrupt, substantial (~1 PgC yr⁻¹)
15 and sustained strengthening of the 'residual' land carbon sink in the late 1980s has been
16 identified (Sarmiento et al., 2010; Beaulieu et al., 2012). Our overall confidence in this
17 prominent shift, however, is somewhat limited since the 'residual' land sink is the most
18 uncertain term in the GCB. This is because uncertainties embedded in the individual
19 budget terms (e.g. LUC emissions and oceanic uptake) propagate into estimates of the
20 'residual' land carbon sink (Le Quéré et al., 2013).

21 Here, we explore if there is further independent evidence for a late 1980s regime
22 shift in the land carbon sink through analyzing carbon fluxes from biospheric models of
23 various complexity and observational constraints (e.g. satellite-based vegetation activity).

1 Our emphasis is on global pattern of net primary production (NPP) since this key carbon
2 flux is known to be a robust driver of carbon sink variability (Luyssaert et al., 2007; Zhao
3 and Running, 2010). A particular focus is in identifying which land regions may have
4 contributed to the potential shift and what underlying mechanisms may have caused it.
5 Specifically, we analyze data-driven NPP data based on an established satellite-
6 constrained biogeochemical model as well as process-based NPP data from nine
7 terrestrial biosphere models that participated in a recent model intercomparison project
8 'trends and drivers of the regional-scale sources and sinks of carbon dioxide (TRENDY)'
9 (Section 2).

10

11 **2 Methods**

12 **2.1 Data and models**

13 We analyze temporal patterns in various metrics of the terrestrial carbon cycle based on
14 three independent data sources. First, we analyze data-driven NPP fields based on
15 simulations with the satellite-constrained biogeochemical Carnegie-Ames-Stanford-
16 Approach (CASA) model (van der Werf et al., 2006) for the period of available satellite
17 vegetation data 1982-2011 (Zhu et al., 2013). This updated and extensively validated
18 model runs at a 0.5° spatial resolution on a monthly time step. NPP is a measure of the
19 amount of carbon fixed by plants during photosynthesis and accumulated as biomass. The
20 CASA model is conceptually relative simple and a number of potentially important
21 processes and mechanisms, such as related to nutrients (e.g., carbon and nitrogen) are not
22 considered explicitly (van der Werf et al., 2006). However, factors that influence
23 vegetation productivity may be indirectly captured through the satellite-based fraction of

1 available photosynthetically active radiation absorbed by plants (fAPAR), a key driver in
2 the NPP CASA light use efficiency parameterization (van der Werf et al., 2006). This is
3 demonstrated by two recent studies showing that trends in satellite-based vegetation
4 cover are consistent with expectations of growth enhancement via the CO₂ fertilization
5 effect (Donohue et al., 2013; Los, 2013). Yet there is also new evidence suggesting that
6 in dense forested ecosystems (tropical rainforests) fAPAR may not be fully responsive to
7 the CO₂ fertilization effect (Forkel et al. 2015). Temporally varying driver data used for
8 the CASA simulations include in addition to satellite-based fAPAR (fAPAR3g) (Zhu et
9 al., 2013) also land temperature (CRU TS3.21) (Harris et al., 2014) as well as
10 precipitation and surface solar radiation. We pay particular attention to uncertainties in
11 these observational-based datasets and corresponding effects on NPP estimates. While
12 land surface temperature data are considered to be relatively robust, a substantial
13 limitation is that presently only one consistent satellite fAPAR dataset exists that covers
14 the last 3 decades (Zhu et al., 2013) which we consider a minimum record length for
15 meaningful change point analysis. Nonetheless, to account at least partially for
16 observational uncertainties we evaluated different data sources for precipitation and
17 surface solar radiation which are known to have substantial uncertainties (Wild, 2009;
18 Greve et al., 2014) (see Methods in the Supplement). Based on a final selection of driver
19 datasets (1 fAPAR, 1 temperature, 3 precipitation and 3 solar radiation; see Table S4 in
20 the Supplement) we performed multiple CASA simulations with all possible input
21 combinations (a total of 9 simulations) and analyzed the NPP ensemble mean with our
22 change point methodology. We used the spread in these simulations as a measure of
23 ‘observational-based’ uncertainty. In a complementary analysis, we also analyzed the

1 heterotrophic respiration (R_h) and net ecosystem production (NEP; estimated as NPP –
2 R_h) ensemble means from these sets of CASA simulations. Owing to the lack of
3 consistent fire observations for our study period 1982–2011 (e.g. the GFED era starts in
4 1997; see van der Werf et al., 2006) corresponding effects on variability in NPP and NEP
5 were not considered. To ensure that the carbon pools are at steady state, the CASA model
6 was spun up for 250 years using a driver climatology based on the study period 1982–
7 2011.

8 Second, we analyze a GCB for the period 1959–2011 and consisting of CO_2
9 emissions from fossil fuel burning and cement production as well as net LUC emissions,
10 atmospheric CO_2 growth rates and oceanic uptake (Le Quéré et al., 2013). Uncertainties
11 in these budget terms are also provided and utilized to estimate uncertainties in net land
12 uptake and the residual land sink (through the sum of squared errors).

13 Third, we analyze process-based NPP, R_h and NEP data based on ensembles of
14 nine single terrestrial biosphere models that participated in the recent TRENDY model
15 intercomparison project (Sitch et al., 2015). Compared to CASA, the TRENDY models
16 are substantially more complex and also run at significantly shorter time steps to resolve
17 the diurnal cycle needed when coupled within Earth system climate models (Sitch et al.,
18 2015). An important distinction is that in the TRENDY models vegetation characteristics
19 (e.g. fAPAR) are simulated prognostically (unlike in CASA where such information is
20 inferred from satellite observations). In the TRENDY experiments (Sitch et al., 2015) the
21 models were driven with observed climate and atmospheric CO_2 data (S2 experiments) as
22 well as with observed atmospheric CO_2 data only (S1) and in order to isolate the
23 variability due to climate, the difference between these two experiments (S2 – S1) was

1 taken. We analyze the NPP, R_h and NEP ensemble means (based on anomalies) from the
2 nine participating models (Community Land Model 4CN, Hyland, Lund-Potsdam-Jena
3 (LPJ), LPJ-GUESS, ORCHIDEE, ORCHIDEE-CN, Sheffield-DGVM, TROLL and
4 VEGAS; for model details see Sitch et al., 2015) and used the spread among them as a
5 measure of ‘model-based’ uncertainty in our change point framework. Based on a recent
6 comprehensive evaluation against observations, it was found that most of the TRENDY
7 models are capable of simulating the short- and long-term first-order dynamics of the
8 terrestrial carbon cycle (Piao et al., 2013).

9

10 **2.2 Statistical methodology**

11 We apply a consistent change point methodology on the various metrics of the terrestrial
12 carbon cycle to identify pattern of regime shifts (characterized as abrupt, substantial and
13 sustained changes) and to contrast them to pattern showing either no or more gradual
14 changes. We thus determine in a first step the statistical model that best fits the time
15 series under investigation based on three options: 1) a constant mean, 2) a shift in the
16 mean and 3) a linear trend. While there are numerous alternative statistical models (e.g.
17 shifting trends as seen in satellite vegetation data at local to regional scales
18 (Piao et al., 2011)), our choice of these three models is based on our primary objective to
19 identify large-scale pattern in global and continental carbon fluxes that would be
20 consistent with the recently observed regime shift in the land carbon sink (Sarmiento et
21 al., 2010; Beaulieu et al., 2012).

22 In the ‘shift in the mean’ model, the shift is located through a change point
23 detection algorithm that includes discrimination against a trend and the background

1 autocorrelation (red noise) by considering all positions in a time series as a potential
2 change point from 5 to n-5, with n being the record length (Beaulieu et al. 2012b). In a
3 previous study, we found that by restricting the search for change points in this manner
4 detection of spurious shifts at the beginning or end of a series can be avoided
5 (Beaulieu et al. 2012a). In the change point method applied here, we also further
6 developed the Beaulieu et al. (2012b) methodology to account for known explicit
7 uncertainties in the time series under investigation. One important limitation here is that
8 this statistical change point model cannot distinguish between a rather drastic shift (e.g.,
9 change from one year to the next) and a more smooth shift over the span of several years.
10 Adding additional parameters could in principle provide more information on the nature
11 of the shift (e.g., smooth versus abrupt) but this would also make the model prone to
12 overfitting given the rather short time series in this study.

13 The most likely model among the three statistical models fitted is determined
14 based on the Schwarz Information Criterion (SIC), which compares their likelihoods with
15 a penalty for the number of parameters fitted. If the ‘shift in the mean’ model seems the
16 most likely, we calculate in a second step the direction and magnitude of the shifts
17 (subtracting means prior and after the shift) and the corresponding P -value by integrating
18 the full uncertainty of the data using Monte Carlo simulations. To perform the Monte
19 Carlo simulation, we draw 1000 normally distributed synthetic series having the same
20 statistical properties as the time series of interest. A new feature is that the series are
21 simulated with uncertainty additivity: the squared variance of each data point is added to
22 the overall time series squared variance and the square root of this sum provides the
23 synthetic series variance. This therefore takes into account the explicit uncertainties in the

1 various time series under investigation. The change point method is applied to the
2 synthetic time series and a SIC difference between the model with a shift in the mean and
3 no shift is calculated for each time series. This provides a distribution for the SIC
4 difference under the hypothesis of no shift in the mean. The P -value is the estimated
5 probability to find a SIC difference at least as extreme as the one observed, under the
6 hypothesis of no change. This methodology assumes that the errors of the model are
7 independent and normally distributed with a constant variance. We test normality of the
8 residuals using the Lilliefors test, the independence is verified using the Durbin-Watson
9 test and the constant variance is verified using a Fisher test. All tests are available and
10 performed using MATLAB. If independence is not respected, we generate synthetic
11 series with the same first-order autocorrelation as observed in the respective time series
12 residuals.

13

14 **3 Results**

15 **3.1 Shifts in data-driven NPP**

16 Applying our change point methodology (Section 2.2) on data-driven global NPP fields
17 reveals a marked spatial clustering of abrupt and sustained increases in NPP across
18 northern Eurasia and northern Africa in the late 1980s (Fig. 1). At more regional levels,
19 the impact of severe disturbance events such as the mountain pine beetle outbreak in the
20 late 1990s in the temperate and boreal forests of western North America
21 (Kurz et al., 2008) is also disclosed (via rapid and sustained decreases in NPP). A similar
22 analysis without constraining to only statistically significant results at the grid point level
23 implies that the coherent pattern of abrupt and sustained NPP shifts across northern

1 Eurasia and northern Africa are spatially even more extensive (Fig. S1 in the
2 Supplement).

3 This point is further illustrated when we apply our change point framework on
4 data-driven NPP time series representative of large land regions and highlights the
5 important role of the northern extratropics (magnitude of NPP shift: $\sim 0.7 \text{ PgC yr}^{-1}$), and
6 the northern Eurasian continent ($\sim 0.5 \text{ PgC yr}^{-1}$) in particular, in the regime shift in carbon
7 uptake by terrestrial plants in the late 1980s (Table 1 and Fig. S2 in the Supplement).

8 While the northern African region also exhibits a robust albeit smaller increase in data-
9 driven NPP ($\sim 0.2 \text{ PgC yr}^{-1}$) in the late 1980s, no corresponding NPP shifts are
10 discernable for tropical/southern and global land areas (Table 1). It is well known that
11 factors like ENSO (van der Werf et al., 2004) and volcanic aerosols (Lucht et al., 2002)
12 have a large influence on variability in the carbon balance of terrestrial ecosystems
13 (particularly at interannual time scales) and these phenomena may have also played a role
14 in the prominent late 1980s NPP regime shifts. An analysis that explicitly accounts for
15 such effects however suggests that these two factors are not the causes of the shift, but
16 indicates that a shift in data-driven NPP in the late 1980s emerges also for
17 tropical/southern and global land regions albeit with limited statistical significance
18 (Table 1). In a complementary analysis, we also re-assessed the robustness of the earlier
19 reported abrupt shift in the ‘residual’ global land carbon sink in the late 1980s (Sarmiento
20 et al., 2010; Beaulieu et al., 2012a) by analyzing a GCB for the period 1959-2011 (Le
21 Quéré et al., 2013) with our change point methodology that also accounts for explicit
22 uncertainties in the individual budget terms (Section 2.2). Results confirm the presence of
23 a regime shift in the global ‘residual’ land sink ($\sim 1-1.3 \text{ PgC yr}^{-1}$ depending on statistical

1 treatment) in the late 1980s (Table 1 and Fig. S3 in the Supplement). Taken together, the
2 good agreement in the timing of regime shifts in the global ‘residual’ land carbon sink
3 and continental data-driven NPP may imply that the latter is a significant driver of the
4 increased terrestrial carbon uptake in the late 1980s.

5

6 **3.2 Drivers of the late-1980s shift in data-driven NPP**

7 In order to unravel the mechanisms leading to the continental shifts in data-driven NPP,
8 we focus on the two target regions of northern Eurasia and northern Africa that
9 predominantly contributed to this late 1980s shift (see Fig. 1a). A factorial analysis for
10 specific seasons shows that the northern Eurasian continent experienced a marked
11 increase in spring temperatures and spring satellite vegetation activity (fAPAR) in the
12 late 1980s that together drove a substantial increase in spring NPP (Fig. 2a). This
13 relatively sudden springtime warming was also associated with a marked earlier spring
14 onset (~5 days; see Fig. S4 in the Supplement) and the enhanced productivity in the early
15 part of the growing season appears to have also benefited plant productivity in
16 subsequent summers (Fig. 2a and Fig. S4 in the Supplement). A closer inspection shows
17 that the increase in summer productivity stemmed solely from satellite fAPAR
18 contributions (Fig. 2a), which is consistent with the notion of a more developed canopy
19 during the peak of the growing season (as captured through fAPAR) that carries over the
20 early spring onset signal (Richardson et al, 2010). Increased plant productivity in the
21 spring and summer seasons contributed predominantly to the pronounced and sustained
22 increases in annual NPP in the late 1980s (Fig. 2a).

23 Over northern Africa including the dry Sahel, marked increases in data-driven

1 NPP during wet and dry seasons that are driven by both increases in rainfall as well as
2 satellite fAPAR triggered a pronounced increase in annual NPP in the late 1980s (Fig.
3 2b). A closer inspection shows that in the period after this shift rainfall increased
4 specifically during the later portion of the rainy season, which effectively lengthened the
5 more productive growing season (Fig. S4 in the Supplement).

6

7 **3.3 Shifts in process-based NPP**

8 The exploited biogeochemical model (CASA) for data-driven NPP simulations has a
9 relatively simple structure and provides an integrated view (via satellite fAPAR) of the
10 many interacting factors that influence NPP variability. Further, data-driven NPP
11 estimates are also influenced by observational uncertainties in both satellite (e.g.,
12 volcanic aerosols, cloud cover, signal saturation) and key climate driver data that are only
13 partially accounted for in our data-driven NPP simulations (see Section 2.1). We thus
14 explored if process-based terrestrial biosphere models driven by climate and atmospheric
15 CO₂ observations also show evidence of a marked shift in NPP in the late 1980s. Results
16 based on the TRENDY ensembles (Section 2) show that for the satellite period (~ last 3
17 decades) a NPP shift in the late 1980s emerges as a prominent feature, but only in
18 experiments that capture variability due to climate exclusively (Fig. 3, Fig. S5 and Table
19 S1 in the Supplement). Regional attributions associated with the shift are similar as in the
20 case for data-driven NPP, but differences in NPP sensitivities to climate (inferred from
21 differences in the magnitude of the shifts) are evident (Table 1 and Table S1 in the
22 Supplement). For example, the magnitude of the late 1980s NPP shift in northern Eurasia
23 based on TRENDY is only about half the size of the corresponding shift in data-driven

1 NPP (Table 1 and Table S1 in the Supplement). One reason for this marked difference
2 may be that seasonal carry-over effects in NPP are largely absent in the TRENDY
3 models; e.g. the late 1980s Northern Eurasian annual NPP shift in TRENDY is solely due
4 to spring contributions (coincident with the time of the climate forcing) whereas for data-
5 driven NPP it is comprised of about equal contributions from spring and summer with
6 satellite fAPAR providing the link through which the early spring onset signal is
7 propagated (Figs 2a and 3a). It should be noted that such seasonal carry-over effects due
8 to an earlier spring onset are observed at multiple eddy covariance flux sites across
9 temperate and boreal ecosystems (Richardson et al., 2010) and that the phenology
10 response (at seasonal and interannual time scales) in data-driven approaches is generally
11 considered more robust (Raczka et al., 2013).

12 The TRENDY simulations are not restricted to the satellite period allowing us to
13 assess whether the identified late 1980s NPP shifts also emerge as dominant pattern when
14 the study period is extended to the last 5 decades (to be consistent with the time frame of
15 the GCB). Results show that the late 1980s shift over northern Eurasia is a stable pattern.
16 For northern Africa, however, an even more prominent shift is identified in the late 1960s
17 (Fig. S5 and Table S1 in the Supplement). This may suggest that this region by itself is
18 not important enough to influence the global land sink (since there is no evidence for a
19 corresponding shift in the global residual land sink; see Table 1). Further, in TRENDY
20 experiments in which atmospheric CO₂ and climate drivers are varied, the shift appears to
21 be masked by an increasing trend in NPP associated largely with the CO₂ fertilization
22 effect (Fig. 3, Fig. S6 and Table S1 in the Supplement). In fact, the high NPP sensitivity
23 to changes in atmospheric CO₂ concentrations in many of the current generation of

1 terrestrial biosphere models (Arora et al., 2013) and the potential role of nutrient
2 limitations (Zaehle, 2013) and/or climate feedbacks (Smith et al., 2015) in mitigating this
3 sensitivity is presently a subject of intense research.

4

5 **3.4 Shifts in R_h and NEP**

6 In how far the identified climate-driven regime shifts in NPP in the late 1980s translate
7 into a sustained carbon sink (consistent with the shift seen in the residual land carbon
8 sink from the GCB; Table 1) depends in part on associated responses in key carbon loss
9 fluxes such as R_h which (apart from its dependence on substrate supply from NPP) often
10 depends on climatic factors in a similar fashion as NPP (Lucht et al., 2002). A limitation,
11 however, is that currently no data-driven analog for R_h estimation exists and one has to
12 revert to alternative methods including more uncertain process-based simulations.
13 Nevertheless to estimate the degree at which shifts in NPP may be potentially offset by
14 corresponding shifts in R_h we apply our change point framework also on the R_h as well as
15 NEP fluxes from the CASA and TRENDY simulations (see Section 2). Results show that
16 for the large land regions of interest regime shifts in NPP are repeatedly accompanied by
17 substantial shifts in R_h (Table 1, Tables S1-S2 and Figs S2, S5-S6 in the Supplement)
18 often with 1-2 year lags (seen most clearly when ENSO and volcanic influences are
19 accounted for). A consequence is that corresponding shifts in NEP are often less robust or
20 not detectable (Table 1 and Table S3 in the Supplement). For example, in the case of the
21 two focal regions northern Eurasia and northern Africa, the late 1980s shifts in data-
22 driven NPP are offset by corresponding shifts in R_h at levels of 64-66% and 80-90%
23 (depending on statistical treatment), respectively (Table 1). As stated, the estimated shifts

1 in the R_h fluxes are more uncertain and may represent more upper bound estimates as a
2 new study suggests that carbon models have a tendency to transfer carbon too quickly
3 through the plant-soil systems because of severe biases in simulated soil carbon and/or
4 too high R_h sensitivities to climate (Carvalhais et al., 2014).

5 At global scale, a shift in R_h can also be estimated as the residual between a NPP
6 shift and a corresponding shift in the residual land sink based on the GCB (Anderegg et
7 al., 2015). Using methods that include such residual calculations as well as our direct
8 model estimates (see Methods in the Supplement), we estimate a shift in global NPP in
9 the late 1980s of $1.14 \pm 0.34 \text{ PgC yr}^{-1}$ and a corresponding shift in R_h of $0.36 \pm 0.48 \text{ PgC}$
10 yr^{-1} . Our best estimate for an associated global shift in NEP is $0.63 \pm 0.30 \text{ PgC yr}^{-1}$ that
11 amounts to roughly 60% of the magnitude of the late 1980s shift in the residual land sink
12 from the GCB ($1.12 \pm 0.14 \text{ PgC yr}^{-1}$; based on the three estimates shown in Table 1).

13

14 **4 Discussion**

15 Our findings provide independent evidence from a biospheric modeling perspective for
16 the abrupt strengthening of the ‘residual’ land carbon sink in the late 1980s (Sarmiento et
17 al. 2010) and suggest that the underlying driver is a shift in global NPP in response to
18 coordinated large-scale climate shifts. However, the late 1980s climate perturbations may
19 also substantially influence fire regimes, but the paucity of data on burned area and
20 related carbon emissions extending back to the early 80s severely limits estimating
21 corresponding impacts. For northern Eurasia (which is responsible for the largest
22 contribution to the late 1980s regime shift in data-driven NPP), however, it is not
23 anticipated that the observed profound spring warming and greening (inferred through

1 fAPAR) in the late 1980s may have lead to substantial changes in fire emissions since the
2 fire activity peaks later in the season (van der Werf et al., 2006). For northern Africa,
3 changes in fire regimes associated with the late 1980s shift towards wetter conditions
4 may have a substantial influence on net carbon balance albeit with uncertain direction
5 since a shift towards wetter conditions may increase (more fuel load) or reduce
6 (shortening the dry season) fire emissions (Andela and van der Werf, 2014). Models that
7 can potentially quantify this influence are still in their early phase of development. While
8 much uncertainty (specifically pertaining to magnitude) remains in estimating the
9 contribution of climate-driven changes in the major land carbon fluxes to the late 1980s
10 regime shift in the land carbon sink, our regional NPP attributions are consistent with a
11 reported decrease in the interhemispheric gradient in atmospheric CO₂ in the 1990s
12 relative to the 1980s that is attributed to an increase in the northern carbon sink (Wang et
13 al., 2013).

14 Other factors not related to climate may have also played a role in the late 1980s
15 regime shift of the land carbon sink. A potential large contribution in this regard may be
16 from land-use and land cover changes across northern Eurasia through agricultural
17 abandonment and rapid changes in forest management in the aftermath of the late 1980s
18 post-Soviet collapse. While such processes are accounted for in net LUC emission
19 estimates compiled in the GCB (and therefore included in our analysis; see Table 1)
20 corresponding effects may not be fully captured due to a lack of robust data especially in
21 the period prior the Soviet collapse (Achard et al., 2006). However, at least in the case of
22 agricultural abandonment newly available estimates (Schierhorn et al., 2013) of
23 associated carbon sinks for the post-Soviet period 1990-2009 suggest a minor

1 contribution ($\sim 0.03 \text{ PgC yr}^{-1}$).

2 A remarkable finding is that two key climatic constraints on plant growth
3 (temperature and precipitation) have shifted in the late 1980s in a way as to facilitate an
4 abrupt and sustained increase in continental-scale terrestrial NPP. This bears the question
5 if there is an underlying link that would explain why these large-scale climate pattern
6 varied nearly synchronously. The Arctic Oscillation (AO) is the most important climate
7 mode in the northern extratropics (Thompson and Wallace, 1998) and also a prominent
8 mode in coupled global (Los et al., 2001) and hemispheric (Buermann et al., 2003)
9 climate and satellite vegetation greenness data. Consistent with these results, we find that
10 over the satellite period 1982-2011 the winter AO is tightly correlated with northern
11 Eurasian spring temperatures ($r=0.60, P<0.001$) and spring fAPAR ($r=0.40, P=0.03$),
12 respectively (Fig. 4). In the late 1980s, the AO together with its regional manifestation
13 the North Atlantic Oscillation (NAO) (Hurrell, 1995) underwent an extreme shift into
14 their respective positive phases, thereby moving North Atlantic winter storm tracks
15 northward and enabling advection of mild maritime air deep into the northern Eurasian
16 land mass (Thompson and Wallace, 1998). Our results show that the northern Eurasian
17 biomes responded rapidly to the associated substantial spring warming as evidenced
18 through synchronous increases in satellite-based vegetation activity (Fig. 4a). Change
19 point analysis on these drivers of NPP also confirms the existence of this prominent late-
20 1980s shift (showing significant shifts in winter (JFM) AO (1989, $p=0.07$), Northern
21 Eurasian spring temperature (1989, $p<0.001$) and Northern Eurasian spring fAPAR
22 (1990, $p<0.001$), respectively). In the aftermath of this shift, however, spring
23 temperatures and vegetation activity stayed at elevated levels (causing a sustained impact

1 on plant carbon uptake; see Fig. 2a) while the AO/NAO exhibited a negative trend, a fact
2 that may be explained by a more gradual warming response to greenhouse gas forcing
3 that is superimposed on the more oscillatory influence of the AO/NAO.

4 Northern African wet season rainfall pattern are strongly influenced by Atlantic
5 sea surface temperature (SST) variability (Hoerling et al., 2006). In this regard, the
6 warming of the North Atlantic relative to the South Atlantic that resumed in the late
7 1980s to mid 1990s caused a northward displacement of the Atlantic intertropical
8 convergence zone (ITCZ) and increased rainfall rates across northern Africa, which led to
9 a recovery from earlier severe drought conditions (Hoerling et al., 2006). This increased
10 moisture supply also led to rapid increases in satellite fAPAR (Fig. 4b). An open question
11 is to what extent AO/NAO and Atlantic SST forcings may have interacted (Xie and
12 Carton, 2004) in the wake of the apparent coordinated regional climate shifts over
13 northern Eurasia and northern Africa in the late 1980s. It is well established that ENSO
14 (van der Werf et al., 2004) and volcanic eruptions (Lucht et al., 2002) have a dominant
15 influence on the terrestrial carbon cycle at interannual time scales and much of recent
16 research has focused on associated links (Cox et al., 2013; Wang et al., 2014). Our
17 findings here may suggest that North Atlantic climate variability and corresponding
18 impacts on adjacent vast land masses may be more important in regards to abrupt,
19 substantial and more sustained shifts in the terrestrial carbon cycle.

20

21 **5 Conclusions**

22 Our results point to a mechanism whereby North Atlantic climate variability modulates
23 the global terrestrial carbon cycle. New research suggests that a large portion of the

1 variability in the North Atlantic may be externally forced by anthropogenic aerosols
2 (Booth et al., 2012) and the pronounced warming trend in the Arctic regions, known as
3 Arctic amplification (Cohen et al., 2014). Arctic amplification specifically is thought to
4 intensify under climate change (Deser et al., 2010) and this may drive the AO/NAO more
5 into their respective negative phases (Cohen et al., 2014) which, based on our results,
6 would substantially reduce carbon uptake by terrestrial plants and weaken the land carbon
7 sink. This illustrates the pressing need for improved knowledge of North Atlantic
8 climate variability and associated forcing mechanisms in order to more credibly
9 project the evolution of the land carbon sink and carbon cycle climate feedbacks
10 under climate change.

11

12 **References**

13 Achard, F., et al. Areas of rapid forest cover change in boreal Eurasia. *For. Ecol. Manag.*,
14 237, 322–334, 2006.

15 Andela, N., & van der Werf, G. R. Recent trends in African fires driven by cropland
16 expansion and El Nino to La Nina transition. *Nature CC*, 4, 791–795, 2014.

17 Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability
18 in the terrestrial carbon sink. *Proc. Nat. Acad. USA*, doi: 10.1073/pnas.1521479112,
19 2015.

20 Arora, V. K., et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth
21 system models, *J. Clim.* 26, 5289-5314, 2013.

1 Beaulieu, C., Sarmiento, J. L., Mikaloff Fletcher, S., Chen, J. & Medvigh, D.

2 Identification and characterization of abrupt changes in the land uptake of carbon.

3 *Glob. Biogeochem. Cycl.*, 26, GB1007, 2012a.

4 Beaulieu, C., Chen, J. & Sarmiento, J. L. Change-point analysis as a tool to detect abrupt

5 climate variations. [in special issue: Climate predictions: the influence of nonlinearity

6 and randomness] *Phil. Trans. R. Soc. A*, 370, 1228-1249, 2012b.

7 Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols

8 implicated as a prime driver of twentieth-century North Atlantic climate variability.

9 *Nature*, 484, 228-232, 2012.

10 Buermann, W., et al. Interannual covariability in Northern Hemisphere air temperatures

11 and greenness associated with El Niño-Southern Oscillation and the Arctic Oscillation.

12 *J. Geophys. Res.*, 108, doi:10.1029/2002JD002630, 2003.

13 Carvalhais, N., et al. Global covariation of carbon turnover times with climate in

14 terrestrial ecosystems, *Nature*, 514, 213–217, 2014.

15 Ciais, P., et al. in *IPCC Climate Change 2013: The Physical Science Basis*. (eds Stocker,

16 T. F., et al.) 465–570 (Cambridge University Press, Cambridge).

17 Cohen, J., et al. Recent Arctic amplification and extreme mid-latitude weather. *Nature*

18 *Geosci.*, 7, 627–637, 2014.

19 Cox, P. M., et al. Sensitivity of tropical carbon to climate change constrained by carbon

20 dioxide variability. *Nature*, 494, 341-344, 2013.

21 Denman, K. L., et al. in *IPCC Climate Change 2007: The Physical Science Basis* (eds

22 Solomon, S., et al.) 499–587 (Cambridge University Press, Cambridge).

1 Deser, C., Tomas, R., Alexander, M. & Lawrence, D. The seasonal atmospheric response
2 to projected Arctic sea ice loss in the late twenty-first century. *J. Clim.*, 23, 333–351,
3 2010.

4 Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. CO₂ fertilisation has
5 increased maximum foliage cover across the globe's warm, arid environments.
6 *Geophys. Res. Lett.*, 40, 3031–3035, 2013.

7 Enfield, D. B., Mestas-Nunez, A. M. & Trimble, P. J. The Atlantic Multidecadal
8 Oscillation and its relationship to rainfall and river flows in the continental U.S.
9 *Geophys. Res. Lett.*, 28, 2077-2080, 2001.

10 Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U. and
11 Carvalhais, N.: Codominant water control on global interannual variability and trends
12 in land surface phenology and greenness, *Glob. Change Biol.*, 21, 3414–3435, 2015.

13 Greve, P., et al. Global assessment of trends in wetting and drying over land. *Nature*
14 *Geosci.*, doi:10.1038/ngeo2247, 2014.

15 Hoerling, M. J., Hurrell, J., Eischeid, J. & Phillips, A. Detection and attribution of 20th
16 century Northern and Southern African rainfall change. *J. Clim.*, 19, 3989–4008,
17 2006.

18 Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of
19 monthly climate observations – the CRU TS3.10 dataset. *Int. J. Climatol.*, 34, 623–
20 642, 2014.

21 Hurrell, J. W. Decadal trends in the North Atlantic oscillation regional temperatures and
22 precipitation. *Science*, 269, 676–679, 1995.

1 IPCC. Climate Change 2013: The Physical Science Basis: Summary for Policymakers.

2 (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge).

3 Kurz, W. A., et al. Mountain pine beetle and forest carbon feedback to climate change.

4 *Nature*, 452, 987–990, 2008.

5 Le Quéré , C., et al. Trends in the sources and sinks of carbon dioxide, *Nature Geosci.*, 2,

6 831–836, 2009.

7 Le Quéré, C., et al. The global carbon budget 1959–2011. *Earth Syst. Sci. Data*, 5, 1107–

8 1157, 2013.

9 Los, S. O., et al. Global interannual variations in sea surface temperature and land surface

10 vegetation, air temperature, and precipitation, *J. Clim.*, 14, 1535–1550, 2001.

11 Los, S. (2013). Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–

12 2006: Indication for a CO₂fertilization effect in global vegetation. *Glob. Biogeochem.*

13 *Cycl.*, 27, 318-330, 2013.

14 Lucht, W., et al. Climatic control of the high-latitude vegetation greening trend and

15 Pinatubo effect. *Science*, 296, 1687-1688, 2002.

16 Luyssaert, S., et al. CO₂ balance of boreal, temperate, and tropical forests derived from a

17 global database. *Glob. Change Biol.*, 13, 2509–2537, 2007.

18 Piao, S., et al. Changes in satellite-derived vegetation growth trend in temperate and

19 boreal Eurasia from 1982 to 2006. *Glob. Change Biol.*, 17, 3228–3239, 2011.

20 Piao, S., et al. Evaluation of terrestrial carbon cycle models for their response to climate

21 variability and to CO₂ trends, *Glob. Change Biol.*, 19, 2117–2132, 2013.

22 Raczka, B. M., et al. Evaluation of continental carbon cycle simulations with North

23 American flux tower observations, *Ecol. Monographs*, 83, 531–556, 2013.

1 Richardson, A. D., Influence of spring and autumn phenological transitions on forest
2 ecosystem productivity, Phil. Trans. R. Soc. B, 365, 3227-3246, 2010.

3 Sarmiento, J. L. et al. Trends and regional distributions of land and ocean sinks.
4 Biogeosciences, 7, 2351–2367, 2010.

5 Schierhorn, F., et al. Post-Soviet cropland abandonment and carbon sequestration in
6 European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycl., 27, 1175-1185,
7 2013.

8 Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide.
9 Biogeosciences, 12, 653–679, 2015.

10 Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of
11 global terrestrial CO₂ fertilization, Nature Clim. Change, doi:10.1038/nclimate2879.

12 Thompson, D. W. J. & Wallace, J. M. The Arctic oscillation signature in the wintertime
13 geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, 1998.

14 van der Werf, G. R., et al. Continental-scale partitioning of fire emissions during the
15 1997 to 2001 El Nino/La Nina period. Science, 303, 73-76, 2004.

16 van der Werf, G. R., et al. Interannual variability in global biomass burning emissions
17 from 1997 to 2004. Atm. Chem. Phys., 6, 3423–3441, 2006.

18 Wang, Y., Li, M. & Shen, L. Accelerating carbon uptake in the Northern Hemisphere:
19 evidence from the interhemispheric difference of atmospheric CO₂ concentrations.
20 Tellus B, 65, 20334, 2013.

21 Wang, X., et al. A two-fold increase of carbon cycle sensitivity to tropical temperature
22 variations. Nature, 506, 212-215, 2014.

1 Wild, M. Global dimming and brightening: A review. *J. Geophys. Res.*, 114, D00D16,
2 2009.

3 Xie, S. P. & Carton, J. A. Tropical Atlantic variability: Patterns, mechanisms, and
4 impacts. *Earth's Climate*, 121-142, 2004.

5 Zaehle, S. Terrestrial nitrogen–carbon cycle interactions at the global scale. *Phil. Trans. R. Soc. B*, 368, 20130125, 2013.

7 Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary
8 production from 2000 through 2009, *Science*, 329, 940–943, 2010.

9 Zhu, Z., et al. Global data sets of vegetation Leaf Area Index (LAI) 3g and Fraction Of
10 Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory
11 Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index
12 (NDVI3g) for the period 1981 to 2011. *Rem. Sens.*, 5, 927–948, 2013.

13

14 **Acknowledgements**

15 We gratefully acknowledge support for this study from the National Aeronautics and
16 Space Administration Carbon Cycle Science Program (grant NNX11AD45G).

17 We also thank Emanuel Gloo, Stephen Sitch, John Chiang and Chris Jones as well as
18 two anonymous reviewers for constructive comments that improved the manuscript
19 substantially. Finally, we thank the TRENDY modelling group for making their data
20 available.

21

22 **Author Contributions**

23 W.B., C.B., B.P. and G.J.C. designed the analyses. W.B., C.B. and B.P. conducted the

1 analyses. All authors contributed to the writing of the manuscript.

2

3 **Competing financial interests**

4 The authors declare no competing financial interests.

1 **Table 1. Timing and magnitude of abrupt changes in the terrestrial carbon cycle at**
2 **global and continental scales.** Timing of abrupt change (first data entry) as well as
3 corresponding direction and magnitude (second data entry in units of PgC yr⁻¹) and *P*-
4 values (in brackets; estimated through Monte Carlo simulations) are provided if a ‘shift in
5 the mean’ model fits the respective time series best (see Section 2). The timing of a shift
6 indicates the first year of a new regime. Shifts that are statistically significant (*P* < 0.05)
7 are highlighted in bold. Additional tests were carried out for assessing the nature and
8 robustness of the shifts including accounting for influences related to ENSO and volcanic
9 eruptions (Covariates), and specifically removing the two years of largest impact of the
10 strong Mt. Pinatubo volcanic eruption in the original time series (No Pinatubo). Plots of
11 all time series analyzed are also provided (Figs S2-S3 in the Supplement).

12

Region	Original data	Covariates ^f	No Pinatubo ^g
<i>Global Carbon Budget 1959-2011</i>			
Residual land sink ^e	1989, +1.03 (0.003)	1989, +1.28 (<0.001)	1989, +1.06 (0.003)
Net land uptake ^e	1989, +1.19 (0.004)	1989, +1.43 (<0.001)	1989, +1.23 (0.001)
<i>Data-driven (CASA) NPP 1982-2011</i>			
Global	1995, +1.18 (0.239) ^c	1989, +1.12 (0.124) ^c	1989, +1.49 (0.084) ^c
Northern land (>30°N)	1988, +0.72 (0.010)^c	1989, +0.62 (0.008)^c	1988, +0.76 (0.003)^c
Tropic./south. land (<30°N)	1995, +0.73 (0.266) ^c	1989, +0.50 (0.526)	1995, +0.70 (0.388) ^c
Northern Eurasia	1988, +0.53 (<0.001)^b	1989, +0.45 (0.001)	1988, +0.54 (<0.001)^b
Northern Africa	1989, +0.20 (0.005)	1989, +0.17 (0.003)	1989, +0.21 (0.001)
<i>Process-based (CASA) R_h 1982-2011</i>			
Global	1996, +0.96 (0.001)	1990, +0.80 (0.028)^c	1996, +0.94 (0.001)
Northern land (>30°N)	1990, +0.44 (0.003)^c	1990, +0.42 (<0.001)^{a,c}	1990, +0.46 (<0.001)^c
Tropic./south. land (<30°N)	1996, +0.63 (0.003)	1996, +0.49 (0.054)	1996, +0.61 (0.002)
Northern Eurasia	1988, +0.35 (0.004)^{a,c}	1990, +0.29 (0.004)^{b,c}	1988, +0.37 (<0.001)^{a,c}
Northern Africa	1988, +0.18 (<0.001)	1991, +0.14 (0.003)^b	1988, +0.19 (<0.001)
<i>Process-based (CASA) NEP 1982-2011</i>			
Global	1987 ^d	1999, -0.68 (0.122)	1987 ^d
Northern land (>30°N)	1987, +0.30 (0.318)	1989 ^d	1987, +0.31 (0.304)
Tropic./south. land (<30°N)	1999 ^d	1999, -0.56 (0.087)	1999 ^d
Northern Eurasia	1988, +0.18 (0.061)	1989, +0.15 (0.154) ^{b,c}	1988, +0.18 (0.074)
Northern Africa	1992 ^d	2003 ^d	1992 ^d

a. Not normally distributed (Lilliefors test, 5% critical level)

b. Variance not constant (F-test, 5% critical level)

c. Residuals not independent (Kruskal-Wallis, 5% critical level)

d. ‘Linear trend’ or ‘constant mean’ model fits data better than a ‘shift in the mean’ model

d. In the global carbon budget (Le Quéré et al., 2013), the net land uptake is estimated as the difference between global fossil fuel emissions and the sum of atmospheric CO₂ growth rate and oceanic uptake, while the residual land sink is the difference between net land uptake and LUC emissions

e. Variability related to ENSO and volcanoes were removed in the original time series through regressions against the multivariate ENSO index and stratospheric optical thickness after Beaulieu et al. (2012a)

f. The two Pinatubo years (1992, 1993) were removed in the original time series prior change point analysis

1 **Figure captions**

2 **Figure 1. Spatial pattern of abrupt shifts in data-driven NPP.** Maps show (a) timing
3 and corresponding (b) direction and magnitude of abrupt shifts in data-driven (CASA)
4 annual NPP for the satellite period 1982-2011. All robust NPP shifts shown here have
5 passed the two key statistical criteria: (i) a ‘shift in the mean’ model fits the time series at
6 each grid point best (evaluated through the Schwarz Information Criterion) and (ii) the
7 shift is also statistically significant ($P < 0.05$) based on Monte Carlo simulations that take
8 into account explicit uncertainties (Section 2). Maps of shifts that passed only the first
9 criteria are also provided (Fig. S1 in the Supplement). In (a), the focus regions northern
10 Eurasia (10°W - 180°E , 40°N - 70°N) and northern Africa (20°W - 50°E , 5°N - 20°N) are
11 outlined. The shifts are only assessed for the period 1987-2006, since for robust change
12 point detection a minimum span of 5 years of data prior and after a shift is required
13 (Section 2).

14

15 **Figure 2. Temporal changes in continental data-driven NPP.** Panels show annual and
16 seasonal (CASA-based) NPP anomalies corresponding to the (a) northern Eurasian and
17 (b) northern African focus regions (see Fig. 1a). All anomalies are relative to 1982-2011.
18 Shaded contours represent 1σ uncertainties that account for biases in model driver data
19 (Section 2). To understand which factors are mainly responsible for the identified shifts
20 (see Table 1), we performed factorial NPP simulations in which only one model driver is
21 varied whereas all others are kept constant (e.g., ‘fAPAR only’ corresponds to NPP
22 simulations in which only fAPAR was varied, whereas temperature, precipitation and
23 solar radiation data were kept at their climatological mean values). It should be noted that

1 satellite fAPAR, a proxy for vegetation cover, is often correlated with climate variables
2 and this places limits on attributing a single model driver to changes in NPP. The first
3 year of a new regime in annual NPP is outlined (thick dark red vertical lines; see Table 1)
4 and the means in NPP anomalies prior and after the shift are also shown (dashed lines).

5

6 **Figure 3. Temporal changes in continental process-based NPP based on nine**
7 **terrestrial biosphere models.** Panels show annual and seasonal NPP anomalies for the
8 (a) northern Eurasian and (b) North African focus regions, based on ensembles of nine
9 biosphere models that participated in the recent TRENDY model intercomparison study
10 (Sitch et al. 2015). In the annual case, results for two sets of model simulations are
11 shown: one in which climate and CO₂ as model drivers were varied (S2) and another one
12 that only takes into account the effect of climate variations (S2 – S1; see Section 2). All
13 anomalies are relative to the 1982-2010 overlapping satellite era to facilitate comparisons
14 with the data-driven NPP simulations (see Fig. 2). Mean ensembles were formed based
15 on anomalies in the single TRENDY models to emphasize temporal changes in NPP and
16 to suppress uncertainties arising from model differences in magnitudes. Shaded contours
17 represent 1 σ uncertainties corresponding to the spread in the single TRENDY models.
18 The first year of a new regime in annual NPP is outlined (thick dark red vertical lines;
19 Table S1 in the Supplement) and the means in NPP anomalies prior and after the shift are
20 also shown (dashed lines). In panel (b), the last data point for the year 2010 is omitted
21 since tropical rainfall input data for the TRENDY runs were erroneous for that year (S.
22 Sitch, personal communication).

23

1 **Figure 4. Synchronous continental shifts in climate and satellite vegetation data and**
2 **links to North Atlantic climate variability.** In panel (a), temporal variations in spring
3 (MAM) temperature and satellite-based vegetation activity (fAPAR) representative of the
4 northern Eurasian target region are plotted alongside the winter (JFM) Arctic Oscillation
5 (AO) and North Atlantic Oscillation (NAO) time series. In panel (b), temporal variations
6 in wet season (May-Oct) precipitation and fAPAR for the northern African target region
7 are plotted alongside the annual Atlantic Multidecadal Oscillation (AMO) time series.
8 Plotted are both annual values (thin dotted lines) and a smoothed time series based on a
9 seven-point binomial filter (thick lines). All time series are standardized anomalies
10 relative to the satellite period 1982-2011. All climate indices time series are obtained
11 from www.esrl.noaa.gov. Definitions of the AO and NAO are given in Thompson and
12 Wallace (1998) and Hurrell (1995), respectively. The AMO is a detrended area-weighted
13 average of North Altantic SSTs (0°-70°N) (Enfield et al., 2001).