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Abstract. Using measurements of the surface-oc€an, On a decadal perspective, the global oc€&n, uptake is es-
partial pressurepCO,) and 14 differentpCO, mapping timated to have gradually increased since about 2000, with
methods recently collated by the Surface OcedltO- little decadal change prior to that. The weighted mean net
Mapping intercomparison (SOCOM) initiative, variatioms i global oceanCO- sink estimated by the SOCOM ensem-
regional and global sea—altO, fluxes are investigateds ble is —1.75PgCyr—! (1992-2009), consistent within un-
Though the available mapping methods use widely differ-certainties with estimates from ocean-interior carboia dat
ent approaches, we find relatively consistent estimates oatmospheric oxygen trends.

regionalpCO, seasonality, in line with previous estimates.
In terms of interannual variability (IAV), all mapping meth
ods estimate the largest variations to occur in the Eastern

equatorial Pacific. Despite considerable spread in the del Introduction

tailed variations, mapping methods that fit the data mor L :
closely also tend to agree more closely with each other iﬁOr:ggﬁ g;%%altﬁgfeabn aﬁ(taslpass t?:) n;%\(l)vr ngtrzotrhzmr?l:?np:r?-?nnézccgg
gional averages. Encouragingly, this includes mappindnmet War}ning of theyEarth’s climate (Stocker et al., 2013)
ods belonging to complementary types — taking variability " '

i 0 i -
either directly from theyCO, data or indirectly from driver E res'enttl)li, apprc:)wahately 27 /OLOf,ﬂ)e ?nln u;(I)IXSe.mltt;adt (lzar
data via regression. From a weighted ensemble average, on is taken up by the ocean (Le Q@ etal., ); in tota

find an 1AV amplitude of the global sea—atO, flux of * W?0% of the anthropogenic carbon emitted since the industri-
- 2

0.31 PeCyr—! (standard deviation over 1992—2009), which alization of our planet has been stored by the ocean (Sabine

is larger than simulated by biogeochemical process models(.et al., .2004; Khat|.wala} et aI.,. 2013). Thus., varlat|o.ns i@ th
oceanic carbon sink, in particular a possible decline under
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2 C. Rodenbeck et al.: An Ensemble 0pCO»-based sea—ailCO,, flux estimates

climate change, co-determine the future climate trajgctor features in the results of mapping methods based on differen
In addition to this direct relevance, present-day varraim s principles give strong support to the estimates. In perads
the sea—ai€C O, exchange, when related to possible driving areas without data, this is the only available way to assess u
factors, can be employed to provide information on the un-certainties. Further, we can investigate the information-c
derlying mechanisms of ocean biogeochemistry. tent of the various data streams used by some methods and
Until recently, estimates of the oceani®), uptake rate  not used by others. It is the primary objective of the Sur-
and its variability were largely based on (1) ocean bioggo-face OceanCO- Mapping intercomparison (SOCOM) ini-
chemical process models (see, e.g., Wanninkhof et al.,)2013tiative to foster such inter-method investigations. SOCOM
(2) inverse estimates based on atmosph€Xis, data (see  not meant to rank methods but to exploit the added value of
Peylin et al., 2013), or (3) inverse estimates based on eceartheir complementarity. Ultimately it aims to identify wiic
interior carbon data (Gloor et al., 2003, and subsequent refeatures of the surface-ocepfiO- field (and consequently
finements). However, while process models are useful t@oldhe sea—ai€ O, flux) can be robustly inferred from the avail-
to study the sensitivity of carbon fluxes to the physical andable surface-ocean carbon data, and to provide quangitativ
biogeochemical mechanisms that control them, they are nogstimates for these features, including an uncertaingsass
specifically designed for state estimation and thus hagelar ment. These sea—alfO- flux estimates based on surface-
uncertainties if used in this way (Wanninkhof et al., 2013). ocean carbon data are then available to feed into compre-
Likewise, while atmospheri€O, inversions are able to pras hensive carbon cycle syntheses like the REgional Carbon
vide estimates of land—aitO, exchange on large scales, Cycle Assessment and Processes (RECCAP) activity of the
their sea—ailCO-, flux estimates suffer from large relative Global Carbon Project (http://www.globalcarbonprojerd/
errors over most of the ocean due to the dominance of landeccap/), which until recently mainly had to rely on model
variability in the atmospheric signals (Peylin et al., 2013 simulations for variability.
Finally, while ocean-interior inversions offer a strongatas This paper first introduces the ensemble of data-driven
based constraint on the long-term flux in larger regions; the pCO> mapping methods currently available in the SOCOM
do not provide flux variability or finer spatial detail. initiative (Sect. 2), and gives an overview of the estimated
A more direct quantification of the sea—&iO, flux is seasonality and interannual variability (IAV) in oceanic
possible using measurements of the oceanic and atmospheribiomes” (Sect. 4.1). As some of theg€ O, data-driven
partial pressures afO, (pCOs) in conjunction with a pa=e methods have been used to assess interannual variations of
rameterization of the gas transfer across the sea—air inteiglobal sea—ailCO, fluxes in recent carbon budgets by the
face. Through extensive concerted community efforts, moreGlobal Carbon Project (GCP) (Le @& et al., 2015), we
than 10 million surface oceapCO, measurements were then specifically analyse the interannual variations in the
gathered and recently compiled into the SOCATv2 (Sur-sea—ailCO, fluxes. Focus is put on the consistency between
face OcearCO, Atlas version 2, Bakker et al., 2014) and regressing and non-regressing methods, and on the anmgplitud
the LDEOv2013 (Lamont-Doherty Earth Observatory ver- of the interannual sea—aitO- flux variability (Sect. 4.2).
sion 2013, Takahashi et al., 2014a) databases.
AlthoughpCO, data are thus available in nearly all ocean
basins for several decades, observations from ships or fixed
sensors can necessarily only cover a tiny fraction of the
spatio-temporalpCO- field of the global surface ocean.
Therefore, to obtain continuous sea-@i- flux fields over
larger areas or the entire ocean, interpolation (gap-ilin
methods are needed to estimate values in all the period¥his section provides an overview of the principles of the va
and areas not directly observed. Various methods have beenus mapping approaches, and the range of particular choice
proposed to interpolateCO- data in space and time (Aps taken within each method class. Details on the individual
pendix A). They span a wide range of approaches, in parmapping methods (referenced by labels in italics) are given
ticular with respect to the information sources tapped andAppendix A and the references cited there. Essential proper
assumptions imposed. Due to that, some methods are ablés and technical parameters are summarized in Tables 1-3.
to reproduce the signals in the data more closely while othdn particular, Table 3 gives the spatial and temporal coher-
ers are able to bridge the data-void areas/periods more- effe ence scales of the adjustible degrees of freedom, determin-
tively (Fig. 1). ing the balance between the ability of a method to bridge
These complementary characteristics of the various apéata gaps and its ability to directly follow the observed sig
proaches to some degree reflect differing targets of the innals (see table footnotg. Table 4 indicates which modes of
dividual studies. Correspondingly, their strengths andkwve pCO- variability are, by construction of the individual meth-
nesses can be expected to vary depending on the givenspuods, estimated from theCO, data information (rather than
pose. However, this complementarity offers a great opportu prescribed or determined in other ways). For a summary of
nity for robustness assessment, as the existence of commanethod classes see Fig. 1 and its caption.

2 Mapping Methods
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2.1 Statistical interpolation values for any given location/timestep, and using the
associategpCO,, value there.
Statistical interpolation schemes fit the data to suitable ) o
auto-regressive models. The applied auto-correlatioresca ~ — Feed-forward networks (FFN) establish a statistical
have either been determined from th€0, data them?® non-linear relationship between a set of driver variables
selves UEA-S, OceanFlux-9), chosen to reflect data den- andpCO, observations (training), and apply this rela-
sity (Jena-MLS), or derived from empirical orthogonal func- tionship to continuous fields of the_ d_rlver variables to
tion (EOF) analysis of an ensemble of process model simula- ~ €réate a continuoysCO, map (prediction).

tions (CU-SCSE). The interpolation is either done directly for - As for linear regression, the individual implementatioifs d
the pCO, field (UEA-SI, OceanFlux-S, CU-SCSE) or indi-,, fer in the set of chosen physical or biogeochemical driver
rectly for the field of ocean-internal carbon sources ankissin  variables (SST, SSS, MLD, Chl-a, etc.). Different choices
determining the)CO,, field (Jena-MLS). have also been made concerning spatialization: While some
In most statistical interpolation schemes, those piX-implementations use independent neural networks within
els/timesteps that are neither directly constrained by copredefined spatial or spatio-temporal regions, others nse o
located data, nor indirectly constrained by sufficientlysel,, global network but add spatial or temporal coordinate vari-
data (within the spatial or temporal correlation scalesl), f gples to the set of drivers.
back to some “background state” or “prior”, namely: the  Non-linear regression methods have the advantage over
estimated mean seasonality and estimated tref€/\{S),  |inear regressions that they can flexibly represent a wide
parametrized temperature-related variatiodendMLS), or  class of pCO,—driver relationships. On the other hand,
a prescribed climatology plus a prescribed linear tré@ld-¢,, FFNs involve the risk that the non-linear extrapolatioroint
SCSE). The ordinary block kriging used i@ceanFlux-S data-sparse regions becomes unstable and producesutlier

does not use a-priori data values and interpolates the datgOMs avoid this risk, though instead their discrete output
to any distance, though the estimation uncertainty in@®as may contain spatial discontinuities.
with interpolation distance.
2.3 Model-based Regression and Tuning
2.2 Regression to external drivers
25 Although biogeochemical simulation models can success-

2.2.1 Linear Regression fully be tuned to reproduce WOCE-era transient tracer in-
ventories (Matsumoto et al., 2004), this does not assule ski
(Multi-)linear regression AOML-EMP, UEX-MLR, JMA- in simulating trends and interannual variability, as tgnin
MLR) expressepCO. as a linear combination of a set of self can in some instances merely be compensating for im-
one or more driving variables (such as Sea Surface Tempemproper process representation or insufficient parameteriz
ature (SST), Sea Surface Salinity (SSS), Mixed-layer depthions. Data assimilation or non-linear inverse modeling ef
(MLD), Chlorophyll-a, etc.), and adjusts their multipeas  forts such as ECCO have been demonstrated to improve the
to best match theCO,, observations. The calculation is done representation of the evolving physical state of the ocean
separately for each of a set of spatio-temporal domains. In{wunsch et al., 2009). Although promising, the incorpanati
dividual implementations differ in the set of chosen driyer of biogeochemistry into a consistent assimilation or isiar
variables, as well as in the choice of spatio-temporal domai  framework is still in the early stages of development.
over which the same adjustable multipliers are used. Within the methods collated here, biogeochemical ocean

) ) process models have been used in the following ways:
2.2.2 Non-linear Regression _ o )
— Modelled pCO,, fields have been split into different

The forms of non-linear regression technique currently:ap-  time scales (seasonality, interannual variations) and
plied to map the sea surfagegCO, are self-organizing scaled as to optimally match theCO, data PU-
maps (SOM) KIES-SOM) and feed-forward networks (FFN) MCMC).

(NIES'NN, CARBONESNN), as well as combinations of
SOM and FFN ETH-SOMFFN) or SOM and linear regres-
sion UNSW-SOMLO).

— Boundary conditions and initial fields of Dissolved In-
organic Carbon (DIC) are tuned during the model run it-
235 self as to optimally match theaC O, data NIES-OTTM).

— Self-organizing maps (SOM) project (multi-
dimensional) driver variables to a two-dimensional 3 Analysis Methods
discrete space of clusters (“neuron cells”). Observed
pCO, values are then assigned to the clusters accordin®.1 Ensemble collection
to their associated driver variable values. With this
information, spatio-temporabCO, maps are created ThepCO, fields estimated by the various methods were re-
by finding neuron cells with similar driver variable gridded by each provider to a resolution 16f latitude x 1°
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longitude and monthly time steps, preferably by averagingCAP, TransCom). To filter for interannual variations (1AV),
(if the original resolution is higher) or sub-sampling (it  we consider 12-month running means.

original resolution is lower). Also a sea-mask (map of cov-

ered ocean area, possibly fractional) was requested from ea 3.4 Time periods

provider. All subsequent processing was done by common ) . )
scripts. Results are plotted over the respective valid period of each

method. Statistical analyses are restricted to the 19925-20
25 period, when results of most mapping methods are available,
and when the data coverage is relatively good (this refers in

_ _particular to the Equatorial Pacific).
Most methods do not cover the entire ocean surface (see Fig.

AB). In particular, coastal areas or the Arctic are excluded3.5 Diagnostics — comparison to data

in many methods. Some methods depending on satellite-

derived Chlorophyll-a input data exclude some high-latu 3.5.1 Mismatch time series

areas during the dark seas@rteanFlux-S misses all loca-

tions/months where the satellite-derived SST input datecar AS @ 1st order performance diagnostic, we compare the map-

invalid. UEx-MLR has occasional invalid pixels due to nu- Ping results to the monthly observed values in the SOCATv2

merical reasons. gridded product (Sabine et al., 2013; Bakker et al., 2014 (u
These invalid pixels would pose severe problems to theveighted averages — variable FCOZE_UNWTD of file

ensemble analysis because (1) spatial averages (Sect. 3.5OCAT tracksgriddedmonthly.v2.nc”). We look at map-

would not extend over the same area, causing spurious=diffinus-data differences averaged over biomes, or over lsome

ferences between the methods, and (2) the calculatedisea-@Nnd years. These biome or biome/year averages are taken

CO, fluxes (Sect. 3.6) would miss parts of the ocean. Re-Only over those pixels/months that are covered by data, and

stricting the comparison to the common ocean surface wouldVith at least400m water depth to avoid coastal data (these
only partially solve (1) and not solve (2). coastal data may otherwise dominate the diagnostics as the

Therefore, we filled any pixels in theCO, maps thate Methods do not take the special environment along the coasts

are not covered by the considered mapping method (accordDt0 account). Spatial averages are further restrictediéo t
ing to its sea mask or its value being outsitle pCO, < valid area of each method; this may slightly favor methods
106patm) but are ocean (according to bathymetry takenWith less surface coverage, because fewer data pixelsee th
from the ETOPO surface elevation data (U.S. Departmentncluded in the mismatch.

Commerce, 2006, access date 02/03/2011)) by a corrmon !n addition to averaged map-data differences, we also con-
standardpCO, field. This standard field is the sum of the Sider time series of corresponding selective averageseof th
monthly climatology by Takahashi et al. (2014b) plus the PCO2 maps themselves sampled at the data locations/times.
year-to-year atmospherigCO, increase (the year-to-year
atmosphericpCO- increase is derived from observed at-

mosphericCO, mixing ratios by the Jen&0, inversion As an overall measure of the mismatch between a given map-
s85v3.5 (as in Bdenbeck et al. (2013)); we use a 12-month 9 P

. ; : . .30 ping product and the data with respect to interannual varia-
running mean of the atmosphe€O, minus its mean i~ . : . .
: : tions in a given biome, we use the amplitude of the average
2005, the year of the Takahashi et al. (2014b) climatology). .. ) )
X i ifference between the map and the comparison data: (1) Av-
The filled pixels do not change the results strongly comparead . .
: X erages of the map—data difference are taken over biomes and
to signal size. : .
years, restricted to data-covered open-ocean pixelshmont
_ =25 as described in Sect. 3.5.1. (2) A mismatch amplitgiev
3.3 Biome averages is calculated as the temporal standard deviation of these
biomel/yearly average differences over the 1992-2009 anal-
In this overview of the ensemble of mapping methods,ysis period (if a method does not cover all this analysis pe-
we consider time series gfCO, averaged over the 17 riod, statistics are calculated for a correspondingly &wor
biomes of Fay and McKinley (2014) (Fig. 2, Table &). period (Table 2), despite the slight inconsistency due Y9 l1A
We use the time-independent “mean biomes”, such that ng3) To be able to set these mismatch amplitud€$” into
spurious common variability can be induced from chang-perspective, we similarly determine the mismatch ampditud
ing averaging domains. These biomes were chosen as they/j2v . . of “benchmark” fields where any oceanic 1AV
were derived from coherence in sea surface temperaturbas been removed. The benchmark maps have been created
(SST), spring/summer chlorophyll a concentrations (Qhka from the mean seasonal cycle of the respective original maps
ice fraction, and maximum mixed layer depth, and thus mayAs the missinggCO- increase would cause unduly large mis-
reflect areas of relatively coherent biogeochemical behavi matches between the benchmark and the data, we added the
better than previously used “rectangular” regions (e.ECR  year-to-year atmospheri€C O, increase, which is suitable as

3.2 Spatial gap filling

3.5.2 The relative 1AV mismatch Ri&¥



340

345

350

355

360

365

370

375

380

385

C. Rodenbeck et al.: An Ensemble 0pCO2-based sea—ailCO,, flux estimates 5

it has negligible interannual variations compared to otean to 10% over ice as in Takahashi et al. (2009)), water den-
pCO,; we use the same atmospheric increase based on atmsity o, CO- solubility L, and atmospheri€O, partial pres-
sphericCO, data as used to fill invalid pixels (Sect. 3.2). (4) surepCO3*™. The values of these auxiliary fields have been
We then obtain a relative 1AV mismatch for the given methed calculated from various data sets (e.g., NCEP wind speeds

and biome as (Kalnay et al., 1996), OAFlux SSTs and ice cover (Yu and
Aiav Weller, 2007)) as in Bdenbeck et al. (2013, see there for

R® = ——-100% Q) details) and used identically for all mapping methods, i.e.
My Ghchmark the uncertainties in the flux parameterization do not eier t

It states by how much an estimate fits the data better dige t§omparison considered here. _

its interannual variations, compared to a state of “no kaowl AS for pCO>, we consider the flux averaged over biomes
edge” about 1AV. Alternatively, Eq. 1 can be seen as a nor-OF the global ocean. Interannual flux variations are agdin ca
malization of the IAV mismatch to signal size: As the bench- culated as 12-month running means. Their amplitdd is
mark fields do not contain any 1AV, their mismatch ampli- measured as temporal standard deviation of the yearly flux

tudesMi reflect the IAV in the data (influences &f OVer the 1992—_2_009 analys?s period. From the amplitudes
variations in data density will affect/i®" and Miv A of the individual mapping methods, we calculate an

in similar ways). Calculating the benchmark from each prod-ensemble mean inversely weighted by the relative 1AV mis-

uct's own seasonal cycle ensures a criterion comparable benatchesi;™ (for methods withiz;™ < 75%)

tween the mapping methods (though the seasonal cycles are n ey piav

quite similar for all methods anyway, see Sect. 4.1.1 below) giav — M
It is difficult to decide whichR'*" values can be regarded D /R

g:lssr |3\|/2n;:2£ éAn\t/zt;\?I ?Z\;erzrsejtesn:ﬁ:tl?nzgggeg gasaégogé%iMethods not covering the full analysis period are discarded

75%. This is an ample threshold, but in the light of possible in this average as there would be significant spurious cteange

ambiguities in theRi®¥ calculation we prefer it over a stricter Tgtghf aarlr;,pr?(t)l:qﬁcllf 323(; of the El Ko anomalies in 1992 or
selection. To nevertheless make the likely range visibke, w w included.
de-weight results with higheR'®" by smaller line thickness

in all time series plots. o . 4 Results and Discussion
To verify that the selection criterion is not unduely biased

by the fact that some methods use SOCAT data and athengve first provide an overview on the estimated seasonal and
use LDEO data (Table 3), IAV mismatch diagnostics haveinterannual variations in oceanic biomes (Sect. 4.1), had t
also been calculated from the LDEOv2013 database (Takaability to estimate them fromCO- data and available map-
hashi et al., 2014a) (monthly binned), which is used as datging methods. We then discuss interannual variations in the
source by some mapping methods. LDEOv2013 shares larggea—ailCO, flux in more detail (Sect. 4.2).

parts of data points with SOCATv2. Mismatch values are

slightly different depending on database, but qualithfive 4.1 Biome-averagepCO5 time series

consistent.

®)

4.1.1 Seasonality
3.5.3 The relative monthly mismatchR™onth

As introductory example, we first consider surface ocean
An overall measure of mismatch on the monthly time scale ispCO, averaged over the North Atlantic Subtropical Perma-
calculated analoguously to Sect. 3.5.2, except that agerag nently Stratified biome, which belongs to the relatively lwel
are only done over the biome (not over years), and thatthebserved regions and shows a pronounced seasonal cycle in
benchmark is the year-to-year atmospheric incease withoubCO, (Schuster et al., 2013). Fig. 3 panel (a) shows monthly
any seasonality. Thus this measure is mainly sensitivegto thpCO, time series from the whole ensemble. For clarity of

seasonal cycle as the largest month-to-month feature. details, three arbitrary years have been selected. Thégesu
. ) of the mapping methods generally agree with each other in
3.6 Sea-air flux calculation s terms of the mean and the seasonal cycle to within about
10 patm.

Sea—al_rCOZ flux fields f have been calculated from the Panel (b) compares the mapping results to the SOCATV2
pCO, fields by monthly gridded observations. To this end, mapping re-
f = koL(pCO, — pCOZ™) ) sults have been average_d only over _those locations/times
a0  Where SOCATv2 comparison data exist. As these are the
with piston velocityk (employing the widely used quadratic locations/times where (most of) the estimates are directly
dependence on wind speed as in Wanninkhof (1992) butonstrained, the mapping results generally follow the data
scaled globally according to Naegler (2009), and reducectlosely, and the ensemble spread is often smaller than
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in panel (a). In some months (e.g., Sept. 2003 or Julyods. This is expected as this selective average excludizall
2004) these selective averages deviate considerably frorgap-filled pixels where values naturally depend much more
the whole-biome average, likely reflecting spatial sangplin on the applied mapping method. Most strikingly, in the data-
biases in the presence of spatiglO, gradients. In suck. poor periods up to 1988, regression and interpolation meth-
months, the ensemble spread tends to be higher than inds (as far as they cover these periods) strongly differen th
months less affected by sampling biases. whole-biome average (panel (a)), while they more closely
To objectively compare our results to the in-situ data, weagree at the data-covered pixels (panel (b)). This illtestra
calculate the average difference between the mappxol, that the statistical interpolation methods solely rely ba t
(at the data location) and the SOCATv2 monthly gridded#al-pCO, data constraint while regression methods bridge data
ues (panel (c)). In general, differences of the monthly val-gaps as their variability originates from the driver datatth
ues lie within aboutt10 patm. NIES OTTM deviates farther, are available throughout time. In the more data-rich period
likely because this approach is strongly determined by thegsince about 1992 in this biome), interpolation and regres-
modelled seasonal cycle and thus does not follow the dataion methods do agree in many features even in the whole-
more closely. so biome average (panel (a)). Due to the complementary ori-
Time series for the complete set of biomes are given ingin of the variability in these method classes (Fig. 1), this
the Appendix. In terms of seasonality, the mapping meth-agreement confirms that, at least in this biome, (1) sufficien
ods show similar phasing and amplitude in almost all extra-interannual information is contained in the availap{@O,
tropical biomes (Fig. Al), with few exceptions mainly in the observations (in the more densely sampled period), and (2)
North Atlantic Subpolar Seasonally Stratified biome andd¢hethe signals provided through the driver data of the regoessi
Southern Ocean. The spread in the North Atlantic is someimethods largely capture the essential modes of interannual
what surprising given the relatively good data coverags:- Po pCO, variability.
sibly, this area has larger spatial heterogeneity not aatetyu Note that the selective average over data-covered pixels
represented by (some of) the methddelES OTTM shows a  (panel (b)) also leads to temporal features very diffenemhf
seasonal cycle opposite to the other methods, a behaviouhe full average (e.g., the peak in 2001), revealing sargplin
present in many biogeochemical process models in high latbiases that alias seasonal variations and spatial gradignt
itudes (Valsala and Maksyutov, 2010; Schuster et al., 2013)the yearly/spatial average due to not fully representate-
Methods agree on smaller seasonal amplitude in the tropicgling. These sampling biases pose the most prominent chal-
though substantial differences in amplitude and phasé.exis lenge to all the mapping methods.
515 Panel (c) shows the biomel/yearly average difference be-
4.1.2 Interannual variability (East Pacific Equatorial tween the interpolategpCO- fields and the SOCATv2
biome) monthly gridded data set (Sect. 3.5), reflecting the misimatc
of mean, trend, and interannual variations (the sampling bi
Interannual variability is exemplified with the East Pacific ases mentioned before should largely cancel out in this dif-
Equatorial biome, which is also relatively well observetlja ference). Most mapping methods have a temporal mean mis-
features large coherent interannual variationg(D, asso-  match (bias) of less than a fewifun. The year-to-year mis-
ciated with the ENSO cycle (e.g., Feely et al., 1999). Fig. 4matches are of different magnitudes for the individual map-
panel (a) shows the results of those mapping methods witlping methods (note that the larger mismatches in 2009/2010
IAV mismatches 12V, Sect. 3.5) of at most5% of signal  occur in a period of very few data points and may not be rep-
size. This selection has been done because interannuak sigesentative). Though the estimated interannual featuaes c
nals in the data turn out not to be represented in all mappingnly be trusted if the year-to-year mismatches are smatt(ne
methods; thus the full ensemble (Appendix Fig. A2 panelessary condition), small year-to-year mismatches are @iot y
“Biome 6”) would highly overestimate the uncertainty of a sufficient condition for correct interannual variatioBsen
IAV. All the 8 selected mapping methods consistently showif the available data points are fit well, the extrapolation t
a reduction in ocean surfageg”O, during El Niflo condis: data-void areas can be wrong (“over-fitting”, see more dis-
tions (1987, 1992, strong El Nd 1997/98, weak EIl Nio’s cussion in Sect. 4.2 below). Therefore, we stress that the
also 2002, 2006, 2009/10), though partially with different mismatch amplitudes are not meant to represent a detailed
amplitudes (see Sect. 4.2.1 for the particularly low ampli- ranking of quality of the methods. Nevertheless, we take it a
tude of UEA-S). Methods regressingCO-, against exter- an encouraging finding that mapping methods with smaller
nal drivers MA-MLR, UNSW-SOMLO, NIES-SOM, ETH-ss  IAV mismatch (e.g., passing the more strict relative 1AV mis
SOMFFN) tend to show mutually similar time variations also match criterion of?'®" < 30% [Jena-MLS, ETH-SOMFFN)])
on the finer 1-2 year time scale (e.g., 2008-2009), whileare also closer to each other in the whole-biome average
statistical interpolation method®JEA-S, Jena-MLS) may (panel (a)). Even this stricter selection comprises method
show different finer-scale features. Despite this biomdewi regressing or not regressipg’O- against external drivers,
difference, averages at data-constrained pixels only. =g i.e., complementary ways of extrapolating to data-void ar-
panel (b)) mostly are much more consistent between metheas/periods (Fig. 1, Table 3 table footne}eThis reinforces
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conclusions (1) and (2) above and confirms that meaningsmaller 1AV mismatch show larger interannual amplitudes.
ful interannual estimates can be achieved from the availabl Strikingly low interannual variability is found IJEA-S,
pCO, data and mapping methods in the Equatorial Pacific. while fitting the data withR'® = 52% better than various
ss  Oother methods. This method moves away from the estimated
4.1.3 Interannual variability (other biomes) mean seasonality only in the close vicinity of the data int
as justified by the short auto-correlation lengths of near-

All mapping methods agree that the East Pacific Eq”ato'simultaneougacog levels found in thepCO, data (Jones

rial biome considered before (Sect. 4.1.2) has the largest; al., 2012). It thus gives a lower bound of 1AV secured by

interannual variability of all biomes (Fig. A2). The other ihe gata information (Jones et al., 2015). As interannual fe

biomes have much less interannual variability, leaving they,res can be assumed to be more spatially coherent than fea-
rising trend (similar to the atmosphef, increase) as the  y,res on the time scale of ship cruises (especially in th@Equ

most prominent interannual feature. There is one mappingqig)| Pacific), the low 1AV amplitudes bYEA-S are likely
method NIES-OTTM) without a trend, a feature not how- 5., inderestimate.

ever supported by the data (see large data mismatch with
systematic trend in Fig. A3). Except for the West and East; 5 5 1he global ocean
Pacific Equatorial biomes, the small year-to-year vaneio

around the rising trend are not generally consistent betwee Fig. 5 panel (c) provides global sea-&i0- fluxes estimated
the ma_pp_ing methods (ensemble spread similar or IargerthaBy 10 selected mapping methods (having relative 1AV mis-
the variations themselves). _ matchR™® < 75% for global pCO,). These mapping meth-
Overall, mean mismatches (biases) are on the order ofys mostly agree in their decadal variations, with a pro-
3—4patm in all biomes (Fig. A3). As the mismatches do o nced decadal enhancement in 008@n uptake after the
qot consistently rise or fall over time, they confirm the es- year 2000, preceded by a period of little decadal change or
timatedpCO trends (except fONIES-OTTM that does not | 4iher weakening uptake (see Fig. A7). This confirms a fea-

have the rising trend inCO,). The year-to-year mismatches e a1s0 simulated by process models (see Fig. 7 of Lar@Qu
have amplitudes di— patm in some methods, butalso mis- ¢ 5 (2015) and discussion in Sect. 3.6 d@fdenbeck et al.

matches as large or larger than the interannual varialiong>n14y). One of the areas contributing to this change in

for other methquRm > 75%, dashed lines). Except for gacadal trends is the Southern Ocean, where Laiidseh
the North Atlantic Subtropical Seasonally Stratified biome & 4 (2015) found consistency of decadal trends between

each ocean region has at least some mapping methods Witbr_soMFEN and Jena-MLS having relatively low R#¥
relative IAV mismatch below60% or even30%, including 51 es there.

both interpolation methods as well as linear and non-linear there is less agreement in the sub-decadal variations of
r_egressions. Methods tying 1AV to process model sir_nula-the global sea—aif0, flux, despite the much closer mu-
tions PU-MCMC, NIESOTTM) often have large relative 1,5 agreement of the same mapping methods in the well-
IAV mismatches, except fdPU-MCMC in the Northern Pa-  ¢qnstrained East Pacific Equatorial biome (Fig. 5 panel (a))
cific biomes. This lower agreement reflects the more uncertain flux contri-
&5 butions from the poorly data-constrained areas. For exampl
the larger sub-decadal variations fgna-MLS to large part

In order to link the estimategCO, variability to variabil- ~ °riginate from the South Pacific Subtropical Permanently
ity of sea—airCO, exchange as considered for the Global Stratified biome (Fig. A4 panel “Biome 77), which is a data-
Carbon Project (GCP) (Le @t et al., 2015), we calculated POOr region and t_herefore_ may recieve spurious varlabl_llty
sea—ailCO, fluxes f, using the same gas exchange formtifa- from the Equatorial Pacific extrapolated too far south (in-

4.2 Sea—-airCO; flux variability

tion for each mapping method (Sect. 3.6). deed, the amplitude of the variations reduces with shorter
latitudinal extrapolation radius (latitudinal a-priororrela-
4.2.1 The East Pacific Equatorial biome tion length, Sect. 3.3 of &enbeck et al., 2014)), though ac-

cording to theR'® criterion these larger variations match the
We first consider again the East Pacific Equatorial biemedata better than the smaller variations. Another contoibut
identified above as the biome with the largest interannualof sub-decadalena-MLS variability is the Pacific sector of
variability. Fig. 5 panel (a) provides its sea—i0O, fluxes Biome 16: In the Southern Ocean, essentially only two areas
estimated by 8 selected mapping methods (having relativdSouth of New Zealand and South-West of Patagonia, respec-
IAV mismatch Ri®" < 75% for biome-averagegdCO,). The tively) are data-covered for multiple years, such that aign
year-to-year flux variations are mainly driven by th€0O2 0 from there are extrapolated into their data-void surrongsli
variability (compare to Fig. 4 panel (a)). Again, interanhu Due to this low data coverage, the Southern Ocean biomes 15
features are largely similar between the mapping methodsind 16 also contribute considerably to the ensemble spread
in this biome, but differ in their amplitudes (Fig. 5 panel in general (Fig. A4). Unforunately, the absence of data also
(b)). There is some tendency that the mapping methods withmeans that we cannot validate or falsify the different gpdra
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lations. In summary, despite the success in constraiding
fluxes in the Equatorial Pacific from available data and map-
ping methods (Sect. 4.2.1), estimates of year-to-yeanvari
tions in the global sea—affO-, flux face larger uncertainties
due to the undersampled regions. 700
Despite these differences in the detailed variations, e a
plitude of global flux IAV (Sect. 3.6) is relatively consiste
(panel (d)). The global weighted ensemble mdé (Eq. 3)
is 0.31 PgCyr~! (horizontal line in panel (d)). Many bio-
geochemical process models have less variability than that
(mean 0f0.20 PgCyr—" in Le Quéré et al. (2015)) and thi¥
likely underestimate AV in the ocean carbon sink (compare
Séférian et al., 2014; Turi et al., 2014). Inverse estimates
based on atmosphel@O-, data show both larger and smaller
oceanic AV (Peylin et al., 2013), reflecting that they can-co
strain land variability but less so ocean variability. o
Though the primary strength of th& O, constraint lies
in its information on temporal variations and smaller-scal
spatial variations, we also consider the long-term mean
global sea—ailCO, exchange. The total mean flux (com-
prising both uptake induced by anthropogenic atmospheric
CO; rise and natural river-induced outgassing) estimated

Interannual variations of regionaC O, are constrained

at least in the more densely observed ocean regions
(tropical Pacific, parts of the Northern temperate Pacific
and Atlantic). The tropical Pacific is consistently esti-
mated as the biome with the largest interannual varia-
tions, with reduced”O, uptake during El Nio peri-
ods. The global ocea@O- uptake is estimated to have
gradually increased since about 2000, with little decadal
change prior to that.

Interannual variations in the global sea—&i0D, flux

are estimated to have an amplitude(o$1 PgCyr—!
(average across mapping methods weighted according
to IAV mismatch). Therefore most biogeochemical pro-
cess models appear to significantly underestimate this
variability (Le Quere et al., 2015, quote a model-derived
amplitude variation 06.2PgCyr—1!).

— Though the primary strength of th€ O, constraint lies

in its information on temporal variations and smaller-
scale spatial variations, the estimated net integrated
global sea—aiCO, flux of —1.75PgCyr—! (weighted
ensemble mean) is consistent within uncertainties with

by the different methods ranges betweei.36 PgCyr—!
and —1.96PgCyr~—! (for the 1992-2009 analysis period),

with a weighted ensemble mean (analogous to Eqg. 3

but using the inverse meapCO, bias as weights) of
—1.75PgCyr~!. This is consistent within uncertainties with

the independent estimates based on inverting ocean-
interior carbon data and on atmosphetig and CO,
trends.

For forthcoming analyses involving data-based sea—air

the independent estimate from inverting ocean-interio¥ ca CO- flux products, we recommend —if possible— to use sev-

bon data of—1.7PgCyr—' (Gruber et al., 2009) nomi-
nally for 1995. Subtracting a river-carbon induced outgass

eral interpolation products, or at least to test the rokasgtn
of the features under consideration by checking the consis-

flux of 0.45PgCyr—! (Jacobson et al., 2007), the ensem- tency between several products. In particular, agreenent b

ble mean corresponds to an anthropoger{e, uptake of:s

tween complementary mapping methods taking variability

—2.2PgCyr—!. This is again consistent within uncertainties either from driver data or directly fromCO, data (Fig. 1),

with the estimate from the globally integrative constrdint
the atmospheri©, andCO, trends of—2.24-0.6 PgCyr—!

as found here for the interannual variations in the trogfeal
cific, lends great support to the estimated features, asvish

given by Manning and Keeling (2006) for the slightly differ- consistency between different information sources.

ent 1993-2003 period. 730

5 Conclusions

Measurements of surface-ocedO-, mapped into continuss

However, the mapping products should carefully be se-
lected and weighted according to suitable performance di-
agnostics, to ensure their suitability in a given purposee T
presented “relative IAV mismatch” criterion provides a nec
essary condition for IAV applications. Analoguous “relati
mismatch” criteria can also be defined and calculated for

ous space-time fields, offer a much more direct way to quanother time scales. However, as discussed in the paper, it
tify sea—airCO, fluxes and their variations than previously would be even better to use sufficient conditions (e.g., de-

available approaches (model simulations, atmosphererinv
sions, ocean-interior inversions). Taking advantage adran
semble of 14 partially complementary surface-ocg@i, 740

rived by testing the power of the mapping methods to recon-
struct modellegpCO- fields from pseudo data subsampled as
the real data). Such sufficient conditions are not yet abvkala

mapping methods recently collated by the SOCOM initiative, for the SOCOM ensemble, but are planned in forthcoming

we analysed sea—aitO- flux variability globally and for a

subdivision of the ocean into 17 biomes (Fay and McKinley,

2014). This study has found that:

745
— Surface-oceapCO- data together with mapping meth-
ods constrain the seasonality of regiop@lO, essen-
tially in all ocean biomes (mostly withih0 patm).

studies.

SOCOM does not identify an “optimal” mapping method
or method class. We also discourage any ensemble averag-
ing (or medians, etc.) of full spatio-temporal fields or time
series, as this would result in variations that are not self-
consistent any more and fit the data less well than individual
products. Only for scalar statistical quantities of thetigpa
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temporal fields, such as amplitudes of variation, correfati arated points (Cressman, 1959; Levitus, 1982). In addition
coefficients, etc., it may make sense to summarize the ersencubic spline fitting is used to move away from the fitted mean
ble into averages of these quantities, weighted according t seasonal cycle to incorporate interannual variations gher
the above-mentioned performance diagnostics. data points exist. The de-correlation scales applied ifrthe
Many of thepCO- mapping products are updated when terpolation are determined from the auto-correlation abar
new data sets become available, and the mapping methodsristics of thepCO- data along ship-tracks or in time (Jones
are subject to further development. The SOCOM intercam-et al., 2012).
parison may serve to stimulate such developments, though Main intention / focus: To produce gpCO-, data set for
results should not be assessed in terms of their positidreint various uses. To quantify the impact of modes of climate
ensemble, but only in terms of objective criteria. At the web variability onpCO- and air-sea fluxes. The chosen approach
site http://www.bgc-jena.mpg.de/SOCOM/ we aim to pro- departs from other methods through its purely statistipal a
vide an updated list of products and ensemble analysesuS(proach; it does not use any other data sourcesghddy,.
COM welcomes further members contributing estimates of Documentation: Jones et al. (2015)
the spatio-temporalCO, field or the sea—aiC O, flux based Contact: Steve Jones.
on surface-ocean carbon data.
The basis of all mapping products considered here aréA2 “OceanFlux-SI” (ESA STSE OceanFlux Green-
extensivepCO, observations over many years. Even when house Gases)
external information is used to bridge data gaps (Fig. 1), a
minimum amount of data in time or within areas of simi- Method description: The in-situpCO5 data within SOCAT
lar biogeochemical behaviour is indispensible. Missintada are first corrected to a common satellite derived tempezatur
may not only lead to miss out existing features, but evendataset using an isochemical temperature dependence. This
to create spurious features due to sampling biases. Thougtreates an in-situ dataset with a common SST reference. Each
the exact limits to interpolation capacity can only be de- in-situ datapoint is then corrected to the year 2010 by assum
termined through targeted studies (e.g., by running imtering a trend ofl.5patmyr—t. The data are then binned into
polation schemes only on part of the data and then coma monthly 1x1 degree format. These monthly binned data
paring to the other part), this study already shows that (1)are kriged to produce a spatially complete dataset (Goddijn
with realistic sampling efforts (e.g. in the above-men¢éidn Murphy et al., 2015). We finally generate an interannual
well-constrained regions) and available mapping methodstime series by (1) cyclically using this climatological dsét
constrainingpCO- variability is possible (as in Fig. 5a; over time, (2) adding a prescribed trend Iof patmyr—*
Sect. 4.2.1), but (2) undersampled regions limit our currenin pCO4, and (3) correcting theCO-, values according to
ability to determine the global total flux in its finer detdiig. the difference between the climatological SST and the &ctua
5c, Sect. 4.2.2). This highlights the high priority thatslib  satellite-derived SST at each time and location (Shutlak. et
be given to sustaining the ongoing sampling and to closingn revision).
observational gaps. As many of the undersampled regiors are Main intention / focus. Produce a spatially complete
not well accessible by ships, autonomous sampling devicesnonthly climatology ofpCO, data for 2010 that uses a
such as BioARGO floats (Claustre et al., 2010), seem indisconsistent temperature dataset which is valid at a consiste
pensible as additional observation component. In additon depth in the water.
the actual measurements, the usp@©0- observations in re- Documentation: Goddijn-Murphy et al. (2015) (monthly
gional and global sea—ditO,, flux products also depends @n climatology), Shutler et al. (in revision) (interannualkiza
the continuation of all the efforts to quality-control thatd  tions).
and to provide them in a consistent and user-friendly form.  Contact: Jamie Shutler

A3 “Jena-MLS’ (Data-driven mixed-layer scheme)
Appendix A

Method description: The mixed-layer scheme is a data-

a0 driven interpolation scheme, primarily basedudiO-, obser-

vations but also compatible with the dynamics of mixed-taye
Al *“UEA-SI” (Statistical interpolation) carbon content. Firstly, the sea—@i0,, fluxes and thegCO,

field are linked to the spatio-temporal field of ocean-inéérn
Method description: The approach combines temporal inter- carbon sources/sinks through parametrizations of segasir
polation through curve fitting (1-4 seasonal harmonicssandexchange, solubility, and carbonate chemistry, as well as a
a linear trend) (Masarie and Tans, 1995; Schuster et al.budget equation for mixed-layer Dissolved Inorganic Car-
2009) and spatial interpolation using the concept of spatiabon (DIC). Then, the ocean-internal carbon sources/sinks
de-correlation lengths, or a ‘radius of influence’, intdgto  are adjusted to optimally fit theCO, field to the pCO,
ing data based on the likely similarity between spatially-se observations (in the present version\dc3: SOCATV3,
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Bakker et al., in preparation). Spatio-temporal interfpofa  laxation time scales (3 months — 5 years) as determined by
is achieved by Bayesian a-priori smoothness constrairtts wi the EOF analysis.

prescribed spatial and temporal de-correlation scales; te  Main intention / focus:

poral interpolation also results from the inherent relexats Documentation: Jacobson et al. (in preparation)

time scales of the mixed-layer carbon budget. Though the Contact: Andy Jacobson

process parametrizations are driven by SST, wind speed,

mixed-layer depth (MLD) climatology, alkalinity climatol A5 “AOML-EMP” (Diagnostic model using empirical
ogy, and some auxiliary variables, this external variapili relationships)

only determines features not constrained by %), ob-
servations (e.g., day-to-day variations, or variabilitydata-
void areas/periods), while the estimagdO, field in well-°*°
constrained areas/periods is only determined by the obderv
signals (no regression against drivers).

Main intention / focus: Global CO, flux field product
primarily based on observations only, with a focus on flux
variability, also to be applied as ocean prior in atmospi&ri ooy T e -
CO, inversion (in particular the Jena inversionsdenbeck does not implicitly include the effect of rising atmosplaeri

(2005)). The mixed-layer scheme has been chosen because {2 |€Vels. In the modified Park et al. analysis presented in
can be extended to link carbon variability to further obsery L€ QUere et al. (2015) the effect of increasing atmospheric

ables (mixed-layePO,, atmospheri©).), for using these as COs on the surface ocean is simulated by applying the out-
additional independent data constraints. o0 put of the "CO5-only” run of NCAR CCSM-3 model (Na-

Documentation: Rédenbeck et al. (2013) (method descrip- tional Center for Atmospheric Research’s Community Cli-

tion and seasonality): &lenbeck et al. (2014) (interannual Maté System Model Version 3) to each grid cell over the
variations and link to oxygen). time period. The sub-decadal variability is the same foheac

Contact: Christian Fbdenbeck approach as they are based on the safi®, mapping.
os The decadal trend o€O, flux calculated from the origi-

nal AOML-EMP approach shows a slight decrease in uptake

A4 “CU-SCSE” (Surface Carbon State Estimation) while the modified approach shows an increase in uptake
that is attributed to a negative feedback(, uptake due

Method description: The Surface Carbon State Estimate to ocean warming that is overwhelmed by increased anthro-

(SCSE v1.0, Jacobson et al. (in preparation)) is a KalmafffilP9enicCO; uptake. _

ter interpolation scheme for mappipg'O- over the global Main intention / focus: Data-driven globaC O, flux prod-
ocean during the entire period for which SOCAT point ob- uct )

servations are available. It is designed to provide a statis Documentation: Park et al. (2010a,b)

tically well-characterized prior estimate to an atmosjther ~ Contact: Geun-Ha Park

CO; analysis like CarbonTracker. SCSE tracks the time-
varying magnitudes of a set of basis functions, determine
as an optimal_difference from a rgference state composed Qfethod description: Multi-parameter regression
the Takahashi et al. (2009J°O, climatology for year 2000 ;, 12 separate ocean regions (RECCAP regions,

plus al.5patmyr~" global trend. Uncertainties are explic- gqq http://www.globalcarbonproject.org/global/pdf/
itly characterized by a full-rank posterior covariance rixat RECCAP Soft %20Protocol.v4.pdf and Fig. 1 in Schuster
which can then be used to produce realistic error estimateg; 5| (2013)) from 1990 to 2012. Main data stream used as
for arbitrary spatial domains. SCSE is a gridded e.StimatiO”constraint: SOCATV2 gridded product (Sabine et al., 2013)
scheme that tracksCO, for eachl® x 1° grid cell, butits ef- ), aqditional recent gridded data (all on 1 degree lagitud
fective spatial resolution is controlled by the number dfiba by 1 degree longitude by 1 month). Driver variables used:

functions used within each of 10 defined ocean basins. Th%ST Mixed layer depth, chlorophyll-a, atmosphei@0..
number of basis functions used within each basin vanesgygﬂh Main intention / focus: Seasonal through interannual vari-

time and is determined by the number of available observaabi”ty of the sea—aif!O, flux.

tions. This is intended to allow higher resolution at timed a Documentation: Schuster et al. (2013) (RECCAP)

places where there are mgr€ O, measurements. The basis Contact: Ute Schuster

functions include empirical orthogonal functions (EOFE) o

pCO, from a set of CMIP5 ocean carbon cycle simulations, A7  “JMA-MLR"

intended to represent the within- and across-model varia-

tions of climatology, trends, and variability on inter-asafbse Method description: The global ocean was divided into 44
to decadal time scales. They are assigned widely diffeeent r sub-regions based on the features of obsep@®, and

Method description: AOML-EMP uses empirical relation-
ships between surface-ocepfO, and SST, trained based
on sub-annual variations in the TakahaghiO, climatol-

ogy and the associated climatological SST values. These re-
lationships are then applied to interannually varying SSF (

ing the NOAA optimal interpolation SST product www.ncdc.
noaa.gov/oisst). The original analysis of Park et al. (2010

6 “UEx-MLR"
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SST/SSS/Chl-a variability and then optimal equations $ase  Contact: Tristan Sasse

timatingpCO,, in the sub-regions were derived from multiple

regressions using SST, SSS and Chl-a as independent vari-

ables. Rather than using time as independent variabldasecu A9 “ETH-SOMFFN” (A Combined 2-Step Neural Net-
trends ofpCO;, (for wider biomes than the sub-regions) were work approach)

evaluated separately from multiple regressions, suladact
from the data, and re-added to tp€0O, map. Observed
pCO2, SST and SSS in SOCATV2 and satellite Chl-a (SeaW-
iFS and MODIS/Aqua: http://oceancolor.gsfc.nasa.gov; be
fore 1997, the climatology of satellite Chlorophyll-a data
are used) are used to derive equations and analytical SS

(MGDSST: Kurihara et al. (2006)), SSS (MOVE/MRI.COM- then used to reconstruct the non-linear relationship betwe

i : . rivers (SST, SSS, MLD, Chl-a [before 1998 using a clima-
G: Usui et al. (2006)) and the same Chl-a data mentlonecij : . i
above are used to reconstruct #@0, fields. ology], and atmosphericCO,) and griddegCO, observa

w15 tions from SOCAT.

Main intention / focus: To map globalpCO, and CO, Main intention / focus: Produce globapCO,; and CO,
flux field based on surface observation data and evaluate thhe o . ) S
ux maps; investigate seasonal and inter-annual varigbili

interannual variability and long-term trend of global ocea within the study period

CO- uptake. The merits of using simple multiple regression Documentation: Landscliitzer et al. (2013, 2014)

analysis for estimatingCO4 include its possibility to give i ' . ' '

oceanographic explanations for th€O,, variability. o Contact: Peter Landsatzer
Documentation: lida et al. (2015) (method description and

trend analysis) A10 “CARBONES-NN”
Contact: Yosuke lida

Method description: As a first step, a self-organizing map

(based on climatologicalCO», SST, SSS, MLD, and Chl-

a) is used to cluster the global ocean into biogeochemical
ovinces. Within each province, a feed-forward network is

A8 “UNSW-SOMLO” (Self-Organizing  Multiple- Method description: CARBONESNN is a neural network
Linear Output) framework developed within the EU-FP7 project CAR-
BONES (http://www.carbones.eu/wcmgs/) that maps surface
Method description: In this approach we couple a neural net- oceanpCO, observations to first-order explanatory vari-
work clustering algorithm with a multiple linear regressio ables. As explanatory variables, it uses observations from
(MLR) to diagnose monthly ocean surfap€0, distribu- satellites (Surface Chlorophyll climatology from SeaWjFS
tions from 1998 through to 2011. The algorithm first cap- model outputs (SST, SSS, MLD) from the MERCATOR
tures larger-scale ocean dynamics by a data-based clustemeean reanalysis, previous stefO, estimates (recursive
ing of the grid cells into “biogeochemical fingerprints” ngisc  approach) and latitude as a proxy for atmospheric condition
a self-organizing map (SOM). The SOM approach utilizes A two-step neural network approach is applied based on a
the SOCATV2 griddeghCO4 product along with co-located Multi Layer Perceptron network coupled with a variational
SST, SSS, Chl-a, MLD, and geographical information (n- data assimilation scheme. A first calibration step adjusts t
vector) to iteratively cluster the dataset into a set of 186-n  seasonal component p£O- using climatological data (ref-
rons (the spatial domains of which we refer to as biogeo-erence year 2000; from Takahashi et al. (2009) sampled at
chemical fingerprints). Within each neuron, MLRs are thenthe points where there are measurements). This step recre-
derived betweemCO- and the optimal set of sea-surface ates a 2D monthly climatology @iCO- that is similar to the
temperature/salinity/Chl-a, MLD, and atmosphesi€Os. one of Takahashi et al. (2009), but also different as the-inte
Thus, each MLR can be thought of as a local-scale optimizeipolation is based on the explanatory variables. A second ste
that follows the global non-linear optimization analysey{ uses the rawCO- data (LDEOV1.0, Takahashi et al. (2007))
formed by the SOM. To predigtCO, using any indepen- to adjust the interannual variability @fCO, over the period
dent set of driver data, a similarity measure is first used t01989 to 2009. A moving assimilation window is used. Input
determine which neuron best represents the driver data valariables anggCO- data were previously gridded at monthly
ues, then the@CO, value is predicted using the regression temporal an®2° x 2° spatial resolutions. Note that most of
parameters established with training data of that neuran.sWthe coastal oceapCO, data have been filtered out.
call this approach SOMLO: self-organizing multiple linear  Main intention / focus: Produce globalCO, sea—air flux
output. maps over the past decades to be coupled in the Carbon Cy-
Main intention / focus: To diagnose monthly ocean sur- cle Data Assimilation System developed at LSCE within the
face pCO;, distributions and air-se@O, fluxes from 1998 CARBONES project.
through to 2011, and to advance our understanding ofesea- Documentation. CARBONES web site (http://www.
sonal to inter-annual variability. carbones.eu/wcmgs/) and article under preparation.
Documentation: Sasse et al. (2013) Contact: Philippe Peylin
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All “NIES-SOM” braith et al., 2011). The model was forced at the surface with
several reanalysis products, including CORE-Il (Large and
Method description: Self-organizing map with linear increas- Yeager, 2009), ERA-40 (Uppala et al., 2005), and NCEP-1

ing trend with time. (Kalnay et al., 1996). Additionally, the two simulationstiwvi

Mainintention/ focus: pCO-, mapping and evaluating sea- NEMO-PISCES from the study of Rodgers et al. (2014) were
sonal/interannual air-s&a0, exchange. included in the analysis.

Documentation: Nakaoka et al. (2013) (for North Pacific); Main intention / focus: Seasonal through decadal variabil-
Nakaoka et al. (in prep.) (for Pacific) mo ity in pCO4 and air-se&@>O-, fluxes

Contact: Shin-ichiro Nakaoka Documentation: Majkut et al. (2014)

Contact: Keith Rodgers

Al12 “NIES-NN” (feed-forward neural network)

Al4 “NIES-OTTM” (Ocean Tracer Transport Model
Method description: We first estimated the global trend of with variational assimilation of surface ocean
pCO, using the method of Zeng et al. (2014) and used:this pCO2)
trend to normalize theCO- data to the reference year 2000. o . . . _
We then modelled the spatial and seasonal variations in th&€thod description: The offline OTTM is run with physi-
reference year using a feed-forward neural network (Zeng@l data from GFDL coupled ocean-atmospheric re-analysis
et al., 2015b). The driver variables include SST, SSS, Chl-version-2 data for the period of 1980-2010 (Delworth et al.,
a, latitude, longitude, and month. For training, climatpés 2006; Gnanadesikan et. al., 2006). The necessary input data
of the driver data are used. For prediction, we use timetyariused from the re-analysis are as follows: The t|m§ dependent
ant SST (it would be ideal to use time variant SSS and ChI-3-D currents, hydrography and surface 2-D variables such
a as well but no such data are available in certain modele@S MLD, heat fluxes, water fluxes and sea surface height.
periods). Due to the use of climatologies of the driver datalhe physical part of OTTM calculates the evolution of trac-
and the normalizegCO to train the neural network, the ©rs in the global ocean (Valsala et al., 2008). The biolog-
predictedpCO, does not yet contain a trend; thereforehe iC8l model is adapted from McKinley et al. (2004). The
trend estimated in the first step is re-added to the networiXPort production in the surface euphotic zoel1(l0m)
output. We use all data from SOCATV2 that fulfill the se- IS calculated using prescribed monthly climatological pho
lection criteria elevationc —500m, ice cover< 50%, SSS  Phate and light, scaled by a spatially varying parame-
> 25, and SST> —10°C. Software implementation details ter which accounts for maximum export rate and for those

of the model can be found in Zeng et al. (2015a). us  processes which are not accounted for by the phosphate and
Main intention / focus: Monthly CO, maps and long-term  light limitation model. The surface ocean chemistry model i
global trend. taken from OCMIP-II abiotic model (Orr et al., 1999). The

Documentation: Zeng et al. (2014) (for climatol- Physical-biogeochemical model is used to simulate the sur-
ogy); (Zeng et al., 2015b) (for time-varying fields); face oceapCO, and air-sed O, fluxes. The surface ocean
Zeng et al. (2015a) (software implementation); data*set?COz in the model is constrained by a variational assimila-

doi:10.1594/PANGAEA.834398 tion method in which a conservative adjoint of data-model
Contact: Jiye Zeng misfit of pCO4 (using thepCO,, climatology and LDEOv1.0

point data (Takahashi et al., 2007)) is tracked backward in

A13 “PU-MCMC’ time in the 3-D ocean over an iteration window of 2 months.

s At each iteration, the forward model corrects the initiadlan

Method description: The PrincetorpCO, product is calcu- ~ Poundary condition oIC (Dissolved Inorganic Carbon)
lated by a Bayesian inversion (using a Markov Chain Monte@ccording to the weighted adjoints. The iterations are-trun
Carlo (MCMC) minimization algorithm) as described in Ma- cated when the mismatch falls below a minimum value of
jkut et al. (2014). TheCO, field is decomposed into (A) the 10% of its |n|t|_al value (see Valsala and Maksyutov, 2010).
decadal trend, (B) the June 1995 mean value, (C) the se§onal Documentation: Valsala and Maksyutov (2010)
cycle, and (D) the interannual variability. Each of thesee Contact: Vinu Valsala
is derived from process model simulations, and then scaled
as to optimally fit thepCO, observations. The data prod-
uct that is inverted is LDEOv2010 (Takahashi et al., 2012). ) T . ) )
Two forward models were used to derive the prior fields fundlng_ agencies involved in the_ collection, qual_lty control, and

. . . , ' synthetization ofpCO, data, which are the basis of all map-
with the main model being GFDL's MOM4p1-BLING. For ping products. The Surface Oce@l®, Atlas (SOCAT) is an in-
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Table 1. General information on the mapping methods.

Versionused Contact

Reference

Method type

UEA-S v1.0 Steve Jones
OceanFlux-S v0.95 Jamie Shutler
Jena-MLS ocvl.3 Christian Rdenbeck
CU-SCSE v1.0 Andy Jacobson
AOML-EMP v2 Geun-Ha Park
UEx-MLR v2.0 Ute Schuster
JMA-MLR v2 Yosuke lida
UNSW-SOMLO vl Tristan Sasse

ETH-SOMFFN ETH30yr01  Peter Landséieer
CARBONESNN 2014-02-18  Philippe Peylin

Jones et al. (2015)

Shutler et al. (in revision)
update ofdtlenbeck et al. (2014)  Stat. Interpol.
Jacobson et al. (in preparation)

Park et al. (2010a)
Schuster et al. (2013)

lida et al. (2015)

Sasse et al. (2013)

Landsctitzer et al. (2014)

Stat. Interpol.

Stat. Interpol.

Regression
Regression
Regression
Regression
Regression

http://www.carbones.eu/wcmaqs/ Regression

Stat. Interpol.

NIES-SOM v1.2 Shin-ichiro Nakaoka update of Nakaoka et al. (2013) Regmssio
NIES-NN v1.0 Jiye Zeng Zeng et al. (2014) Regression
PU-MCMC v1.0 Keith Rodgers Majkut et al. (2014) Model-based
NIES-OTTM 2013-08-11  Vinu Valsala Valsala and Maksyutov (2010) Model-based
Table 2. Original domains and grid resolutions of the products
Original domain Original grid resolution
—spatially’ —temporally —spatially —temporally
UEA-S Global(upto 70N)  1985-2011 2.5° x 2.5°  monthly
OceanFlux-9 Global 1995-2009 1°x1° monthly
Jena-MLS Global 1987-2013 ~4° x5° daily
CU-SCsE Global 1970-2011 1°x1° monthly
AOML-EMP Global 1985-2011 ~4° x 5° monthly
UEX-MLR Global 1990-2012 1°x1° monthly
JMA-MLR Global 1990-2012 (Chl IAV since 1997) 1° x 1° monthly
UNSW-SOMLO  Global (open-ocean) 1998-2011 1°x1° monthly
ETH-SOMFFN  Global (upto 79N) 1982-2011 1°x1° monthly
CARBONESNN  Global 1990-2009 2° x 2° monthly
NIES-SOM Global 1998-2009 1°x1° monthly
NIES-NN Global 1990-2012 1°x1° monthly
PU-MCMC Global 1980-2009 4° x 5° monthly
NIES-OTTM Global 1980-2010 1°x1° monthly

¢ Even if designated “global”, most methods exclude some coastal aréiaes Arctic, or treat coastal areas as open ocean.
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Table 3. Specifications of the mapping methods with respect to the constraints anch@sons used (see Appendix A for details and

references).
pCO; data Adjusted variable Coherence scales of adjustihents Regression 0pCO- against Prescribed
—spatially —temporally relation

UEA-S SOCATv2 pCO4 Correlated pixels 1-4 harmonics -/- -I-
OceanFlux-9 SOCATv2 pCO2 Correlated pixels Correlated time steps -I- -/-
Jena-MLS SOCATVZ Internal C fluxe$§ Correlated pixels Correlated days -/- -I-
CU-SCSE SOCATV2 Pattern magnitudes 10 ocean basins Correlated timé stepSpatial basis functions (EOFs based on models) Linear
AOML-EMP Takah. clim. Regr. coeff. Independent pixels 1-4 sub-annual periods ~ SST Linear
UEX-MLR SOCATvZ Regr. coeff. 20 ocean regions Entire period SST, MLD, ghi04t™ Linear
IMA-MLR SOCATVZ Regr. coeff. 44 regions Entire period SST, SSS, Chl Linear
UNSA-SOMLO SOCATV2 Regr. coeff. Biogeochem. fingerprifits Entire period SST, SSS, MLD, ChtCO» Lin. (Non-lin.)"
ETH-SOMFFN SOCATV2 Network weights Biogeochem. provinces Entire period SST, SS9, I@hl, zCO2 Non-linear
CARBONESNN  LDEOv1.0 Network weights Global Moving window SST, SSS, MLD, dat®, long® Non-linear
NIES- SOM SOCATv2 Assignments Global Entire period SST, SSS, MLD, Chl, daig) time Non-linear
NIES-NN SOCATVZ:® Network weights Global Entire period SST, SSS, Chl, lat, long, month on-hhear
PU-MCMC LDEO2010 Regr. coeff. Independent pixels Entire period Mean, trend, seas.,\afbiAmodel simulation ~ Scaled model
NIESOTTM LDEOvV1.0 IC + BC ofDICY Independent pixels 2-months windows Various drivers through the procesd mod Model

¢ plus additional recent data

b except some coastal data

¢ Ocean-internal sources and sinks of carbon to the mixed layer

< Initial and boundary conditions of tHeIC field

¢ Spatial and temporal domains of the adjustable degrees of freedom. Roughlingpp&lO- structureswithin these domains originate from the structures in the driving variables,
while structuresetween these domains are directly determined by #@O- data. Thus, the coherence scales determine the balance between the ability ofaitmétitige data
gaps and its ability to directly follow the observed signals.

f The fingerprints are derived by non-linear clustering of the data themselveghthmapping as a whole is non-linear.

9 The individual basis functions have widely different relaxation time scalesof®hs — 5 years).

h Only for step 1 (seasonality), not for step 2 (IAV)

k values with flags A-D, not E

! Note that the data sets used for the same quantity may differ between tidiatimethods.

Glossary: Regr. coeff.=Regression coefficients, lat=latitude, long=lateyitu

Variables: Chl=Chlorophyll-a, MLD=Mixed layer depth, SSS=Sea Surface SalBy=Sea Surface Temperatur€; O, =AtmosphericCO> mixing ratio

Table 4. Information content about various modes of variability as implementeth&yndividual mapping methods. Modes labelled as
“EST.” (= estimated) are considered to reflect data-based informatsotiey either are directly estimated by time-dependent adjustments,
or are regressed against drivers through multiple adjustable degfrisesdom. The trend is considered estimated if the interannual degree
of freedom allow a data-based trend to establish p€i©- is explicitly regressed against a rising term (time or atmospli&tie).

Method Mean Seasonality 1AV Trend Day-to-day
UEA-S EST. EST. partly est. EST. -/-
OceanFlux-9 EST. EST. parameterized prescribed /-
Jena-MLS EST. EST. EST. EST. parameterized
CU-SCSE EST. EST. EST. EST. interpolated
AOML-EMP EST. EST. EST. modelled -I-
UEx-MLR EST. EST. EST. EST. -/-
JMA-MLR EST. EST. EST. prescribed /-
UNSW-SOMLO EST. EST. EST. EST. -/-
ETH-SOMFFN  EST. EST. EST. EST. -/-
CARBONES-NN EST. EST. EST. EST. -/-
NIES-SOM EST. EST. EST. EST. -/-

NIESNN EST. EST. EST. EST. -/-
PU-MCMC EST. scaled model scaled model EST. -/-

NIESOTTM EST. EST. EST. -I- -I-
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Table 5. Biomes of Fay and McKinley (2014) used for time series
comparison (see Fig. 2).

No. Abbreviation Name

1 NP ICE (omitted) North Pacific Ice

2 NP SPSS North Pacific Subpolar Seasonally Stratified

3 NP STSS North Pacific Subtropical Seasonally Stratified

4 NP STPS North Pacific Subtropical Permanently Stratified
5 PEQU-W West Pacific Equatorial

6 PEQU-E East Pacific Equatorial

7 SP STPS South Pacific Subtropical Permanently Stratified
8 NA ICE (omitted) North Atlantic Ice

9 NA SPSS North Atlantic Subpolar Seasonally Stratified

10 NA STSS North Atlantic Subtropical Seasonally Stratified
11 NA STPS North Atlantic Subtropical Permanently Stratified

12 AEQU Atlantic Equatorial

13 SASTPS South Atlantic Subtropical Permanently Stratified
14 IND STPS Indian Ocean Subtropical Permanently Stratified
15 SOSTSS Southern Ocean Subtropical Seasonally Stratified
16 SO SPSS Southern Ocean Subpolar Seasonally Stratified

17 SO ICE Southern Ocean Ice
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Role of driver data
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Fig. 1. Classes obCO> mapping methodsSatistical interpola-
tion methods essentially only use theCO- data themselves, filling
spatio-temporal gaps by assuming a statistical relation to neighbc  sos -§
ing data points. In well-constrained areas/periods, they closely f
low the signals contained in the data, while in areas/periods far frc
neighbouring data points, they remain essentially unconstrain
Regression methods establish a quantitative relation betwegiO»
and a set of external variables assumed to capture the major mc¢  oos - ' ' ' ' '
of spatio-temporal variability. Adjustable degrees of freedom a 60E 1208 180°8 12w sow oE
constant in time and within certain spatial regions, such that data
gaps can be_ fllled.accordlng to t_he_s_patlo-tempo_ral st_ructure in thq:ig. 2. Map of biomes (Fay and McKinley, 2014) used for time
external variables; however, variability not contained in any of the . . .

. series comparison. (See Table 5 for biome names.)
chosen external data sets cannot be reproduced. Non-lineasregre
sion methods (feed-forward neural networks, self-organizingsinap
essentially do not impose any structure to this relation between
pCO2 and the drivers. (Multi-)linear regression imposes a linear
relationship, thereby restricting the type of responses but ensuring
a unique and mathematically well-defined solution. Finally, knowl-
edge of biogeochemical processes can be brought to bear bg+regre
sion of pCO, against fields simulated bykiogeochemical process
model, or by tuning initial conditions or parameters in such a model
simulation to match the observations. However, this relies heavily
on the structure of the process simulation to be correct.
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Fig. 4. pCO- time series from selected mapping methods (having

Fig. 3. pCO2 time series from all 14 presented mapping methodsa relative 1AV mismatchR!®" < 75%) averaged over the East

averaged over the North Atlantic Subtropical Permanently StratifiedPacific Equatorial biome of Fay and McKinley (2014, illustrated
biome of Fay and McKinley (2014, illustrated by the little map). by the little map). Line styles indicate the relative 1AV mismatch:
Line styles indicate the relative monthly mismat@f°"* < 30% R™ < 30% (thick), 30-60% (medium),60-75% (thin).

(thick), 30-60% (medium),60-75% (thin), abover5% (dashed). (a) InterannuapCO5, variations (12-months running mean).

(a) pCO2 on monthly time steps for 3 selected years. (b) As (a), but averages only calculated over pixels with data in the
(b) As (a), but averages only calculated over pixels with data in theSOCATv2 monthly gridded data set.

SOCATV2 monthly gridded data set. (c) Mismatch: Biomelyearly-average difference between the sub-

(c) Mismatch: Biome-average difference between the submittedmitted pCO- fields and the co-located SOCATv2 monthly gridded
pCOxs fields and the co-located SOCATV2 monthly gridded values. values.
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Fig. 5. Interannual sea—aff O- flux variations in the East Pacific Equatorial biome (left) and the globameght) from selected mapping
methods (having relative 1AV mismatd'®¥ < 75% for pCO, averaged in the respective regio(d,c) Time series (yearly flux sum). Line
styles indicate the relative 1AV mismatctR'®Y < 30% (thick), 30—60% (medium),60-75% (thin). The vertical dotted lines delimit the
analysis period for the amplitude computatigh,d) Amplitudes A¥* of interannualCO- flux variations (see Sect. 4.2) plotted against
the relative 1AV mismatch amplitud&:*” for each submission (cases not fully covering the analysis period tese omitted to avoid
inconsistencies). The weighted meanv (Eq. 3) is given as horizontal line.
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Fig. Al. Monthly pCO- variations over years 2003-2005 (arbitrarily selected) as estimatetl imajpping methods, averaged over the
biomes by Fay and McKinley (2014) (see Fig. 2, panels roughly in ggbgcal arrangement). Vertical scales span the same range for all

2006

biomes (00 patm), but some vertical shift has been chosen according to the meanl ggafia pattern. Line styles indicate the relative
monthly mismatchR™™™" < 30% (thick), 30-60% (medium),60-75% (thin), above75% (dashed); the legend reflects “Global”. In some

biomes, lines of certain mapping methods with higher mismatches haveclygeed (rather than enlarging the vertical scale), in order to

maintain clarity. Biomes 1 (North Pacific Ice) and 8 (North Atlantic Ice) haeen omitted due to extremely sparse data coverage.
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Fig. A2. InterannuapCO- variations as estimated by all mapping methods, averaged over the ligriag and McKinley (2014) (see Fig.

2, panels roughly in geographical arrangement). Line styles indicatesldive 1AV mismatch:R®" < 30% (thick), 30-60% (medium),
60-75% (thin), above75% (dashed); the legend reflects “Global”. Vertical scales span the samge for all biomesi(0 patm), but some
vertical shift has been chosen according to the mean spétiab pattern. In some biomes, lines of certain mapping methods with higher
mismatches have been clipped (rather than enlarging the vertical Soate)ler to maintain clarity. Biomes 1 (North Pacific Ice) and 8
(North Atlantic Ice) have been omitted due to extremely sparse data gevera
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Fig. A3. Mismatch between the interannygl'O-, variations as estimated by all mapping methods and the SOCATv2 monthiiegniclues
(biomel/yearly averages of the map-data difference sampled at tliiutiene of the comparison data, Sect. 3.5.1).
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Fig. A4. Interannual variations of the sea—&i0, flux as estimated by all mapping methods, integrated over the biomes bwriehay
McKinley (2014) (see Fig. 2, panels roughly in geographical arrarege). Line styles indicate the relative 1AV mismatdi’ < 30%
(thick), 30-60% (medium),60-75% (thin), above75% (dashed); the legend reflects “Global”. Vertical scales span the samge for all
biomes (.8 PgCyr~* except the global flux), but some vertical shift has been chosesrdiog to the mean spatial flux pattern. In some
biomes, lines of certain mapping methods with higher mismatches haveclygeed (rather than enlarging the vertical scale), in order to
maintain clarity. Biomes 1 (North Pacific Ice) and 8 (North Atlantic Ice) haeen omitted due to extremely sparse data coverage.
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Fig. A5. Data density of the gridded SOCATV2 product used for comparisombéu of data-covered pixels per month in each biome.
that these values are only roughly indicative of the strength of data eortstwhich not only depends on the number of data but also strongly
on their distribution within the biome. Also, the magnitudes cannot be com@teveen biomes, because they have differently many pixels
and the pixel size depends on latitude. Further note that several megwd®EO or other SOCAT versions, thus may be constrained more
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Fig. A6. Valid domain for each mapping method (colored area). The color giMesumber of valid months within the period of the method,;
a number less than the maximum (dark red) indicates either (1) a fractieeanask along coastifa-MLS), (2) seasonally invalid months
due to unavailable Chlorophyll-a input dattMA-MLR, ETH-SOMFFN, NIES-SOM), or (3) occasional invalid months due to missing SST

input (OceanFlux-9) or numerical reason$JEx-MLR).
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Fig. A7. Decadal sea—aiCO- flux variations in the global ocean
from selected mapping methods (having relative 1AV mismatch
R® < 75% for globally averagegCO3). (a) Interannual time se-
ries as in Fig. 5(c). Line styles indicate the relative IAV mismatch:
R'™ < 30% (thick), 30-60% (medium),60-75% (thin). The ver-
tical dotted lines delimit the periods for the trend computat{op.
Linear trends over 1991-2001 (smaller symbols) and 2001-2011
(larger symbols) plotted against the relative 1AV mismatch ampli-
tude R for each submission (cases not fully covering the two
trend periods have been omitted to avoid inconsistencies). Error
bars only reflect the uncertainty of the linear fit due to interannual
variations (calculated assuming consecutive years to be statistically
independent). Despite the very short periods, a more negative trend
in the later period is a significant and consistent feature. The solid
black horizontal lines give the weighted mean trends for the two
periods, where submissions have been weighted both according to
R'™ and to the uncertainty of the linear fit.
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