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Abstract 1	
  

The World’s ocean and land ecosystems act as sinks for anthropogenic CO2, and over the 2	
  

last half century their combined sink strength grew steadily with increasing CO2 3	
  

emissions. Recent analyses of the global carbon budget, however, uncovered an abrupt, 4	
  

substantial (~1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose 5	
  

origin remains unclear. In the absence of this prominent shift in the land sink, increases in 6	
  

atmospheric CO2 concentrations since the late 1980s would have been ~30% larger than 7	
  

observed (or ~12 ppm above current levels). Global data analyses are limited in regards 8	
  

to attributing causes to changes in the land sink because different regions are likely 9	
  

responding to different drivers. Here, we address this challenge by using terrestrial 10	
  

biosphere models constrained by observations to determine if there is independent 11	
  

evidence for the abrupt strengthening of the land sink. We find that net primary 12	
  

production has significantly increased in the late 1980s (more so than heterotrophic 13	
  

respiration) consistent with the inferred increase in the global land sink, and that large-14	
  

scale climate anomalies are responsible for this shift. We identify two key regions in 15	
  

which climatic constraints on plant growth have eased: northern Eurasia experienced 16	
  

warming, and northern Africa received increased precipitation. Whether these changes in 17	
  

continental climates are connected is uncertain, but North Atlantic climate variability is 18	
  

important. Our findings suggest that improved understanding of climate variability in the 19	
  

North Atlantic may be essential for more credible projections of the land sink under 20	
  

climate change.    21	
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1  Introduction  1	
  

The world’s land ecosystems act as a major sink in the contemporary global carbon cycle 2	
  

and, hence, alleviates the rise of atmospheric CO2 concentrations from global CO2 3	
  

emissions and as a consequence climate change (IPCC, 2013). Yet, while critical for 4	
  

society our present understanding of the evolution of the land carbon sink under global 5	
  

change is still severely limited (Le Quéré et al., 2009). This is in part because multiple 6	
  

complex factors can influence the carbon balance of terrestrial ecosystems, including 7	
  

climate change, land-use and land-cover change (forest regrowth, fire suppression etc.), 8	
  

nitrogen deposition, and CO2 fertilization (Ciais et al., 2013). In this regard, it has been 9	
  

well documented that the land carbon sink (typically inferred as the ‘residual’ in the 10	
  

global carbon mass balance of fossil fuel and net land use change (LUC) emissions, the 11	
  

atmospheric CO2 growth rate and oceanic uptake) is quite variable at decadal time scales 12	
  

(Denman et al., 2007). But, in recent global carbon budget (GCB) studies with longer (~ 13	
  

last 5 decades) and annually resolved records a rather abrupt, substantial (~1 PgC yr-1)  14	
  

and sustained strengthening of the ‘residual’ land carbon sink in the late 1980s has been 15	
  

identified (Sarmiento et al., 2010; Beaulieu et al., 2012). Our overall confidence in this 16	
  

prominent shift, however, is somewhat limited since the ‘residual’ land sink is the most 17	
  

uncertain term in the GCB. This is because uncertainties embedded in the individual 18	
  

budget terms (e.g. LUC emissions and oceanic uptake) propagate into estimates of the 19	
  

‘residual’ land carbon sink (Le Quéré et al., 2013).  20	
  

 Here, we explore if there is further independent evidence for a late 1980s regime 21	
  

shift in the land carbon sink through analyzing carbon fluxes from biospheric models of 22	
  

various complexity and observational constraints (e.g. satellite-based vegetation activity). 23	
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Our emphasis is on global pattern of net primary production (NPP) since this key carbon 1	
  

flux is known to be a robust driver of carbon sink variability (Luyssaert et al., 2007; Zhao 2	
  

and Running, 2010). A particular focus is in identifying which land regions may have 3	
  

contributed to the potential shift and what underlying mechanisms may have caused it. 4	
  

Specifically, we analyze data-driven NPP data based on an established satellite-5	
  

constrained biogeochemical model as well as process-based NPP data from nine 6	
  

terrestrial biosphere models that participated in a recent model intercomparison project 7	
  

‘trends and drivers of the regional-scale sources and sinks of carbon dioxide (TRENDY)’ 8	
  

(Section 2).  9	
  

 10	
  

2  Methods 11	
  

2.1  Data and models 12	
  

We analyze temporal patterns in various metrics of the terrestrial carbon cycle based on 13	
  

three independent data sources. First, we analyze data-driven NPP fields based on 14	
  

simulations with the satellite-constrained biogeochemical Carnegie-Ames-Stanford-15	
  

Approach (CASA) model (van der Werf et al., 2006) for the period of available satellite 16	
  

vegetation data 1982-2011 (Zhu et al., 2013). This updated and extensively validated 17	
  

model runs at a 0.5º spatial resolution on a monthly time step. NPP is a measure of the 18	
  

amount of carbon fixed by plants during photosynthesis and accumulated as biomass. The 19	
  

CASA model is conceptually relative simple and a number of potentially important 20	
  

processes and mechanisms, such as related to nutrients (e.g., carbon and nitrogen) are not 21	
  

considered explicitly (van der Werf et al., 2006). However, factors that influence 22	
  

vegetation productivity may be indirectly captured through the satellite-based fraction of 23	
  



	
   5	
  

available photosynthetically active radiation absorbed by plants (fAPAR), a key driver in 1	
  

the NPP CASA light use efficiency parameterization (van der Werf et al., 2006). This is 2	
  

demonstrated by two recent studies showing that trends in satellite-based vegetation 3	
  

cover are consistent with expectations of growth enhancement via the CO2 fertilization 4	
  

effect (Donohue et al., 2013; Los, 2013). Yet there is also new evidence suggesting that 5	
  

in dense forested ecosystems (tropical rainforests) fAPAR may not be fully responsive to 6	
  

the CO2 fertilization effect (Forkel et al. 2015). Temporally varying driver data used for 7	
  

the CASA simulations include in addition to satellite-based fAPAR (fAPAR3g) (Zhu et 8	
  

al., 2013) also land temperature (CRU TS3.21) (Harris et al., 2014) as well as 9	
  

precipitation and surface solar radiation. We pay particular attention to uncertainties in 10	
  

these observational-based datasets and corresponding effects on NPP estimates. While 11	
  

land surface temperature data are considered to be relatively robust, a substantial 12	
  

limitation is that presently only one consistent satellite fAPAR dataset exists that covers 13	
  

the last 3 decades (Zhu et al., 2013) which we consider a minimum record length for 14	
  

meaningful change point analysis. Nonetheless, to account at least partially for 15	
  

observational uncertainties we evaluated different data sources for precipitation and 16	
  

surface solar radiation which are known to have substantial uncertainties (Wild, 2009; 17	
  

Greve et al., 2014) (see Methods in the Supplement). Based on a final selection of driver 18	
  

datasets (1 fAPAR, 1 temperature, 3 precipitation and 3 solar radiation; see Table S4 in 19	
  

the Supplement) we performed multiple CASA simulations with all possible input 20	
  

combinations (a total of 9 simulations) and analyzed the NPP ensemble mean with our 21	
  

change point methodology. We used the spread in these simulations as a measure of 22	
  

‘observational-based’ uncertainty. In a complementary analysis, we also analyzed the 23	
  



	
   6	
  

heterotrophic respiration (Rh) and net ecosystem production (NEP; estimated as NPP – 1	
  

Rh) ensemble means from these sets of CASA simulations. Owing to the lack of 2	
  

consistent fire observations for our study period 1982-2011 (e.g. the GFED era starts in 3	
  

1997; see van der Werf et al., 2006) corresponding effects on variability in NPP and NEP 4	
  

were not considered. To ensure that the carbon pools are at steady state, the CASA model 5	
  

was spun up for 250 years using a driver climatology based on the study period 1982-6	
  

2011. 7	
  

Second, we analyze a GCB for the period 1959-2011 and consisting of CO2 8	
  

emissions from fossil fuel burning and cement production as well as net LUC emissions, 9	
  

atmospheric CO2 growth rates and oceanic uptake (Le Quéré et al., 2013). Uncertainties 10	
  

in these budget terms are also provided and utilized to estimate uncertainties in net land 11	
  

uptake and the residual land sink (through the sum of squared errors).    12	
  

 Third, we analyze process-based NPP, Rh and NEP data based on ensembles of 13	
  

nine single terrestrial biosphere models that participated in the recent TRENDY model 14	
  

intercomparison project (Sitch et al., 2015). Compared to CASA, the TRENDY models 15	
  

are substantially more complex and also run at significantly shorter time steps to resolve 16	
  

the diurnal cycle needed when coupled within Earth system climate models (Sitch et al., 17	
  

2015). An important distinction is that in the TRENDY models vegetation characteristics 18	
  

(e.g. fAPAR) are simulated prognostically (unlike in CASA where such information is 19	
  

inferred from satellite observations). In the TRENDY experiments (Sitch et al., 2015) the 20	
  

models were driven with observed climate and atmospheric CO2 data (S2 experiments) as 21	
  

well as with observed atmospheric CO2 data only (S1) and in order to isolate the 22	
  

variability due to climate, the difference between these two experiments (S2 – S1) was 23	
  



	
   7	
  

taken. We analyze the NPP, Rh and NEP ensemble means (based on anomalies) from the 1	
  

nine participating models (Community Land Model 4CN, Hyland, Lund-Potsdam-Jena 2	
  

(LPJ), LPJ-GUESS, ORCHIDEE, ORCHIDEE-CN, Sheffield-DGVM, TRIFFID and 3	
  

VEGAS; for model details see Sitch et al., 2015) and used the spread among them as a 4	
  

measure of ‘model-based’ uncertainty in our change point framework. Based on a recent 5	
  

comprehensive evaluation against observations, it was found that most of the TRENDY 6	
  

models are capable of simulating the short- and long-term first-order dynamics of the 7	
  

terrestrial carbon cycle (Piao et al., 2013).  8	
  

 9	
  

2.2  Statistical methodology 10	
  

We apply a consistent change point methodology on the various metrics of the terrestrial 11	
  

carbon cycle to identify pattern of regime shifts (characterized as abrupt, substantial and 12	
  

sustained changes) and to contrast them to pattern showing either no or more gradual 13	
  

changes. We thus determine in a first step the statistical model that best fits the time 14	
  

series under investigation based on three options: 1) a constant mean, 2) a shift in the 15	
  

mean and 3) a linear trend. While there are numerous alternative statistical models (e.g. 16	
  

shifting trends as seen in satellite vegetation data at local to regional scales  17	
  

(Piao et al., 2011)), our choice of these three models is based on our primary objective to 18	
  

identify large-scale pattern in global and continental carbon fluxes that would be 19	
  

consistent with the recently observed regime shift in the land carbon sink (Sarmiento et 20	
  

al., 2010; Beaulieu et al., 2012).  21	
  

In the ‘shift in the mean’ model, the shift is located through a change point 22	
  

detection algorithm that includes discrimination against a trend and the background 23	
  



	
   8	
  

autocorrelation (red noise) by considering all positions in a time series as a potential 1	
  

change point from 5 to n-5, with n being the record length (Beaulieu et al. 2012b). In a 2	
  

previous study, we found that by restricting the search for change points in this manner 3	
  

detection of spurious shifts at the beginning or end of a series can be avoided  4	
  

(Beaulieu et al. 2012a). In the change point method applied here, we also further 5	
  

developed the Beaulieu et al. (2012b) methodology to account for known explicit 6	
  

uncertainties in the time series under investigation. One important limitation here is that 7	
  

this statistical change point model cannot distinguish between a rather drastic shift (e.g., 8	
  

change from one year to the next) and a more smooth shift over the span of several years. 9	
  

Adding additional parameters could in principle provide more information on the nature 10	
  

of the shift (e.g., smooth versus abrupt) but this would also make the model prone to 11	
  

overfitting given the rather short time series in this study.  12	
  

 The most likely model among the three statistical models fitted is determined 13	
  

based on the Schwarz Information Criterion (SIC), which compares their likelihoods with 14	
  

a penalty for the number of parameters fitted. If the ‘shift in the mean’ model seems the 15	
  

most likely, we calculate in a second step the direction and magnitude of the shifts 16	
  

(subtracting means prior and after the shift) and the corresponding P-value by integrating 17	
  

the full uncertainty of the data using Monte Carlo simulations. To perform the Monte 18	
  

Carlo simulation, we draw 1000 normally distributed synthetic series having the same 19	
  

statistical properties as the time series of interest. A new feature is that the series are 20	
  

simulated with uncertainty additivity: the squared variance of each data point is added to 21	
  

the overall time series squared variance and the square root of this sum provides the 22	
  

synthetic series variance. This therefore takes into account the explicit uncertainties in the 23	
  



	
   9	
  

various time series under investigation. The change point method is applied to the 1	
  

synthetic time series and a SIC difference between the model with a shift in the mean and 2	
  

no shift is calculated for each time series. This provides a distribution for the SIC 3	
  

difference under the hypothesis of no shift in the mean. The P-value is the estimated 4	
  

probability to find a SIC difference at least as extreme as the one observed, under the 5	
  

hypothesis of no change. This methodology assumes that the errors of the model are 6	
  

independent and normally distributed with a constant variance. We test normality of the 7	
  

residuals using the Lilliefors test, the independence is verified using the Durbin-Watson 8	
  

test and the constant variance is verified using a Fisher test. All tests are available and 9	
  

performed using MATLAB. If independence is not respected, we generate synthetic 10	
  

series with the same first-order autocorrelation as observed in the respective time series 11	
  

residuals. 12	
  

 13	
  

3  Results 14	
  

3.1 Shifts in data-driven NPP  15	
  

Applying our change point methodology (Section 2.2) on data-driven global NPP fields 16	
  

reveals a marked spatial clustering of abrupt and sustained increases in NPP across 17	
  

northern Eurasia and northern Africa in the late 1980s (Fig. 1). At more regional levels, 18	
  

the impact of severe disturbance events such as the mountain pine beetle outbreak in the 19	
  

late 1990s in the temperate and boreal forests of western North America  20	
  

(Kurz et al., 2008) is also disclosed (via rapid and sustained decreases in NPP). A similar 21	
  

analysis without constraining to only statistically significant results at the grid point level 22	
  

implies that the coherent pattern of abrupt and sustained NPP shifts across northern 23	
  



	
   10	
  

Eurasia and northern Africa are spatially even more extensive (Fig. S1 in the 1	
  

Supplement).  2	
  

 This point is further illustrated when we apply our change point framework on 3	
  

data-driven NPP time series representative of large land regions and highlights the 4	
  

important role of the northern extratropics (magnitude of NPP shift: ~0.7 PgC yr-1), and 5	
  

the northern Eurasian continent (~0.5 PgC yr-1) in particular, in the regime shift in carbon 6	
  

uptake by terrestrial plants in the late 1980s (Table 1 and Fig. S2 in the Supplement). 7	
  

While the northern African region also exhibits a robust albeit smaller increase in data-8	
  

driven NPP (~0.2 PgC yr-1) in the late 1980s, no corresponding NPP shifts are 9	
  

discernable for tropical/southern and global land areas (Table 1). It is well known that 10	
  

factors like ENSO (van der Werf et al., 2004) and volcanic aerosols (Lucht et al., 2002) 11	
  

have a large influence on variability in the carbon balance of terrestrial ecosystems 12	
  

(particularly at interannual time scales) and these phenomena may have also played a role 13	
  

in the prominent late 1980s NPP regime shifts. An analysis that explicitly accounts for 14	
  

such effects however suggests that these two factors are not the causes of the shift, but 15	
  

indicates that a shift in data-driven NPP in the late 1980s emerges also for 16	
  

tropical/southern and global land regions albeit with limited statistical significance  17	
  

(Table 1). In a complementary analysis, we also re-assessed the robustness of the earlier 18	
  

reported abrupt shift in the ‘residual’ global land carbon sink in the late 1980s (Sarmiento 19	
  

et al., 2010; Beaulieu et al., 2012a) by analyzing a GCB for the period 1959-2011 (Le 20	
  

Quéré et al., 2013) with our change point methodology that also accounts for explicit 21	
  

uncertainties in the individual budget terms (Section 2.2). Results confirm the presence of 22	
  

a regime shift in the global ‘residual’ land sink (~1-1.3 PgC yr-1 depending on statistical 23	
  



	
   11	
  

treatment) in the late 1980s (Table 1 and Fig. S3 in the Supplement). Taken together, the 1	
  

good agreement in the timing of regime shifts in the global ‘residual’ land carbon sink 2	
  

and continental data-driven NPP may imply that the latter is a significant driver of the 3	
  

increased terrestrial carbon uptake in the late 1980s. 4	
  

 5	
  

3.2 Drivers of the late-1980s shift in data-driven NPP  6	
  

In order to unravel the mechanisms leading to the continental shifts in data-driven NPP, 7	
  

we focus on the two target regions of northern Eurasia and northern Africa that 8	
  

predominantly contributed to this late 1980s shift (see Fig. 1a). A factorial analysis for 9	
  

specific seasons shows that the northern Eurasian continent experienced a marked 10	
  

increase in spring temperatures and spring satellite vegetation activity (fAPAR) in the 11	
  

late 1980s that together drove a substantial increase in spring NPP (Fig. 2a). This 12	
  

relatively sudden springtime warming was also associated with a marked earlier spring 13	
  

onset (~5 days; see Fig. S4 in the Supplement) and the enhanced productivity in the early 14	
  

part of the growing season appears to have also benefited plant productivity in 15	
  

subsequent summers (Fig. 2a and Fig. S4 in the Supplement). A closer inspection shows 16	
  

that the increase in summer productivity stemmed solely from satellite fAPAR 17	
  

contributions (Fig. 2a), which is consistent with the notion of a more developed canopy 18	
  

during the peak of the growing season (as captured trough fAPAR) that carries over the 19	
  

early spring onset signal (Richardson et al, 2010). Increased plant productivity in the 20	
  

spring and summer seasons contributed predominantly to the pronounced and sustained 21	
  

increases in annual NPP in the late 1980s (Fig. 2a). 22	
  

Over northern Africa including the dry Sahel, marked increases in data-driven 23	
  



	
   12	
  

NPP during wet and dry seasons that are driven by both increases in rainfall as well as 1	
  

satellite fAPAR triggered a pronounced increase in annual NPP in the late 1980s (Fig. 2	
  

2b). A closer inspection shows that in the period after this shift rainfall increased 3	
  

specifically during the later portion of the rainy season, which effectively lengthened the 4	
  

more productive growing season (Fig. S4 in the Supplement). 5	
  

 6	
  

3.3 Shifts in process-based NPP  7	
  

The exploited biogeochemical model (CASA) for data-driven NPP simulations has a 8	
  

relatively simple structure and provides an integrated view (via satellite fAPAR) of the 9	
  

many interacting factors that influence NPP variability. Further, data-driven NPP 10	
  

estimates are also influenced by observational uncertainties in both satellite (e.g., 11	
  

volcanic aerosols, cloud cover, signal saturation) and key climate driver data that are only 12	
  

partially accounted for in our data-driven NPP simulations (see Section 2.1). We thus 13	
  

explored if process-based terrestrial biosphere models driven by climate and atmospheric 14	
  

CO2 observations also show evidence of a marked shift in NPP in the late 1980s. Results 15	
  

based on the TRENDY ensembles (Section 2) show that for the satellite period (~ last 3 16	
  

decades) a NPP shift in the late 1980s emerges as a prominent feature, but only in 17	
  

experiments that capture variability due to climate exclusively (Fig. 3, Fig. S5 and Table 18	
  

S1 in the Supplement). Regional attributions associated with the shift are similar as in the 19	
  

case for data-driven NPP, but differences in NPP sensitivities to climate (inferred from 20	
  

differences in the magnitude of the shifts) are evident (Table 1 and Table S1 in the 21	
  

Supplement). For example, the magnitude of the late 1980s NPP shift in northern Eurasia 22	
  

based on TRENDY is only about half the size of the corresponding shift in data-driven 23	
  



	
   13	
  

NPP (Table 1 and Table S1 in the Supplement). One reason for this marked difference 1	
  

may be that seasonal carry-over effects in NPP are largely absent in the TRENDY 2	
  

models; e.g. the late 1980s Northern Eurasian annual NPP shift in TRENDY is solely due 3	
  

to spring contributions (coincident with the time of the climate forcing) whereas for data-4	
  

driven NPP it is comprised of about equal contributions from spring and summer with 5	
  

satellite fAPAR providing the link through which the early spring onset signal is 6	
  

propagated (Figs 2a and 3a). It should be noted that such seasonal carry-over effects due 7	
  

to an earlier spring onset are observed at multiple eddy covariance flux sites across 8	
  

temperate and boreal ecosystems (Richardson et al., 2010) and that the phenology 9	
  

response (at seasonal and interannual time scales) in data-driven approaches is generally 10	
  

considered more robust (Raczka et al., 2013).    11	
  

The TRENDY simulations are not restricted to the satellite period allowing us to 12	
  

assess whether the identified late 1980s NPP shifts also emerge as dominant pattern when 13	
  

the study period is extended to the last 5 decades (to be consistent with the time frame of 14	
  

the GCB). Results show that the late 1980s shift over northern Eurasia is a stable pattern. 15	
  

For northern Africa, however, an even more prominent shift is identified in the late 1960s 16	
  

(Fig. S5 and Table S1 in the Supplement). This may suggest that this region by itself is 17	
  

not important enough to influence the global land sink (since there is no evidence for a 18	
  

corresponding shift in the global residual land sink; see Table 1). Further, in TRENDY 19	
  

experiments in which atmospheric CO2 and climate drivers are varied, the shift appears to 20	
  

be masked by an increasing trend in NPP associated largely with the CO2 fertilization 21	
  

effect (Fig. 3, Fig. S6 and Table S1 in the Supplement). In fact, the high NPP sensitivity 22	
  

to changes in atmospheric CO2 concentrations in many of the current generation of 23	
  



	
   14	
  

terrestrial biosphere models (Arora et al., 2013) and the potential role of nutrient 1	
  

limitations (Zaehle, 2013) and/or climate feedbacks (Smith et al., 2015) in mitigating this 2	
  

sensitivity is presently a subject of intense research.  3	
  

 4	
  

3.4 Shifts in Rh and NEP 5	
  

In how far the identified climate-driven regime shifts in NPP in the late 1980s translate 6	
  

into a sustained carbon sink (consistent with the shift seen in the residual land carbon 7	
  

sink from the GCB; Table 1) depends in part on associated responses in key carbon loss 8	
  

fluxes such as Rh which (apart from its dependence on substrate supply from NPP) often 9	
  

depends on climatic factors in a similar fashion as NPP (Lucht et al., 2002). A limitation, 10	
  

however, is that currently no data-driven analog for Rh estimation exists and one has to 11	
  

revert to alternative methods including more uncertain process-based simulations. 12	
  

Nevertheless to estimate the degree at which shifts in NPP may be potentially offset by 13	
  

corresponding shifts in Rh we apply our change point framework also on the Rh as well as 14	
  

NEP fluxes from the CASA and TRENDY simulations (see Section 2). Results show that 15	
  

for the large land regions of interest regime shifts in NPP are repeatedly accompanied by 16	
  

substantial shifts in Rh (Table 1, Tables S1-S2 and Figs S2, S5-S6 in the Supplement) 17	
  

often with 1-2 year lags (seen most clearly when ENSO and volcanic influences are 18	
  

accounted for). A consequence is that corresponding shifts in NEP are often less robust or 19	
  

not detectable (Table 1 and Table S3 in the Supplement). For example, in the case of the 20	
  

two focal regions northern Eurasia and northern Africa, the late 1980s shifts in data-21	
  

driven NPP are offset by corresponding shifts in Rh at levels of 64-66% and 80-90% 22	
  

(depending on statistical treatment), respectively (Table 1). As stated, the estimated shifts 23	
  



	
   15	
  

in the Rh fluxes are more uncertain and may represent more upper bound estimates as a 1	
  

new study suggests that carbon models have a tendency to transfer carbon too quickly 2	
  

through the plant-soil systems because of severe biases in simulated soil carbon and/or 3	
  

too high Rh sensitivities to climate (Carvalhais et al., 2014).  4	
  

At global scale, a shift in Rh can also be estimated as the residual between a NPP 5	
  

shift and a corresponding shift in the residual land sink based on the GCB (Anderegg et 6	
  

al., 2015). Using methods that include such residual calculations as well as our direct 7	
  

model estimates (see Methods in the Supplement), we estimate a shift in global NPP in 8	
  

the late 1980s of 1.14 ± 0.34 PgC yr-1 and a corresponding shift in Rh of 0.36 ± 0.48 PgC 9	
  

yr-1. Our best estimate for an associated global shift in NEP is 0.63 ± 0.30 PgC yr-1 that 10	
  

amounts to roughly 60% of the magnitude of the late 1980s shift in the residual land sink 11	
  

from the GCB (1.12 ± 0.14 PgC yr-1; based on the three estimates shown in Table 1).  12	
  

 13	
  

4  Discussion 14	
  

Our findings provide independent evidence from a biospheric modeling perspective for 15	
  

the abrupt strengthening of the ‘residual’ land carbon sink in the late 1980s (Sarmiento et 16	
  

al. 2010) and suggest that the underlying driver is a shift in global NPP in response to 17	
  

coordinated large-scale climate shifts. However, the late 1980s climate perturbations may 18	
  

also substantially influence fire regimes, but the paucity of data on burned area and 19	
  

related carbon emissions extending back to the early 80s severely limits estimating 20	
  

corresponding impacts. For northern Eurasia (which is responsible for the largest 21	
  

contribution to the late 1980s regime shift in data-driven NPP), however, it is not 22	
  

anticipated that the observed profound spring warming and greening (inferred through 23	
  



	
   16	
  

fAPAR) in the late 1980s may have lead to substantial changes in fire emissions since the 1	
  

fire activity peaks later in the season (van der Werf et al., 2006). For northern Africa, 2	
  

changes in fire regimes associated with the late 1980s shift towards wetter conditions 3	
  

may have a substantial influence on net carbon balance albeit with uncertain direction 4	
  

since a shift towards wetter conditions may increase (more fuel load) or reduce 5	
  

(shortening the dry season) fire emissions (Andela and van der Werf, 2014). Models that 6	
  

can potentially quantify this influence are still in their early phase of development. While 7	
  

much uncertainty (specifically pertaining to magnitude) remains in estimating the 8	
  

contribution of climate-driven changes in the major land carbon fluxes to the late 1980s 9	
  

regime shift in the land carbon sink, our regional NPP attributions are consistent with a 10	
  

reported decrease in the interhemispheric gradient in atmospheric CO2 in the 1990s 11	
  

relative to the 1980s that is attributed to an increase in the northern carbon sink (Wang et 12	
  

al., 2013). 13	
  

 Other factors not related to climate may have also played a role in the late 1980s 14	
  

regime shift of the land carbon sink. A potential large contribution in this regard may be 15	
  

from land-use and land cover changes across northern Eurasia through agricultural 16	
  

abandonment and rapid changes in forest management in the aftermath of the late 1980s 17	
  

post-Soviet collapse. While such processes are accounted for in net LUC emission 18	
  

estimates compiled in the GCB (and therefore included in our analysis; see Table 1) 19	
  

corresponding effects may not be fully captured due to a lack of robust data especially in 20	
  

the period prior the Soviet collapse (Achard et al., 2006). However, at least in the case of 21	
  

agricultural abandonment newly available estimates (Schierhorn et al., 2013) of 22	
  

associated carbon sinks for the post-Soviet period 1990-2009 suggest a minor 23	
  



	
   17	
  

contribution (~0.03 PgC yr-1).  1	
  

 A remarkable finding is that two key climatic constraints on plant growth 2	
  

(temperature and precipitation) have shifted in the late 1980s in a way as to facilitate an 3	
  

abrupt and sustained increase in continental-scale terrestrial NPP. This bears the question 4	
  

if there is an underlying link that would explain why these large-scale climate pattern 5	
  

varied nearly synchronously. The Arctic Oscillation (AO) is the most important climate 6	
  

mode in the northern extratropics (Thompson and Wallace, 1998) and also a prominent 7	
  

mode in coupled global (Los et al., 2001) and hemispheric (Buermann et al., 2003) 8	
  

climate and satellite vegetation greenness data. Consistent with these results, we find that 9	
  

over the satellite period 1982-2011 the winter AO is tightly correlated with northern 10	
  

Eurasian spring temperatures (r=0.60, P<0.001) and spring fAPAR (r=0.40, P=0.03), 11	
  

respectively (Fig. 4). In the late 1980s, the AO together with its regional manifestation 12	
  

the North Atlantic Oscillation (NAO) (Hurrell, 1995) underwent an extreme shift into 13	
  

their respective positive phases, thereby moving North Atlantic winter storm tracks 14	
  

northward and enabling advection of mild maritime air deep into the northern Eurasian 15	
  

land mass (Thompson and Wallace, 1998). Our results show that the northern Eurasian 16	
  

biomes responded rapidly to the associated substantial spring warming as evidenced 17	
  

through synchronous increases in satellite-based vegetation activity (Fig. 4a). Change 18	
  

point analysis on these drivers of NPP also confirms the existence of this prominent late-19	
  

1980s shift (showing significant shifts in winter (JFM) AO (1989, p=0.07), Northern 20	
  

Eurasian spring temperature (1989, p<0.001) and Northern Eurasian spring fAPAR 21	
  

(1990, p<0.001), respectively). In the aftermath of this shift, however, spring 22	
  

temperatures and vegetation activity stayed at elevated levels (causing a sustained impact 23	
  



	
   18	
  

on plant carbon uptake; see Fig. 2a) while the AO/NAO exhibited a negative trend, a fact 1	
  

that may be explained by a more gradual warming response to greenhouse gas forcing 2	
  

that is superimposed on the more oscillatory influence of the AO/NAO.  3	
  

Northern African wet season rainfall pattern are strongly influenced by Atlantic 4	
  

sea surface temperature (SST) variability (Hoerling et al., 2006). In this regard, the 5	
  

warming of the North Atlantic relative to the South Atlantic that resumed in the late 6	
  

1980s to mid 1990s caused a northward displacement of the Atlantic intertropical 7	
  

convergence zone (ITCZ) and increased rainfall rates across northern Africa, which led to 8	
  

a recovery from earlier severe drought conditions (Hoerling et al., 2006). This increased 9	
  

moisture supply also led to rapid increases in satellite fAPAR (Fig. 4b). An open question 10	
  

is to what extent AO/NAO and Atlantic SST forcings may have interacted (Xie and 11	
  

Carton, 2004) in the wake of the apparent coordinated regional climate shifts over 12	
  

northern Eurasia and northern Africa in the late 1980s. It is well established that ENSO 13	
  

(van der Werf et al., 2004) and volcanic eruptions (Lucht et al., 2002) have a dominant 14	
  

influence on the terrestrial carbon cycle at interannual time scales and much of recent 15	
  

research has focused on associated links (Cox et al., 2013; Wang et al., 2014). Our 16	
  

findings here may suggest that North Atlantic climate variability and corresponding 17	
  

impacts on adjacent vast land masses may be more important in regards to abrupt, 18	
  

substantial and more sustained shifts in the terrestrial carbon cycle.  19	
  

 20	
  

5  Conclusions 21	
  

Our results point to a mechanism whereby North Atlantic climate variability modulates 22	
  

the global terrestrial carbon cycle. New research suggests that a large portion of the 23	
  



	
   19	
  

variability in the North Atlantic may be externally forced by anthropogenic aerosols 1	
  

(Booth et al., 2012) and the pronounced warming trend in the Arctic regions, known as 2	
  

Arctic amplification (Cohen et al., 2014). Arctic amplification specifically is thought to 3	
  

intensify under climate change (Deser et al., 2010) and this may drive the AO/NAO more 4	
  

into their respective negative phases (Cohen et al., 2014) which, based on our results, 5	
  

would substantially reduce carbon uptake by terrestrial plants and weaken the land carbon 6	
  

sink. This illustrates the pressing need for improved knowledge of North	
  Atlantic	
  7	
  

climate	
  variability	
  and	
  associated	
  forcing	
  mechanisms	
  in	
  order	
  to	
  more	
  credibly	
  8	
  

project	
  the	
  evolution	
  of	
  the	
  land	
  carbon	
  sink	
  and	
  carbon	
  cycle	
  climate	
  feedbacks	
  9	
  

under	
  climate	
  change.	
   10	
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Table 1. Timing and magnitude of abrupt changes in the terrestrial carbon cycle at 1	
  

global and continental scales. Timing of abrupt change (first data entry) as well as 2	
  

corresponding direction and magnitude (second data entry in units of PgC yr-1) and P-3	
  

values (in brackets; estimated through Monte Carlo simulations) are provided if a ‘shift in 4	
  

the mean’ model fits the respective time series best (see Section 2). The timing of a shift 5	
  

indicates the first year of a new regime. Shifts that are statistically significant (P < 0.05) 6	
  

are highlighted in bold. Additional tests were carried out for assessing the nature and 7	
  

robustness of the shifts including accounting for influences related to ENSO and volcanic 8	
  

eruptions (Covariates), and specifically removing the two years of largest impact of the 9	
  

strong Mt. Pinatubo volcanic eruption in the original time series (No Pinatubo). Plots of 10	
  

all time series analyzed are also provided (Figs S2-S3 in the Supplement). 11	
  

12	
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 1	
  
Region Original data  Covariatesf No Pinatubog 

Global Carbon Budget 1959-2011 

Residual land sinke 1989, +1.03  (0.003) 1989, +1.28  (<0.001) 1989, +1.06 (0.003) 

Net land uptakee 1989, +1.19 (0.004) 1989, +1.43 (<0.001) 1989, +1.23 (0.001) 

Data-driven (CASA) NPP 1982-2011 

Global 1995, +1.18 (0.239)c 1989, +1.12 (0.124)c 1989, +1.49 (0.084)c 

Northern land (>30ºN) 1988, +0.72 (0.010)c 1989, +0.62 (0.008)c 1988, +0.76 (0.003)c 

Tropic./south. land (<30ºN) 1995, +0.73 (0.266)c 1989, +0.50 (0.526) 1995, +0.70 (0.388)c 

Northern Eurasia 1988, +0.53 (<0.001)b 1989, +0.45 (0.001) 1988, +0.54 (<0.001)b 

Northern Africa 1989, +0.20 (0.005) 1989, +0.17 (0.003)  1989, +0.21 (0.001) 

Process-based (CASA) Rh 1982-2011 

Global 1996,  +0.96 (0.001) 1990, +0.80 (0.028)c 1996, +0.94 (0.001) 

Northern land (>30ºN) 1990, +0.44 (0.003)c 1990, +0.42 (<0.001)a,c 1990, +0.46 (<0.001)c 

Tropic./south. land (<30ºN) 1996, +0.63 (0.003) 1996, +0.49 (0.054) 1996, +0.61 (0.002) 

Northern Eurasia 1988, +0.35 (0.004)a,c 1990, +0.29 (0.004)b,c 1988, +0.37 (<0.001)a,c 

Northern Africa 1988, +0.18 (<0.001) 1991, +0.14 (0.003)b  1988, +0.19 (<0.001) 

Process-based (CASA) NEP 1982-2011 

Global 1987d 1999, -0.68 (0.122) 1987 d 

Northern land (>30ºN) 1987, +0.30 (0.318) 1989 d 1987, +0.31 (0.304) 

Tropic./south. land (<30ºN) 1999 d 1999, -0.56 (0.087) 1999 d 

Northern Eurasia 1988, +0.18 (0.061) 1989, +0.15 (0.154)b,c 1988, +0.18 (0.074) 

Northern Africa 1992 d 2003 d 1992 d 

a. Not normally distributed (Lilliefors test, 5% critical level) 2	
  

b. Variance not constant (F-test, 5% critical level) 3	
  

c. Residuals not independent (Kruskal-Wallis, 5% critical level) 4	
  

d. ‘Linear trend’ or  ‘constant mean’ model fits data better than a ‘shift in the mean’ model 5	
  

d. In the global carbon budget (Le Quéré et al., 2013), the net land uptake is estimated as the difference 6	
  

between global fossil fuel emissions and the sum of atmospheric CO2 growth rate and oceanic uptake, 7	
  

while the residual land sink is the difference between net land uptake and LUC emissions 8	
  

e. Variability related to ENSO and volcanoes were removed in the original time series through regressions 9	
  

against the multivariate ENSO index and stratospheric optical thickness after Beaulieu et al. (2012a) 10	
  

f. The two Pinatubo years (1992, 1993) were removed in the original time series prior change point analysis	
  11	
  
12	
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Figure captions 1	
  

Figure 1. Spatial pattern of abrupt shifts in data-driven NPP. Maps show (a) timing 2	
  

and corresponding (b) direction and magnitude of abrupt shifts in data-driven (CASA) 3	
  

annual NPP for the satellite period 1982-2011. All robust NPP shifts shown here have 4	
  

passed the two key statistical criteria:  (i) a ‘shift in the mean’ model fits the time series at 5	
  

each grid point best (evaluated trough the Schwarz Information Criterion) and (ii) the 6	
  

shift is also statistically significant (P < 0.05) based on Monte Carlo simulations that take 7	
  

into account explicit uncertainties (Section 2). Maps of shifts that passed only the first 8	
  

criteria are also provided (Fig. S1 in the Supplement). In (a), the focus regions northern 9	
  

Eurasia (10ºW-180ºE, 40ºN-70ºN) and northern Africa (20ºW-50ºE, 5ºN-20ºN) are 10	
  

outlined. The shifts are only assessed for the period 1987-2006, since for robust change 11	
  

point detection a minimum span of 5 years of data prior and after a shift is required 12	
  

(Section 2).  13	
  

 14	
  

Figure 2. Temporal changes in continental data-driven NPP. Panels show annual and 15	
  

seasonal (CASA-based) NPP anomalies corresponding to the (a) northern Eurasian and 16	
  

(b) northern African focus regions (see Fig. 1a). All anomalies are relative to 1982-2011. 17	
  

Shaded contours represent 1σ uncertainties that account for biases in model driver data  18	
  

(Section 2). To understand which factors are mainly responsible for the identified shifts 19	
  

(see Table 1), we performed factorial NPP simulations in which only one model driver is 20	
  

varied whereas all others are kept constant (e.g., ‘fAPAR only’ corresponds to NPP 21	
  

simulations in which only fAPAR was varied, whereas temperature, precipitation and 22	
  

solar radiation data were kept at their climatological mean values). It should be noted that 23	
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satellite fAPAR, a proxy for vegetation cover, is often correlated with climate variables 1	
  

and this places limits on attributing a single model driver to changes in NPP. The first 2	
  

year of a new regime in annual NPP is outlined (thick dark red vertical lines; see Table 1) 3	
  

and the means in NPP anomalies prior and after the shift are also shown (dashed lines). 4	
  

 5	
  

Figure 3. Temporal changes in continental process-based NPP based on nine 6	
  

terrestrial biosphere models. Panels show annual and seasonal NPP anomalies for the 7	
  

(a) northern Eurasian and (b) North African focus regions, based on ensembles of nine 8	
  

biosphere models that participated in the recent TRENDY model intercomparison study 9	
  

(Sitch et al. 2015). In the annual case, results for two sets of model simulations are 10	
  

shown: one in which climate and CO2 as model drivers were varied (S2) and another one 11	
  

that only takes into account the effect of climate variations (S2 – S1; see Section 2). All 12	
  

anomalies are relative to the 1982-2010 overlapping satellite era to facilitate comparisons 13	
  

with the data-driven NPP simulations (see Fig. 2). Mean ensembles were formed based 14	
  

on anomalies in the single TRENDY models to emphasize temporal changes in NPP and 15	
  

to suppress uncertainties arising from model differences in magnitudes. Shaded contours 16	
  

represent 1σ uncertainties corresponding to the spread in the single TRENDY models. 17	
  

The first year of a new regime in annual NPP is outlined (thick dark red vertical lines; 18	
  

Table S1 in the Supplement) and the means in NPP anomalies prior and after the shift are 19	
  

also shown (dashed lines). In panel (b), the last data point for the year 2010 is omitted 20	
  

since tropical rainfall input data for the TRENDY runs were erroneous for that year (S. 21	
  

Sitch, personal communication). 22	
  

 23	
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Figure 4. Synchronous continental shifts in climate and satellite vegetation data and 1	
  

links to North Atlantic climate variability.  In panel (a), temporal variations in spring 2	
  

(MAM) temperature and satellite-based vegetation activity (fAPAR) representative of the 3	
  

northern Eurasian target region are plotted alongside the winter (JFM) Arctic Oscillation 4	
  

(AO) and North Atlantic Oscillation (NAO) time series. In panel (b), temporal variations 5	
  

in wet season (May-Oct) precipitation and fAPAR for the northern African target region 6	
  

are plotted alongside the annual Atlantic Multidecadal Oscillation (AMO) time series. 7	
  

Plotted are both annual values (thin dotted lines) and a smoothed time series based on a 8	
  

seven-point binomial filter (thick lines). All time series are standardized anomalies 9	
  

relative to the satellite period 1982-2011. All climate indices time series are obtained 10	
  

from www.esrl.noaa.gov. Definitions of the AO and NAO are given in Thompson and 11	
  

Wallace (1998) and Hurrell (1995), respectively. The AMO is a detrended area-weighted 12	
  

average of North Altantic SSTs (0°-70°N) (Enfield et al., 2001).  13	
  


