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Abstract 10 

The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock 11 

fracture groundwaters is great but the core community has not been identified. Here we 12 

characterized the bacterial and archaeal communities in 12 water conductive fractures situated 13 

at depths between 296 m and 798 m by high throughput amplicon sequencing using the 14 

Illumina HiSeq platform. A sequencing depth of up to 1.2 × 106 reads per sample revealed 15 

that up to 95% and 99% of the bacterial and archaeal sequences obtained, respectively, 16 

belonged to only a few common species, i.e. the core microbiome. However, the remaining 17 

rare microbiome contained over 3 and 6 fold more bacterial and archaeal taxa. The metabolic 18 

properties of the microbial communities were predicted using PICRUSt. The approximate	19 

estimation showed that the metabolic pathways included commonly fermentation, fatty acid 20 

oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation and 21 

methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, 22 

reductive TCA cycle and the Wood-Ljungdahl pathway was also predicted. The rare 23 

microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist 24 

of remnants of microbial communities prevailing in earlier environmental conditions, but 25 

could also be induced again if changes in their living conditions occur.  26 
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1 Introduction 1 

Identifying and understanding the core microbiome of any given environments is of crucial 2 

importance for predicting and assessing environmental change both locally and globally 3 

(Shade and Handelsman, 2012). In a previous study (Bomberg et al., 2015) we showed by 454 4 

amplicon sequencing that the active microbial communities in Olkiluoto deep subsurface 5 

were strictly stratified according to aquifer water type. Nevertheless, more rigorous 6 

sequencing efforts and more samplings have shown that an archaeal core community 7 

consisting of the DeepSea Hydrothermal Vent Euryarchaeotal Group 6 (DHVEG-6), ANME-8 

2D and Terrestrial Miscellaneous Group (TMEG) archaea may exsists in the anaerobic deep 9 

groundwater of Olkiluoto (Miettinen et al., 2015). The bacterial core groups in Olkiluoto deep 10 

groundwater include at least members of the Pseudomonadaceae, Commamonadaceae and 11 

Sphingomonadaceae (Bomberg et al., 2014; 2015; Miettinen et al., 2015). The relative 12 

abundance of these main groups varies at different depths from close to the detection limit to 13 

over 90% of the bacterial or archaeal community (Bomberg et al., 2015; Miettinen et al., 14 

2015). However, both the archaeal and the bacterial communities contain a wide variety of 15 

smaller bacterial and archaeal groups, which are distributed unevenly in the different water 16 

conductive fractures.  17 

The rare biosphere is a concept describing the hidden biodiversity of an environment (Sogin 18 

et al., 2006). The rare biosphere consists of microbial groups that are ubiquitously distributed 19 

in nature but often present at low relative abundance and may thus stay below the limit of 20 

detection. Due to modern high throughput sequencing techniques, however, the hidden 21 

diversity of rare microbiota has been revealed. These microorganisms are the basis for 22 

unlimited microbial functions in the environment and upon environmental change specific 23 

groups can readily activate and become abundant. Access to otherwise inaccessible nutrients 24 

activate specific subpopulations in the bacterial communities within hours of exposure (Rajala 25 

et al., 2015) and enrich distinct microbial taxa at the expense of the original microbial 26 

community in the groundwater (Kutvonen, 2015). Mixing of different groundwater layers due 27 

to e.g. breakage of aquifer boundaries and new connection of separated aquifers may cause 28 

the microbial community to change and activate otherwise dormant processes. This has 29 

previously been shown by Pedersen et al. (2013), who indicated increased sulphate reduction 30 

activity when sulphate-rich and methane-rich groundwater mixed. The stability of deep 31 

subsurface microbial communities in isolated deep subsurface groundwater fractures are 32 
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assumed to be stable. However, there are indications that they may change over the span of 1 

several years as slow flow along fractures is possible (Miettinen et al., 2015; Sohlberg et al., 2 

2015). 3 

The microbial taxa present in an environment interact with both biotic and abiotic factors. Co-4 

occurrence network analyses and metabolic predictions may help to understand these 5 

interactions. Barberan et al. (2012) visualised the co-occurrence networks of microbial taxa in 6 

soils and showed novel patterns connecting generalist and specialist species as well as 7 

associations between microbial taxa. They showed that specialist and generalist microbial 8 

taxa formed distinct and separate correlation networks, which also reflected the environmental 9 

settings. Metagenome predicting tools allows us to estimate microbial metabolic functions 10 

based on NGS microbiome data. Using the PICRUSt tool (Langille et al., 2013) Tsitko et al. 11 

(2014) showed that oxidative phosphorylation was the most important energy producing 12 

metabolic pathway throughout the 7 m depth profile of an Acidobacteria-dominated nutrient 13 

poor boreal bog. Cleary et al. (2015) showed that tropical mussel-associated bacterial 14 

communities could be important sources of bioactive compounds for biotechnology.  This 15 

approach is nevertheless hampered by the fact that only little is so far known about uncultured 16 

environmental microorganisms and their functions and the PICRUSt approach is best applied 17 

for human microbiome for which it was initially developed (Langille et al., 2013). However, 18 

metagenomic estimations may give important indications of novel metabolic possibilities 19 

even in environmental microbiome studies. 20 

Using extensive high throughput amplicon sequencing in this study we aimed to identify the 21 

core microbiome in the deep crystalline bedrock fractures of Olkiluoto Island and also to 22 

identify the rare microbiome. We aimed to show the interactions between the taxa of the rare 23 

biosphere and the surrounding environmental parameters in order to validate the factors that 24 

determine the distribution of the rare taxa. Finally, we aimed to estimate the prevailing 25 

metabolic activities that may occur in the deep crystalline bedrock environment of Olkiloto, 26 

Finland.  27 

2 Materials and methods 28 

2.1 Background  29 

The Olkiluoto site has previously been extensively described (Posiva, 2013) and is only 30 

briefly described here. The Island of Olkiluoto situating on the west coast of Finland has 31 
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approximately 60 drillholes drilled for research and monitoring purposes. Studies on the 1 

chemistry and microbiology of the groundwater have been on-going since the 1980s. The 2 

groundwater is stratified with a salinity gradient extending from fresh to brackish water to a 3 

depth of 30 m and the highest salinity concentration of 125 g L-1 total dissolved solids (TDS) 4 

at 1000 m depth (Posiva, 2013). The most abundant salinity causing cations are Na2+ and Ca2+ 5 

and anions Cl-. Between 100 and 300 m depths, the groundwater originates from ancient (pre-6 

Baltic) seawater and has high concentrations of SO4
2-. Below 300 m the concentration of 7 

methane in the groundwater increases and SO4
2- is almost absent. A sulphate-methane 8 

transition zone (SMTZ), where sulphate-rich fluid replaces methane-rich fluid, is located at 9 

250 − 350 m depth. Temperature rises linearly with depth, from ca. 5 – 6 °C at 50 m to ca. 20 10 

°C at 1,000 m depth (Ahokas et al., 2008). The pH of the groundwater is slightly alkaline 11 

throughout the depth profile. Multiple drillholes intersect several groundwater-filled bedrock 12 

fractures, including larger hydrogeological zones such as HZ20 or HZ21 (Table 1). The 13 

bedrock of Olkiluoto consists mainly of micagneiss and pegmatitic granite type rocks (Kärki 14 

& Paulamäki, 2006).  15 

This study focused on 12 groundwater samples from water conductive fractures situated at 16 

between 296 m and 798 m below sea level bsl and originating from 11 different drillholes in 17 

Olkiluoto (Figure 1). The samples represented brackish sulphate waters and saline waters (as 18 

classified in Posiva, 2013). The samples were collected between December 2009 and January 19 

2013 (Table 1). The physicochemical parameters of the groundwater samples have been 20 

reported by reported by Miettinen et al. (2015), but have for clarity been collected here (Table 21 

1). 22 

2.2 Sample collection 23 

The collection of samples occurred between December 2009 and January 2013 (Table 1) as 24 

described previously (Bomberg et al., 2015; Miettinen et al., 2015; Sohlberg et al., 2015). The 25 

samples were obtained from 11 different permanently packered or open drillholes equipped 26 

with removable inflatable packers. The position and direction of the drillholes are indicated in 27 

Figure 1. Shortly, in order to obtain indigenous fracture fluids, the packer-isolated fracture 28 

zones were purged by removing stagnant drillhole water by pumping for a minimum of four 29 

weeks before the sample water was collected. The water samples were collected directly from 30 

the drillhole into an anaerobic glove box (MBRAUN, Germany) via a sterile, gas-tight poly 31 

acetate tube (8 mm outer diameter). Microbial biomass DNA extraction was concentrated 32 
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from 1000 mL samples by filtration on cellulose acetate filters (0.2 µm pore size, Corning) by 1 

vacuum suction inside the glove box. The filters were immediately extracted from the 2 

filtration funnels and frozen on dry ice in sterile 50 ml cone tubes (Corning). The frozen 3 

samples were transported on dry ice to the laboratory where they were stored at -80°C until 4 

use. 5 

2.3 Nucleic acid isolation  6 

Community DNA was isolated directly from the frozen cellulose-acetate filters with the 7 

PowerSoil DNA extraction kit (MoBio Laboratories, Inc., Solana Beach, CA), as previously 8 

described (Bomberg et al., 2015). Negative DNA isolation controls were included in the 9 

isolation protocol. The DNA concentration of each sample was determined using the 10 

NanoDrop 1000 spectrophotometer. 11 

2.4 Estimation of microbial community size  12 

The size of the microbial community was determined by epifluorescence microscopy of 4',6 13 

diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma, MO, USA) stained cells as 14 

described in Purkamo et al. (2013). The size of the bacterial population was determined by 15 

16S rRNA gene targeted quantitative PCR (qPCR) as described by Tsitko et al. (2014) using 16 

universal bacterial 16S rRNA gene-targeting primers fD1 (Weisburg et al., 1991) and P2 17 

(Muyzer et al., 1993), which specifically target the V1- V3 region of the bacterial 16S rDNA 18 

gene. The size of the archaeal population in the groundwater was determined by using primers 19 

ARC344f (Bano et al., 2004) and Ar744r (reverse compliment from Barns et al., 1994) 20 

flanking the V4-V6 region of the archaeal 16S rRNA gene. 21 

The qPCR reactions were performed in 10µL reaction volumes using the KAPA 2 × Syrb® 22 

FAST qPCR-kit on a LightCycler480 qPCR machine (Roche Applied Science, Germany) on 23 

white 96-well plates (Roche Applied Science, Germany) sealed with transparent adhesive 24 

seals (4titude, UK). Each reaction contained 2.5 µM of relevant forward and reverse primer 25 

and 1 µL DNA extract. Each reaction was run in triplicate and no-template control reactions 26 

were used to determine background fluorescence in the reactions.  27 

The qPCR conditions consisted of an initial denaturation at 95 °C for 10 minutes followed by 28 

45 amplification cycles of 15 seconds at 95 °C, 30 seconds at 55 °C and 30 seconds at 72 °C 29 

with a quantification measurement at the end of each elongation. A final extension step of 30 
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three minutes at 72 °C was performed prior to a melting curve analysis. This consisted of a 1 

denaturation step for 10 seconds at 95 °C followed by an annealing step at 65 °C for one 2 

minute prior to a gradual temperature rise to 95 °C at a rate of 0.11 °C s-1 during which the 3 

fluorescence was continuously measured. The number of bacterial 16S rRNA genes was 4 

determined by comparing the amplification result (Cp) to that of a ten-fold dilution series 5 

(101-107 copies µL-1) of Escherichia coli (ATCC 31608) 16S rRNA genes in plasmid for 6 

bacteria and a dilution series of genomic DNA of Halobacterium salinarum (DSM 3754) for 7 

archaea. The lowest detectable standard concentration for the qPCRs was 102 gene 8 

copies/reaction. Inhibition of the qPCR by template tested by adding 2.17×104 plasmid copies 9 

containing fragment of the morphine-specific Fab gene from Mus musculus gene to reactions 10 

containing template DNA as described in Nyyssönen et al. (2012). Inhibition of the qPCR 11 

assay by the template DNA was found to be low. The average Crossing point (Cp) value for 12 

the standard sample (2.17×104 copies) was 28.7 (± 0.4 sd), while for the DNA samples Cp 13 

was 28.65 - 28.91 (± 0.03-0.28 sd). Nucleic acid extraction and reagent controls were run in 14 

all qPCRs in parallel with the samples. Amplification in these controls was never higher than 15 

the background obtained from the no template controls. 16 

2.5 Amplicon library preparation  17 

This study is part of the Census of Deep Life initiative, which strives to obtain a census of the 18 

microbial diversity in deep subsurface environment by collecting samples around the world 19 

and sequencing the 16S rRNA gene pools of both archaea and bacteria. The extracted DNA 20 

samples were sent to the Marine Biological Laboratory in Woods Hole, MA, USA, for 21 

preparation for HiSeq sequencing using the Illumina technology. The protocol for amplicon 22 

library preparation for both archaeal and bacterial 16S amplicon libaries can be found at 23 

http://vamps.mbl.edu/resources/faq.php. Shortly, amplicon libraries for completely 24 

overlapping paired-end sequencing of the V6 region of both the archaeal and bacterial 16S 25 

rRNA genes were produced as previously described (Eren et al., 2013). For the archaea, 26 

primers A958F and A1048R containing Truseq adapter sequences at their 5’ end were used, 27 

and for the bacteria primers B967F and B1064R for obtaining 100 nt long paired end reads 28 

(https://vamps.mbl.edu/resources/primers.php). The sequencing was performed using a HiSeq 29 

1000 system (Illumina). 30 
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2.6 Sequence processing and analysis  1 

Contigs of the paired end fastq files were first assembled with mothur v 1.32.1 (Schloss et al., 2 

2009). Analyzes were subsequently continued using QIIME v. 1.8. (Caporaso et al., 2010). 3 

Only sequences with a minimum length of 50 bp were included in the analyses. The bacterial 4 

and archaeal 16S rRNA sequences were grouped into OTUs (97% sequence similarity) using 5 

both the open reference and closed reference OTU picking strategy and classified using the 6 

GreenGenes 13_8 16S reference database (DeSantis et al., 2006). The sequencing coverage 7 

was evaluated by rarefaction analysis and the estimated species richness and diversity indices 8 

were calculated. For comparable α- and β-diversity analyses the data sets were normalized by 9 

random subsampling of 17,000 sequences/sample for archaea and 140,000 sequences/sample 10 

for bacteria. Microbial metabolic pathways were estimated based on the 16S rRNA gene data 11 

from the closed OTU picking method using the PICRUSt software (Langille et al., 2013) on 12 

the web based Galaxy application (Goecks et al., 2010; Blankenberg et al., 2010; Giardine et 13 

al., 2005). The predicted KO numbers were plotted on KEGG pathway maps 14 

(http://www.genome.jp/kegg/) separately for the bacterial and archaeal predicted 15 

metagenomes, with a threshold of a minimum of 100 genes in total estimated from all 16 

samples. The sequence data has been submitted to the Sequence Read Archive (SRA, 17 

http://www.ncbi.nlm.nih.gov/sra) under study SRP053854, Bioproject PRJNA275225. 18 

2.7 Statistical analyses  19 

Non-metric multi-dimensional scaling plots using Chord’s similarity index were calculated 20 

separately for the archaeal and bacterial communities using PAST3 (Hammer and Harper, 21 

2001). The samples were also hierarchically clustered based on community similarity using 22 

the UPGMA clustering with Bray-Curtis similarity index and 100 bootstrap repeats with 23 

PAST3. A co-occurrence network was calculated using the Gephi software (Bastian et al., 24 

2009) using the Fruchtermann-Feingold layout with the betweenness centrality algorithm for 25 

identifying microbial taxa with numerous connections and the Louvain method (Blondel et 26 

al., 2008) for identifying closely associated groups of microbes. The calculations were based 27 

on Spearman’s rank correlation calculations obtained by the out.association command in 28 

mothur and only pairs with r > 0.6 and p < 0.01 were included in the network analysis and 29 

nodes with a degree range of less than 10 were excluded from the graph. The p values were 30 

not corrected and the Spearman’s rank correlations were only used to form pairs between taxa 31 

for the network visualization.  32 
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 1 

3 Results 2 

3.1 Microbial community size 3 

The total number of microbial cells detected by epifluorescence microscopy of DAPI stained 4 

cells was between 2.3 × 104 and 4.2 × 105 cells mL-1 groundwater (Figure 2, Table 1). The 5 

concentration of bacterial 16S rRNA gene copies mL-1 varied between 9.5 × 103 and 7.0 × 105 6 

and that of the archaea 2.6 × 101 and 6.3 × 104 (Figure 2, Table 1).  7 

3.2 Sequence statistics, diversity estimates and sequencing coverage 8 

The number of bacterial v6 sequence reads from the 12 samples varied between 1.4 − 7.8 × 9 

105 reads, with a mean sequencing depth of 2.9 × 105 (± 1.8 × 105 standard deviation) 10 

reads/sample (Table 2). The archaeal v6 sequence reads ranged from 0.17 – 12.1 × 105 reads 11 

with a mean sequencing depth of 4.1 × 105 (± 3.5 × 105 standard deviation) reads/sample. The 12 

numbers of observed operational taxonomic units (OTUs) represented on average 82.6% (± 13 

12.5%) of the Chao1- and 78.1 % (± 13.4%) of the ACE-estimated numbers of bacterial 14 

OTUs (Table 2ab). The archaeal communities were slightly better covered, with on average 15 

88.5% (± 11.5%) of the Chao1 and 84.8% (± 12.6%) of the ACE estimated number of OTUs 16 

detected. Shannon diversity index H’, calculated from 140,000 and 17,000 random sequence 17 

reads per sample for the bacteria and archaea, respectively, was high for both bacterial and 18 

archaeal communities. High H’ values and climbing rarefaction curves (Figure S1) indicated 19 

high diversity in the microbial communities in the different deep groundwater fracture zones 20 

of Olkiluoto. The bacterial H’ was on average 13 (±0.74), ranging from 11 to 14 between the 21 

different samples. The archaeal H’ was on average 11 (±1.2) ranging from 9 to 12 between 22 

the samples.  23 

3.3 Microbial communities 24 

From the bacterial v6 sequences 49 different bacterial Phyla were detected (Appendix 1). 25 

These phyla included 165 bacterial classes, 230 orders, 391 families and 651 genera. The 26 

greatest number of sequences, between 21.83% and 47.94% per sample, clustered into an 27 

undetermined bacterial group (Bacteria, Other), which may be due the fact that sequences of 28 

poorer quality may be difficult to classify, especially as the sequences are short. 29 
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Only 31 of the identified genera represented at least 1% of the bacterial sequence reads in any 1 

sample (Figure 3a). 2 

The archaea were represented by two identified phyla, the Euryarchaeota and the 3 

Crenarchaeota (Appendix 2). These included 21 classes, 38 orders, 61 families and 81 genera. 4 

Between 4.7% and 35.0% of the archaeal sequences of each sample were classified to 5 

unassigned Archaea, with a general increase in unassigned archaeal sequences with increasing 6 

depth. 15 archaeal genera were present at a minimum of 1% relative abundance in any of the 7 

samples (Figure 3b). 8 

The bacterial core community, i.e. the taxa detected in all the tested samples, constituted of 95 9 

out of 651 identified bacterial genera (Appendix 3). These genera accounted for 80.78 – 10 

95.81% of all the bacterial sequence reads in the samples. The archaeal core community 11 

consisted of 25 of the 81 identified genera and accounted for 95.05 – 99.75% of the total 12 

number of sequence reads in each sample (Appendix 4).  13 

3.4 Environmental parameters driving the microbial communities 14 

The microbial community profiles of the different samples were clustered in a UPGMA tree 15 

(Figure 4). The samples were loosely clustered according to depth with the deeper samples 16 

generally more associated with each other and the samples from shallower depths associating 17 

with each other. A similar trend was seen in the NMDS plots (Figures 6a and b), although the 18 

bacterial communities clustered the samples more tightly into three groups compared to the 19 

archaeal communities. No clear environmental factor was identified to drive the communities. 20 

However, the deepest bacterial communities were affected by the increasing salinity and the 21 

communities from the shallower depths were affected by the concentration of sulphides and 22 

the alkalinity, according to the NMDS plots. The archaeal communities, on the other hand, 23 

were affected by the concentration of sulphate, sulphur, sulphide, iron, bicarbonate and 24 

magnesium at 415 m and 510 m depth.  25 

3.5 Co-occurrence network  26 

The co-occurrence network (Figure 6, Figure S2) indicated specific bacterial taxa are central 27 

to the whole microbial community. In the network the size of the nodes indicates centrality 28 

(small node = low centrality, big node = high centrality) and the colour indicates the degree of 29 

connections (colour scale blue-green-yellow-red indicates increasing degree). Numerous 30 
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microbial groups with specific functions, such as sulphate and sulphur reduction (e.g. 1 

Desulfomonile, Desulfobacteraceae, Desulfovibrionales, Desulfurispora, Planctomycetes), 2 

oxidation of reduced sulphur compounds (e.g. Sulfuricurvum, Sulfurimonas, 3 

Thiohalorhabdales, Thiobacterales, Sulfobacillaceae), methylotrophy (Methylophaga. 4 

Methylosinus, Methylococcales, Methyloversatilis), nitrogen cycling (e.g. Nitrospira, 5 

Rhizobiaceae), syntrophic bacteria (e.g. Syntrophaceae, Syntrophobacteraceae) showed 6 

relatively high degrees of centrality and number of connections in the network. However, the 7 

majority of the taxa with the highest degree of centrality were heterotrophic bacteria capable 8 

of fermentation, such as the Elusimicrobia, Exiguobacterium, Gordonia, Planctomycetes, and 9 

taxa capable of degradation of recalcitrant organic molecules, such as Kordiimonadales. 10 

3.6 Predicted metabolic functions of the deep subsurface microbial communities 11 

The putative metabolic functions of the microbial communities at different depth was 12 

predicted using the PICRUSt software, which compares the identified 16S rRNA gene 13 

sequences to those of known genome sequenced species thereby estimating the possible gene 14 

contents of the uncultured microbial communities. The analysis is only an approximation, but 15 

may give an idea of the possible metabolic activities in the deep biosphere. In order to 16 

evaluate the soundness of the analysis a nearest sequenced taxon index (NSTI) for each of the 17 

bacterial and archaeal communities was calculated by PICRUSt. An NSTI value of 0 indicates 18 

high similarity to the closest sequenced taxon while NSTI=1 indicates no similarity. The 19 

NSTI of the bacterial communities at different depths varied between 0.045 in sample OL-20 

KR44 and 0.168 in sample OL-KR13 (Figure 7). The NSTI for archaea were much higher 21 

ranging from 0.141 in sample OL-KR9 at depth of 432 m and 0.288 in OL-KR44. This 22 

indicates that the metagenomic estimates are only indicative. The estimated microbial 23 

metabolism did not differ noticeably between the different depths (Figure 8a and b). The most 24 

important predicted metabolic pathways included membrane transport in both bacterial and 25 

archaeal communities. The most common pathways for carbohydrate metabolism were the 26 

butanoate, propionate, glycolysis/gluconeogenesis and pyruvate metabolism pathways for the 27 

bacteria and glycolysis/gluconeogenesis and pyruvate metabolism pathways for the archaea 28 

(Figure 9). Glucose is converted into pyruvate and further to Acetyl-CoA by both bacteria and 29 

archaea. The bacterial community may produce and utilize acetate. Both the bacterial and 30 

archaeal communities fix carbon via the Wood-Ljungdal (WL) reverse Citric acid cycle 31 

(rTCA) and Calvin pathways. Methane is produced from methylamines, CO2 and methanol by 32 
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the methanogenic archaea. Based on the predicted metagenomes the bacterial community is 1 

not able to oxidize methane or hydrolyze methanol, but the methylotrophs present may use 2 

formic acid and trimethylamines.     3 

The most abundant energy metabolic pathway in the bacterial communities was the oxidative 4 

phosphorylation (Figure S3) while for the archaea the methane metabolism was the most 5 

important (Figure9). Utilization of propanoate and butanoate (Figure 9) by the bacterial 6 

communities as well as well covered fatty acid biosynthesis and degradation pathways 7 

indicate that the bacterial community is capable of fermentation (Figure S4a and b). Nitrate is 8 

reduced both through dissimilatory nitrate reduction to ammonia and through denitrification 9 

to nitrous oxide by the bacteria (Figure S5). In addition, nitrogen is fixed to ammonia by both 10 

archaea and bacteria. The ammonia is then used as raw material for L-glutamate synthesis 11 

(Figure S5). Sulfur metabolism was not a major pathway in either the bacterial or the archaeal 12 

communities according to the predicted number of genes. However, assimilatory sulphate 13 

reduction was indicated in both the bacterial and archaeal communities, while dissimilatory 14 

sulphate reduction and sulphur oxidation was indicated only in the bacterial communities 15 

(Figure S6). 16 

Several amino acid synthesis pathways were predicted (Figure 8), of which the most 17 

prominent were the alanine, aspartate and glutamate synthesis, arginine and proline synthesis, 18 

cysteine and methionine synthesis, glycine, serine and threonine synthesis, phenylalanine, 19 

tyrosine and tryptophan synthesis and the valine, leucine and isoleucine synthesis pathways.   20 

Different types of membrane transport (ABC transporters) was identified where sulphate and 21 

iron (III) were taken up by the bacteria and tungstate, molybdate, proline, zink, cobalt and 22 

nickel was taken up by both archaea and bacteria (Figure S7). The estimated number of genes 23 

for both the purine and pyrimidine metabolism was more than two times higher in the 24 

archaeal community than in the bacterial community (Figure 8a and b). 25 

 26 

4 Discussion 27 

The phenotypic characteristics of the Fennoscandian Shield deep subsurface microbial 28 

communities are still largely unknown although specific reactions to introduced 29 

environmental stimulants have been shown (e.g. Pedersen et al., 2013; 2014; Rajala et al., 30 

2015; Kutvonen 2015). Nevertheless, the connection of these microbial responses to specific 31 
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microbial groups is still only in an early phase. Metagenomic and gene specific analyses of 1 

deep subsurface microbial communities have revealed prominent metabolic potential of the 2 

microbial communities, which appear to be associated with the prevailing lithology and 3 

physicochemical parameters (Nyyssönen et al., 2014; Purkamo et al., 2015). It has also been 4 

shown with fingerprinting methods with ever increasing efficiency that the bacterial and 5 

archaeal communities are highly diverse in the saline anaerobic Fennoscandian deep fracture 6 

zone groundwater (Bomberg et al., 2014; 2015; Nyyssönen et al., 2012; 2014; Pedersen et al., 7 

2014; Miettinen et al, 2015; Sohlberg et al., 2015). Nevertheless, the concentration of 8 

microbial cells in the groundwater is quite low (Figure 2, Table 1). Most of the microbial 9 

communities at different depth in Olkiluoto bedrock fractures consist of bacteria. However, at 10 

specific depths (328 m, 423 m) the archaea may contribute with over 50% of the estimated 11 

16S rRNA gene pool (Table 1). The major archaeal group present at these depths were the 12 

ANME-2D archaea indicating that nitrate-mediated anaerobic oxidation of methane may be 13 

especially common (Haroon et al., 2013). The high abundance of archaea in Olkiluoto is 14 

special for this environment. Archaea have also been quantified from the Outokumpu deep 15 

scientific borehole (Purkamo et al., 2016), but unlike the situation in Olkiluoto the archaeal 16 

community was less than 1% of the total community at best. 17 

Previously, using 454 amplicon sequencing, we have observed OTU numbers of 18 

approximately 800 OTUs per sample covering approximately 550 bacterial genera (or 19 

equivalent groups) and approximately 350 archaeal OTUs including approximately 80 20 

different genera (or equivalent groups) (Miettinen et al., 2015). Miettinen et al. (2015) defined 21 

the OTUs 97% sequence homology and the number of sequence reads per sample was at most 22 

in the range of 104. In contrast, our sequence read numbers were 10- to 100-fold higher and 23 

the number of OTUs per sample in general 100-fold higher. This indicates that a greater 24 

sequencing depth increases the number of taxa detected from the subsurface environment and 25 

allows us a novel view of the so far hidden rare biosphere. Nevertheless, in comparison to the 26 

high number of OTUs detected the number of identified genera, 651 and 81 bacterial and 27 

archaeal genera, respectively, seems low. On the other hand, this indicates that the sequencing 28 

depth has been sufficient to detect most of the prokaryotic groups present. Nevertheless, the 29 

obtained numbers of OTUs per sample in this study were huge (Table 2). This may reflect the 30 

high level of variability in the short sequence reads of the v6 region used in this study. As 31 

discussed by Huse et al. (2008), short sequence reads very often match several different full-32 

length 16S rRNA reads. As shown in our study taxonomic assignments, such as 33 
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‘Proteobacteria_other’ were common and may be due to multiple matches for the individual 1 

sequence reads obtained in the identification step of the analysis. 2 

In general, the microbial communities at different depth grouped loosely into clusters 3 

according to the groundwater chemistry (Figure 5). Salinity diverged the bacterial 4 

communities of the two deepest samples (OL-KR44 and OL-KR29) from the rest of the 5 

samples and sulphate, sulphur and sulphide moved the more shallow samples from depths 6 

between 296 m and 347 m to the right of the NMDS plot. Sulphate reducers were not among 7 

the most common bacterial taxa in these samples (Figure 3), but several sulphur and sulfide 8 

oxidizing taxa were detected, such as the Sulfuricurvum and members of the Thiobacterales. 9 

The archaeal communities were evenly distributed throughout the NMDS plot. The archaeal 10 

communities did not change dramatically with depth and Euryarchaeota_Other, ANME-2D 11 

and Thermoplasma_E2 groups dominated throughout the depth profile. Previuos studies on 12 

the Finnish deep biosphere has shown that the microbial communities at different sites vary 13 

strongly from each other. Purkamo et al. (2015) investigated the bacterial and archaeal 14 

communities of different fracture zones of the Outokumpu deep scientific borehole and found 15 

that the majority of the bacterial populations at depths between 180 m and 500 m depth 16 

consist of Betaproteobacteria belonging to the Commamonadaceae and the archaeal 17 

communities consist of Methanobacteriaceae and Methanoregula.  18 

The core communities, defined as taxa present in all the studied samples, accounted for 19 

between 80 – 97% and 95 − > 99% of the bacterial and archaeal communities, respectively. 20 

This is a considerable frequency of common microbial taxa. Nevertheless, the number of rare 21 

taxa detected from the sample set was 3.3 to 6.8 fold higher than the number of core taxa on 22 

genus level. Our results agree with Sogin et al. (2006) and Magnabosco et al. (2014), who 23 

showed that a relatively small number of taxa dominate deep-sea water and deep groundwater 24 

habitats, respectively, but a rare microbiome consisting of thousands of taxonomically distinct 25 

microbial groups are detected at low abundances. What this means for the functioning of the 26 

deep subsurface is that the microbial communities have the capacity to respond and change 27 

due to changes in environmental conditions. For example, Pedersen et al. (2014) showed that 28 

by adding sulphate to the sulphate-poor but methane-rich groundwater in Olkiluoto the 29 

bacterial population changed over the span of 103 days from a non-SRB community to a 30 

community dominated by SRB. In addition, a change in the geochemical environment 31 

induced by H2 and methane impacted the size, composition and functions of the microbial 32 
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community and ultimately led to acetate formation (Pedersen et al., 2012; Pedersen, 2013; 1 

Pedersen et al., 2014). This is also in accordance to the network analysis (Figure 6), which 2 

indicated a great diversity in the metabolic functions of the most central microbial taxa 3 

detected in this environment. 4 

The metabolic pathways predicted by PICRUSt are far from certain when uncultured and 5 

unculturable deep subsurface microbial communities are concerned. The NSTI values for both 6 

the bacterial and well as the archaeal communities were high indicating that closely related 7 

species to those found in our deep groundwater have yet to be sequenced. This is in 8 

accordance with Langille et al. (2013), who showed that environments containing a high 9 

degree of unexplored microbiota also tend to have high NSTI values. Staley et al. (2014) also 10 

showed in a comparison between PICRUSt and shot gun metagenomic sequencing of riverine 11 

microbial communities that PICRUSt may not be able to correctly assess rare biosphere 12 

functions. Nevertheless, Langille et al. (2013) showed that PICRUSt may predict the 13 

metagenomic content of a microbial community more reliably than shallow metagenomic 14 

sequencing. Thus, on higher taxonomical level common traits for specific groups of 15 

microorganisms may be revealed.  16 

Energy metabolism. Deep subsurface environments are often declared energy deprived 17 

environments dominated by autotrophic microorganisms (Hoehler and Jorgensen, 2013). 18 

However, recent reports indicate that heterotrophic microorganisms play a greater role than 19 

the autotrophic microorganisms in Fennoscandian deep crystalline subsurface environments 20 

(Purkamo et al., 2015). Heterotrophic communities with rich fatty acid assimilation strategies 21 

have been reported to fix carbon dioxide on the side of e.g. fermenting activities in order to 22 

replenish the intracellular carbon pool, which otherwise would be depleted. Wu et al. (2015) 23 

also found by metagenomic analyses that fermentation was a major metabolic activity in the 24 

microbial community of Swedish deep groundwater. Our results agree with Purkamo et al. 25 

(2015) that a greater proportion of the microbial community is involved in carbohydrate and 26 

fatty and organic acid oxidation than in fixation of inorganic carbon. Nevertheless, 27 

autotrophic carbon fixation pathways were predicted in the analysis with PICRUSt, indicating 28 

that both the archaeal and bacterial communities include autotrophic members, although these 29 

microorganisms might not be obligate autotrophs. It is also likely that heterotrophic and 30 

chemilitotrophic microorganisms coexist in the Olkiluoto deep fracture zones forming 31 

networks as shown in Figure 6 for the benefit of the whole microbial community. Such 32 
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cooccurrences have been suggested by e.g. Osburn et al. (2014). It was also noted that even 1 

though evidence for methane oxidation could not be inferred from the PICRUSt predictions 2 

(no pmoA genes), the bacterial community may oxidize formate, which is in agreement with 3 

the findings reported by Wu et al. (2015). 4 

Several carbon fixation pathways were predicted in the metagenomes, the Calvin cycle, 5 

reductive TCA (rTCA) cycle and Wood-Ljungdahl (WL) pathway. The WL-pathway is 6 

considered the most ancient autotrophic carbon fixation pathway in bacteria and archaea 7 

(Fuchs 1989, Martin et al. 2008, Berg et al. 2010; Hügler and Sievert, 2011) and was found in 8 

both the bacterial and the archaeal communities. In the archaeal community the Calvin cycle 9 

and the rTCA were especially pronounced in the samples from 296 m, 405 – 423 m and 10 

somewhat lower at 510 – 527 m depth. The bacterial communities are predicted to fix CO2 at 11 

almost all depths with the exception of 405 m and 559 m depth. Nevertheless, our results 12 

agree with Nyyssönen et al. (2014), who showed my metagenomic analysis that the microbial 13 

communities at different depth of the Outokumpu scientific deep drill hole may fix carbon in 14 

several ways, of which the rTCA, the WL pathway and the Calvin cycle were identified. 15 

Magnabosco et al. (2016) showed that the WL pathway was the dominating form of carbon 16 

fixation in metagenomes of 3 km deep Precambrian crust biospheres in South Africa. Dong et 17 

al. (2014) also suggested that microorganisms in low-energy deep subsurface environment 18 

may have several strategies for e.g. carbon fixation, as shown in the Halomonas sulfidaeris, in 19 

order to access as many resources as possible. The predicted methane metabolism (methane 20 

and methyl compound consumption) and oxidative phosphorylation were equally strong in the 21 

bacterial community. Sulphur metabolism was not a common pathway for energy in either the 22 

archaeal or the bacterial communities, but bacteria with either assimilative or dissimilative 23 

sulphate reduction were present. Sulphur oxidation through the sox system was in general not 24 

predicted, but the soxD gene was predicted and oxidation of thiosulphate to sulphate may be 25 

possible (Figure S6). Nitrate is reduced both through dissimilatory nitrate reduction to 26 

ammonia and through denitrification to nitrous oxide by the bacteria. In addition, nitrogen is 27 

fixed to ammonia by both archaea and bacteria. The ammonia is then used as raw material for 28 

L-glutamate synthesis.  29 

Oxidative phosphorylation was one of the most prominent energy generating metabolic 30 

pathways in the bacterial community. This indicates that ATP is generated by electron 31 

transfer to a terminal electron acceptor, such as oxygen, nitrate or sulphate. In the archaeal 32 
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community the oxidative phosphorylation was not as strongly indicated, but this may be due 1 

to missing data on archaeal metabolism in the KEGG database. 2 

The main energy metabolism of the archaeal communities appeared to be the methanogenesis, 3 

especially at 296 m and 405 m. Methanogenesis was common also at all other depths except 4 

330 m – 347m, 415 m and 693 m – 798 m. Methane is produced from CO2-H2 and methanol, 5 

and from acetate, although evidence for the acetate kinase enzyme was lacking. 6 

Methanogenesis from methylamines may also be possible, especially at 296 m and 405 m. 7 

Methane oxidation using methane monoxygenases and methanol dehydrogenases does not 8 

occur in either bacterial or archaeal communities.  9 

Carbohydrate metabolism. Glycolysis/gluconeogenesis is one of the most common 10 

carbohydrate-metabolizing pathways predicted for both the archaeal and bacterial 11 

communities (Figure 9). Pyruvate from glycolysis is oxidized to acetyl-CoA by both archaea 12 

and bacteria and used in the TCA cycle. The TCA cycle provides for example raw material 13 

for many amino acids, such as lysine and glutamate. The butanoate and propanoate 14 

metabolisms were also common in the bacterial communities, indicating fermentative 15 

metabolism and capability of fatty acid oxidation.  16 

Amino acid metabolism. Non-essential amino acids, such as alanine, aspartate and glutamate 17 

are produced from ammonia and pyruvate or oxaloacetate especially in the archaeal 18 

populations. In the archaeal population proline appears to be produced from glutamate. 19 

Despite the low use of sulphate as energy source in the microbial communities sulphate and 20 

other sulphur compounds are taken up for the production of the amino acids cysteine and 21 

methionine by both the archaeal and the bacterial communities. A higher predicted relative 22 

abundance of genes involved in aromatic amino acid synthesis (phenylalanine, tyrosine, 23 

tryptophane) was seen in the archaeal than in the bacterial communities. Both the archaeal and 24 

the bacterial communities synthesise branched chained amino acids (isoleucine, leucine and 25 

valine), but only the bacteria degrade them. Especially proteobacteria have been shown to be 26 

able to use the branched chained amino acids (isoleucine, leuscine and valine) and short 27 

chained fatty acids (acetate, butyrate, propionate) as sole energy and carbon source (Kazakov 28 

et al., 2009). The branched chained amino acids function as raw material in the biosynthesis 29 

of branched chained fatty acids, which regulate the membrane fluidity of the bacterial cell. In 30 

salt stress conditions, the proportion of branch-chained fatty acids in the membranes 31 

decreases. 32 
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Membrane transport. According to the predicted metagenomes, the microbial cells transport 1 

sulphate into the cell, but do not take up nitrate. Nitrogen is taken up as glutamate but not as 2 

urea. Iron is taken up by an Fe(III) transport system and an iron complex transport system in 3 

the bacterial communities, but generally only by the iron complex transport system in 4 

archaea. However, Fe(III) transport system may also exist in the archaeal communities at 405 5 

m to 423 m depth, where also some manganese/iron transport systems could be found. 6 

Molybdate and phosphate is transported into the cell by molybdate and phosphate ATPases, 7 

respectively. Nickel is taken up mainly by a nickel/peptide transport system but also to some 8 

extent by a cobalt/nickel transport system. Zink is taken up to some extent by a zink transport 9 

system, but transport systems for manganese, manganese/iron, manganese/zink/iron, or 10 

iron/zink/copper are negligent. Ammonia is taken up by an Amt transport system. 11 

 12 

5 Conclusions 13 

The wide diversity of microbial groups in the deep Fennoscandian groundwater at the 14 

Olkiluoto site revealed that the majority of the microbial community present belong to only a 15 

few microbial taxa while the greatest part of the microbial diversity is represented by low 16 

abundance and rare microbiome taxa. The core community was present in all tested samples 17 

from different depths, but the relative abundance of the different taxa varied in the different 18 

samples. Specific rare microbial groups formed tight co-occurrence clusters that corresponded 19 

to different environmental conditions and these may become more abundant if the 20 

environmental conditions change. Fermentation or oxidation of fatty acids was a common 21 

carbon cycling and energy harvesting metabolic pathways in the bacterial communities 22 

whereas the archaea may either produce or consume methane. Glycolysis/gluconeogenesis 23 

was predicted to be common in both the archaeal and bacterial communities. In addition both 24 

the bacterial and archaeal communities were estimated to contain several different common 25 

carbon fixation pathways, such as the Calvin cycle and the reductive TCA and the Wood-26 

Ljungdahl pathway.  27 
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Table 1. Geochemical and microbiological measurements from 12 different water conductive fractures in the bedrock of Olkiluoto, Finland. 1 

The different drillholes are presented at the top of the table. The data is compiled from Posiva (2013) and Miettinen et al. (2015) 2 
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Sampling date  3/11/2010 18/5/2010 29/8/2011 15/12/2009 16/10/2012 14/12/2009 31/10/2011 29/8/2011 27/1/2010 26/1/2010 15/1/2013 18/5/2010 
Depth (m) 296 328 340 347 405 415 423 510 559 572 693 798 
Alkalinity 
mEq/L 2.19 0.37 0.47 0.05 0.27 0.16 0.18 0.13 0.29 0.23 0.49 0.13 
Ec mS/m 897 1832 1047 2190 2240 2670 2300 2960 4110 3770 6690 7820 
pH 7.9 7.9 7.9 7.5 7.9 8.1 7.7 8.1 8.6 7.8 7.5 7.3 
NPOC mg L-1 10 0 12 5.1 19 3 5.1 6.6 11 5 110 10 
DIC mg L-1 27 4.1 4.1 3.9 0 3 3 0 3.75 3.75 6.5 81 
HCO3 mg L-1 134 22.6 25 17.1 16 9.8 11.6 7.3 17.7 14 30 424 
Ntot mg L-1 0.71 0 1.1 0.42 1.2 0.16 0.38 0.66 1.1 0.41 10 3.1 
NH4

+ mg L-1 0.07 0.03 0.03 0 0 0 0.05 0 0.02 0.04 0.08 0.08 
Stot mg L-1 31 130 12 1.7 1.7 0 4.8 0 0 0 4 0 
SO4

2- mg L-1 79.5 379 32 2.9 3 1.4 13.7 0.9 0.5 0.5 9.6 2 
S2

- mg L-1 5.1  0.38 0.62 2 0.02 0.36 0 0.02 0.13 0.02 0.02 
Fetot mg L-1 0.0042 0.0037 0.022 0.062 0.2 0.71 0.036 0.02 0 0.49 1.2 560 
Fe(II) mg L-1 0 0 0.02 0.08 0.21 0.53 0.06 0.02 0.02 0.04 1.2 0.46 
TDS mg L-1 4994 10670 5656 12710 12880 15900 13430 18580 25500 23260 37410 53210 
K mg L-1 8.2 9.3 7.6 8.3 18 27 12 17 19 20 24 27 
Mg mg L-1 35 77 17 55 68 19 32 41 18 52 33 136 
Ca mg L-1 460 1100 290 2100 1750 2700 2260 2930 4600 3700 7680 10000 
Cl mg L-1 2920 6230 3400 7930 7950 9940 8220 11500 15700 14600 22800 33500 
Na mg L-1 1320 2800 1850 2530 2990 3110 2790 3970 4980 4720 6570 9150 
TNC ml-1 4.2 × 105 1.0 × 105 2.4 × 105 2.5 × 105 2.1 × 105 1.5 × 104 na 2.9 × 104 5.9 × 104 8.7 × 104  5.5 × 104 2.3 × 104 
16S qPCR ml-1 

bacteria 
archaea 

7.0 × 105 

5.8 × 103 
9.5 × 103 

2.0 × 104 
2.0 × 104 

9.9 × 103 
3.6 × 105 

6.3 × 104 
4.9 × 104 

6.2 × 103 
1.3 × 104 

1.5 × 102 
7.2 × 104 

4.4 × 104 
1.5 × 105 

5.2 × 102 
1.4 × 105 

7.5 × 102 
1.9 × 104 

3.0 × 103 
3.2 × 104 

2.6 × 101 
1.5 × 104 

2.8 × 102 



 24 

Table 2a. The total number of sequence reads, observed and estimated (Chao1, ACE) number of OTUs, number of singleton and doubleton 1 

OTUs, and Shannon diversity index per sample of the bacterial 16S rRNA gene data set. The analysis results are presented for both the total 2 

number of sequence reads per sample as well as for data normalized according tot he sample with the lowest number of sequence reads, i.e. 3 

140,000 random sequences per sample. 4 

Bacteria  All sequences Normalized to 140,000 sequences 

Sample 

Number 

of 

sequence 

reads 

Observed 

OTUs Chao1 ACE Singles Doubles Shannon 

Observed 

species Chao1 ACE Singles Doubles Shannon 

OLKR13/296m 786,346 79,527 87,188 91,360 18,025 21,203 13 37,045 74,288 84,530 22,445 6,762 13 

OLKR3/318m 345,433 52,381 53,238 54,961 5,789 19,557 14 39,309 57,793 64,021 19,287 10,061 13 

OLKR6/328m 188,812 29,411 35,018 37,269 9,209 7,561 13 26,442 34,964 37,626 10,420 6,369 13 

OLKR23/347m 485,154 33,257 37,175 38,895 8,000 8,166 11 20,494 34,268 37,305 10,641 4,109 11 

OLKR49/415m 184,052 38,275 49,758 53,525 14,799 9,535 13 34,117 48,804 52,938 15,372 8,043 13 

OLKR9/423m 175,295 36,412 44,452 47,571 12,357 9,494 14 33,596 44,496 48,161 13,489 8,345 14 

OLKR5/435m 141,886 40,445 70,520 78,340 22,166 8,167 14 40,145 70,288 78,232 22,086 8,090 14 

OLKR9/510m 241,312 41,545 51,348 54,535 14,251 10,357 13 33,208 49,115 53,631 15,592 7,640 13 

OLKR2/559m 257,789 45,456 72,269 78,325 22,550 9,481 13 32,600 62,318 69,573 19,071 6,118 12 

OLKR1/572m 210,659 29,804 35,362 37,491 9,197 7,607 12 25,703 34,934 37,682 10,650 6,142 12 

OLKR44/750m 303,058 31,410 31,589 32,188 2,005 11,200 12 25,937 33,448 36,295 10,346 7,124 12 

OLKR29/798m 221,524 37,989 45,126 48,042 11,991 10,071 13 31,911 44,957 48,533 14,078 7,594 13 

 5 
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 1 

Table 2b. The total number of sequence reads, observed and estimated (Chao1, ACE) number of OTUs, number of singleton and doubleton 2 

OTUs, and Shannon diversity index per sample of the archaeal 16S rRNA gene data set. The analysis results are presented for both the total 3 

number of sequence reads per sample as well as for data normalized according tot he sample with the lowest number of sequence reads, i.e. 4 

17,000 random sequences per sample. 5 

Archaea  All sequences Normalized to 17,000 sequences 

Sample 

Number 

of 

sequence 

reads 

Observed 

OTUs Chao1 ACE Singles Doubles Shannon 

Observed 

OTUs Chao1 ACE Singles Doubles Shannon 

OLKR13/296m 507,373 27,111 29,516 30,699 5,835 7,076 10 3,957 13,380 15,062 2,867 435 10 

OLKR3/318m 271,699 25,491 32,299 34,231 9,205 6,221 11 4,955 15,044 17,238 3,546 622 10 

OLKR6/328m 446,380 21,597 22,930 23,781 3,861 5,588 10 3,776 11,705 14,020 2,748 475 9 

OLKR23/347m 395,339 20,800 22,403 23,214 4,083 5,199 10 3,919 11,855 13,323 2,755 477 9 

OLKR49/415m 210,545 22,600 23,372 24,004 2,975 5,733 12 7,023 17,088 19,874 4,738 1,114 12 

OLKR9/423m 697,360 22,014 22,527 23,082 2,381 5,520 9 3,180 9,617 10,586 2,224 383 9 

OLKR5/435m 769,026 21,127 22,235 23,078 3,515 5,574 9 2,596 10,114 10,078 1,852 227 9 

OLKR9/510m 169,142 12,709 12,782 12,960 713 3,488 11 4,879 11,205 13,215 3,148 782 11 

OLKR2/559m 100,101 15,359 24,950 27,026 7,840 3,203 11 5,119 14,497 16,488 3,548 670 11 

OLKR1/572m 1,213,360 28,884 33,207 34,832 7,846 7,118 9 2,273 9,233 9,923 1,631 190 9 

OLKR44/750m 17,716 6,436 8,748 9,750 2,890 1,805 12 6,325 8,743 9,804 2,921 1,763 12 

OLKR29/798m 98,770 15,641 16,720 17,483 3,158 4,617 12 6,951 14,655 17,184 4,483 1,303 12 
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Table 2b. The total number of sequence reads, observed and estimated (Chao1, ACE) number of OTUs, number of singleton and doubleton 2 

OTUs, and Shannon diversity index per sample of the archaeal 16S rRNA gene data set. The analysis results are presented for both the total 3 

number of sequence reads per sample as well as for data normalized according tot he sample with the lowest number of sequence reads, i.e. 4 

17,000 random sequences per sample. 5 

Archaea  All sequences Normalized to 17,000 sequences 

Sample 

Number 

of 

sequence 

reads 

Observed 

OTUs Chao1 ACE Singles Doubles Shannon 

Observed 

OTUs Chao1 ACE Singles Doubles Shannon 

OLKR13/296m 507,373 27,111 29,516 30,699 5,835 7,076 10 3,957 13,380 15,062 2,867 435 10 

OLKR3/318m 271,699 25,491 32,299 34,231 9,205 6,221 11 4,955 15,044 17,238 3,546 622 10 

OLKR6/328m 446,380 21,597 22,930 23,781 3,861 5,588 10 3,776 11,705 14,020 2,748 475 9 

OLKR23/347m 395,339 20,800 22,403 23,214 4,083 5,199 10 3,919 11,855 13,323 2,755 477 9 

OLKR49/415m 210,545 22,600 23,372 24,004 2,975 5,733 12 7,023 17,088 19,874 4,738 1,114 12 

OLKR9/423m 697,360 22,014 22,527 23,082 2,381 5,520 9 3,180 9,617 10,586 2,224 383 9 

OLKR5/435m 769,026 21,127 22,235 23,078 3,515 5,574 9 2,596 10,114 10,078 1,852 227 9 

OLKR9/510m 169,142 12,709 12,782 12,960 713 3,488 11 4,879 11,205 13,215 3,148 782 11 

OLKR2/559m 100,101 15,359 24,950 27,026 7,840 3,203 11 5,119 14,497 16,488 3,548 670 11 

OLKR1/572m 1,213,360 28,884 33,207 34,832 7,846 7,118 9 2,273 9,233 9,923 1,631 190 9 

OLKR44/750m 17,716 6,436 8,748 9,750 2,890 1,805 12 6,325 8,743 9,804 2,921 1,763 12 

OLKR29/798m 98,770 15,641 16,720 17,483 3,158 4,617 12 6,951 14,655 17,184 4,483 1,303 12 
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 1 

Figure 1. Map of Olkiluoto. The boreholes used in this study are marked with a turquoise 2 
triangle and the attached black line depicts the direction of the borehole. (with courtesy of 3 
Pöyry Oy, Nov 17th, 2015 by Eemeli Hurmerinta)  4 

 5 

 6 

Figure 2. The concentration of A) microbial cells mL-1 determined by epifluorescence 7 

microscopy and the estimated concentration of B) bacterial and C) archaeal 16S rRNA gene 8 

copies mL-1 groundwater determined by qPCR in water conductive fractures situated at 9 

different depths in the Olkiluoto bedrock.  10 
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 1 

Figure 3. The most abundant A) bacterial and B) archaeal taxa representing at least 1% of the 2 

sequence reads in any of the samples. The number in each series indicate the taxon number in 3 

the list below the figures. 4 

 5 
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 1 

Figure 4. A Bray-Curtis UPGMA cladogram clustering the studied samples according to the 2 

detected taxonomy of the microbial communities. The bacterial and archaeal community 3 

profiles were combined. The branch support values were calculated from 100 bootstrap 4 

repeats. 5 

 6 

 7 

Figure 5. Non-metric multidimensional scaling analysis based on the A) bacterial and B) 8 

archaeal communities detected in the samples. The triplot (green) indicates directionality of 9 

the environmental variables.   10 

  11 
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 1 

2 
Figure 6. Network of co-occurring microbial taxa based on Spearman’s rank correlation 3 

values between pairs of taxa.  correlation (R>0.7, p<0.01) between different taxa. Each circle 4 

(node) represents a taxon and the size of the node is proportional to the number of 5 

connections (Spearman correlation value) of the node. The colour of the nodes indicates 6 

degree of centrality of the taxon, with low centrality shown as blue, increasing centrality by 7 

green to yellow to orange and highest centrality as red. Taxa with less than 10% centrality 8 

range (<2 connections) were filtered out. The most prominent nodes are indicated by taxon 9 

names. In Figure S2 the names for all nodes are shown. 10 

 11 
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 1 

Figure 7.  The nearest sequenced taxon index (NSTI) values calculated by PICRUSt for the 2 

bacterial (blue) and archaeal (red) connumities. The NSTI value describes the sum of 3 

phylogenetic distances of each OTU to its nearest relative with a sequenced reference 4 

genome, and measures substitutions per site in the 16S rRNA gene and the weighted the 5 

frequency of the each OTU in a sample dataset. A higher NSTI value indicates greater 6 

distance to the closest sequenced relatives of the OTUs in each sample. 7 

 8 
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 1 

Figure 8. The relative abundance of predicted genes of the most abundant pathways identified 2 

in the A) bacterial and B) archaeal populations in the PICRUSt analysis. The pathways are 3 

presented according to KEGG. The samples are ordered according to depth, with OL-4 

KR13/296m as innermost and OL-KR29/798m as the outermost sample. 5 
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 1 

Figure 9. The microbial carbon metabolism pathway according to KEGG. The predicted 2 

genes combined from all samples were plotted on the map. Green arrows indicate enzymes 3 

predicted only in the archaeal communities, red arrows indicate genes predicted only in the 4 

bacterial communities, black arrows show enzymes predicted in both the archaeal and 5 

bacterial communities and blue arrows show enzymes that were not predicted in any of the 6 

communities. 7 

 8 

 9 
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Supplementary figures 1 

2 
Figure S1. The rarefaction curves of observed bacterial (left pane) and archaeal (right pane) 3 

OTUs in each sample generated on sequence data normalized to 140,000 reads for bacteria 4 

and 17,000 reads for archaea.  5 

 6 
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 1 

Figure S2. Network of co-occurring microbial taxa based on Spearman’s rank correlation 2 

values between pairs of taxa.  correlation (R>0.7, p<0.01) between different taxa. Each circle 3 

(node) represents a taxon and the size of the node is proportional to the number of 4 

connections (Spearman correlation value) of the node. The colour of the nodes indicates 5 

degree of centrality of the taxon, with low centrality shown as blue, increasing centrality by 6 

green to yellow to orange and highest centrality as red. Taxa with less than 10% centrality 7 

range (<2 connections) were filtered out. The names for all taxa included in the analysis are 8 

shown. 9 
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 1 

Figure S3. Bacterial oxidative phosphorylation according to KEGG. The predicted genes from 2 

the bacterial communities belonging to the oxidative phosphorylation are shown in pink. 3 

 4 

 5 
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 1 

Figure S4. Predicted genes shown in red of the bacterial A) fatty acid degradation and B) fatty 2 

acid biosynthesis pathways, combined from all samples. 3 

 4 

Figure S5. The predicted genes of enzymes included in the microbial nitrogen metabolism 5 

according to KEGG. Enzymes predicted from the bacterial communities are shown in red, 6 

archaeal communities in green and enzymes predicted from both archaeal and bacterial 7 



 40 

communities in green/red. Enzymes not predicted from either community are shown in blue 1 

or white. 2 

 3 

 4 

Figure S6. The genes of ABC transporters predicted from the bacterial (pink), archaeal 5 

(green) or both (pink/green) communities. Genes not predicted in any of the communities are 6 

shown in blue. 7 

 8 
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 1 

Figure S7. The predicted genes of enzymes included in the microbial sulphur metabolism 2 

according to KEGG. Enzymes predicted from the bacterial communities are shown in red, 3 

archaeal communities in green and enzymes predicted from both archaeal and bacterial 4 

communities in green/red. Enzymes not predicted from either community are shown in blue 5 

or white. 6 

 7 

  8 
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Author responses to Reviewer 1 1 

A: We would like to thank the reviewer for critically reviewing our manuscript. Our detailed 2 
responses to the reviewer’s comments are marked below with ‘A:’ and the reviewer’s 3 
comments are marked with ‘R:’ 4 

R: General comments. 5 
Broadly the interest in subsurface life has grown in recent years, and the linkage of 16S 6 
rRNA gene identified taxa distribution and geochemical parameters would be of broad 7 
interest to journal readers from a variety of backgrounds. Overall, the manuscript reads 8 
cleanly and is easy to follow. The authors carefully inferred from the data- however additional 9 
details on how certain analyses were conducted, or in the case of piecrust, more information 10 
on the potential error is necessary. The 4 figures are largely overshadowed by the massive 11 
information contained in tables, in general I don’t think tables are as effective for visually 12 
reporting data, and think the authors could include more visual representation of the data. 13 
For instance rather than the table or in addition to the tables, some visual representation of 14 
community structure and change would be appreciated. Also the figures and tables in the 15 
text are very small and needs to be increased throughout.  16 

A: These comments have been addressed in the Specific comments below.  17 

Specific comments.  18 

R: Abstract: 19 
line 6: IN general avoid “great” in sequencing depth- as it is qualitative. Report number of 20 
reads and depth of sampling and let it stand for itself. Depth is dependent on structure of 21 
community and amount of reads.  22 

A: L6 –  The sentence has been changed to indicate the number of sequences obtained: ‘a 23 
sequencing depth of up to 1.2 × 106 reads per sample’ (P1,L15) 24 

R: I appreciated the “background” information being included in this manuscript so readers 25 
do not have to look up information in another paper to understand the system.  26 

A: Thank you. 27 

R: Why was V6 selected as the primer region? Might be nice to include a reference for this 28 
region from recent studies done on a similar sequencer (read length). Also please confirm 29 
sequencer and model- a HiSeq and include model, 2000 or GAII?  30 

A: The v6 region was the one provided by the Census of Deep Life (CoDL) sequencing 31 
program. This region has been rigorously tested by the CoDL and for maximizing capture of 32 
all known groups of bacteria and archaea the V6 region was targeted with a mixture of similar 33 
primers for each primer site. The sequence quality was also maximized by using a completely 34 
overlapping paired-end approach, for which the V6 region was perfect (described in Eren et 35 
al., 2013, reference added to the text).  More information about the bacterial and archaeal 16S 36 
rRNA gene v6 primers can be found at https://vamps.mbl.edu/resources/primers.php. This 37 
link has been added to the paper. The sequencer was a HiSeq1000. 38 

R: Results: 39 
Line 15, in a few words define “occurring”. Does this mean a single read, or a certain level of 40 
abundance (at least 1%) in all samples? Also define rare.  41 
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A: ‘occurring’ was changed to ‘detected’. 1 

In the previous section on p11 (L7-14) we present the most common bacterial and archaeal 2 
groups where the relative abundance of the reported genera (or equivalent group) was at least 3 
1% of the sequence reads in any sample. 31 bacterial genera and 15 archaeal genera belonged 4 
to these ‘most common’ taxa. In the core community we have not set a threshold, but report 5 
the taxa that were detected in all samples, no matter how few the sequence reads were per 6 
taxon. We did not look at this data on OTU level, but only on genus level so we did not have 7 
any single sequence groups. In section 3.5, L4, the rare biosphere is considered the microbial 8 
taxa that were sporadically detected in only some of the samples, but not in all samples. This 9 
will be added to the text as; ‘These groups represented the rare biosphere, i.e. taxa that were 10 
only detected at low relative abundance in some of the samples, but not in all’. Two different 11 
representations of these results are shown in the figures below for Bacteria and Archaea 12 
separately. Now all the ‘not common’ taxa are presented as ‘Other’. These may be easier to 13 
interpret than Tables 3 and 4.  14 

Relative abundance of the most common bacterial taxa: 15 

 16 

 17 

 18 

 19 

 20 

 21 
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 1 

 2 

 3 

 4 

 5 

Relative abundance of the most common archaeal taxa: 6 

 7 

 8 

 9 

R: Figure 3. Can the authors provide some more information on the image- perhaps color 10 
and shape to represent the sample scores (dots) by depth and location more easily than 11 
text? As a reader I am trying to understand what is unique about each of the samples and 12 
the geochemistry. For instance is OL-KR44 unusually deep or location wise distinct from the 13 
others.  14 

A: Figure 3 – The figure has been changed to separate NMDS plots for the archaea and 15 

bacteria (Figure 5).  The depth of each sample is given in the sample names in this figure and 16 

all the chemistry that the calculations are based on is given in Table 1. The OL-KR44 sample 17 

is chemically very different from the other deep samples in this study. There is a peak in the 18 

concentration of organic carbon (NPOC) and sulphate, which are more typical for the samples 19 

from lesser depth, while at the same time the salinity of the sample is high, which is typical 20 

for the deeper samples. The font size of the sample names has been increased for clarity. A 21 
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map of the Olkiluoto site showing the positions of all the boreholes we sampled for this study 1 

has also been included in the paper (Figure 1). 2 

R: Were all samples collected at the same time? Sorry if I missed this.  3 

A: The sampling times for all samples are provided in Table 1 and a note ‘The collection of 4 
samples occurred between December 2009 and January 2013 as described previously…’ has 5 
been added to section 2.2.   6 

R: Please check language on top of 13831, I wasn’t quite sure what was being said here. An 7 
introductory sentence could also help. “Of the 651 bacterial and 81 archaeal genera (or equivalent 8 
groups) identified in this study 42 bacteria and 59 archaeal genera showed any significant correlation 9 
with other genera.” In general I am having a difficult time tracking this analyses- additional 10 
details would help simplify the reading of the manuscript. How was rare calculated and 11 
determined? Not clear.  12 

A: P13, This text has been omitted. 13 

R: From this section and figure 4. 14 
R: 1) Please in the text provide how are the “communities” 1-7 defined (analogous to figure 15 
4- different clusters of microbial taxa)? I find use of “communities” somewhat confusing, and 16 
think it is sufficient to call them co-occuring clusters. For instance the piecrust was done on 17 
the level of the individual samples (also communities) from different or the co-occuring 18 
cluster communities that were just defined two sentences before? Please refrain from using 19 
name community for the in silica identified clusters.  20 

R: 2) Figure 4.  21 

• R: How was the chemistry overlayed on the groups, was this included into the 22 
analyses or done manually based on another analyses (I assume strong= statistically 23 
significant correlations, and if so state rather than strong).  24 

• R: Do the circles represent OTU level designations- if so why is there differences in 25 
taxonomy- some are family level IDs others are genus? If different, why wasn’t the 26 
same taxonomic unit selected for this analyses.  27 

• R: Also please make figure 4 larger, it was difficult to read when printed out.  28 

A: The figure has been recalculated and completely changed (Figure 6) 29 

R: Abstract and again in results on Line 24. Is rough an euphemism for inaccurate? Can the 30 
authors give a scale for NSTI scale- I know 1 means no match, but for instance is 0.282 for 31 
Archaea considered too far diverged that the data is error prone “or rough”? I personally do 32 
not use Piecrust for environmental systems, for the reasons the authors allude to (why not do 33 
metagenomics, there is a danger in inferring function from divergent 16S), but I am open to 34 
entertaining its use if necessary precautions are taken and quantified. So I think the readers 35 
would benefit from some authors providing some additional data here. For instance, typically 36 
for human microbiome samples the NSTI ranges from XX-XX, while other NSTI reported 37 
from environmental datasets have had a range of XX-XX. Provide precedence please for 38 
including seemingly high numbers, and thus more inaccuracy, in the analyses, as this will be 39 
good to incorporate in future studies/comparisons.  40 
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A: We	mean	a	not	very	fine-scaled	estimation,	not	inaccurate.	Meant	more	as	an	1 
approximation.	‘Rough	prediction’	will	be	changed	to	‘approximate	estimation’.	Langille	2 
et	al.	(2013)	describes	the	NSTI	as	‘the	sum	of	phylogenetic	distances	for	each	organism	3 
in	the	OTU	table	to	its	nearest	relative	with	a	sequenced	reference	genome,	measured	in	4 
terms	of	substitutions	per	site	in	the	16S	rRNA	gene	and	weighted	by	the	frequency	of	5 
that	organism	in	the	OTU	table’.	If	the	NSTI	value	is	given	as	0.282	it	means	that	the	test	6 
subject	shares	about	78%	16S	rRNA	gene	similarity	to	its	nearest	sequenced	match,	i.e.	7 
not	very	close.	It	is	close	enough,	however,	to	be	able	to	say	that	this	uncultured	putative	8 
methanogen	has	methane	metabolism	and	that	it	probably	uses,	say,	methanol	for	its	9 
methanogenesis,	because	all	the	closest	relatives	do	so	and	it	falls	within	a	bigger	10 
archaeal	cluster	that	all	use	methanol.	Whether	this	is	the	case	in	reality	is	not	sure,	of	11 
course,	but	here	we	are	trying	to	link	taxonomical	data	from	uncultured	communities	to	12 
what	is	known	for	cultured	and	tested	species.	I	agree	that	metagenomic	analysis	would	13 
be	better,	and	we	have	done	a	few.	The	metagenomes	show	quite	the	same	as	the	14 
PICRUSt	analyses,	but	the	metagenomes	also	suffer	from	uncertainty,	since	we	get	good	15 
matches	only	to	properly	annotated	and	well-known	species.	Agreed,	the	sequence	data	16 
and	predicted	gene	data	etc	would	be	obtained.	Nevertheless,	the	biomass	obtained	from	17 
the	collected	samples	is	very	low	and	they	were	not	originally	collected	for	metagenomic	18 
analysis.	The	DNA	yield	is	low,	which	means	that	the	DNA	needs	to	be	amplified	before	19 
sequencing	(or	at	least	had	to	be,	then).	These	samples	were	also	a	part	of	the	Census	of	20 
Deep	Life	sequencing	effort	and	the	data	is	here	published	if	the	name	of	this	sequencing	21 
project	and	we	tried	to	get	out	as	much	as	possible	from	the	data.	Now	we	can	continue	22 
to	prove	these	estimations	right	or	wrong.	23 

 24 

R: I presume inferred community metabolism change did not also with geochemistry if 25 
not depth? Table 9b is very difficult to read. After reading the piecrust analyses in the 26 
results, I am really not sure what level of information it adds-The discussion was more 27 
clear and contained many details not included in the results.  28 

“However, at specific depths (328, 423 m) the archaea may contribute with over 50 % of the 29 
estimated 16S rRNA gene pool (Table 1). The major archaeal group present at these depths 30 
were the ANME- 2D archaea indicating that nitrate-mediated anaerobic oxidation of methane 31 
may be 25 especially common (Haroon et al., 2013).” Is this consistent with 32 
geochemistry from the site?  33 

A: The NSTI of environmental samples is higher than that of the human microbiome, 34 
which is stated in Langille et al. (2013). This has been discussed in more detail. Table 35 
9 (which is now Figure 8) presents the percentage of predicted genes from each 36 
sample that is connected to a specific metabolic pathway. Of course, some genes (or 37 
enzymes) function in many pathways, but the ones presented in Table 9 were the best 38 
covered ones. The table shows the distribution of predicted genes. From these ‘whole 39 
pathways’ were extracted simply by checking if a gene (or actually KO number) was 40 
present in a sample and how abundant that gene was in the sample. In the discussion 41 
only whole pathways are included. We have also included KEGG maps (Figure 9, 42 
Figures S3-S7) to show what parts of the different pathways are covered. 43 

ANME-2D – well, this is a problem, because the nitrate level is below the detection 44 
limit of the assay. Ntot and ammonia could be measured, but not nitrate or nitrite. This 45 
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could mean that nitrate is a rate limiting factor for the ANME-2D or that the ANME-1 
2D are using the nitrate released from a possible ammonia oxidation process 2 
immediately. Or, the AMNE-2D are either doing something else or could be using 3 
sulphate as electron acceptor. However, sulphate for ANME-2D has not yet been 4 
shown to function as TEA, but it is possible. The geochemistry might support this 5 
theory, but it is too speculative to say in the paper. 	6 

R: The NSTI values for both the bacterial and well as the archaeal communities were 7 
great indicating that no closely related species have yet been sequenced 8 
The values were high not great.  9 

A:	The	text	has	been	changed	to	say	that	the	NSTI	values	were	high.	 10 

R: This statement may not be correct, as many obligate fermenters are known to 11 
have and use ATP synthase using a variety of alternative proton pumping 12 
mechanisms outside of NADH dehydrogenase. What criteria used to determined 13 
oxidative phosphorylation? The presence of NADH dehydrogenase? A full ETC? 14 
cytochrome oxidase. Please qualify by noting what genes were detected in this 15 
category.  16 

“Oxidative phosphorylation was one of the most prominent energy generating 15 metabolic 17 
pathways in the bacterial community. This indicates that ATP is generated by electron transfer 18 
to a terminal electron acceptor, such as oxygen, nitrate or sulphate.”  19 

A: Oxidative phosphorylation was determined based on 114 KO numbers detected in 20 
the predicted genes, which occur in this pathway. In the figures below the predicted 21 
KO numbers were plotted on the Kegg map for oxidative phosphorylation, pink means 22 
hit, and the number of hits belonging to the EC numbers of the different enzyme 23 
complexes are displayed separately for the bacteria and the archaea. This is presented 24 
in Figure S3. 25 

 26 

 27 

 28 
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Autors’ responses to Reviewer 2 1 

A: We would like to thank the reviewer for critically reviewing our manuscript. Our detailed 2 
responses to the reviewer’s comments are marked below with ‘A:’ and the reviewer’s 3 
comments are marked with ‘R:’ 4 

R: From the data presented, their main results include (1) the correlation of rare taxa with 5 
geophysical and geochemical settings → discussion on rare biosphere and (2) predicted 6 
metabolisms derived from PICRUSt. My main concerns with the analysis are as follows:  7 

1. The description of the approach taken to perform the correlation analysis and subsequent 8 
significance are not clearly stated. For example it is not stated whether or not the data was 9 
normalized in any manner prior to analysis (this is also omitted when describing their 10 
implementation of CCA on the data). More importantly, the authors do not seem to correct for 11 
the high false discovery rate when testing multiple hypotheses. If I understood correctly, the 12 
authors tested the pairwise correlation of 732 genera (651 bacterial and 81 archael). Under 13 
this scenario there would be (731 ∗ 732)/2 = 267, 546 comparisons made. Thus, a p-value 14 
threshold of 0.01 (as denoted in the methods section, I noticed figure 4 uses p < 0.001) would, 15 
in expectation, yield 2, 675 (= 0.01 ∗ 267, 546) tested hypotheses that would appear 16 
significant just by random chance. Note, that in lines 2 and 3 of page 13831, the authors 17 
report the number of genera (101) that were found to be significantly correlated to other 18 
genera not the number of significant correlations identified. To correct for the false discovery 19 
rate, the authors need to use some sort of correction for multiple hypothesis testing such as the 20 
q-value (Storey, John D. “The positive false discovery rate: a Bayesian interpretation and the 21 
q-value.” Annals of statistics (2003): 2013-2035.) or the Bonferroni. Until an appropriate test 22 
for significance is conducted, the results and discussion based on the correlation analyses, in 23 
my opinion, are not yet in publishable form.  24 

A: 1. The data was tested again. Normality tests (Shapiro-Wilkins, Anderson-Darling) were 25 

run on the chemical and physical parameters as well as on the taxonomical data obtained from 26 

the samples. Only parameters and taxa for which the null hypothesis could be rejected with 27 

both the S-W and A-D tests when p(normal) and p(Montecarlo)< 0.05 were included in the 28 

subsequent test. One-way ANOVA (Levine’s test for homogeneity of variance from means 29 

and from medians) and Kruskal-Wallis test indicated significant differences between samples 30 

(p=0). Correlation between physicochemical parameters and bacterial and archaeal taxa was 31 

tested with the Mann-Whitney pairwise test and the p-values were corrected using the 32 

Bonferroni method. As the reviewer well predicted we ended up with no significant 33 

correlations. After discussions with several knowledgeable statisticians we have come to the 34 
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conclusion that we cannot apply Pearson correlations to out data matrix. Thus we are forced 1 

to remove these analyses from the paper.  2 

Instead of these tests we have performed a non-metric multidimensional scaling test on the 3 

archaeal and bacterial communities vs. the environmental parameters. The archaeal data is 4 

presented in the left plot and the bacterial in the right plot. These are presented in the 5 

manuscript as Figures 5a and b. 6 

 7 

 8 

 9 

R:  10 

2. Although the authors note (in lines 22 to 27 of page 13822 and elsewhere) that the method 11 
of functional inference from 16S data using PICRUSt has limitations, almost the entire 12 
discussion of the submitted paper is based on the predicted functional metabolisms identified 13 
through this method. My main concern is that they are too focused on reporting the PICRUSt 14 
results rather than how the metabolisms (and 16S data) may relate to the larger context of the 15 
paper, environment type, and field. This is especially concerning when the PICRUSt results 16 
may contradict other observations that the authors report based on the 16S data such the 17 
statement about the low abundance of sulfur metabolisms (PICRUSt) on page 13825 lines 10-18 
12 and the results of their CCA (as wells as their correlations that need correcting – see above 19 
– in lines 14 to 17 page 13833) that show communities that correspond to increased sulfur and 20 
sulfate concentrations. What is changing between these sites if not the relative abundance of 21 
sulfate/sulfur reducers? What other thoughts might you have on this? Another anomaly that 22 
concerns me is the presence of methanogens and absence of the Wood-Ljungdahl (acetyl-23 
CoA) pathway in archaea – a pathway that is a feature of methanogens. In my opinion, there 24 
is too much dependence on reporting these results that may not be entirely accurate and are 25 
subject to interpretation (two of my major concerns are listed above). The discussion and 26 
presentation of PICRUSt results can be enhanced by performing a deeper investigation and 27 
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interpretation of the results – i.e. have the same trends (as far as predicted metabolisms) been 1 
observed before in the Fennoscandian Shield? How do they compare to metagenomes from 2 
the area or other subsurface sites? Other questions that seem important but appear to be 3 
largely ignored: Is there a difference in sulfur metabolism in the sites OL-KR5,6,9,13,23 than 4 
the rest as, taxonomically, they seem to correspond to increase in S and sulfate 5 
concentrations. What are the taxa? Are these taxa the same in the sites? Also the discussion of 6 
rare versus core is interesting but not well developed. Some things I would like to see more of 7 
are: Do the predicted metabolisms vary within the core set vs the rare? What does that 8 
observation potentially say about the theory of rare biosphere? 9 

 10 

A: 2. PICRUSt provides an estimation based on the data present in the PICRUSt database. 11 

Only well-characterized and whole-genome sequenced microbial species are present. For 12 

example, the ANME-2D representative Candidatus Methanoperedens nitroreducens might not 13 

yet be included. However, representatives of most methanogenic clusters are present. At least 14 

the M. nitroreducens has been shown to have the genes for the Wood-Ljungdal pathway. The 15 

archaeal WL pathway appears to differ a bit from the bacterial one, so this was a 16 

misinterpretation of the results on our part. In Fig 10 the carbon metabolism of both bacteria 17 

and archaea is shown and it is clear that both versions are represented. This has now been 18 

changed in the text. The carbon monoxide dehydrogenase and acetyl-CoA 19 

decarboxylase/synthase in the archaeal community are shown in Figure 9.  20 

 21 

The discussion about the correspondence of the microbial groups to environmental factors, 22 

such as sulphate and sulfur, has been heavily revised. The correspondence analyses have been 23 

omitted, since they can’t after correction of the p-values be considered significant anymore. 24 

Some comparison between other Fennoscandian deep biosphere stydies have been made. 25 

However, there are no published metagenomes from the Olkiluoto site, only from Outokumpu 26 

(Nyyssönen et al., 2014).  27 

 28 

Since a lot of space will be freed when the correlation tables are removed we can show more 29 

pathway maps. For example, the sulfur metabolism (as brought up by the reviewer). The taxa 30 

in all the sites are presented in the supplementary tables. We have more focused on the 31 

functions of the core groups as they represent the biggest part of the community.  32 
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 1 

R: 3 Minor Comments:  2 

3.1 Abstract  3 

• Lines 6-10 are confusing and need clarification. For example, I think you are referring to 95 4 
and 99% of the alpha diversity but it is unclear �  5 

 6 

A: Abstract – this has revised. We mean 95 and 99% of the total number of sequences 7 

obtained from the bacterial and archaeal communities, respectively. The significance 8 

statement will be revised. The discussion about the rare biosphere will be revised as 9 

suggested. 10 

 11 

R: Significance needs to be reexamined as described in Major Comment (1) �  12 

A: This has been omitted from the manuscript. 13 

 14 

R:  15 

“It may consist of remnants of microbial communities prevailing in earlier con- ditions on 16 
Earth” is a bit misleading in the context of the rest of the paper. In my opinion, as written and 17 
throughout the paper, the discussion on the rare bio- sphere is rather ambiguous and subject to 18 
misinterpretation by the reader and need clarification. For example, the rare biosphere itself is 19 
not necessarily ancient (as stated in line 21 of page 13821) – it is a feature that is present in 20 
the microbial community observed today. However, the introduction of these taxa into the 21 
Fennoscandian Shield may have happened a long time ago and, over time, the taxa have 22 
persisted in the environment at low abundance. This is a feature not just of the Fennoscandian 23 
site but something that relates to all microbial communities. Also, it is important to note that 24 
in Sogin et al. (2008), the aforementioned mechanism is not the only avenue by which the rare 25 
biosphere may appear. Sogin et al. (2008) note: “The large number of highly diverse, low-26 
abundance OTUs constitutes a ‘rare biosphere’ that is largely unexplored. Some of its 27 
members might serve as keystone species within complex consortia; others might simply be 28 
the products of historical ecological change with the potential to become dominant in 29 
response to shifts in environmental conditions (e.g., when local or global change favors their 30 
growth). Because we know so little about the global distribution of members of the rare 31 
biosphere, it is not yet possible to know whether they represent specific biogeographical 32 
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distributions of bacterial taxa, functional selection by particular marine environments, or 1 
cosmopolitan distribution of all microbial taxa (the ‘everything is everywhere’ hypothesis)”  2 

A: This has been toned down to concern more the Olkiluoto environment than the whole earth 3 

and the ‘ancient’ part has been omitted. 4 

  5 

R: 3.2 Introduction  6 

Lines 4 and 5 of page 13821, I think it would be important to note that a core microbiome in 7 
the South African subsurface has been reported (Magnabosco, Cara, Memory Tekere, Maggie 8 
CY Lau, Borja Linage, Olukayode Kuloyo, Mariana Erasmus, Errol Cason et al. 9 
“Comparisons of the composition and biogeographic distribution of the bacterial 10 
communities occupying South African thermal springs with those inhabiting deep subsurface 11 
fracture water.” Frontiers in microbiology 5 (2014)). This may also serve as an interesting 12 
paper for further comparison as the same region (V6) of the 16S was sequenced �  13 

A: The Magnabosco et al paper has been included in the discussion  14 

R: Line 21 of page 13821 again, as written it is slightly misleading. See section Abstract, last 15 
comment �  16 

A: the sentence was altered 17 

 18 

R: 3.3 Methods  19 

2.4: I think the use cell counts and qPCR were a nice addition to the paper. I’m curious as to 20 
why primers were not V6 for the qPCR as it was the primer used in amplification �  21 

A: we have used the ‘qPCR-primers’ previously in our work and used for sequencing on the 22 

454 platform. Based on these older results the primers have been deemed quite specific and to 23 

detect bacteria and archaea broadly. In addition, the archaeal qPCR was a bit tricky and we 24 

tested several different primer pairs in order to find the one that worked most reliably. The 25 

sequencing for this work was not done by us, but by the Census of Deep Life collaboration 26 

and in the CoDL the method has been standardized for the v6 region. We also wanted a 27 

slightly longer fragment that that produced by the v6 primers. The v6 primers used also 28 

consisted of a mix of primers, and we wanted to use only one primer/direction.  29 

 30 
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R: 2.6: What quality filtering method was used? When talking about the rare bio- sphere it is 1 

important to not that the QC step can greatly influence the number of taxa and size of the rare 2 

biosphere. See (Huse, Susan M., David Mark Welch, Hilary G. Morrison, and Mitchell L. 3 

Sogin. “Ironing out the wrinkles in the rare bio- sphere through improved OTU clustering.” 4 

Environmental microbiology 12, no. 7 (2010): 1889-1898.) and (Eren, A. Murat, Joseph H. 5 

Vineis, Hilary G. Morrison, and Mitchell L. Sogin. “A filtering method to generate high 6 

quality short reads using Illumina paired-end technology.” (2013): e66643.) for more 7 

information. Typically, is suggested to use a 100% overlap when working with sequences 8 

form the V6 region (Eren et al. 2013). 9 

 10 

A: 2.6: The fastq files were combined in mothur using default parameters and the resulting 11 

fasta files were screened with QIIME allowing for no errors in barcodes (primers were 12 

removed by mothur).  13 

 14 

R: 2.7: Concerns are listed in Major Comment (1). Please also specify if any nor- malization 15 
was performed and correct for multiple hypothesis testing  16 

A: 2.7: these concerns are addressed above. 17 

 18 

R: Results  19 

3.2: Sequences statistics; Lines 14-20 on page 13828 (Chao and ACE) are difficult to follow, 20 
please clarify  21 

A:  3.2: Chao1 and ACE results were simplified and the reader is referred to the table for 22 

more details.  23 

 24 

R: A similarity index between samples would be helpful. It is somewhat illustrated in figure 3 25 
but it would be interesting to get a sense of how many taxa are shared vs how many taxa are 26 
present. A visualization of tables 3 and 4 would achieve a similar objective. �  27 

A: The similarity between the samples is presented in a Bray-Curtis UPGMA tree (Figure 5). 28 

I tried to show the data in a heat map like plot, but there were just too many taxa to be able to 29 

show them well. The tables 3 and 4 have been visualized as presented below.  30 
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 1 

Relative abundance of the most common bacterial taxa: 2 

 3 

 4 

Relative abundance of the most common archaeal taxa: 5 

 6 

 7 

R: Can add a citation about the difficulty in assigning taxonomy to short se- quences (lines 5-8 
6 page 13829). GAST (Huse, Susan M., Les Dethlefsen, Julie A. Huber, D. Mark Welch, 9 
David A. Relman, and Mitchell L. Sogin. "Ex- ploring microbial diversity and taxonomy 10 
using SSU rRNA hypervariable tag sequencing." PLoS Genet 4, no. 11 (2008): e1000255.) is 11 
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a tool that has been used minimize this problem and may serve as a useful citation �  1 

A: The proposed reference to Huse et al. (2008) has been added and discussed.  2 

 3 

R: The abstract is misleading, there is in fact a core community that makes up an extremely 4 

high proportion of the dataset. Please address  5 

A: 3.3: The text has been changed  6 

 7 

R: Several of the genera are “TaxaX, Other” which is not very informative and may inflate the 8 
number of “shared”. What about the number of shared OTUs vs not shared? This is where a 9 
similarity index or a visualization of the taxonomic data may be useful �  10 

A: The TaxaX, Other is a problem. However, these ‘Others’ is what the GG database gives 11 

for many of the more unknown groups. This has been discussed in accordance to the Huse et 12 

al., 2018 paper. For example, the OTUs falling with the Proteobacteria;Other are between 13 

900-3000 OTUs/sample, so visualization for these is difficult. Similarities have been 14 

presented as a UPGMA tree (Figure 4).  15 

 16 

R: 3.4: Impact of �  17 

Again see Major Comment (1) �  18 

It would be helpful to have a better sense of the taxonomic composition and environmental 19 
parameters of the samples before getting into the discussion of the CCA. Sections describing 20 
these 2 data types would be helpful earlier in the results section �  21 

A: The section has been changed. 22 

R: As in 3.3: Core Communities, you report a lot of Actinobacteria/Other, 23 
Gammaproteobacteria/Other, etc which I, as a reader interpret as unclassified species within 24 
the aforementioned phylum or class. This encompasses quite a lot of diversity. It would be 25 
helpful for you to describe “Other” category more completely and state exactly what it means. 26 
Points to think about: How might this larger group of Gammaproteobacteria/Other (i.e. how 27 
many OTUs fit this classification) influence your interpretations when compared to 28 
Gammaproteobacteria/Shewanella �  29 
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A: 3.4: We have addressed the ‘Other’ in the discussion. This is probably due to the problem 1 

with the short sequence reads that may get many similarity good hits to the 16S rRNA 2 

sequence database.  3 

 4 

R: 3.5: Co-occurrence network� – see Major Comment (1) �  5 

A: 3.5: The co-occurrence network has been recalculated and is now loosely based on 6 

Spearman’s rank correlations. The idea is not to study absolute correlations, but to obtain 7 

some value for interactions between taxa that can be used to visualize these interactions in a 8 

network. 9 

 10 

3.6: PICRUSt is rather new and has not been used for many environmental studies yet. 11 

However, we tried in on a bog community where Acidobacteria were prevailing and the 12 

results were different from the ones we got here. Staley et al found that the PICRUSt 13 

performed quite well on riverine microbiomes when 16S rRNA gene data was compared with 14 

metagenomic data, but they did call for caution in the interpretation of the PICRUSt results.  15 

 16 

The listed features are those that were the most common. Table 9 has been changed in to a 17 

Figure (Figure 8). We have added metabolic pathway maps. The core vs rare biosphere 18 

comparisons are not shown, because the rare biosphere PICRUSt results were not as robust as 19 

the ones we are presenting. This is probably due to the fact than the rare biosphere is not well 20 

known. 21 

 22 

3.5 – Discussion 23 

R: Lines 1-6 on page 13833 was difficult to follow 24 

A: L1-6 have been revised 25 

 26 

R: Line 10 on page 13833 “genera, respectively seem low”. Have you considered the number 27 

of genera within the GreenGenes reference dataset? This may deflate the number of observed 28 

genera. 29 
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A: L10 – we used the GG reference for the taxonomic assignments, so this is certainly a 1 

possibility. The GG was used, because PICRUSt is not compatible with other reference 2 

databases. 3 

 4 

R: Tables 5-8 could be in the supplement 5 

A: Tables 5-8 were removed. 6 

 7 

R: Which sulfur and sulfate reducers are present? Who are the archaea? (lines 13-17 page 8 

13833) 9 

A: L13-17 – Sulphate reducers were not detected in the major groups, but sulfur, sulfide and 10 

thiosulphate oxidizers were. These have been added to the text. The archaeal communities 11 

consisted mainly of undetermined Euryarchaeota, ANME-2D and Thermoplasmatales_E2 12 

groups. This has been added to the text. 13 

 14 

R: 4.1: Energy Metabolism 15 

– line 14 and 25 page 13834: It is important to note that mixotrophy (ability to shift between 16 

autotrophy and heterotrophy) has also been suggested to be an important option for low-17 

energy, subsurface systems. See: 18 

1. Moser, Duane P., Thomas M. Gihring, Fred J. Brockman, James K. Fredrickson, David L. 19 

Balkwill, Michael E. Dollhopf, Barbara Sherwood Lollar et al. “Desulfotomaculum and 20 

Methanobacterium spp. dominate a 4-to 5-kilometer-deep fault.” Applied and Environmental 21 

Microbiology 71, no. 12 (2005): 8773-8783. 22 

2. Magnabosco, Cara, Kathleen Ryan, Maggie CY Lau, Olukayode Ku- loyo, Barbara 23 

Sherwood Lollar, Thomas L. Kieft, Esta van Heerden, and Tullis C. Onstott.“A metagenomic 24 

window into carbon metabolism at 3 km depth in Precambrian continental crust.” The ISME 25 

journal (2015). 26 

3. Osburn, Magdalena R., Douglas E. LaRowe, Lily M. Momper, and Jan P. Amend. 27 

“Chemolithotrophy in the continental deep subsurface: Sanford Underground Research 28 

Facility (SURF), USA.” Frontiers in microbiology 5 (2014). –a potential for both 29 
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chemolithotrophy and heterotrophy (not necessarily within the same organisms) in the 1 

Sanford Underground Research Facility is reported here 2 

 3 

A: 4.1 – mixotrophy, or more precisely the possibility that the microorganisms couled change 4 

from one metabolic strategy to another depending on the environmental conditions,  has been 5 

included in the discussion, and Magnabosco et al. (2015) and Osburn et al. (2014) have been 6 

included as references.  7 

 8 

R: Line 4 page 13835, my concern about PICRUSt, methanogens, and the Wood-Ljungdahl 9 

pathway are summarized in (Marjor Comment 2)  10 

 11 

A: L4, P13835 – A chart on the carbon metabolism in bacteria and archaea hand the identified 12 

enzymes has been included (Figure 9). This figure also shows the archaeal WL pathway and 13 

how it differes from the bacterial one. The discussion has been altered accordingly. 14 

 15 

R: I think it would be helpful for the discussion to include more about how their results 16 

compare to Purkamo et al. (2015) and other subsurface sites. For example, a study by Itävaara 17 

et al sampled the Fennoscandian Shield at various depths saw a marked change in community 18 

composition with depth. It would be interesting to see how this study compares since they are 19 

from what seem to be a similar locality (Itävaara, Merja, Mari Nyyssönen, Anu Kapanen, 20 

Aura Nousiainen, Lasse Ahonen, and Ilmo Kukkonen. “Characterization of bacterial diversity 21 

to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield.” FEMS 22 

microbiology ecology 77, no. 2 (2011): 295-309.) 23 

 24 

A: Outokumpu is very different from Olkiluoto and only one of the metagenomes from 25 

Outokumpu is from a depth close to those examined in out paper. The mentioned paper was 26 

based on DGGE and clone libraries and the samples were from the borehole water column 27 

and not the fracture zones, as in our study. The geology and water chemistry is different 28 

between these sites and we have seen major differences in the bacterial and archaeal 29 

communities between these two sites.  Some comparison between the Olkiluoto and 30 
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Outokumpu deep biosphere communities has been added to the discussion referring to 1 

Purkamo et al. (2015). 2 

 3 

R: AnotherpointofcomparisonarethewholegenomemetagenomesfromOutokumpu by 4 

Nyyssönen et al 2014. Are the same metabolisms predicted by PICRUSt as identified in the 5 

metagenomes? (Nyyssönen, Mari, Jenni Hultman, Lasse Ahonen, Ilmo Kukkonen, Lars 6 

Paulin, Pia Laine, Merja Itävaara, and Petri Auvinen. "Taxonomically and functionally 7 

diverse microbial com- munities in deep crystalline rocks of the Fennoscandian shield." The 8 

ISME journal 8, no. 1 (2014): 126-138.) 9 

 10 

A: Discussion has been added and the results compared. We find similar trends in our 11 

PICRUSt estimations as in the metagenomes. 12 

 13 

R: And there are several other useful and interesting citations for comparison on page 13832 14 

lines 16-18 as well as those listed in the first and second comments of this section and 15 

1. Dong, Yiran, Charu Gupta Kumar, Nicholas Chia, PanâA ̆RˇJun Kim, Philip A. Miller, 16 

Nathan D. Price, Isaac KO Cann et al.“Halomonas sul- 17 

fidaerisâA ̆Rˇdominatedmicrobialcommunityinhabitsa1.8kmâA ̆Rˇdeep subsurface Cambrian 18 

Sandstone reservoir.” Environmental microbiol- ogy 16, no. 6 (2014): 1695-1708. 19 

2. Fukuda, Akari, Hiroki Hagiwara, Toyoho Ishimura, Mariko Kouduka, Sei- ichiro Ioka, 20 

Yuki Amano, Urumu Tsunogai, Yohey Suzuki, and Takashi Mizuno. “Geomicrobiological 21 

properties of ultra-deep granitic ground- water from the Mizunami Underground Research 22 

Laboratory (MIU), central Japan.” Microbial ecology 60, no. 1 (2010): 214-225. 23 

 24 

A: Dong et al reference included in the discussion. Fukuda et al reference not included, 25 

because the microbial community observed in this reference is more similar to the 26 

Outokumpu deep biosphere than the Olkiluoto deep biosphere. But a really nice reference. 27 

Thanks for pointing it out. 28 

 29 
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A: 4.2-4.5: the text will be revised based on reviewer’s comments. 1 

Table3-4; presented as figures above. 2 

Figure 2 – the legends have been reordered and the figure placed in supplements 3 

Figure 3 – the figure has been revised and presented as NMDS plots for bacteria and archaea 4 

separately 5 

Figure 4: the network has been redone. 6 

 7 

 8 

 9 

 10 


