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Mr Rahul Raj 

Faculty of Geo-Information science and Earth Observation (ITC), University of Twente, 

PO Box 217, 7500AE, Enschede, The Netherlands 

Email: r.raj@utwente.nl 

Tel: +31685143519 

 

Date: 02 February 2016 

Dear Dr. Akihiko Ito,  
 
Please find our revised manuscript.  Both referees provided helpful and insightful comments that 
have helped to improve the manuscript. The response to the referees is given underneath this letter.  
We hope that we have addressed the comments to the satisfaction of both referees. 
 
In general we have reworded or extended the relevant sections in order to address the referees’ 

comments.  We have referred to these changes in the response to the referees.  We have also taken 

the opportunity to edit and revise the manuscript to improve the clarity.  Unless specifically 

requested by the referees, we have not substantively altered the content or format of the paper.  In 

the revised manuscript, the text that is reordered is highlighted in blue. New text is highlighted in 

red. Deleted text is not indicated. The term “previous manuscript” used below belongs to published 

Biogeosciences discussion paper. The term “revised manuscript” belongs to the manuscript attached 

at the end.  

We would like to clarify some points: 
1. We have combined section 2 and 3 in the previous manuscripts as one section 2 in the 

revised manuscript following referee #2 comments.  
2. We have moved P13974 L23-28 and P13975 L1-7 from the previous manuscript to section 2.2 

in the revised manuscript (P7 L14-26).    
3. We have combined sections 4 and 5 in the previous manuscript as one section 3 in the 

revised manuscript with new heading “Results and discussion” following both referees’ 

suggestion. 

4. P13984 L22-25 and P13985 L1-6 in the previous manuscript are deleted to avoid repetition. 

P13985 L6-18 in the previous manuscript are moved to section 3.3 in the revised manuscript 

(P19 L6-18).  

5. P13985 L20-27 and P13986 L1-13 in the previous manuscript are moved to section 3.2 in the 

revised manuscript (P17 L27-28, P18 L1-13).  

6.  Section 5.3 of the previous manuscript appears as new section 3.4 in the revised manuscript 

with heading “Some issues and limitations of this study in estimating uncertainty using the 

NRH model”. 

 

 

7. We revise some figures in the manuscript as follows: 

 

Old figure number in the previous manuscript New figure number in the revised manuscript 

Figure 1 Figure 1 

Figure 2 Figure 2 

Figure 3 Figure 3 

Figure 4 Figure 6 

Figure 5 Figure 7 

Figure 6 Figure 8 
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Figure 7 Figure 5 

Figure S4a Figure 4 

 

 

8. The following references have been added in the revised manuscript. 

 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, 

M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, 

M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., 

Williams, C., Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global 

Distribution and Covariation with Climate, Science, 329 (5993), 834–838, 2010. 

 

Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., Wofsy, S. C.: Measurements of 

carbon sequestration by long-term eddy covariance: methods and a critical evaluation of 

accuracy, Global Change Biol., 2(3), 169–182, 1996. 

 

Moncrieff, J. B., Malhi, Y., Leuning, R.: The propagation of errors in long-term measurements 

of land-atmosphere fluxes of carbon and water. Glob. Change Biol. 2 (3), 231–240, 1996. 

 

Rabinowitch, E. I: Photosynthesis and Related Processes, Soil Science, 72, 482, 1951. 

 

Richardson, A.D., Hollinger, D.Y., Burba, G.G., Davis, K.J., Flanagan, L.B., Katul, G.G., Munger, 

J.W., Ricciuto, D.M., Stoy, P.C., Suyker, A.E., Verma, S.B., Wofsy, S.C.: A multi-site analysis of 

random error in tower-based measurements of carbon and energy fluxes. Agric. Forest 

Meteorol., 136, 1–18, 2006b. 

 

Richardson, A. D., Mahecha, M. D., Falge, E., Kattge, J., Moffat, A. M., Papale, D., Reichstein, 

M., Stauch, V. J., Braswell, B. H., Churkina, G., Kruijt, B., Hollinger, D. Y.: Statistical properties 

of random CO 2 flux measurement uncertainty inferred from model residuals. Agric. Forest 

Meteorol., 148 , 38–50, 2008. 

 

Sun, J., Guan, D., Wu, J., Jing, Y., Yuan, F., Wang, A., and Jin, C.: Day and night respiration of 

three tree species in a temperate forest of northeastern China, iForest - Biogeosciences and 

Forestry, 8 (1), 25-32, 2015. 

 

Teskey, R.O., Saveyn, A., Steppe, K., and McGuire, M.A.: Origin, fate and significance of CO2 in 

tree stems, New Phytol., 177 (1), 17-32, 2008. 

 

 

We look forward to hearing from you. 
 
Yours sincerely 
 
Mr Rahul Raj 
(on behalf of all authors)   
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Response to Referee #1 for “Uncertainty analysis of gross primary production partitioned from net 

ecosystem exchange measurements” by R. Raj et al. 

 

We thank for the constructive and helpful comments for our manuscript. We have carefully 

considered all comments and these have incorporated in our revised manuscript accordingly. We 

have inserted our response to each comment. We use “RC” for referee’s comment and “AR” for 

author’s response. 

General comments of Referee #1: 

RC 1: Raj et al. present a new way to evaluate the uncertainty tied to the estimation of the gross 

primary productivity (GPP) derived from the eddy covariance measurements of net ecosystem 

exchange (NEE). They use a Bayesian approach, moving from the regression analysis of rectangular 

hyperbola fitting daytime data. The argument treated is within the scope of Biogeosciences and the 

computational instrument they developed is promising. Nevertheless, at this current stage the study 

suffer from several limitations, not only in the presentational form but also in the substance. In fact, 

several sources of uncertainty exist in the partitioning the GPP from eddy covariance data. GPP is not 

directly measured and must be extrapolated from available NEE. Both extrapolation approaches, 

from night-time or daytime data, can suffer from systematic errors. At least, the authors should 

acknowledge that a) day respiration can be significantly different from night respiration in reason of 

the different processes occurring at leaf level (photorespiration or dark respiration). Lower 

respiration values are expected during the day, see Sun et al. (2015), although compensatory effect 

could occur (Reichstein et al, 2005); b) the shape of the light response curve measured by eddy 

covariance can be significantly biased by an inadequate quantification of the storage contribution of 

the NEE flux, particularly if measurements are taken above high canopies like in the present study. 

I’m unsure that the authors can quantify these potential sources of bias using the data they have, but 

at least they should clearly state that they analysed only a component of the possible uncertainty 

sources. Overall, the approach used by Beer et al., 2010, still seems more solid. 

 

AR 1: Indeed these are important issues. We used a temperature dependent respiration term that is 

equal for day and night. The fact that we have not parameterized respiration separately for day and 

night (or separately for vegetation and soil) can be considered as limitations of our model. Indeed the 

respiration of the vegetation may depend on other factors such as irradiance (Sun et al., 2015). Some 

other terms are also not included our respiration estimates: photorespiration (because it is nearly 

proportional to GPP), and respiration terms of which the produced CO2 remains in the trees (Teskey 

et al., 2008). Our GPP estimates are uncorrected for these particular respiration terms.  It is 

technically possible to extend the model by including more parameters and statistically test whether 

the model fit with additional parameters performs better, but we doubt whether this will improve 

the estimates of GPP, given the limitations of our data: we do not have independent measurements 

of respiration terms (by means of gas chambers).  

The night time storage can indeed affect the diurnal shape of the NEE measurements, in particular 

when CO2 builds up below the sensor height during stable nights which is released when the surface 

layer becomes unstable after sunrise. Even though some of the stable night time data have been 

excluded by the quality filtering due to insufficient turbulence, we cannot exclude that the diurnal 

cycle is affected by storage effects.  In the revision, we will acknowledge these limitations of our 

study. Nevertheless, we believe that the method to establish credible intervals (metrics of 

uncertainty) in the parameter estimates for the non-rectangular hyperbola (NRH) model with 
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temperature dependent respiration term is useful. For most sites this is still the best we can do, and 

by providing an algorithm at least the uncertainties of the model parameters can be estimated. 

The approach of Beer et al. (2010) is an extensive study with a wide scope. They partitioned GPP (at 

FLUXNET sites) from NEE both using a rectangular hyperbola (RH) light-response curve (Lasslop et al., 

2010) and conventional night-time data based approach (Reichstein et al., 2005). They used these 

partitioned GPP to calibrate five highly diverse diagnostic models for GPP to produce the distribution 

of global GPP.  In our study, we tried to understand better the uncertainty in partitioning GPP using 

NRH light-response curve.  Future research can build on our findings and extend our approach in 

order to estimate uncertainty across various flux tower sites with different GPP characteristics. We 

have already highlighted the importance of our findings in the manuscript (P13988 L21 to L 23).   

We have clarified all the above points in our revised manuscript (P20 L11-26, P21 L13-19).    

Comments of Referee #1 on the structure of the paper: 

RC 2: Much of the text is used to present and define the computational approach used. If this could 

perfectly fit for a Journal like Geoscientific Model Development, it could become probably 

excessively complicated for a wide audience like that of Biogeosciences. Even more importantly, the 

sections defined as ‘4. Results’ and ‘5. Discussion’, are similarly presenting some of the results and 

partially discuss them. In the revision, I recommend to decide if the paper will have a discussion 

section separated from the presentation of the results, since what is done in the current text version 

is confusing. Overall, I recommend this study for publication, but only after a thorough work of 

revision.  

AR 2: We understand that the computational approach used in this study may be complicated to 

some of the audience of Biogeosciences. We have tried to explain the flux partitioning in a Bayesian 

framework in a clear way and we have given this further attention in the revised manuscript. We 

trust that the audience of Biogeoscience will not have any problem to understand our computational 

approach. We have followed the advice of the referee to combine the Results and discussion section 

in the revised manuscript.     

 

Specific comments of Referee #1: 

RC 3: P13972 L23 ‘ecosystem scientists’ use positive values of GPP. To my knowledge, GPP is always 

positive since it represents a production, and production was represented with positive values much 

earlier than Brahmagupta, in the 7th century, described negative numbers. If we use the 

micrometeorological approach, the most correct term will be probably gross ecosystem exchange 

(GEE), which is defined as negative since it represents the quantity of CO2 which enters in the 

ecosystem. 

AR 3: We have also used positive sign for GPP. To avoid the confusion that only ecosystem scientists 

use positive value for GPP, we have removed the term “ecosystem scientist” (line P13971 L23 in the 

previous manuscript) in the revised manuscript. We have also rephrased P13971 L23 to L25 to clarify 

that GPP is always positive as it represents production. Please check P6 L14-16 in the revised 

manuscript. 
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RC 4: P13972L16-18 Units are missing in the passage from ‘Pa’ to ‘GPP’. In fact, NEE is generally 

expressed in terms of micromoles m-2 s-1, and GPP with the same units or in terms of g m-2 d-1. 

Here, in table 1, both quantities are expressed in terms of g CO2 m-2 s-1, so the proposed conversion 

factor of 12/44 shouldn’t be present. In any case, it converts for instance micromoles of CO2 into 

micrograms of C.   

AR 4: The conversion of unit from µmole CO2 m-2 s-1 to g C m-2 s-1 requires the multiplication of factor 

by 12/44. Originally, we had the unit of NEE in micromoles CO2 m-2 s-1 and we converted it to mg CO2 

m-2 s-1 (This unit appears in Table 1 for NEE and also for Pa) that does not require the multiplication 

by factor 12/44. We have expressed GPP in g C m-2 s-1, so we multiplied Pa by 12/44 in order to 

account only carbon (C) in the unit of GPP. We agree that this was not clearly expressed in the 

previous manuscript. We have given a clear explanation of unit and its conversion in the revised 

manuscript (P7 L10-13). 

RC 5: P13974 L13-14 ‘NEE data were corrected for storage of CO2 in the air between the sensor and 

the ground’. The storage is a relevant component or in the mixing ratio conservation equation (e.g, 

Kowalski and Argueso, 2011) and hence in the correct computation of NEE. Although the storage 

terms tend to cancel out when producing annual sums, it is well established that they can 

asymmetrically influence the apparent light response curve, presenting opposite values in the 

evening and in the morning and a significant hysteresis. It has been clearly established that a 

convenient number of measurement points have to be established when measurements are dove 

above forests (Yang et al., 2007), but there is no mention about the instrumentation used. More 

information is needed!    

AR 5: We regret that we have made a mistake in the data description. We have not carried out a 

storage correction of the CO2 flux since profile measurements were unavailable. We had installed a 

second Eddy Covariance system at 35 m height, and there was no significant difference in magnitude 

of the flux and shape of the diurnal cycle compared to the height of 46 m. However, we did not have 

flux or concentration measurements below this height, thus within the canopy, the place where 

storage effects will be most significant. The storage effects on daily or annual NEE may be limited, 

but we agree that it most likely affects the light response curves. The morning-afternoon hysteresis 

effect will contribute to higher scatter in the model fit, and thus to more uncertainty in the retrieved 

parameters and the GPP estimates. We have discuss this in the revised manuscript (P20 L18-26). 

 

RC 6: P13982 ‘credible interval spanned zero’. After this sentence there is one paragraph of 

discussion. What the authors mean exactly? Was the mean zero and the distribution of values 

partially above it, or there was a bias?    

AR 6: A Bayesian prediction gives a probability distribution, this can be summarized by the median 

and the 95% credible interval as a quantification of uncertainty.  Hence the actual value is likely to be 

somewhere in this interval and not necessarily at the median.  The predicted median is negative 

during the night; however, the credible interval spans zero, implying that the actual value could be 

positive.  Clearly this is not physically possible, but is an artefact of the statistical approach and 

highlights that we are indeed uncertain about these predictions. We have explained the possible 

reasons in P13983 from L1 to L12 in the previous manuscript.  We have given more clarification in 

the revised manuscript (P15 L18-19, P16 L26-28).  

RC 7: P1396 L2 ‘was obtained from the literature’. Please be specific. 

AR 7:  We have refereed the section here in the revised manuscript (P9 L21-23) that provides the 

proper citations for the prior information about each parameter. 
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RC 8: P13978: ‘the photosynthetic capacity. . .is reached when the photosynthesis is Rubisco limited 

varies among different tree species’. At canopy level, the photosynthetic capacity depends also on 

the structure of the canopy, when multiple leaf layers are present Amax increases. Please read 

carefully the cited paper of Ruimy et al., 1995. 

AR 8: Non-rectangular hyperbola (NRH) model used in this study requires Amax at canopy level. We 

agree with the referee that the photosynthesis capacity at the canopy level also depends on the 

structure of the canopy (i.e. arrangement of the canopy leaves) and the area of leaves available to 

absorb photons. Both are determined by leaf area index (Ruimy et al., 1995). It should be noted that 

we have also used leaf area index to determine canopy Amax using a model that incorporates a 

radiative transfer scheme and a vertically declining needle-level Amax. We have given clear 

explanation of canopy level Amax in the revised manuscript (P11 L20-22). 

RC 9: P13978 L15. ‘in the literature were 0.0097. . .’, again, please be specific on the sources and also 

add units (is mg CO2 m-2s-1 valid for all the numbers reported?). 

AR 9: We have already provided the sources in L16 at the end of the sentence. Please refer to P12 L8-

11 in the revised manuscript.  The unit of mg CO2 m-2s-1 is valid for all numbers reported.  

 

RC 10: P13980 L 13-14: ‘but was short enough that we could observe temporal change between the 

10-day blocks’. This is strange, possibly the authors were meaning the contrary (long enough)? 

AR 10:  When selecting the block length there was a trade-off between selecting a block that was 

LONG enough to contain sufficient measurements for accurate modelling yet SHORT enough to allow 

us to observe changes between the blocks.  Thus the temporal change is observed between 

consecutive blocks, not within a block. We have clarified this in the revised manuscripts (P14 L12-15). 

 

RC 11: P13982 L6-7: ‘The chains were thoroughly interdigitating, indicating that the the Markov 

chains had mixed and converged. . .’ Besides the repeated article, I cannot understand. In any case, I 

recommend to avoid lab jargon.  

AR 11: We have explained in P13973 L20 to L27 that the stationary distribution of the Markov chains 

is the posterior distribution of parameters. The stationary distribution can be assessed graphically 

(Fig. S3 in the supplementary file) when the Markov chains interlock with each other (in other words, 

chains thoroughly interdigitate) showing the proper mixing of the chains. We have clarified this in the 

revised manuscript (P14 L21-26, P16 L6-7).   

  

RC 12: Figure 1: Please define what Y axis represents. 

AR 12: Y axis represents the density of the distribution of NRH parameter. We have added this in the 

caption of figure 1 in the revised manuscript. 

 

RC 13: Figure 3: What are the frequency units in the Y axes? 

AR 13: In the histogram, the Y axis has no unit. Y axis represents the frequency or the number of GPP 

points.    
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RC 14: Figure 4: What are the units in the Y axes? 

AR 14: At the end of figure 4 caption, we have mentioned that information about NRH parameters 

(showed as symbol in the Y axis of the plots) is given in Table 1 that shows the meaning and the unit 

of the symbol of NRH parameters.  Figure 4 is now Figure 6 in the revised manuscript. 

  

RC 15: Figure 5: What are the units in the Y axes? I add that in this set of images, a magnifier is 

needed to distinguish what is reported along the axes, at least for many readers including myself. 

AR 15: We have written “as Fig. 4” at the start of the figure 5 caption. This means that our response 

AR 14 is also valid here for the unit. We have redrawn the figure 4 and 5 (which are figure 6 and 7 in 

the revised manuscript) to make the values along the axis more visible in the revised manuscript.  

 

Minor/language remarks of referee 2: 

 

RC 16: Page (P) 1397 Line (L) 21 ‘a non linear empirical models’: please check the consistency 

between article and noun. P1397 L26-27: ‘a single optimized values’, same as above. 

 

AR 16: We have corrected this in the revised manuscript (P3 L20, P4 L24-25).  

 

RC 17: P13974 L8 Cambell->Campbell 

AR 17: We have correct this in the revised manuscript (P5 L21).  

 

RC 18: P13982: Lay->Laid 

AR 18: We have corrected this in the revised manuscript (P16 L15).  

 

RC 19: P13984 L24-25. ‘In order to undertake a Bayesian analysis it is necessary to specify the prior 

distributions on the NRH parameters.’ Written in this way, it seems that the use of NRH parameters is 

a general rule in Bayesian analysis, but it is not. 

AR 19: We agree with the referee.  It should be noted that this sentence now doesn’t appear in the 

revised manuscript after combining Results and Discussion section.  

 

RC 20: 13985 L8-9: ‘This wide variation in Amax was chosen as the non-informative priors led to 

spikes in the value of Amax in the posterior (Fig. 5e).’ Remove ‘was’ and possibly reformulate the 

sentence. 

AR 20: We have rephrased this sentence in the revised manuscript (P19 L6-10).  

 

References: 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., 
Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, 
S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., 
Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with 
Climate. Science 329 (5993), 834-838. 
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Kowalski, A.S., ArgÜEso, D., 2011. Scalar arguments of the mathematical functions defining molecular 
and turbulent transport of heat and mass in compressible fluids. Tellus B 63 (5), 1059-1066. 
 
Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A., Stoy, P., Wohlfahrt, G., 
2010. Separation of net ecosystem exchange into assimilation and respiration using a light response 
curve approach: critical issues and global evaluation. Global Change Biology 16 (1), 187-208. 
 
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., 
Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., 
Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., 
Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., 
Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into assimilation and 
ecosystem respiration: review and improved algorithm. Global Change Biology 11 (9), 1424-1439. 
 
Ruimy, A., Jarvis, P., Baldocchi, D., Saugier, B., 1995. CO2 Fluxes over Plant Canopies and Solar 
Radiation: A Review. Advances in Ecological Research 26, 1-68. 
 
Sun, J., Guan, D., Wu, J., Jing, Y., Yuan, F., Wang, A., Jin, C., 2015. Day and night respiration of three 
tree species in a temperate forest of northeastern China. iForest - Biogeosciences and Forestry 8 (1), 
25-32. 
 
Teskey, R.O., Saveyn, A., Steppe, K., McGuire, M.A., 2008. Origin, fate and significance of CO2 in tree 
stems. New Phytologist 177 (1), 17-32. 
 
Yang, B., Hanson, P.J., Riggs, J.S., Pallardy, S.G., Heuer, M., Hosman, K.P., Meyers, T.P., Wullschleger, 
S.D., Gu, L.-H., 2007. Biases of CO2 storage in eddy flux measurements in a forest pertinent to vertical 
configurations of a profile system and CO2 density averaging. Journal of Geophysical Research: 
Atmospheres 112 (D20123). 
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Response to Referee #2 for “Uncertainty analysis of gross primary production partitioned from net 

ecosystem exchange measurements” by R. Raj et al. 

 

We would like to thank for the constructive and helpful comments for our manuscript. We have 

carefully considered all comments and these have incorporated in our revised manuscript 

accordingly. We have inserted our response to each comment. We use “RC” for referee’s comment 

and “AR” for author’s response.  

 Major comments of Referee #2: 

 

RC 1: The residual term in equation 6 is not the uncertainty for measured NEE (P15L9-10). The so-

called uncertainty for NEE is from the NRH model used in this study. Some statistical flux-partitioning 

methods (like NRH used in this study) could be used to either estimate GPP and ER or fill missing 

data. The authors have to carefully state the usage of their approach. Don’t go too far and away from 

parameter uncertainty analysis. 

 

AR 1: We do not fully agree with the referee that the residual term in equation 6 is not the 

uncertainty in measured NEE.  The residual term contains the model representation error and the 

random measurement error. Richardson et al. (2008) showed that the uncertainty estimates inferred 

from the model residuals of the tuned empirical models, which are fitted to NEE data, are 

comparable to the total random measurement error in NEE data estimated using pair measurements 

approach (Richardson et al., 2006). In our study, we have fitted the empirical non-rectangular 

hyperbola (NRH) model to the measured NEE. We can expect, based on the finding of Richardson et 

al. (2008), that the residual term in equation 6 is comparable in magnitude to the uncertainty due to 

the total random error in NEE measurements at the study site. However, this is not claimed in our 

study as we have not compared the model residuals with the uncertainty estimates from the pair 

measurements approach at the study site. Such a comparison may be the potential future work at 

the study site. Due to the lack of such comparison, we do not say that what we estimate is the 

uncertainty in measured NEE. Instead, we say that this is the uncertainty in posterior prediction of 

NEE (section 3.4 in the manuscript) that results from both the model residuals and the uncertainty in 

the posterior prediction of NRH parameters. It was checked in this study whether we would obtain 

realistic credible intervals of uncertainty in the posterior prediction of NEE after fitting the NRH 

model in a Bayesian framework (section 3.4 in the manuscript). In this way, we verified that realistic 

credible intervals of uncertainty in partitioned GPP were also obtained. This was all well in line with 

the main objective of this study, namely to estimate uncertainty in partitioned GPP (and hence not in 

NEE).  Our approach can also be used to either estimate ER or fill missing NEE data, but we focused 

mainly on partitioning GPP with uncertainty. 

  

 Apart from the random errors, systematic errors also give rise to uncertainty in NEE measurements 

(Moncrieff et al., 1996, Aubinet et al., 2012).  We have applied the Foken classification system (Foken 

et al., 2005, section 3.1 in the manuscript) to filter out the low quality NEE measurements that 

contain high systematic errors. This reduces the systematic errors on the posterior prediction of NRH 

parameters and model residuals. Therefore, we expect that the posterior prediction of NEE and GPP 

are less influenced by the systematic errors in NEE measurements.    

  

We have included all above points in the revised manuscript (P20 L5-26) 
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RC 2: The authors have to acknowledge that the uncertainty quantified in this study is just a part of 

GPP uncertainty sources, since some factors (such as water and nutrient limitations) were missing in 

the photosynthesis model. The authors only quantified the GPP uncertainty based on a 

photosynthesis model. 

 

AR 2: We agree that the factors such as water and nutrient limitations are missing in the NRH model. 

Hence we agree with the reviewer that we only quantified uncertainty based on the photosynthesis 

model.  However, a particular feature of our implementation is that we estimated the parameters in 

10-day blocks and did not assume constant values for the whole study period.  This approach is 

recommended by Aubinet et al. (2012), since the parameters may vary over time for example due to 

dependencies on factors that are not included in the model (e.g., water and nutrient limitations).  

Hence, although these variables are not included in the model our implementation does account for 

them.  We have also obtained the posterior distribution of NRH parameters separately for each 10-

day block during the study period and finally in the prediction of GPP. This is mentioned in the 

previous manuscript (second paragraph of section 3.3 and first paragraph of section 5.3). We have 

clarified the above points in the revised manuscript (P14 L5-17, P19 L22-28, and P20 L1-4)       

 

RC 3: Content: The verification of the approach is important, but could go to supplementary. 

 

AR 3: We have verified our approach in two ways: (1) we examined the trace plot of the three 

Markov chains and Gelman-Rubin PSRF statistics of each NRH parameter. This is explained briefly in 

the first paragraph of section 4.1 in the manuscript. We have already provided the details in sections 

1 to 4 in the supplementary file; and (b) we showed the 95% credible interval of the posterior 

predictions of half-hourly NEE against measured half-hourly NEE. In this way, we checked whether 

realistic credible intervals were obtained (see also the second paragraph of AR 1). We, however, 

discussed this in the previous manuscript (paragraphs 2 and 3 in section 4.1) as we think that this is 

important in the context of verifying indirectly the credible intervals of GPP. The section 4.1 is now 

section 3.1 in the revised manuscript.  

 

RC 4: Structure: Introduction could be more concise. For example, NEE = ER–GPP or NEP = GPP-ER. 

One sentence might be enough. The section 3 could be included in section 2 (Methods). The results 

should not include discussion. Anyway, the authors have to re-structure the manuscript. 

 

AR 4: We have revised the manuscript to improve the readability. We have combined section 2 and 

3. We have also combined results and discussion section.  

 

Specific comments of Referee #2: 

RC 5: P3 L8-9: remove “,which is partitioned from NEE,” 

AR 5: We understand the concern of the referee that GPP can be obtained from other sources also. 

Therefore, the general statement like in line P3 L8-9 in the previous manuscript should not include 

the specific source of GPP via partitioning.  We have removed this in our revised manuscript. 
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RC 6: P3 L9-11: Not only measured NEE but also derived GPP and ER are used to test the process-

based models. 

AR 6: We agree with the referee. We have already mentioned this in lines P3 L11 -15 in the previous 

manuscript. We have added GPP and Reco after component flux to clarify it in the revised manuscript 

(P3 L11).  

 

RC 7: P3 L12: after component fluxes, add (GPP and Reco). 

AR 7: As mentioned in AR 6, we have added this in the revised manuscript (P3 L11). 

 

RC 8: P4 L5: Better to cite the original reference for NRH photosynthesis model. Rabinowitch 1951 

could be better. 

AR 8: We are thankful to referee for this suggestion. We have added this reference in the revised 

manuscript. 

 

RC 9: P4 L9-12: Move after P4 L3, it was still talking about RH model. 

AR 9: We have moved these lines accordingly in the revised manuscript (P4 L2-5). 

 

RC 10: P4: L12: repeat? 

AR 10: We have addressed this in the revised manuscript. 

 

RC 11: P4 L24: “for the calibration of process-based models” 

AR 11: We have rephrased the sentence accordingly in the revised manuscript (P4 L22). 

 

RC 12: P6 L1: Rabinowithc 1951 might be better. 

AR 12: We have include this reference in the revised manuscript.  

  

RC 13: P8 L 22-P9 L7: It could go early. The authors suggested that the effects of VPD could be 

neglected, but I did not see any VPD term in equations 1-4 or 6. 

AR 13: Some versions of equation 2 include the VPD term (e.g., Gilmanov et al., 2013); however we 

have removed it because VPD in our study area is always low and below the critical value where it 

will have an effect.  That is why we have explained in P8 L23 in the previous manuscript (P7 L14-16 in 

the revised manuscript) that VPD-response function is simply multiplied with equation 2 to 

incorporate the effect of VPD. Further, in P8 L24 to L28 and P9 L 1 to L7 in the previous manuscript 

(P7 L16-26 in the revised manuscript), we have explained why we have not included VPD-response 

function in equation 2.   

 

     

RC 14: P9 L16: RHS Represent? 

AR 14: RHS represents right hand side. We have mentioned this in the revised manuscript (P9 L11).  

 

RC 15: P9 L23: I’m confused. Here the authors said a non-informative prior was selected and 

afterwards two methods (non-informative and informative prior distributions) were compared. 
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AR 15: In Bayesian analysis a prior distribution is required for all parameters, i.e., for precision and 

for other coefficients (NRH parameters in this study).  We have used the same non-informative prior 

distribution for precision for both choices of informative and non-informative prior distributions of 

NRH parameters.  We have clarified this in the revised manuscript (P9 L16-25).  

  

RC 16: P17 L1-2: Remove “, so it is important to . . . means.” 

AR 16: We have removed this in the revised manuscript.  

 

RC 17: P17 L7: In the Results section? The authors might combine results and discussion as one 

section. 

AR 17: Considering the advice of both reviewers we have decided to combine the results and 

discussion sections into a single section.  We have done this in the revised manuscript.  

 

RC 18: P18 L20 –P19 L18: the unrealistic estimates for parameters could attribute to the statistic 

method itself. It’s not necessary to describe the results of non-informative prior distribution, as two 

methods may get similar results. Except that the authors would recommend using non-informative 

prior distribution, it will not change the story. 

AR 18: The choice of non-informative priors for NRH parameters can be easily questioned by the 

readers as these are not site and species specific. We believe that the recommendation about the 

choice of non-informative priors over informative priors only by statement is not sufficient and will 

not give confidence to the readers who want to use it for specific site and species. Therefore, we 

have compared the results, wherever it was possible, to support the choice of non-informative priors 

over informative priors. Actually, we do recommend the use of non-informative priors for NRH 

parameters. We have revised the manuscript to provide a clearer explanation of the methods in 

order to make the paper more accessible to those who are not familiar with Bayesian statistics.  

   

RC 19: P21 L2-4: As I mentioned early, this study is not appreciate to estimate the uncertainty of NEE 

that has been measured through the eddy covariance technique. 

AR 19: Please note our responses to AR 1, we have carefully rephrased this in the revised manuscript. 

 

RC 20: Table 1: VPD related parameters just appeared in the text. I would suggest add to the 

equations. 

AR20:  Please refer to our response AR 13. 

 

RC 21: Fig 2, 4, and 5: no difference I can detect for non-informative prior distributions and 

informative prior distributions. Again, to my opinion, there is no need to compare. 

AR 21: Please see our response AR 18. 

 

RC 22: Fig.3: The distribution of simulated GPP in the morning or in the afternoon does not give me 

expected information. The daily GPP distribution might be interesting, as it showed the uncertainty 

of estimated GPP. 

AR 22: We have provided the results of the distribution of half-hourly GPP in the morning and 

afternoon to visualize the uncertainty within a day. These results also allowed us to see that 

partitioned half-hourly GPP follow the expected changes within a day with radiation. Therefore, it is 



13 
 

important to keep these results in the manuscript.  We have emphasized this even further by 

showing the distribution of daily GPP for two days (Fig. 3). In addition, we have moved Fig. S4a from 

supplementary file to the revised manuscript (Fig. 4) to show the distribution of daily GPP over the 

study period.  

 

RC 23: Fig S4-5. The key results (Fig. S4) can be put in the main paper. 

AR 23: We have moved Fig. S4a (Fig. 4) in the revised manuscript. However, we keep Fig. S4b in the 

supplement as Fig. S4a is sufficient to show the distribution of daily GPP over the study period.  
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Abstract

Gross primary production (GPP) can be separated from flux tower measurements of net
ecosystem exchange (NEE) of CO2. This is used increasingly to validate process-based
simulators and remote sensing-derived estimates of simulated GPP at various time steps.
Proper validation includes the uncertainty associated with this separation. In this study,5

uncertainty assessment was done in a Bayesian framework. It was applied to data from
the Speulderbos forest site, The Netherlands. We estimated the uncertainty in GPP at half
hourly time steps, using a non-rectangular hyperbola (NRH) model for its separation from
the flux tower measurements. The NRH model provides a robust empirical relationship be-
tween radiation and GPP. It includes the degree of curvature of the light response curve,10

radiation and temperature. Parameters of the NRH model were fitted to the measured NEE
data for every 10-day period during the growing season (April to October) in 2009. We de-
fined the prior distribution of each NRH parameter and used Markov chain Monte Carlo
(MCMC) simulation to estimate the uncertainty in the separated GPP from the posterior
distribution at half-hourly time steps. This time series also allowed us to estimate the un-15

certainty at daily time steps. We compared the informative with the non-informative prior
distributions of the NRH parameters and found that both choices produced similar posterior
distributions of GPP. This will provide relevant and important information for the validation
of process-based simulators in the future. Furthermore, the obtained posterior distributions
of NEE and the NRH parameters are of interest for a range of applications.20
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1 Introduction

Net ecosystem exchange (NEE) is a terrestrial component of the global carbon cycle. It
is the exchange of CO2 between the terrestrial ecosystem and the atmosphere. The mea-
surement of NEE by the eddy covariance technique is well-established (Baldocchi, 2003).
Specifically, NEE is the balance between the CO2 released by the ecosystem respiration5

(Reco) and the gross CO2 assimilated via photosynthesis. The fraction of carbon in the as-
similated CO2 is the gross primary production (GPP). Estimates of GPP provide information
about the physiological processes that contribute to NEE (Aubinet et al., 2012). Measured
NEE data are used to validate the NEE that is simulated by ecosystem process-based simu-
lators such as BIOME-BGC (BioGeochemical Cycles) (Thornton, 1998). It is often desirable10

to validate the simulated component flux (Reco and GPP) independently. This is particularly
important for diagnosing the misrepresentation (overestimation or underestimation) of as-
similation processes in the simulator (Reichstein et al., 2005), which can only be achieved
by comparing the GPP partitioned from NEE data with the simulated one. Furthermore,
remote sensing-derived light use efficiency (LUE) models address the spatial and temporal15

dynamics of GPP (Running et al., 2004). The reliability of such models at the regional scale
relies on the validation using GPP partitioned from NEE data (Wang et al., 2010; Li et al.,
2013).

Flux partitioning methods (FPM) are used to partition NEE into its component flux (GPP
and Reco). These methods are based on fitting a non-linear empirical model to the mea-20

sured NEE data and other meteorological data in order to estimate the parameters. The
estimated parameters of the non-linear model are then used to predict daytime Reco and
GPP. There are two types of FPM: (1) those that use only nighttime NEE data, and (2) those
that use either daytime NEE data or both daytime and nighttime data (Lasslop et al., 2010;
Stoy et al., 2006; Aubinet et al., 2012).25

A nighttime-based FPM assumes that NEE is equal to Reco (GPP=0 during the night)
and that it varies with air and soil temperature (Richardson et al., 2006a). A daytime-based
FPM assumes that the variation of NEE occurs with photosynthetic photon flux density

3
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(PPFD) and the light response curve (plot of NEE against PPFD) can be represented by
a rectangular hyperbola (RH) model (Ruimy et al., 1995). Lasslop et al. (2010) proposed
a daytime-based FPM using the RH model by incorporating the variation of NEE as a func-
tion of global radiation, air temperature, and vapour pressure deficit (VPD) because these
affect GPP via stomatal regulation. A daytime-based FPM was proposed that uses the non-5

rectangular hyperbola (NRH) model to incorporate the effect of the degree of curvature (θ)
of the light response curve (Gilmanov et al., 2003; Rabinowitch , 1951). θ represents the
convexity of the light response curve as the NEE and radiation relationship approaches sat-
uration. Further, the light response curve represented by the NRH model has been found
to fit NEE data better than the RH model (Gilmanov et al., 2003; Aubinet et al., 2012).10

Gilmanov et al. (2013) further improved the NRH model by incorporating the effect of VPD
and temperature as proposed by Lasslop et al. (2010). They used PPFD and soil temper-
ature instead of global radiation and air temperature respectively. This improvement incor-
porates the influence of PPFD, air or soil temperature, VPD, and θ by taking advantage of
better representation of the light response curve by comparison to the RH model.15

A quantification of uncertainty in partitioned GPP provides an associated credible interval
that can be used for proper implementation of calibration and validation of a process-based
simulator against partitioned GPP (Hagen et al., 2006). The temporal resolution of process-
based simulators may vary from half-hourly to monthly. It is therefore necessary to quantify
uncertainty associated with the partitioned GPP at half-hourly to monthly time scales. For20

example, the partitioned GPP and associated uncertainty at a daily time scale can provide
data for the calibration of process-based simulators such as BIOME-BGC.

In this study, we adopted the NRH model to partition half-hourly GPP from NEE data.
In the past, numerical optimization has been used to estimate a single optimized value
of each model parameters (Gilmanov et al., 2003, 2013). This did not quantify the uncer-25

tainty in half-hourly partitioned GPP. The measurements of half-hourly NEE are uncertain.
Therefore, the optimized parameters are also uncertain (Richardson and Hollinger, 2005).
Obtaining the underlying probability distribution of the NRH parameters gives a measure
of uncertainty in parameters, which can be further propagated towards the NRH model to

4
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estimate uncertainty in partitioned GPP. A Bayesian implementation provides a solution to
quantify the uncertainty in model parameters in the form of probability distributions (Gelman
et al., 2013). The Bayesian approach was used in other studies to constrain the parame-
ters of process-based simulators by using either eddy covariance data, biometric data, or
both (Du et al., 2015; Minet et al., 2015; Ricciuto et al., 2008). We applied the Bayesian5

approach to a different type of model. We fitted the non-linear empirical NRH model to NEE
data and quantified the uncertainty in NRH parameters to partition GPP with uncertainty.

The objective of this study was to implement a Bayesian approach for quantification of
the uncertainty in half-hourly partitioned GPP using the NRH model given the availability
of half-hourly NEE and other meteorological data. The time series of empirical distributions10

of half-hourly GPP values also allowed us to estimate the uncertainty in GPP at daily time
steps. Data were available from a flux tower in the central Netherlands at the Speulderbos
forest. This will provide relevant and important information for the validation of process-
based simulators.

2 Methods15

2.1 Study area and data

The Speulderbos forest is located at 52◦15′08′′N, 5◦41′25′′ E within a large forested area
in the Netherlands. There is a flux tower within a dense 2.5 ha Douglas fir stand. The stand
was planted in 1962. The vegetation, soil, and climate of this site have been thoroughly
described elsewhere (Steingrover and Jans, 1994; Su et al., 2009; van Wijk et al., 2001).20

The CSAT3, Campbell Sci, LI7500 LiCor Inc, and CR5000 instruments were installed in
June 2006 and have been maintained, and the data processed (software AltEddy, Alterra)
by C. van der Tol (University of Twente, co-author) and A. Frumau (Energy Centre Nether-
lands). We examined half-hourly NEE data (measured at the flux tower) for the growing
season (April to October) of 2009. The quality of the NEE data were assessed using the25

Foken classification system, which provides a flag to each half-hourly NEE datum from 1

5
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through 9 (Foken et al., 2005). Each flag is associated with: (a) the range of the steady
state condition of the covariance of vertical wind speed and CO2 concentration of half-
hour duration, (b) the range of the integral turbulence characteristic parameter indicating
the developed turbulence; and (c) the range of the orientation of the sonic anemometer to
make sure that the probe is omnidirectional at the time of measurements. We followed the5

suggestion of Foken et al. (2005) and accepted only those NEE data that were labelled
from 1 to 3. For the growing season, we acquired half-hourly PPFD from the sensor PARlite
(Kipp & Zonen. Delft, the Netherlands) and half-hourly Ta from the weather sensor WXT510
(Vaisala, Finland) installed at the flux tower.

2.2 The non-rectangular hyperbola (NRH) model10

NEE is given as:

NEE = Pa−Reco (1)

where NEE is measured by the eddy covariance technique and Pa is gross CO2 assimila-
tion. The exchange of carbon into the system through photosynthesis is considered a pos-
itive flux because it represents production and the loss of carbon through respiration is15

considered a negative flux.
The light response curve is represented using the NRH model (Gilmanov et al., 2003;

Rabinowitch , 1951):

Pa =
1

2θ
×
(
α ·PPFD+Amax−

√
(α ·PPFD+Amax)2− 4α ·Amax · θ ·PPFD

)
(2)

where α is the apparent quantum yield, Amax is the photosynthetic capacity at light satura-20

tion, and θ is the degree of curvature of the light response curve.
Gilmanov et al. (2013) modelled ecosystem respiration Reco using the temperature de-

pendent term according to Van’t-Hoff’s equation in its exponential form (Thornley and John-
son, 2000):

Reco = r0× exp(kTTa) (3)25

6
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where Ta is the air temperature and r0 and kT are the temperature sensitivity coefficients.
Eqs. 2 and 3 are substituted in Eq. (1) to obtain the model for net ecosystem exchange
NEE:

NEE =
1

2θ
×
(
α ·PPFD+Amax−

√
(α ·PPFD+Amax)2− 4α ·Amax · θ ·PPFD

)
− r0× exp(kTTa) . (4)5

Both daytime and nighttime half-hourly NEE, PPFD, and Ta data were used to estimate
the NRH model parameters β = (θ, α, Amax, r0, kT) (Eq. 4). For nighttime data, Eq. (4)
includes only the respiration term because PPFD is equal to zero during the night. These
estimated parameters, together with half-hourly PPFD, were used in Eq. (2) to calculate
half-hourly Pa. Values of half-hourly GPP were calculated by multiplying Pa by 12/44 (1210

is the atomic mass of carbon, and 44 is the atomic mass of CO2) in order to convert the
mass of CO2 into the mass of carbon (C). This gives GPP in mg C m−2 s−1, whereas the
unit of Pa is the same as the unit of measured NEE in mg CO2m

−2 s−1. The unit of each
parameter and other variables used in the above equations are shown in Table 1. Gilmanov
et al. (2013) proposed to incorporate the effect of VPD by multiplying Eq. (2) by the VPD-15

response function, φ, that accounts for the VPD limitation on Pa. The function φ is set equal
to 1 if VPD is below some critical value (VPDcr) that indicates that water stress does not
affect photosynthesis. Above the critical value (VPD> VPDcr), φ decreases exponentially
with the curvature parameter σVPD, which may vary between 1 and 30 kPa. Low values
of σVPD indicate a strong water stress effect, whereas higher values indicate a weak water20

stress effect. We calculated half-hourly VPD from relative humidity (RH) using the procedure
provided in Monteith and Unsworth (1990). We found that 90 % of the total half-hourly VPD
values in the growing season of 2009 were less than 1 kPa and 9 % were between 1 kPa
and 1.5 kPa. We therefore neglected the influence of VPD as a limiting factor for the water
stress at Speulderbos. This follows Körner (1995) and Lasslop et al. (2010) who specified25

VPDcr = 1. We, therefore, assumed φ equal to 1.

7



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

2.3 Theory of Bayesian inference for the model parameters

Bayesian inference treats all parameters as random variables (Gelman et al., 2013). Bayes
rule is given as

p(β|y) = p(y|β)p(β)
p(y)

∝ likelihood× prior (5)

where p(β) is the prior distribution, representing the prior understanding of uncertainty in5

the model parameters values before the observations are taken into account. This under-
standing may come from expert judgement or previously published research on the pa-
rameters (Oakley and O’Hagan, 2007; Raj et al., 2014). If no prior knowledge is available,
non-informative priors may be used (i.e., a wide prior distribution that conveys no prior infor-
mation). The term p(β|y) is the posterior distribution of β after combining prior knowledge10

and data y and represents the uncertainty in β given the data and the prior. The marginal
effect of each parameter p(βi|y), i= 1,2, . . . ,n, is the main quantity of interest, expressing
the uncertainty in each parameter separately. The term p(y|β) is the conditional probability
of observing data y given β and is also called the likelihood. The term p(y) is the probability
of observing the data y before observations were taken. This acts as the normalising con-15

stant that ensures that p(β|y) is a valid probability distribution that integrates to 1. For most
real-world problems it is not possible to write down analytical solutions for Eq. (5) and it is
usual to perform inference using Markov Chain Monte Carlo (MCMC) simulation (Gelman
et al., 2013).

MCMC is a method for conducting inference on p(β|y). It requires evaluation of the20

joint distribution p(y|β)p(β), which represents the dependence structure in the data.
MCMC constructs Markov chains of the parameters space and generates samples β(1),
β(2), . . . ,β(m) of β whose unique stationary distribution is the posterior distribution of inter-
est p(β|y). The m samples are then used to conduct inference on each βi. For example the
mean, median and 95 % credible interval can all be calculated over these m samples. It is25

usual to construct multiple Markov chains and to assess whether they converge to the same

8
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stationary distribution. The reader referred to chapter 4 in Lunn et al. (2013) and chapter 11
in Gelman et al. (2013) for further explanation.

2.4 Implementation of Bayesian inference for the NRH model parameters

We treated Eq. (4) as a non-linear regression problem:

yi =
1

2θ
×
(
α ·PPFDi+Amax−

√
(α ·PPFDi+Amax)2− 4α ·Amax · θ ·PPFDi

)
5

− r0× exp(kTTai)+ εi

= µi− νi+ εi (6)

where y is the response variable (NEE), PPFD and Ta are the predictor variables and ε is
the residual error. The residual error arose because the model did not perfectly fit the data.
The subscript i indicates a single observation. For brevity we use µi to refer to the first term10

on the RHS and νi to refer to the second term on the right hand side of Eq. 6.
As is usual in regression modelling, we assumed normally distributed errors, hence εi ∼

N(0,σ2) and the likelihood also followed a normal distribution, such that yi ∼N(µi−νi,σ2).
In the above notation, β = (α,Amax,θ,r0,kT)

T and the likelihood is p(y|β,σ2), where y =
(y1,y2, . . . ,yn)

T for n observations.15

In Bayesian analysis it is usual to refer to precision, which is the inverse of the variance,
hence τe = 1/σ2. Further, the assumption of prior distributions for each βi together with τe is
required. No prior information was available for τe so a non-informative prior was selected.
We assumed a Gamma distribution for τe with shape and rate parameters equal to 0.001.
This ensures a non-negative non-informative prior for τe (Lunn et al., 2013).20

We made two choices for the prior distribution for each βi. First, a non-informative prior
was used (Sect. 2.4.1). Second, prior information for each βi was obtained from the lit-
erature, being called an informative prior distribution (Sect. 2.4.2). Note that the same
non-informative prior for τe was used in both choices. The results for informative an non-
informative priors were compared.25

9
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2.4.1 Non-informative prior distributions

We assumed a normal distribution for each βi with mean equal to 0 and standard devia-
tion equal to 32, which gives small value of the the precision equal to 0.001 to make the
distribution wide. NRH is a non-linear model and therefore appropriate constraints should
be imposed to ensure the meaningful values of the prior parameter distribution (Lunn et al.,5

2013). Each βi parameter must be positive (Sect. 2.4.2) so we truncated the normal distri-
bution on each βi except θ to ensure only positive values. For θ, we truncated the normal
distribution to occur between 0 and 1 by setting the obvious limit to this parameter (see also
item 2 in Sect. 2.4.2). The above choices ensure wide non-informative prior distributions
whilst specifically excluding physically unrealistic values.10

2.4.2 Informative prior distributions

Below we justify choices for the informative prior distributions on β.

1. The quantum yield, α, represents the amount of absorbed CO2 per quanta of absorbed
light. Cannell and Thornley (1998) reported that α varies little among C3 species
and has a value from 0.09 to 0.11 and from 0.04 to 0.075mol CO2 (mol quanta)−115

in saturated and ambient CO2 conditions respectively. The typical value of α equals
0.05mol CO2 (mol quanta)−1 for a C3 species in an ambient atmosphere (Skillman,
2008; Long et al., 2006; Bonan et al., 2002). Douglas fir at Speulderbos is a C3

species. We used this information to construct the prior distribution on α, as follows:

– A value of α around 0.05 has the highest probability. The probability decreases20

as the value of α decreases or increases from 0.05 and cannot be negative. The
maximum value that α can attain is 0.11.

– We assumed a normal distribution of α with mean, µα = 0.05, and variance,
σ2α = (0.015)2 (i.e, standard deviation, σα = 0.015). The choice of mean en-
sures that the highest probability is assigned to the values around 0.05. The25

choice of variance ensures that 99.7 % (µ ± 3σα) of α is positive and lies in
10
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the interval between 0 and 0.11. We also truncated 0.3 % of negative α values
from the assumed normal distribution. In the unit of mgCO2 (µmol quanta)−1,
the assumed normal distribution (N(µα = 0.05, σα = 0.015)) is expressed as
N(0.0022,0.00066) (Fig. 1a).

2. The curvature parameter θ can take values from 0, which reduces Eq. (4) to the sim-5

pler rectangular hyperbola, to 1, which describes the Blackman response of two in-
tersecting lines (Blackman, 1905). The physiological range for θ has been observed
to be between 0.5 and 0.99 (Ogren, 1993; Cannell and Thornley, 1998). A value of
θ = 0.9 was recommended by Thornley (2002) and at θ = 0.8 by Johnson et al. (2010)
and Johnson (2013). The estimate of θ, as a result of fitting the NRH model to ei-10

ther measured photosynthesis or NEE data was found to be in the range of 0.7 to
0.99 (Gilmanov et al., 2010, 2003). These findings for θ indicated that a higher proba-
bility should be assigned to the values around 0.8 and the probability should approach
to zero below 0.5. This means that the distribution of θ can be assumed to be nega-
tively skewed with Pr(θ < 0.5) approaching zero and Pr(θ ≈ 0.8) at a maximum. These15

conditions were modelled using a beta distribution with shape parameters at 10 and 3
for θ (Fig. 1b).

3. The photosynthetic capacity at light saturation Amax is reached when the photosyn-
thesis is Rubisco limited and varies among different tree species (Cannell and Thorn-
ley, 1998). At the canopy level, Amax also depends upon the structure of the canopy20

(i.e., arrangement of the canopy leaves) and the area of leaves available to absorb
photons. Both are determined by the leaf area index (LAI) (Ruimy et al., 1995). We
compiled the prior information on Amax for Douglas fir species from the literature.
Values of Amax were mainly reported for needles, whereas the NRH model (Eq. 4)
requires Amax values for the canopy. Scaling Amax from needle to the canopy equiva-25

lent is not a trivial task because this depends on the light distribution and the vertical
profile of Amax in the canopy. Here we analysed plateau values of photosynthesis at
needle and canopy level with simulations by a model that takes this into account: the

11
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model SCOPE (van der Tol et al., 2009). These simulations (not shown) indicated that
the relation between the two plateaus (canopy : needle Amax) increased with LAI but
saturated at a value of 2.8. The mean value of LAI at the Speulderbos site is high
(approximately 9 van Wijk et al., 2000; Steingrover and Jans, 1994) and therefore
we could translate the reported range of Amax values for the Speulderbos (Mohren,5

1987) of 0.26 to 0.52mgCO2m
−2 s−1 into values of 0.73–1.46mgCO2m

−2 s−1 for
canopy Amax. van Wijk et al. (2002) reported slightly higher canopy Amax values of
1.86 and 1.06mgCO2m

−2 s−1 at the Speulderbos site. The highest and lowest value
for needle Amax for Douglas fir (irrespective of the site) we found in the literature were
0.097 (canopy Amax = 0.27) and 1.01mgCO2m

−2 s−1 (canopy Amax = 2.8) respec-10

tively (Ripullone et al., 2003; Warren et al., 2003; Lewis et al., 2000). To cover this
rather wide range of values, a Gamma distribution with shape and rate parameters
equal to 4 and 2.5 respectively was selected to ensure higher probabilities are as-
signed to the values between 1 and 2.5 with decreasing probabilities down to 0 and
up to 4.5 (Fig. 1c). The Amax values at Speulderbos are well placed in the overall15

distribution.

4. The parameters for temperature sensitivity kT and Q10 are related as Q10 =
exp(10kT) (Davidson et al., 2006). Q10 is the factor by which respiration (Eq. 3) is
multiplied when temperature increases by 10 ◦C. (Mahecha et al., 2010) carried out
experiments across 60 FLUXNET sites to check the sensitivity of ecosystem respira-20

tion to air temperature. They suggested that Q10 does not differ among biomes and is
confined to values around 1.4±0.1 (corresponding to kT around 0.034±0.008). Hence
kT ≈ 0.034 should have the highest probability of occurrence.Q10 data reported in the
supporting material of Mahecha et al. (2010) showed that that Q10 becomes less fre-
quent as it increases or decreases from 1.4 and attains a highest value of ∼ 2.7225

(corresponding to kT = 0.1). To model these conditions a Gamma prior distribution
was chosen with shape and rate parameters equal to 4 and 120 respectively (Fig. 1d).

12
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5. The r0 parameter represents the ecosystem respiration at 0 ◦C. We adopted the fol-
lowing steps to define the prior distribution for r0.

– Mahecha et al. (2010) presented a graph of seasonal variation of ecosystem
respiration at 15 ◦C (Rb) for 60 FLUXNET sites. We extracted the values of Rb
(in g CO2m

−2 day−1) from the graph for those sites that belong to evergreen5

needle leaf forest (ENF). We obtained the values of r0 fromRb using the following
equations:

r0 =
Rb

exp(kT× 15)
(7)

where kT was obtained from Q10 as reported in point 4 above. Site specific Q10

value is used here. The unit of r0 is converted into mg CO2m
−2 s−1.10

– We identified values of r0 for ENF in the range 0.013 to 0.07mgCO2m
−2 s−1. We

also identified values of r0 in the range 0.019 to 0.043 at the Loobos FLUXNET
site in the Netherlands (Mahecha et al., 2010), which is close to Speulderbos.
Therefore, we assumed that the most frequent values of r0 at Speulderbos are
in this range. To model these conditions we chose a Beta distribution with shape15

parameters at 2 and 64 (Fig. 1e).

2.4.3 Bayesian inference of β

We used WinBUGS software version 1.4.3 (Lunn et al., 2000) to implement the Bayesian
full probability models (Eq. 5) for the inference of β. WinBUGS is a windows implementation
of the original BUGS (Bayesian Inference Using Gibbs Sampling) software. This was a joint20

initiative between the MRC Biostatistics Unit, Cambridge and the Imperial College School of
Medicine, London (Lunn et al., 2013). WinBUGS implements MCMC for Bayesian inference.
The major inputs of WinBUGS are: (a) the model file specifying the definition of the prior
distribution of each βi and likelihood function, (b) the number of Markov chains to create,
(c) the number of iterations for MCMC to carry out for each Markov chain, (d) the burn-in25

13
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period for which the MCMC runs are discarded, (e) initial values of each βi for each Markov
chain. The burn-in period is the number of samples after which the Markov chains converge
to a stationary distribution. The post burn-in samples are used to perform inference on the
βi s.

We obtained the posterior distribution of each βi for every 10-day block (total 22 blocks)5

in the growing season of 2009. More precisely, we obtained varying parameters and did
not assume values to be constant for the whole study period. This approach is recom-
mended by Aubinet et al. (2012), since obtaining varying parameters incorporates indirectly
the temporal changes in the factors such as canopy structure, soil moisture and ecosystem
nutrient levels that affect GPP. NRH model does not include these factors directly. Hence,10

although these factors are not included in the NRH model our implementation does account
for them. The 10-day block was chosen because it was sufficiently long to ensure a suitably
large NEE dataset within the 10-day block but was short enough that we could account
for temporal changes between the 10-day blocks. Thus the temporal change is observed
between consecutive blocks, not within a block. The sample size within a 10-day block was15

limited because ∼ 30% of the data were typically discarded as being of low quality (Foken
flag 4 or higher, see Sect. 2.1).

We identified the appropriate length of the burn-in for both informative and non-
informative prior distributions. We calculated the Gelman–Rubin potential scale reduction
factor (PSRF) to evaluate the convergence of Markov chains for each βi for the post burn-in20

period. Graphically, we assessed the convergence of Markov chains by plotting them to-
gether for each βi. This plot is known as trace plot. A visual observation of a proper mixing
of these chains indicates the convergence of Markov chains to the stationary distribution.
An explanation of PSRF and the identification of the length of the burn-in are given in the
Supplement. We refer the reader to pages 71–76 in Lunn et al. (2013) and pages 281–25

285 in Gelman et al. (2013) for further explanation. Based on that analysis we used three
Markov chains with 16 000 and 25 000 iterations for each chain for informative and non-
informative prior distributions respectively. We stored the posterior samples of each βi and

14
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τe for the remaining 30 000 samples (i.e., 10 000 post burn-in samples for each of three
Markov chains). The BUGS code (model file for WinBUGS) is given in the Supplement.

2.5 Posterior prediction

To perform prediction for a given PPFD0 and Ta0 , m post burn-in samples of β and σ2 were
used as follows:5

µ
(l)
0 =

1

2θ(l)
×
(
α(l) ·PPFD0+A

(l)
max−

√
(α(l) ·PPFD0+A

(l)
max)2− 4α(l) ·A(l)

max · θ(l) ·PPFD0

)
ν
(l)
0 = r

(l)
0 × exp

(
k
(l)
T Ta0

)
y
(l)
0 ∼N(µ

(l)
0 − ν

(l)
0 ,σ2(l)) (8)

where (l) is not an exponent, but indicates a specific sample. Other terms are as defined
for Eq. (6). The m samples were used to build up the posterior predictive distribution. In this10

way posterior predictions of GPP (µ0) and NEE (y0) were obtained. Note that the uncertainty
in the posterior predictions of GPP arose due to uncertainty in the posterior estimates of β.
Uncertainty in the posterior prediction of NEE also considered the uncertainty arising due
to the residual error.

Prediction was performed for each 10-day sample for m= 30000 samples (3 chains and15

10 000 samples per chain). These were then summarized (median and 95 % credible in-
terval) to obtain the posterior predictive inference for NEE and GPP for each 10-day block.
These 95 % credible intervals show the uncertainty. Hence the actual values of NEE and
GPP are likely to be in this interval, but not necessarily at the median. We reported the
number of half-hourly NEE measurements that lie inside and outside of 95 % credible inter-20

vals of the corresponding half-hourly modelled NEE distributions. In this way, we checked
whether realistic credible intervals were obtained. Validation against a separate or hold-out
dataset was in principle possible, but was not necessary in this study, because we did not
use the NRH model to predict at blocks outside the range of the data. Moreover, we did not
use the posterior β values outside the blocks where they were fitted.25
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3 Results and discussion

3.1 Performance of MCMC

We examined the trace plots of the three Markov chains for each βi and τe obtained for each
10-day block for both choices of informative and non-informative prior distributions. Trace
plots for one 10-day block (1 May to 10 May 2009) are shown in Fig. S3 in the Supple-5

ment. We observed a proper mixing of the three Markov chains, indicating the convergence
of three Markov chains to a stationary distribution that could be used for inference. The
Gelman–Rubin PSRF was close to 1 (Table S1 in the Supplement) for each βi and τe, pro-
viding further support for the convergence of the Markov chains. The post burn-in samples
were used for inference for each 10-day block in the growing season of 2009.10

Figure 2 shows the posterior prediction of half-hourly NEE for a 10-day block (1 May to
10 May 2009) for the choice of informative and non-informative prior distributions. The half-
hourly NEE was summarized by the median and the 2.5 and 97.5 % iles (i.e., 95 % credible
intervals). Out of 338 available half-hourly NEE measurements in this 10-day block, 6 %
laid outside the 95 % credible intervals for both choices of prior distribution. This showed15

that the coverage of the 95 % credible interval was appropriate. There was no substantial
difference in the shape of the percentiles curve between the choices of prior distribution.
This indicated that the choice of informative or non-informative priors did not influence the
posterior prediction of NEE. Similar results were observed for other 10-day blocks. Over
the entire 2009 growing season 94 % of the 7126 available half-hourly NEE measurements20

were bracketed by the 95 % credible intervals for posterior predicted NEE. The choice of in-
formative or non-informative priors did not lead to any substantial difference in the posterior
predicted median or 95 % credible intervals.

The 10-day block shown in Fig. 2 shows that the posterior predicted median of NEE was
positive during the day and negative during the night. This is to be expected owing to the25

lack of photosynthesis at night. However, at night the 95 % credible interval spanned zero
implying that, when prediction uncertainty is considered, the actual predicted NEE might
be positive. This is not possible physically, but is an artefact of the statistical approach.
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Since this is a non-linear regression-type problem the uncertainty in the prediction arises
due to both the uncertainty in the estimated regression parameters, β and the residual
uncertainty. This residual uncertainty was assumed to follow a normal distribution with zero
mean and precision, τe, and reflects the scatter of the observations round the posterior
median prediction. Following our discussion above, this correctly represents the uncertainty5

in prediction. A consequence of this was that that the prediction intervals were wide and the
predictions were potentially positive during the night. This could potentially be addressed
by introducing further constraints into the model to allow τe to vary temporally (e.g., Hamm
et al., 2012). We leave that as a topic for future research whilst noting that our dataset is
not very large and we have already fitted a complicated model.10

3.2 Uncertainty in partitioned GPP at half-hourly and daily time step

Figure 3 shows the histograms of the posterior distribution of half-hourly and daily-summed
GPP for Julian days 121 (1 May) and 196 (15 July) for the choice of both informative and
non-informative prior distributions. These allow visualization of the uncertainty within a day
and between days for late spring and mid-summer. Clearly the predictions resulting from in-15

formative and non-informative priors were similar. For both days higher values of GPP were
observed in the afternoon compared to the morning on both Julian days. This reflected
the increase in GPP predictions with increasing PPFD from morning to afternoon. The as-
similation of carbon was also expected to increase from the start of the growing season
to the peak (summer time) of the growing season. It was clear that higher values in GPP20

were predicted on Julian day 196 compared to Julian day 121 for both morning and after-
noon. Seasonal variation in daily GPP was also observed in the daily sum of GPP, which
increased from 7–9 g Cm−2 d−1 on Julian day 121 to 10.5–12.5 g Cm−2 d−1 on Julian day
196. Variation in daily GPP during the 2009 growing season for the choice of informative
priors is shown in Fig 4. The same plot for the choice of non-informative priors is shown in25

Fig. S4.
We tested whether within the posterior half-hourly GPP distributions, the non-rectangular

hyperbolic relationship of GPP with PPFD had been preserved. Figure 5 shows, for an
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example 10-day block (Julian days 121–130), posterior GPP versus PPDF. The resulting
curve shows that the non-rectangular hyperbolic relationship was indeed preserved, and
GPP values initially rose and reached a plateau with increasing PPFD. This is important
since our daily GPP estimates were obtained by summing half-hourly values. Since the
range of PPDF values during the day is large and the relationship between PPFD and GPP5

non-linear, a realistic representation of the light response curve of GPP is important.
We concluded that the posterior predictions of half-hourly and daily GPP were reliable.

We used the posterior distribution of the NRH parameters to predict half-hourly NEE and
the 95 % credible intervals bracketed 94 % of the available half-hourly NEE measurements
(Sect. 3.1 and Fig. 2). This indicated that our posterior predictions accurately captured the10

uncertainty in the measured NEE values. We used the same posterior distributions of the
NRH parameters to estimate uncertainty in half-hourly GPP. Therefore, we expect that the
underlying uncertainty in half-hourly GPP was also accurate.

3.3 Posterior distributions of β

Figure 6 and 7 show the temporal profile (mean and 95 % credible interval) for β for each15

10-day block for informative and non-informative prior β distributions respectively.
A clear seasonal pattern in the posterior distribution of α and Amax was observed. When

using non-informative priors, spikes in the 97.5 % iles for Amax were observed at 41, 47,
and 59mgCO2m

−2 s−1 (Fig. 7e) for three 10-day blocks (Julian days 91–100, 281–290,
and 291–300). These values are physically unrealistic (see Sect. 2.4.2). When using in-20

formative priors, the same three 10-day blocks also showed spikes in the 97.5 % iles for
Amax (Fig. 6e); however these spikes were much smaller and were physically realistic. For
other 10-day blocks, both choices of prior yielded comparable posterior distributions ofAmax

(Figs. 6e and 7f) with uncertainty less than that of the informative and non-informative prior
distributions (Fig. 1c and Sect. 2.4.1). The posterior distributions of α, r0, and kT were sim-25

ilar for both choices of prior distribution. The choice of non-informative prior yielded wider
credible intervals for θ compared to the choice of informative priors (Figs. 6b and 7b).
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We calculated the sum of daily GPP for each of the above mentioned 10-day blocks (91–
100, 281–290, and 291–300) for both choices of prior (Fig. S5). We found no significant
difference in the range of GPP for each block. For example, the range of daily-summed
values for 10-day block 281–290 was 26–38 g Cm−2 d−1 for both choices of prior. This
indicated that the unrealistic spikes in the posterior distributions of Amax did not affect the5

prediction of GPP. This led us to evaluate the sensitivity of GPP to Amax. We fixed the
value of the NRH parameters α, θ, r0, and kT at their mean. We varied Amax from 0 to
100mgCO2m

−2 s−1 at an interval of 0.5. We estimated the value of GPP at each interval
using Eq. 2. Amax was varied from 0 to 100mgCO2m

−2 s−1 so that it could cover the spikes
in the posterior distributions of Amax (Fig. 7e).10

The plot of Amax against GPP (Fig. 8) revealed that GPP varied strongly up to Amax =
5mgCO2m

−2 s−1. After this value GPP saturated. The underlying reason is the fact that
in light limited conditions, i.e., Amax� α×PPFD, Eq. (2) reduces to Pa = α× PPFD and
hence Pa and thus GPP becomes independent of Amax. This explains why the GPP poste-
rior predictions were not affected by the unrealistic values of Amax occurring in periods of15

low light intensities. The choice of prior distribution therefore played a minimal role in the
prediction of GPP. The use of informative priors, however, constrained the estimation of the
posterior distributions of the parameters.

3.4 Some issues and limitations of this study in estimating uncertainty using the20

NRH model

The Bayesian approach applied to the NRH model is a solid method to quantify the model
parameters and their uncertainty. The 10-day block although suited for the purpose of this
study, is insufficient to incorporate the effects of more rapid changes (day to day) in soil
moisture and nutrient levels in the NRH model. In principle, these rapid changes could be25

incorporated by daily estimation of the NRH parameters (Aubinet et al., 2012; Gilmanov
et al., 2013), although this could not be achieved in this study due to the lack of continuous
high quality, half-hourly NEE data. The temporal variation in soil moisture and nutrient level
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for the study site should be investigated further. This may help to select an optimum block
size where the within-block variation is limited. The availability of continuous high quality
NEE data, however, may impose further constraints on the selection of an optimum block
size.

The residual term εi in Eq (6) contains the model representation error and the ran-5

dom measurement error. We were unable to separate εi into these two components. It
is possible to calculate the random measurement error using the paired-measurement ap-
proach (Richardson et al., 2006b). Richardson et al. (2008) compared the random measure-
ment error in NEE to εi, and concluded that εi is mainly due to the random measurement
error. We assumed the same to hold for our study, although we could not evaluate this10

using the paired-measurement approach. Model representation errors included, for exam-
ple, the fact that we have not parameterized respiration separately for day and night, or
separately for vegetation and soil. Vegetation respiration depends also upon other factors,
such as irradiance (Sun et al., 2015), photorespiration (because it is nearly proportional to
GPP) and produced CO2 that remains in the trees (Teskey et al., 2008). It is not feasible15

to model all these processes separately. Thus our model can be expected to contain some
representation errors.

Systematic errors also result in uncertainty in NEE measurements (Moncrieff et al., 1996;
Aubinet et al., 2012). We have applied the Foken classification system (Sect. 2.1) to filter
out the low quality NEE measurements that contain high systematic errors. This reduced20

the effect of systematic errors on the posterior prediction of NRH parameters and on the
model residuals. A source of systematic error that we could not account for was storage
of CO2 below the measurement height during stable conditions at night (Goulden et al.,
1996). The turbulent mixing after sunrise may cause hysteresis in the light response curve
between morning and late afternoon hours. This hysteresis will contribute to the scatter in25

the model fit, and thus to the uncertainty in the estimated parameters.
The implementation of the NRH model assumed that PPFD and Ta were known without

error and all uncertainty was attributed to the response variable (NEE). This assumption
is usual in statistical regression modelling, but is unlikely to be correct in this case. There
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is scope to incorporate information about uncertainty in PPFD and Ta, although this would
lead to a more complicated model. Future research could examine whether relaxing this
assumption would improve the model.

We focused in the growing season in 2009. This short period was chosen to illustrate
the implementation of the Bayesian approach to quantify the uncertainty in half-hourly par-5

titioned GPP using the NRH model. The study could be extended towards multiple years,
allowing a multi-year comparison although that was outside the scope of our methodological
focus. Further, different models have been investigated previously to partition GPP (Desai
et al., 2008; Richardson et al., 2006a). Any model is a source of uncertainty in itself be-
cause it cannot account for every process. The scope of this study can therefore be further10

widened by addressing multiple established ways of partitioning GPP and thus analysing
uncertainty associated with these.

Beer et al. (2010) partitioned GPP from NEE both using the rectangular hyperbola (RH)
light-response curve (Lasslop et al., 2010) and a conventional night-time data based ap-
proach (Reichstein et al., 2005) for many FLUXNET sites, and further used the partitioned15

GPP to calibrate five highly diverse diagnostic models for GPP to produce the distribution of
global GPP. Although the present study focused on better understanding the uncertainty in
partitioning GPP using NRH light-response curve, future research can build on our findings
and extend our approach to other sites and years.
4 Conclusions20

The study concluded that the choice of informative and non-informative prior distributions of
the NRH model parameters led to similar posterior distributions for both GPP and NEE. Ob-
taining informative priors is time consuming because the values of each parameter are not
explicitly mentioned in the literature. Informative priors also require the acquisition of infor-
mation on species or site specific values of photosynthetic capacity at light saturation (Amax)25

and ecosystem respiration at reference temperature (r0) parameter. As an alternative, non-
informative priors can be obtained with proper constraints using minimum information on
the NRH parameters such as the positivity of Amax. Therefore, non-informative priors can
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be used for any species type irrespective of study sites. These findings are valuable to con-
duct uncertainty analysis across a larger sample of sites with different GPP characteristics,
e.g., by obtaining NEE and other meteorological data from the FLUXNET data base. The
downside of non-informative prior is the production of spikes in the posterior of Amax for
some days in this study. Therefore, if such values are of interest in a particular study (e.g.,5

photosynthesis nitrogen use efficiency that relies on the ratio of Amax and leaf nitrogen)
then informative prior should be used.

The estimates of the NRH model parameters were obtained for 10-day blocks. The values
of the posterior parameters and their variation over time could provide further understanding
of how the forest responds to factors not included in the model, such as soil moisture,10

nutrition or tree age.
Quantifying uncertainty estimates as empirical distributions in half-hourly gross primary

production (GPP) was implemented in the Bayesian framework using the non-rectangular
hyperbola (NRH) model. These uncertainty estimates were provided at daily time steps.
The approach could be extended to include the uncertainty in meteorological forcing, in15

particular photosynthetic photon flux density and air temperature. The distributions in half-
hourly GPP can be further used to obtain distributions at any desired time steps, such as
8-day and monthly. The uncertainty in GPP estimated in this study can be used further
to quantify the propagated uncertainty in the validation of satellite GPP products such as
MODIS 17 or process-based simulators such as BIOME-BGC. Although we focussed on20

quantifying the uncertainty in GPP partitioning, our approach could also be used to either
estimate Reco or fill missing NEE data and this will be achieved in a future study.

The Supplement related to this article is available online at
doi:10.5194/bgd-0-1-2016-supplement.
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Table 1. List of symbols with unit.

NEE, y net ecosystem exchange mg CO2m
−2 s−1

Pa gross CO2 assimilation mg CO2m
−2 s−1

GPP gross primary production mg C m−2 s−1; g C m−2 s−1

Reco ecosystem respiration mg CO2m
−2 s−1

PPFD photosynthetic photon flux density µmol quantam−2 s−1

Ta air temperature ◦C
α quantum yield mgCO2 (µmol quanta)−1

θ degree of curvature of light response curve unitless
Amax photosynthetic capacity at light saturation mg CO2m

−2 s−1

kT temperature sensitive parameter (◦C)−1

r0 ecosystem respiration at reference temper-
ature Ta = 0 ◦C

mg CO2m
−2 s−1

τe precision of the normal distribution of the
likelihood

β (θ, α, Amax, r0, kT)
Rb ecosystem respiration at reference temper-

ature Ta = 15 ◦C
g CO2m

−2 s−1

Q10 multiplication factor to respiration with 10 ◦C
increase in Ta

RH relative humidity %
VPD vapour pressure deficit kPa
VPDcr critical value of vapour pressure deficit kPa
φ vapour pressure deficit response function
σVPD curvature parameter for φ kPa
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Figure 1. Informative prior distribution of the NRH model parameters: (a) α∼N(µα = 0.0022, σα =
0.00066), (b) θ ∼ Beta(shape1 = 10,shape2 = 3), (c) Amax ∼ Gamma(shape = 4, rate = 2.5), (d)
kT ∼ Gamma(shape = 4, rate = 120), (e) r0 ∼ Beta(shape1 = 2,shape2 = 64). Information about
the NRH parameters is given in Table 1. The y axis represents the density of corresponding dis-
tribution.
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Figure 2. Median (solid lines) and 95 % credible intervals (dashed lines) of the posterior distribution
of NEE together with half-hourly NEE measurements (solid points) for a 10-day block (1 May to 10
May 2009, Julian days 121 to 130): (a) when using informative prior distributions, (b) when using
non-informative prior distributions.
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Figure 3. Histograms of half hourly GPP (Morning and afternoon) and daily sum of GPP when
using: (a) informative priors on Julian day 121 (1 May 2009), (b) non-informative priors on Julian day
121, (c) informative priors on Julian day 196 (15 July 2009), (d) non-informative priors on Julian day
196. The morning and afternoon time belong to half-hour 8:00 CET to 8:30 CET and 13:00 CET to
13:30 CET respectively. The y axis is frequency; CET is Central European Time.
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Figure 4. Median (solida line) and 95% credible intervals (dashed lines) of daily GPP distributions
during the growing season of 2009 (1st April to 31st October 2009, Julian days 91 to 304) for the
choice of informative prior distributions.
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Figure 5. Median (solid line) and 95 % credible intervals (dashed lines) of half-hourly gross primary
production (GPP) with photosynthetic photon flux density (PPFD) for a 10-day block (1 May to 10
May 2009, Julian days 121 to 130) for the choice of informative prior distributions.
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Figure 6. Median (solid lines) and 95 % credible intervals (dashed lines) of the posterior distributions
of the NRH parameters when using informative prior distributions for each 10-day block during the
growing season in 2009. The x axis is the first Julian day of each 10-day block. The y axis represents
NRH parameter. Information about the NRH parameters is given in Table 1.
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Figure 7. As Fig. 6 when using non-informative prior distributions. To help visualization of Amax we
have added a subfigure (f) with the spikes removed (i.e., without the blocks of Julian days 91–100,
281–290, and 291–300).
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Figure 8. Variation of gross primary production (GPP) with the variation of photosynthetic capacity
(Amax) from 0 to 100mgCO2 m

−2 s−1. The values of quantum yield (α), degree of curvature (θ),
ecosystem respiration at reference temperature (r0), and temperature sensitive paramete (kT) are
fixed at 0.7, 0.0022, 0.1, 0.07 respectively. Air temperature (Ta) and photosynthetic photon flux
density (PPFD) are fixed at 10 ◦C and 900 µmol quantam−2 s−1.
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