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S. Nakaoka8, A. Olsen9, G.-H. Park10, P. Peylin11, K.B. Rodgers12, T.P. Sasse13, U. Schuster6, J.D. Shutler6,
V. Valsala14, R. Wanninkhof15, and J. Zeng8

1Max Planck Institute for Biogeochemistry, Jena, Germany
2Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
3Institute for Biogeochemistry and Pollutant Dynamics, ETHZürich, Zürich, Switzerland
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Abstract. Using measurements of the surface-oceanCO2

partial pressure (pCO2) and 14 differentpCO2 mapping
methods recently collated by the Surface OceanpCO2

Mapping intercomparison (SOCOM) initiative, variations in
regional and global sea–airCO2 fluxes are investigated.5

Though the available mapping methods use widely differ-
ent approaches, we find relatively consistent estimates of
regionalpCO2 seasonality, in line with previous estimates.
In terms of interannual variability (IAV), all mapping meth-
ods estimate the largest variations to occur in the Eastern10

equatorial Pacific. Despite considerable spread in the de-
tailed variations, mapping methods that fit the data more
closely also tend to agree more closely with each other in re-
gional averages. Encouragingly, this includes mapping meth-
ods belonging to complementary types – taking variability15

either directly from thepCO2 data or indirectly from driver
data via regression. From a weighted ensemble average, we
find an IAV amplitude of the global sea–airCO2 flux of
0.31PgCyr−1 (standard deviation over 1992–2009), which
is larger than simulated by biogeochemical process models.20

On a decadal perspective, the global oceanCO2 uptake is es-
timated to have gradually increased since about 2000, with
little decadal change prior to that. The weighted mean net
global oceanCO2 sink estimated by the SOCOM ensem-
ble is −1.75PgCyr−1 (1992–2009), consistent within un-25

certainties with estimates from ocean-interior carbon data or
atmospheric oxygen trends.

1 Introduction

The global ocean acts as a major sink for anthropogenic car-30

bon, and thereby helps to slow down the human-induced
warming of the Earth’s climate (Stocker et al., 2013).
Presently, approximately 27% of the annually emitted car-
bon is taken up by the ocean (Le Quéŕe et al., 2015); in total
30% of the anthropogenic carbon emitted since the industri-35

alization of our planet has been stored by the ocean (Sabine
et al., 2004; Khatiwala et al., 2013). Thus, variations in the
oceanic carbon sink, in particular a possible decline under
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climate change, co-determine the future climate trajectory.
In addition to this direct relevance, present-day variations in40

the sea–airCO2 exchange, when related to possible driving
factors, can be employed to provide information on the un-
derlying mechanisms of ocean biogeochemistry.

Until recently, estimates of the oceanicCO2 uptake rate
and its variability were largely based on (1) ocean biogeo-45

chemical process models (see, e.g., Wanninkhof et al., 2013),
(2) inverse estimates based on atmosphericCO2 data (see
Peylin et al., 2013), or (3) inverse estimates based on ocean-
interior carbon data (Gloor et al., 2003, and subsequent re-
finements). However, while process models are useful tools50

to study the sensitivity of carbon fluxes to the physical and
biogeochemical mechanisms that control them, they are not
specifically designed for state estimation and thus have large
uncertainties if used in this way (Wanninkhof et al., 2013).
Likewise, while atmosphericCO2 inversions are able to pro-55

vide estimates of land–airCO2 exchange on large scales,
their sea–airCO2 flux estimates suffer from large relative
errors over most of the ocean due to the dominance of land
variability in the atmospheric signals (Peylin et al., 2013).
Finally, while ocean-interior inversions offer a strong data-60

based constraint on the long-term flux in larger regions, they
do not provide flux variability or finer spatial detail.

A more direct quantification of the sea–airCO2 flux is
possible using measurements of the oceanic and atmospheric
partial pressures ofCO2 (pCO2) in conjunction with a pa-65

rameterization of the gas transfer across the sea–air inter-
face. Through extensive concerted community efforts, more
than 10 million surface oceanpCO2 measurements were
gathered and recently compiled into the SOCATv2 (Sur-
face OceanCO2 Atlas version 2, Bakker et al., 2014) and70

the LDEOv2013 (Lamont-Doherty Earth Observatory ver-
sion 2013, Takahashi et al., 2014a) databases.

AlthoughpCO2 data are thus available in nearly all ocean
basins for several decades, observations from ships or fixed
sensors can necessarily only cover a tiny fraction of the75

spatio-temporalpCO2 field of the global surface ocean.
Therefore, to obtain continuous sea–airCO2 flux fields over
larger areas or the entire ocean, interpolation (gap-filling)
methods are needed to estimate values in all the periods
and areas not directly observed. Various methods have been80

proposed to interpolatepCO2 data in space and time (Ap-
pendix A). They span a wide range of approaches, in par-
ticular with respect to the information sources tapped and
assumptions imposed. Due to that, some methods are able
to reproduce the signals in the data more closely while oth-85

ers are able to bridge the data-void areas/periods more effec-
tively (Fig. 1).

These complementary characteristics of the various ap-
proaches to some degree reflect differing targets of the in-
dividual studies. Correspondingly, their strengths and weak-90

nesses can be expected to vary depending on the given pur-
pose. However, this complementarity offers a great opportu-
nity for robustness assessment, as the existence of common

features in the results of mapping methods based on different
principles give strong support to the estimates. In periodsor95

areas without data, this is the only available way to assess un-
certainties. Further, we can investigate the information con-
tent of the various data streams used by some methods and
not used by others. It is the primary objective of the Sur-
face OceanpCO2 Mapping intercomparison (SOCOM) ini-100

tiative to foster such inter-method investigations. SOCOMis
not meant to rank methods but to exploit the added value of
their complementarity. Ultimately it aims to identify which
features of the surface-oceanpCO2 field (and consequently
the sea–airCO2 flux) can be robustly inferred from the avail-105

able surface-ocean carbon data, and to provide quantitative
estimates for these features, including an uncertainty assess-
ment. These sea–airCO2 flux estimates based on surface-
ocean carbon data are then available to feed into compre-
hensive carbon cycle syntheses like the REgional Carbon110

Cycle Assessment and Processes (RECCAP) activity of the
Global Carbon Project (http://www.globalcarbonproject.org/
reccap/), which until recently mainly had to rely on model
simulations for variability.

This paper first introduces the ensemble of data-driven115

pCO2 mapping methods currently available in the SOCOM
initiative (Sect. 2), and gives an overview of the estimated
seasonality and interannual variability (IAV) in oceanic
“biomes” (Sect. 4.1). As some of thesepCO2 data-driven
methods have been used to assess interannual variations of120

global sea–airCO2 fluxes in recent carbon budgets by the
Global Carbon Project (GCP) (Le Quéŕe et al., 2015), we
then specifically analyse the interannual variations in the
sea–airCO2 fluxes. Focus is put on the consistency between
regressing and non-regressing methods, and on the amplitude125

of the interannual sea–airCO2 flux variability (Sect. 4.2).

2 Mapping Methods

This section provides an overview of the principles of the var-
ious mapping approaches, and the range of particular choices
taken within each method class. Details on the individual130

mapping methods (referenced by labels in italics) are givenin
Appendix A and the references cited there. Essential proper-
ties and technical parameters are summarized in Tables 1–3.
In particular, Table 3 gives the spatial and temporal coher-
ence scales of the adjustible degrees of freedom, determin-135

ing the balance between the ability of a method to bridge
data gaps and its ability to directly follow the observed sig-
nals (see table footnotee). Table 4 indicates which modes of
pCO2 variability are, by construction of the individual meth-
ods, estimated from thepCO2 data information (rather than140

prescribed or determined in other ways). For a summary of
method classes see Fig. 1 and its caption.
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2.1 Statistical interpolation

Statistical interpolation schemes fit the data to suitable
auto-regressive models. The applied auto-correlation scales145

have either been determined from thepCO2 data them-
selves (UEA-SI, OceanFlux-SI), chosen to reflect data den-
sity (Jena-MLS), or derived from empirical orthogonal func-
tion (EOF) analysis of an ensemble of process model simula-
tions (CU-SCSE). The interpolation is either done directly for150

thepCO2 field (UEA-SI, OceanFlux-SI, CU-SCSE) or indi-
rectly for the field of ocean-internal carbon sources and sinks
determining thepCO2 field (Jena-MLS).

In most statistical interpolation schemes, those pix-
els/timesteps that are neither directly constrained by co-155

located data, nor indirectly constrained by sufficiently close
data (within the spatial or temporal correlation scales), fall
back to some “background state” or “prior”, namely: the
estimated mean seasonality and estimated trend (UEA-SI),
parametrized temperature-related variations (Jena-MLS), or160

a prescribed climatology plus a prescribed linear trend (CU-
SCSE). The ordinary block kriging used inOceanFlux-SI
does not use a-priori data values and interpolates the data
to any distance, though the estimation uncertainty increases
with interpolation distance.165

2.2 Regression to external drivers

2.2.1 Linear Regression

(Multi-)linear regression (AOML-EMP, UEx-MLR, JMA-
MLR) expressespCO2 as a linear combination of a set of
one or more driving variables (such as Sea Surface Temper-170

ature (SST), Sea Surface Salinity (SSS), Mixed-layer depth
(MLD), Chlorophyll-a, etc.), and adjusts their multipliers as
to best match thepCO2 observations. The calculation is done
separately for each of a set of spatio-temporal domains. In-
dividual implementations differ in the set of chosen driver175

variables, as well as in the choice of spatio-temporal domains
over which the same adjustable multipliers are used.

2.2.2 Non-linear Regression

The forms of non-linear regression technique currently ap-
plied to map the sea surfacepCO2 are self–organizing180

maps (SOM) (NIES-SOM) and feed-forward networks (FFN)
(NIES-NN, CARBONES-NN), as well as combinations of
SOM and FFN (ETH-SOMFFN) or SOM and linear regres-
sion (UNSW-SOMLO).

– Self-organizing maps (SOM) project (multi-185

dimensional) driver variables to a two-dimensional
discrete space of clusters (“neuron cells”). Observed
pCO2 values are then assigned to the clusters according
to their associated driver variable values. With this
information, spatio-temporalpCO2 maps are created190

by finding neuron cells with similar driver variable

values for any given location/timestep, and using the
associatedpCO2 value there.

– Feed-forward networks (FFN) establish a statistical
non-linear relationship between a set of driver variables195

andpCO2 observations (training), and apply this rela-
tionship to continuous fields of the driver variables to
create a continuouspCO2 map (prediction).

As for linear regression, the individual implementations dif-
fer in the set of chosen physical or biogeochemical driver200

variables (SST, SSS, MLD, Chl-a, etc.). Different choices
have also been made concerning spatialization: While some
implementations use independent neural networks within
predefined spatial or spatio-temporal regions, others use one
global network but add spatial or temporal coordinate vari-205

ables to the set of drivers.
Non-linear regression methods have the advantage over

linear regressions that they can flexibly represent a wide
class of pCO2–driver relationships. On the other hand,
FFNs involve the risk that the non-linear extrapolation into210

data-sparse regions becomes unstable and produces outliers.
SOMs avoid this risk, though instead their discrete output
may contain spatial discontinuities.

2.3 Model-based Regression and Tuning

Although biogeochemical simulation models can success-215

fully be tuned to reproduce WOCE-era transient tracer in-
ventories (Matsumoto et al., 2004), this does not assure skill
in simulating trends and interannual variability, as tuning it-
self can in some instances merely be compensating for im-
proper process representation or insufficient parameteriza-220

tions. Data assimilation or non-linear inverse modeling ef-
forts such as ECCO have been demonstrated to improve the
representation of the evolving physical state of the ocean
(Wunsch et al., 2009). Although promising, the incorporation
of biogeochemistry into a consistent assimilation or inversion225

framework is still in the early stages of development.
Within the methods collated here, biogeochemical ocean

process models have been used in the following ways:

– Modelled pCO2 fields have been split into different
time scales (seasonality, interannual variations) and230

scaled as to optimally match thepCO2 data (PU-
MCMC).

– Boundary conditions and initial fields of Dissolved In-
organic Carbon (DIC) are tuned during the model run it-
self as to optimally match thepCO2 data (NIES-OTTM).235

3 Analysis Methods

3.1 Ensemble collection

ThepCO2 fields estimated by the various methods were re-
gridded by each provider to a resolution of1◦ latitude×1◦
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longitude and monthly time steps, preferably by averaging240

(if the original resolution is higher) or sub-sampling (if the
original resolution is lower). Also a sea-mask (map of cov-
ered ocean area, possibly fractional) was requested from each
provider. All subsequent processing was done by common
scripts.245

3.2 Spatial gap filling

Most methods do not cover the entire ocean surface (see Fig.
A6). In particular, coastal areas or the Arctic are excluded
in many methods. Some methods depending on satellite-
derived Chlorophyll-a input data exclude some high-latitude250

areas during the dark season.OceanFlux-SI misses all loca-
tions/months where the satellite-derived SST input data are
invalid. UEx-MLR has occasional invalid pixels due to nu-
merical reasons.

These invalid pixels would pose severe problems to the255

ensemble analysis because (1) spatial averages (Sect. 3.3)
would not extend over the same area, causing spurious dif-
ferences between the methods, and (2) the calculated sea-air
CO2 fluxes (Sect. 3.6) would miss parts of the ocean. Re-
stricting the comparison to the common ocean surface would260

only partially solve (1) and not solve (2).
Therefore, we filled any pixels in thepCO2 maps that

are not covered by the considered mapping method (accord-
ing to its sea mask or its value being outside0< pCO2 <
106µatm) but are ocean (according to bathymetry taken265

from the ETOPO surface elevation data (U.S. Department
Commerce, 2006, access date 02/03/2011)) by a common
standardpCO2 field. This standard field is the sum of the
monthly climatology by Takahashi et al. (2014b) plus the
year-to-year atmosphericpCO2 increase (the year-to-year270

atmosphericpCO2 increase is derived from observed at-
mosphericCO2 mixing ratios by the JenaCO2 inversion
s85v3.5 (as in R̈odenbeck et al. (2013)); we use a 12-month
running mean of the atmosphericpCO2 minus its mean in
2005, the year of the Takahashi et al. (2014b) climatology).275

The filled pixels do not change the results strongly compared
to signal size.

3.3 Biome averages

In this overview of the ensemble of mapping methods,
we consider time series ofpCO2 averaged over the 17280

biomes of Fay and McKinley (2014) (Fig. 2, Table 5).
We use the time-independent “mean biomes”, such that no
spurious common variability can be induced from chang-
ing averaging domains. These biomes were chosen as they
were derived from coherence in sea surface temperature285

(SST), spring/summer chlorophyll a concentrations (Chl-a),
ice fraction, and maximum mixed layer depth, and thus may
reflect areas of relatively coherent biogeochemical behaviour
better than previously used “rectangular” regions (e.g., REC-

CAP, TransCom). To filter for interannual variations (IAV),290

we consider 12-month running means.

3.4 Time periods

Results are plotted over the respective valid period of each
method. Statistical analyses are restricted to the 1992–2009
period, when results of most mapping methods are available,295

and when the data coverage is relatively good (this refers in
particular to the Equatorial Pacific).

3.5 Diagnostics – comparison to data

3.5.1 Mismatch time series

As a 1st order performance diagnostic, we compare the map-300

ping results to the monthly observed values in the SOCATv2
gridded product (Sabine et al., 2013; Bakker et al., 2014) (un-
weighted averages – variable FCO2AVE UNWTD of file
“SOCAT tracksgriddedmonthly v2.nc”). We look at map-
minus-data differences averaged over biomes, or over biomes305

and years. These biome or biome/year averages are taken
only over those pixels/months that are covered by data, and
with at least400m water depth to avoid coastal data (these
coastal data may otherwise dominate the diagnostics as the
methods do not take the special environment along the coasts310

into account). Spatial averages are further restricted to the
valid area of each method; this may slightly favor methods
with less surface coverage, because fewer data pixels are then
included in the mismatch.

In addition to averaged map-data differences, we also con-315

sider time series of corresponding selective averages of the
pCO2 maps themselves sampled at the data locations/times.

3.5.2 The relative IAV mismatchRiav

As an overall measure of the mismatch between a given map-
ping product and the data with respect to interannual varia-320

tions in a given biome, we use the amplitude of the average
difference between the map and the comparison data: (1) Av-
erages of the map–data difference are taken over biomes and
years, restricted to data-covered open-ocean pixels/months
as described in Sect. 3.5.1. (2) A mismatch amplitudeM iav

325

is calculated as the temporal standard deviation of these
biome/yearly average differences over the 1992–2009 anal-
ysis period (if a method does not cover all this analysis pe-
riod, statistics are calculated for a correspondingly shorter
period (Table 2), despite the slight inconsistency due to IAV).330

(3) To be able to set these mismatch amplitudesM iav into
perspective, we similarly determine the mismatch amplitude
M iav

benchmark
of “benchmark” fields where any oceanic IAV

has been removed. The benchmark maps have been created
from the mean seasonal cycle of the respective original maps.335

As the missingpCO2 increase would cause unduly large mis-
matches between the benchmark and the data, we added the
year-to-year atmosphericpCO2 increase, which is suitable as
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it has negligible interannual variations compared to oceanic
pCO2; we use the same atmospheric increase based on atmo-340

sphericCO2 data as used to fill invalid pixels (Sect. 3.2). (4)
We then obtain a relative IAV mismatch for the given method
and biome as

Riav =
M iav

M iav

benchmark

· 100% (1)

It states by how much an estimate fits the data better due to345

its interannual variations, compared to a state of “no knowl-
edge” about IAV. Alternatively, Eq. 1 can be seen as a nor-
malization of the IAV mismatch to signal size: As the bench-
mark fields do not contain any IAV, their mismatch ampli-
tudesM iav

benchmark
reflect the IAV in the data (influences of350

variations in data density will affectM iav andM iav

benchmark

in similar ways). Calculating the benchmark from each prod-
uct’s own seasonal cycle ensures a criterion comparable be-
tween the mapping methods (though the seasonal cycles are
quite similar for all methods anyway, see Sect. 4.1.1 below).355

It is difficult to decide whichRiav values can be regarded
as sufficient for IAV to be represented in a given map. For this
paper, we present all IAV results that manage to stay below
75%. This is an ample threshold, but in the light of possible
ambiguities in theRiav calculation we prefer it over a stricter360

selection. To nevertheless make the likely range visible, we
de-weight results with higherRiav by smaller line thickness
in all time series plots.

To verify that the selection criterion is not unduely biased
by the fact that some methods use SOCAT data and others365

use LDEO data (Table 3), IAV mismatch diagnostics have
also been calculated from the LDEOv2013 database (Taka-
hashi et al., 2014a) (monthly binned), which is used as data
source by some mapping methods. LDEOv2013 shares large
parts of data points with SOCATv2. Mismatch values are370

slightly different depending on database, but qualitatively
consistent.

3.5.3 The relative monthly mismatchRmonth

An overall measure of mismatch on the monthly time
scale is calculated analoguously to Sect. 3.5.2, except that375

monthly mismatches are used rather than yearly averaged
mismatches, and that the benchmark is the year-to-year at-
mospheric increase without any seasonality. Thus this mea-
sure is mainly sensitive to the seasonal cycle as the largest
month-to-month feature.380

3.6 Sea–air flux calculation

Sea–airCO2 flux fields f have been calculated from the
pCO2 fields by

f = k̺L(pCO2 − pCO2
atm) (2)

with piston velocityk (employing the widely used quadratic385

dependence on wind speed as in Wanninkhof (1992) but

scaled globally according to Naegler (2009), and reduced
to 10% over ice as in Takahashi et al. (2009)), water den-
sity ̺, CO2 solubility L, and atmosphericCO2 partial pres-
surepCO2

atm. The values of these auxiliary fields have been390

calculated from various data sets (e.g., NCEP wind speeds
(Kalnay et al., 1996), OAFlux SSTs and ice cover (Yu and
Weller, 2007)) as in R̈odenbeck et al. (2013, see there for
details) and used identically for all mapping methods, i.e.,
the uncertainties in the flux parameterization do not enter the395

comparison considered here.
As for pCO2, we consider the flux averaged over biomes

or the global ocean. Interannual flux variations are again cal-
culated as 12-month running means. Their amplitudeAiav is
measured as temporal standard deviation of the yearly flux400

over the 1992–2009 analysis period. From the amplitudes
Aiav

i of the individual mapping methods, we calculate an
ensemble mean inversely weighted by the relative IAV mis-
matchesRiav

i (for methods withRiav
i < 75%)

Aiav =

∑n

i=1
Aiav

i /Riav
i∑n

i=1
1/Riav

i

(3)405

Methods not covering the full analysis period are discarded
in this average as there would be significant spurious changes
in the amplitude if any of the El Niño anomalies in 1992 or
1997 was not included.

4 Results and Discussion410

We first provide an overview on the estimated seasonal and
interannual variations in oceanic biomes (Sect. 4.1), and the
ability to estimate them frompCO2 data and available map-
ping methods. We then discuss interannual variations in the
sea–airCO2 flux in more detail (Sect. 4.2).415

4.1 Biome-averagepCO2 time series

4.1.1 Seasonality

As introductory example, we first consider surface ocean
pCO2 averaged over the North Atlantic Subtropical Perma-
nently Stratified biome, which belongs to the relatively well420

observed regions and shows a pronounced seasonal cycle in
pCO2 (Schuster et al., 2013). Fig. 3 panel (a) shows monthly
pCO2 time series from the whole ensemble. For clarity of
details, three arbitrary years have been selected. The results
of the mapping methods generally agree with each other in425

terms of the mean and the seasonal cycle to within about
10µatm.

Panel (b) compares the mapping results to the SOCATv2
monthly gridded observations. To this end, mapping re-
sults have been averaged only over those locations/times430

where SOCATv2 comparison data exist. As these are the
locations/times where (most of) the estimates are directly
constrained, the mapping results generally follow the data
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closely, and the ensemble spread is often smaller than
in panel (a). In some months (e.g., Sept. 2003 or July435

2004) these selective averages deviate considerably from
the whole-biome average, likely reflecting spatial sampling
biases in the presence of spatialpCO2 gradients. In such
months, the ensemble spread tends to be higher than in
months less affected by sampling biases.440

To objectively compare our results to the in-situ data, we
calculate the average difference between the mappedpCO2

(at the data location) and the SOCATv2 monthly gridded val-
ues (panel (c)). In general, differences of the monthly val-
ues lie within about±10µatm. NIES-OTTM deviates farther,445

likely because this approach is strongly determined by the
modelled seasonal cycle and thus does not follow the data
more closely.

Time series for the complete set of biomes are given in
the Appendix. In terms of seasonality, the mapping meth-450

ods show similar phasing and amplitude in almost all extra-
tropical biomes (Fig. A1), with few exceptions mainly in the
North Atlantic Subpolar Seasonally Stratified biome and the
Southern Ocean. The spread in the North Atlantic is some-
what surprising given the relatively good data coverage. Pos-455

sibly, this area has larger spatial heterogeneity not adequately
represented by (some of) the methods.NIES-OTTM shows a
seasonal cycle opposite to the other methods, a behaviour
present in many biogeochemical process models in high lat-
itudes (Valsala and Maksyutov, 2010; Schuster et al., 2013).460

Methods agree on smaller seasonal amplitude in the tropics,
though substantial differences in amplitude and phase exist.

4.1.2 Interannual variability (East Pacific Equatorial
biome)

Interannual variability is exemplified with the East Pacific465

Equatorial biome, which is also relatively well observed, and
features large coherent interannual variations inpCO2 asso-
ciated with the ENSO cycle (e.g., Feely et al., 1999). Fig. 4
panel (a) shows the results of those mapping methods with
IAV mismatches (Riav, Sect. 3.5) of at most75% of signal470

size. This selection has been done because interannual sig-
nals in the data turn out not to be represented in all mapping
methods; thus the full ensemble (Appendix Fig. A2 panel
“Biome 6”) would highly overestimate the uncertainty of
IAV. All the 8 selected mapping methods consistently show475

a reduction in ocean surfacepCO2 during El Niño condi-
tions (1987, 1992, strong El Niño 1997/98, weak El Niño’s
also 2002, 2006, 2009/10), though partially with different
amplitudes (see Sect. 4.2.1 for the particularly low ampli-
tude of UEA-SI). Methods regressingpCO2 against exter-480

nal drivers (JMA-MLR, UNSW-SOMLO, NIES-SOM, ETH-
SOMFFN) tend to show mutually similar time variations also
on the finer 1–2 year time scale (e.g., 2008–2009), while
statistical interpolation methods (UEA-SI, Jena-MLS) may
show different finer-scale features. Despite this biome-wide485

difference, averages at data-constrained pixels only (Fig. 4

panel (b)) mostly are much more consistent between meth-
ods. This is expected as this selective average excludes allthe
gap-filled pixels where values naturally depend much more
on the applied mapping method. Most strikingly, in the data-490

poor periods up to 1988, regression and interpolation meth-
ods (as far as they cover these periods) strongly differ in the
whole-biome average (panel (a)), while they more closely
agree at the data-covered pixels (panel (b)). This illustrates
that the statistical interpolation methods solely rely on the495

pCO2 data constraint while regression methods bridge data
gaps as their variability originates from the driver data that
are available throughout time. In the more data-rich periods
(since about 1992 in this biome), interpolation and regres-
sion methods do agree in many features even in the whole-500

biome average (panel (a)). Due to the complementary ori-
gin of the variability in these method classes (Fig. 1), this
agreement confirms that, at least in this biome, (1) sufficient
interannual information is contained in the availablepCO2

observations (in the more densely sampled period), and (2)505

the signals provided through the driver data of the regression
methods largely capture the essential modes of interannual
pCO2 variability.

Note that the selective average over data-covered pixels
(panel (b)) also leads to temporal features very different from510

the full average (e.g., the peak in 2001), revealing sampling
biases that alias seasonal variations and spatial gradients into
the yearly/spatial average due to not fully representativesam-
pling. These sampling biases pose the most prominent chal-
lenge to all the mapping methods.515

Panel (c) shows the biome/yearly average difference be-
tween the interpolatedpCO2 fields and the SOCATv2
monthly gridded data set (Sect. 3.5), reflecting the mismatch
of mean, trend, and interannual variations (the sampling bi-
ases mentioned before should largely cancel out in this dif-520

ference). Most mapping methods have a temporal mean mis-
match (bias) of less than a few µatm. The year-to-year mis-
matches are of different magnitudes for the individual map-
ping methods (note that the larger mismatches in 2009/2010
occur in a period of very few data points and may not be rep-525

resentative). Though the estimated interannual features can
only be trusted if the year-to-year mismatches are small (nec-
essary condition), small year-to-year mismatches are not yet
a sufficient condition for correct interannual variations:Even
if the available data points are fit well, the extrapolation to530

data-void areas can be wrong (“over-fitting”, see more dis-
cussion in Sect. 4.2 below). Therefore, we stress that the
mismatch amplitudes are not meant to represent a detailed
ranking of quality of the methods. Nevertheless, we take it as
an encouraging finding that mapping methods with smaller535

IAV mismatch (e.g., passing the more strict relative IAV mis-
match criterion ofRiav < 30% [Jena-MLS, ETH-SOMFFN])
are also closer to each other in the whole-biome average
(panel (a)). Even this stricter selection comprises methods
regressing or not regressingpCO2 against external drivers,540

i.e., complementary ways of extrapolating to data-void ar-
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eas/periods (Fig. 1, Table 3 table footnotee). This reinforces
conclusions (1) and (2) above and confirms that meaning-
ful interannual estimates can be achieved from the available
pCO2 data and mapping methods in the Equatorial Pacific.545

4.1.3 Interannual variability (other biomes)

All mapping methods agree that the East Pacific Equato-
rial biome considered before (Sect. 4.1.2) has the largest
interannual variability of all biomes (Fig. A2). The other
biomes have much less interannual variability, leaving the550

rising trend (similar to the atmosphericCO2 increase) as the
most prominent interannual feature. There is one mapping
method (NIES-OTTM) without a trend, a feature not how-
ever supported by the data (see large data mismatch with
systematic trend in Fig. A3). Except for the West and East555

Pacific Equatorial biomes, the small year-to-year variations
around the rising trend are not generally consistent between
the mapping methods (ensemble spread similar or larger than
the variations themselves).

Overall, mean mismatches (biases) are on the order of560

3–4µatm in all biomes (Fig. A3). As the mismatches do
not consistently rise or fall over time, they confirm the es-
timatedpCO2 trends (except forNIES-OTTM that does not
have the rising trend inpCO2). The year-to-year mismatches
have amplitudes of3–4µatm in some methods, but also mis-565

matches as large or larger than the interannual variations
for other methods (Riav > 75%, dashed lines). Except for
the North Atlantic Subtropical Seasonally Stratified biome,
each ocean region has at least some mapping methods with
relative IAV mismatch below60% or even30%, including570

both interpolation methods as well as linear and non-linear
regressions. Methods tying IAV to process model simula-
tions (PU-MCMC, NIES-OTTM) often have large relative
IAV mismatches, except forPU-MCMC in the Northern Pa-
cific biomes.575

4.2 Sea–airCO2 flux variability

In order to link the estimatedpCO2 variability to variabil-
ity of sea–airCO2 exchange as considered for the Global
Carbon Project (GCP) (Le Quéŕe et al., 2015), we calculated
sea–airCO2 fluxesf , using the same gas exchange formula-580

tion for each mapping method (Sect. 3.6).

4.2.1 The East Pacific Equatorial biome

We first consider again the East Pacific Equatorial biome
identified above as the biome with the largest interannual
variability. Fig. 5 panel (a) provides its sea–airCO2 fluxes585

estimated by 8 selected mapping methods (having relative
IAV mismatchRiav < 75% for biome-averagedpCO2). The
year-to-year flux variations are mainly driven by thepCO2

variability (compare to Fig. 4 panel (a)). Again, interannual
features are largely similar between the mapping methods590

in this biome, but differ in their amplitudes (Fig. 5 panel

(b)). There is some tendency that the mapping methods with
smaller IAV mismatch show larger interannual amplitudes.
Strikingly low interannual variability is found inUEA-SI,
while fitting the data withRiav = 52% better than various595

other methods. This method moves away from the estimated
mean seasonality only in the close vicinity of the data points,
as justified by the short auto-correlation lengths of near-
simultaneouspCO2 levels found in thepCO2 data (Jones
et al., 2012). It thus gives a lower bound of IAV secured by600

the data information (Jones et al., 2015). As interannual fea-
tures can be assumed to be more spatially coherent than fea-
tures on the time scale of ship cruises (especially in the Equa-
torial Pacific), the low IAV amplitudes byUEA-SI are likely
an underestimate.605

4.2.2 The global ocean

Fig. 5 panel (c) provides global sea–airCO2 fluxes estimated
by 10 selected mapping methods (having relative IAV mis-
matchRiav < 75% for globalpCO2). These mapping meth-
ods mostly agree in their decadal variations, with a pro-610

nounced decadal enhancement in oceanCO2 uptake after the
year 2000, preceded by a period of little decadal change or
rather weakening uptake (see Fig. A7). This confirms a fea-
ture also simulated by process models (see Fig. 7 of Le Quéŕe
et al. (2015) and discussion in Sect. 3.6 of Rödenbeck et al.615

(2014)). One of the areas contributing to this change in
decadal trends is the Southern Ocean, where Landschützer
et al. (2015) found consistency of decadal trends between
ETH-SOMFFN and Jena-MLS having relatively lowRiav

values there.620

There is less agreement in the sub-decadal variations of
the global sea–airCO2 flux, despite the much closer mu-
tual agreement of the same mapping methods in the well-
constrained East Pacific Equatorial biome (Fig. 5 panel (a)).
This lower agreement reflects the more uncertain flux contri-625

butions from the poorly data-constrained areas. For example,
the larger sub-decadal variations byJena-MLS to large part
originate from the South Pacific Subtropical Permanently
Stratified biome (Fig. A4 panel “Biome 7”), which is a data-
poor region and therefore may recieve spurious variability630

from the Equatorial Pacific extrapolated too far south (in-
deed, the amplitude of the variations reduces with shorter
latitudinal extrapolation radius (latitudinal a-priori correla-
tion length, Sect. 3.3 of R̈odenbeck et al., 2014)), though ac-
cording to theRiav criterion these larger variations match the635

data better than the smaller variations. Another contributor
of sub-decadalJena-MLS variability is the Pacific sector of
Biome 16: In the Southern Ocean, essentially only two areas
(South of New Zealand and South-West of Patagonia, respec-
tively) are data-covered for multiple years, such that signals640

from there are extrapolated into their data-void surroundings.
Due to this low data coverage, the Southern Ocean biomes 15
and 16 also contribute considerably to the ensemble spread
in general (Fig. A4). Unforunately, the absence of data also
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means that we cannot validate or falsify the different extrapo-645

lations. In summary, despite the success in constrainingCO2

fluxes in the Equatorial Pacific from available data and map-
ping methods (Sect. 4.2.1), estimates of year-to-year varia-
tions in the global sea–airCO2 flux face larger uncertainties
due to the undersampled regions.650

Despite these differences in the detailed variations, the am-
plitude of global flux IAV (Sect. 3.6) is relatively consistent
(panel (d)). The global weighted ensemble meanAiav (Eq. 3)
is 0.31PgCyr−1 (horizontal line in panel (d)). Many bio-
geochemical process models have less variability than that655

(mean of0.20PgCyr−1 in Le Qúeŕe et al. (2015)) and thus
likely underestimate IAV in the ocean carbon sink (compare
Séférian et al., 2014; Turi et al., 2014). Inverse estimates
based on atmosphericCO2 data show both larger and smaller
oceanic IAV (Peylin et al., 2013), reflecting that they can con-660

strain land variability but less so ocean variability.
Though the primary strength of thepCO2 constraint lies

in its information on temporal variations and smaller-scale
spatial variations, we also consider the long-term mean
global sea–airCO2 exchange. The total mean flux (com-665

prising both uptake induced by anthropogenic atmospheric
CO2 rise and natural river-induced outgassing) estimated
by the different methods ranges between−1.36PgCyr−1

and−1.96PgCyr−1 (for the 1992–2009 analysis period),
with a weighted ensemble mean (analogous to Eq. 3670

but using the inverse meanpCO2 bias as weights) of
−1.75PgCyr−1. This is consistent within uncertainties with
the independent estimate from inverting ocean-interior car-
bon data of−1.7PgCyr−1 (Gruber et al., 2009) nomi-
nally for 1995. Subtracting a river-carbon induced outgassing675

flux of 0.45PgCyr−1 (Jacobson et al., 2007), the ensem-
ble mean corresponds to an anthropogenicCO2 uptake of
−2.2PgCyr−1. This is again consistent within uncertainties
with the estimate from the globally integrative constraintby
the atmosphericO2 andCO2 trends of−2.2±0.6PgCyr−1

680

given by Manning and Keeling (2006) for the slightly differ-
ent 1993–2003 period.

5 Conclusions

Measurements of surface-oceanpCO2, mapped into continu-
ous space-time fields, offer a much more direct way to quan-685

tify sea–airCO2 fluxes and their variations than previously
available approaches (model simulations, atmospheric inver-
sions, ocean-interior inversions). Taking advantage of anen-
semble of 14 partially complementary surface-oceanpCO2

mapping methods recently collated by the SOCOM initiative,690

we analysed sea–airCO2 flux variability globally and for a
subdivision of the ocean into 17 biomes (Fay and McKinley,
2014). This study has found that:

– Surface-oceanpCO2 data together with mapping meth-
ods constrain the seasonality of regionalpCO2 essen-695

tially in all ocean biomes (mostly within10µatm).

– Interannual variations of regionalpCO2 are constrained
at least in the more densely observed ocean regions
(tropical Pacific, parts of the Northern temperate Pacific
and Atlantic). The tropical Pacific is consistently esti-700

mated as the biome with the largest interannual varia-
tions, with reducedCO2 uptake during El Nĩno peri-
ods. The global oceanCO2 uptake is estimated to have
gradually increased since about 2000, with little decadal
change prior to that.705

– Interannual variations in the global sea–airCO2 flux
are estimated to have an amplitude of0.31PgCyr−1

(average across mapping methods weighted according
to IAV mismatch). Therefore most biogeochemical pro-
cess models appear to significantly underestimate this710

variability (Le Qúeŕe et al., 2015, quote a model-derived
amplitude variation of0.2PgCyr−1).

– Though the primary strength of thepCO2 constraint lies
in its information on temporal variations and smaller-
scale spatial variations, the estimated net integrated715

global sea–airCO2 flux of −1.75PgCyr−1 (weighted
ensemble mean) is consistent within uncertainties with
the independent estimates based on inverting ocean-
interior carbon data and on atmosphericO2 andCO2

trends.720

For forthcoming analyses involving data-based sea–air
CO2 flux products, we recommend –if possible– to use sev-
eral interpolation products, or at least to test the robustness
of the features under consideration by checking the consis-
tency between several products. In particular, agreement be-725

tween complementary mapping methods taking variability
either from driver data or directly frompCO2 data (Fig. 1),
as found here for the interannual variations in the tropicalPa-
cific, lends great support to the estimated features, as it shows
consistency between different information sources.730

However, the mapping products should carefully be se-
lected and weighted according to suitable performance di-
agnostics, to ensure their suitability in a given purpose. The
presented “relative IAV mismatch” criterion provides a nec-
essary condition for IAV applications. Analoguous “relative735

mismatch” criteria can also be defined and calculated for
other time scales. However, as discussed in the paper, it
would be even better to use sufficient conditions (e.g., de-
rived by testing the power of the mapping methods to recon-
struct modelledpCO2 fields from pseudo data subsampled as740

the real data). Such sufficient conditions are not yet available
for the SOCOM ensemble, but are planned in forthcoming
studies.

SOCOM does not identify an “optimal” mapping method
or method class. We also discourage any ensemble averag-745

ing (or medians, etc.) of full spatio-temporal fields or time
series, as this would result in variations that are not self-
consistent any more and fit the data less well than individual
products. Only for scalar statistical quantities of the spatio-
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temporal fields, such as amplitudes of variation, correlation750

coefficients, etc., it may make sense to summarize the ensem-
ble into averages of these quantities, weighted according to
the above-mentioned performance diagnostics.

Many of thepCO2 mapping products are updated when
new data sets become available, and the mapping methods755

are subject to further development. The SOCOM intercom-
parison may serve to stimulate such developments, though
results should not be assessed in terms of their position in the
ensemble, but only in terms of objective criteria. At the web-
site http://www.bgc-jena.mpg.de/SOCOM/ we aim to pro-760

vide an updated list of products and ensemble analyses. SO-
COM welcomes further members contributing estimates of
the spatio-temporalpCO2 field or the sea–airCO2 flux based
on surface-ocean carbon data.

The basis of all mapping products considered here are765

extensivepCO2 observations over many years. Even when
external information is used to bridge data gaps (Fig. 1), a
minimum amount of data in time or within areas of simi-
lar biogeochemical behaviour is indispensible. Missing data
may not only lead to miss out existing features, but even770

to create spurious features due to sampling biases. Though
the exact limits to interpolation capacity can only be de-
termined through targeted studies (e.g., by running inter-
polation schemes only on part of the data and then com-
paring to the other part), this study already shows that (1)775

with realistic sampling efforts (e.g. in the above-mentioned
well-constrained regions) and available mapping methods,
constrainingpCO2 variability is possible (as in Fig. 5a,
Sect. 4.2.1), but (2) undersampled regions limit our current
ability to determine the global total flux in its finer detail (Fig.780

5c, Sect. 4.2.2). This highlights the high priority that should
be given to sustaining the ongoing sampling and to closing
observational gaps. As many of the undersampled regions are
not well accessible by ships, autonomous sampling devices,
such as BioARGO floats (Claustre et al., 2010), seem indis-785

pensible as additional observation component. In additionto
the actual measurements, the use ofpCO2 observations in re-
gional and global sea–airCO2 flux products also depends on
the continuation of all the efforts to quality-control the data
and to provide them in a consistent and user-friendly form.790

Appendix A

A1 “ UEA-SI” (Statistical interpolation)

Method description: The approach combines temporal inter-
polation through curve fitting (1–4 seasonal harmonics and795

a linear trend) (Masarie and Tans, 1995; Schuster et al.,
2009) and spatial interpolation using the concept of spatial
de-correlation lengths, or a ‘radius of influence’, interpolat-
ing data based on the likely similarity between spatially sep-

arated points (Cressman, 1959; Levitus, 1982). In addition,800

cubic spline fitting is used to move away from the fitted mean
seasonal cycle to incorporate interannual variations where
data points exist. The de-correlation scales applied in thein-
terpolation are determined from the auto-correlation charac-
teristics of thepCO2 data along ship-tracks or in time (Jones805

et al., 2012).
Main intention / focus: To produce apCO2 data set for

various uses. To quantify the impact of modes of climate
variability onpCO2 and air-sea fluxes. The chosen approach
departs from other methods through its purely statistical ap-810

proach; it does not use any other data sources thanpCO2.
Documentation: Jones et al. (2015)
Contact: Steve Jones.

A2 “ OceanFlux-SI” (ESA STSE OceanFlux Green-
house Gases)815

Method description: The in-situpCO2 data within SOCAT
are first corrected to a common satellite derived temperature
dataset using an isochemical temperature dependence. This
creates an in-situ dataset with a common SST reference. Each
in-situ datapoint is then corrected to the year 2010 by assum-820

ing a trend of1.5µatmyr−1. The data are then binned into
a monthly 1x1 degree format. These monthly binned data
are kriged to produce a spatially complete dataset (Goddijn-
Murphy et al., 2015). We finally generate an interannual
time series by (1) cyclically using this climatological dataset825

over time, (2) adding a prescribed trend of1.5µatmyr−1

in pCO2, and (3) correcting thepCO2 values according to
the difference between the climatological SST and the ac-
tual satellite-derived SST at each time and location (Shutler
et al., in revision). We use here the original dataset (not fil-830

tered based on the uncertainty).
Main intention / focus: Produce a spatially complete

monthly climatology ofpCO2 data for 2010 that uses a
consistent temperature dataset which is valid at a consistent
depth in the water.835

Documentation: Goddijn-Murphy et al. (2015) (monthly
climatology), Shutler et al. (in revision) (interannual varia-
tions).

Contact: Jamie Shutler

A3 “ Jena-MLS” (Data-driven mixed-layer scheme)840

Method description: The mixed-layer scheme is a data-
driven interpolation scheme, primarily based onpCO2 obser-
vations but also compatible with the dynamics of mixed-layer
carbon content. Firstly, the sea–airCO2 fluxes and thepCO2

field are linked to the spatio-temporal field of ocean-internal845

carbon sources/sinks through parametrizations of sea–airgas
exchange, solubility, and carbonate chemistry, as well as a
budget equation for mixed-layer Dissolved Inorganic Car-
bon (DIC). Then, the ocean-internal carbon sources/sinks
are adjusted to optimally fit thepCO2 field to thepCO2850
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observations (in the present version ocv1.3: SOCATv3,
Bakker et al., in preparation). Spatio-temporal interpolation
is achieved by Bayesian a-priori smoothness constraints with
prescribed spatial and temporal de-correlation scales; tem-
poral interpolation also results from the inherent relaxation855

time scales of the mixed-layer carbon budget. Though the
process parametrizations are driven by SST, wind speed,
mixed-layer depth (MLD) climatology, alkalinity climatol-
ogy, and some auxiliary variables, this external variability
only determines features not constrained by thepCO2 ob-860

servations (e.g., day-to-day variations, or variability in data-
void areas/periods), while the estimatedpCO2 field in well-
constrained areas/periods is only determined by the observed
signals (no regression against drivers).

Main intention / focus: Global CO2 flux field product865

primarily based on observations only, with a focus on flux
variability, also to be applied as ocean prior in atmospheric
CO2 inversion (in particular the Jena inversion, Rödenbeck
(2005)). The mixed-layer scheme has been chosen because it
can be extended to link carbon variability to further observ-870

ables (mixed-layerPO4, atmosphericO2), for using these as
additional independent data constraints.

Documentation: Rödenbeck et al. (2013) (method descrip-
tion and seasonality); R̈odenbeck et al. (2014) (interannual
variations and link to oxygen).875

Contact: Christian R̈odenbeck

A4 “ CU-SCSE” (Surface Carbon State Estimation)

Method description: The Surface Carbon State Estimate
(SCSE v1.0, Jacobson et al. (in preparation)) is a Kalman fil-
ter interpolation scheme for mappingpCO2 over the global880

ocean during the entire period for which SOCAT point ob-
servations are available. It is designed to provide a statis-
tically well-characterized prior estimate to an atmospheric
CO2 analysis like CarbonTracker. SCSE tracks the time-
varying magnitudes of a set of basis functions, determined885

as an optimal difference from a reference state composed of
the Takahashi et al. (2009)pCO2 climatology for year 2000
plus a1.5µatmyr−1 global trend. Uncertainties are explic-
itly characterized by a full-rank posterior covariance matrix,
which can then be used to produce realistic error estimates890

for arbitrary spatial domains. SCSE is a gridded estimation
scheme that trackspCO2 for each1◦×1◦ grid cell, but its ef-
fective spatial resolution is controlled by the number of basis
functions used within each of 10 defined ocean basins. The
number of basis functions used within each basin varies with895

time and is determined by the number of available observa-
tions. This is intended to allow higher resolution at times and
places where there are morepCO2 measurements. The basis
functions include empirical orthogonal functions (EOFs) of
pCO2 from a set of CMIP5 ocean carbon cycle simulations,900

intended to represent the within- and across-model varia-
tions of climatology, trends, and variability on inter-annual
to decadal time scales. They are assigned widely different re-

laxation time scales (3 months – 5 years) as determined by
the EOF analysis.905

Main intention / focus:
Documentation: Jacobson et al. (in preparation)
Contact: Andy Jacobson

A5 “ AOML-EMP” (Diagnostic model using empirical
relationships)910

Method description: AOML-EMP uses empirical relation-
ships between surface-oceanpCO2 and SST, trained based
on sub-annual variations in the TakahashipCO2 climatol-
ogy and the associated climatological SST values. These re-
lationships are then applied to interannually varying SST (us-915

ing the NOAA optimal interpolation SST product www.ncdc.
noaa.gov/oisst). The original analysis of Park et al. (2010a)
does not implicitly include the effect of rising atmospheric
CO2 levels. In the modified Park et al. analysis presented in
Le Qúeŕe et al. (2015) the effect of increasing atmospheric920

CO2 on the surface ocean is simulated by applying the out-
put of the ”CO2-only” run of NCAR CCSM-3 model (Na-
tional Center for Atmospheric Research’s Community Cli-
mate System Model Version 3) to each grid cell over the
time period. The sub-decadal variability is the same for each925

approach as they are based on the samepCO2 mapping.
The decadal trend ofCO2 flux calculated from the origi-
nal AOML-EMP approach shows a slight decrease in uptake
while the modified approach shows an increase in uptake
that is attributed to a negative feedback inCO2 uptake due930

to ocean warming that is overwhelmed by increased anthro-
pogenicCO2 uptake.

Main intention / focus: Data-driven globalCO2 flux prod-
uct

Documentation: Park et al. (2010a,b)935

Contact: Geun-Ha Park

A6 “ UEx-MLR”

Method description: Multi-parameter regression
in 12 separate ocean regions (RECCAP regions,
see http://www.globalcarbonproject.org/global/pdf/940

RECCAPSoft %20Protocol.v4.pdf and Fig. 1 in Schuster
et al. (2013)) from 1990 to 2012. Main data stream used as
constraint: SOCATv2 gridded product (Sabine et al., 2013)
plus additional recent gridded data (all on 1 degree latitude
by 1 degree longitude by 1 month). Driver variables used:945

SST, Mixed layer depth, chlorophyll-a, atmosphericpCO2.
Main intention / focus: Seasonal through interannual vari-

ability of the sea–airCO2 flux.
Documentation: Schuster et al. (2013) (RECCAP)
Contact: Ute Schuster950

A7 “ JMA-MLR”

Method description: The global ocean was divided into 44
sub-regions based on the features of observedpCO2 and
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SST/SSS/Chl-a variability and then optimal equations for es-
timatingpCO2 in the sub-regions were derived from multiple955

regressions using SST, SSS and Chl-a as independent vari-
ables. Rather than using time as independent variable, secular
trends ofpCO2 (for wider biomes than the sub-regions) were
evaluated separately from multiple regressions, subtracted
from the data, and re-added to thepCO2 map. Observed960

pCO2, SST and SSS in SOCATv2 and satellite Chl-a (SeaW-
iFS and MODIS/Aqua: http://oceancolor.gsfc.nasa.gov; be-
fore 1997, the climatology of satellite Chlorophyll-a data
are used) are used to derive equations and analytical SST
(MGDSST: Kurihara et al. (2006)), SSS (MOVE/MRI.COM-965

G: Usui et al. (2006)) and the same Chl-a data mentioned
above are used to reconstruct thepCO2 fields.

Main intention / focus: To map globalpCO2 andCO2

flux field based on surface observation data and evaluate the
interannual variability and long-term trend of global ocean970

CO2 uptake. The merits of using simple multiple regression
analysis for estimatingpCO2 include its possibility to give
oceanographic explanations for thepCO2 variability.

Documentation: Iida et al. (2015) (method description and
trend analysis)975

Contact: Yosuke Iida

A8 “ UNSW-SOMLO” (Self-Organizing Multiple-
Linear Output)

Method description: In this approach we couple a neural net-
work clustering algorithm with a multiple linear regression980

(MLR) to diagnose monthly ocean surfacepCO2 distribu-
tions from 1998 through to 2011. The algorithm first cap-
tures larger-scale ocean dynamics by a data-based cluster-
ing of the grid cells into “biogeochemical fingerprints” using
a self-organizing map (SOM). The SOM approach utilizes985

the SOCATv2 griddedpCO2 product along with co-located
SST, SSS, Chl-a, MLD, and geographical information (n-
vector) to iteratively cluster the dataset into a set of 196 neu-
rons (the spatial domains of which we refer to as biogeo-
chemical fingerprints). Within each neuron, MLRs are then990

derived betweenpCO2 and the optimal set of sea-surface
temperature/salinity/Chl-a, MLD, and atmosphericxCO2.
Thus, each MLR can be thought of as a local-scale optimizer
that follows the global non-linear optimization analysis per-
formed by the SOM. To predictpCO2 using any indepen-995

dent set of driver data, a similarity measure is first used to
determine which neuron best represents the driver data val-
ues, then thepCO2 value is predicted using the regression
parameters established with training data of that neuron. We
call this approach SOMLO: self-organizing multiple linear1000

output.
Main intention / focus: To diagnose monthly ocean sur-

facepCO2 distributions and air-seaCO2 fluxes from 1998
through to 2011, and to advance our understanding of sea-
sonal to inter-annual variability.1005

Documentation: Sasse et al. (2013)

Contact: Tristan Sasse

A9 “ ETH-SOMFFN” (A Combined 2-Step Neural Net-
work approach)

Method description: As a first step, a self-organizing map1010

(based on climatologicalpCO2, SST, SSS, MLD, and Chl-
a) is used to cluster the global ocean into biogeochemical
provinces. Within each province, a feed-forward network is
then used to reconstruct the non-linear relationship between
drivers (SST, SSS, MLD, Chl-a [before 1998 using a clima-1015

tology], and atmosphericxCO2) and griddedpCO2 observa-
tions from SOCAT.

Main intention / focus: Produce globalpCO2 andCO2

flux maps; investigate seasonal and inter-annual variability
within the study period1020

Documentation: Landscḧutzer et al. (2013, 2014)
Contact: Peter Landscḧutzer

A10 “CARBONES-NN”

Method description: CARBONES-NN is a neural network
framework developed within the EU-FP7 project CAR-1025

BONES (http://www.carbones.eu/wcmqs/) that maps surface
oceanpCO2 observations to first-order explanatory vari-
ables. As explanatory variables, it uses observations from
satellites (Surface Chlorophyll climatology from SeaWiFS),
model outputs (SST, SSS, MLD) from the MERCATOR1030

ocean reanalysis, previous steppCO2 estimates (recursive
approach) and latitude as a proxy for atmospheric conditions.
A two-step neural network approach is applied based on a
Multi Layer Perceptron network coupled with a variational
data assimilation scheme. A first calibration step adjusts the1035

seasonal component ofpCO2 using climatological data (ref-
erence year 2000; from Takahashi et al. (2009) sampled at
the points where there are measurements). This step recre-
ates a 2D monthly climatology ofpCO2 that is similar to the
one of Takahashi et al. (2009), but also different as the inter-1040

polation is based on the explanatory variables. A second step
uses the rawpCO2 data (LDEOv1.0, Takahashi et al. (2007))
to adjust the interannual variability ofpCO2 over the period
1989 to 2009. A moving assimilation window is used. Input
variables andpCO2 data were previously gridded at monthly1045

temporal and2◦ × 2◦ spatial resolutions. Note that most of
the coastal oceanpCO2 data have been filtered out.

Main intention / focus: Produce globalCO2 sea–air flux
maps over the past decades to be coupled in the Carbon Cy-
cle Data Assimilation System developed at LSCE within the1050

CARBONES project.
Documentation: CARBONES web site (http://www.

carbones.eu/wcmqs/) and article under preparation.
Contact: Philippe Peylin
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A11 “NIES-SOM”1055

Method description: Self-organizing map with linear increas-
ing trend with time.

Main intention / focus: pCO2 mapping and evaluating sea-
sonal/interannual air-seaCO2 exchange.

Documentation: Nakaoka et al. (2013) (for North Pacific);1060

Nakaoka et al. (in prep.) (for Pacific)
Contact: Shin-ichiro Nakaoka

A12 “NIES-NN” (feed-forward neural network)

Method description: We first estimated the global trend of
pCO2 using the method of Zeng et al. (2014) and used this1065

trend to normalize thepCO2 data to the reference year 2000.
We then modelled the spatial and seasonal variations in the
reference year using a feed-forward neural network (Zeng
et al., 2015b). The driver variables include SST, SSS, Chl-
a, latitude, longitude, and month. For training, climatologies1070

of the driver data are used. For prediction, we use time vari-
ant SST (it would be ideal to use time variant SSS and Chl-
a as well but no such data are available in certain modeled
periods). Due to the use of climatologies of the driver data
and the normalizedpCO2 to train the neural network, the1075

predictedpCO2 does not yet contain a trend; therefore, the
trend estimated in the first step is re-added to the network
output. We use all data from SOCATv2 that fulfill the se-
lection criteria elevation<−500m, ice cover< 50%, SSS
> 25, and SST>−10◦C. Software implementation details1080

of the model can be found in Zeng et al. (2015a).
Main intention / focus: MonthlyCO2 maps and long-term

global trend.
Documentation: Zeng et al. (2014) (for climatol-

ogy); (Zeng et al., 2015b) (for time-varying fields);1085

Zeng et al. (2015a) (software implementation); data set
doi:10.1594/PANGAEA.834398

Contact: Jiye Zeng

A13 “PU-MCMC”

Method description: The PrincetonpCO2 product is calcu-1090

lated by a Bayesian inversion (using a Markov Chain Monte
Carlo (MCMC) minimization algorithm) as described in Ma-
jkut et al. (2014). ThepCO2 field is decomposed into (A) the
decadal trend, (B) the June 1995 mean value, (C) the seasonal
cycle, and (D) the interannual variability. Each of these terms1095

is derived from process model simulations, and then scaled
as to optimally fit thepCO2 observations. The data prod-
uct that is inverted is LDEOv2010 (Takahashi et al., 2012).
Two forward models were used to derive the prior fields,
with the main model being GFDL’s MOM4p1-BLING. For1100

MOM4p1-BLING the underlying physical model is GFDL’s
Modular Ocean Model version 4.1 (Griffies et al., 2004)
with three degree horizontal resolution. The biogeochemi-
cal model is Biology Light Nutrient and Gas (BLING) (Gal-

braith et al., 2011). The model was forced at the surface with1105

several reanalysis products, including CORE-II (Large and
Yeager, 2009), ERA-40 (Uppala et al., 2005), and NCEP-1
(Kalnay et al., 1996). Additionally, the two simulations with
NEMO-PISCES from the study of Rodgers et al. (2014) were
included in the analysis.1110

Main intention / focus: Seasonal through decadal variabil-
ity in pCO2 and air-seaCO2 fluxes

Documentation: Majkut et al. (2014)
Contact: Keith Rodgers

A14 “NIES-OTTM” (Ocean Tracer Transport Model1115

with variational assimilation of surface ocean
pCO2)

Method description: The offline OTTM is run with physi-
cal data from GFDL coupled ocean-atmospheric re-analysis
version-2 data for the period of 1980-2010 (Delworth et al.,1120

2006; Gnanadesikan et al., 2006). The necessary input data
used from the re-analysis are as follows: The time dependent
3-D currents, hydrography and surface 2-D variables such
as MLD, heat fluxes, water fluxes and sea surface height.
The physical part of OTTM calculates the evolution of trac-1125

ers in the global ocean (Valsala et al., 2008). The biolog-
ical model is adapted from McKinley et al. (2004). The
export production in the surface euphotic zone (0–140m)
is calculated using prescribed monthly climatological phos-
phate and light, scaled by a spatially varying ‘α’ parame-1130

ter which accounts for maximum export rate and for those
processes which are not accounted for by the phosphate and
light limitation model. The surface ocean chemistry model is
taken from OCMIP-II abiotic model (Orr et al., 1999). The
physical-biogeochemical model is used to simulate the sur-1135

face oceanpCO2 and air-seaCO2 fluxes. The surface ocean
pCO2 in the model is constrained by a variational assimila-
tion method in which a conservative adjoint of data-model
misfit of pCO2 (using thepCO2 climatology and LDEOv1.0
point data (Takahashi et al., 2007)) is tracked backward in1140

time in the 3-D ocean over an iteration window of 2 months.
At each iteration, the forward model corrects the initial and
boundary condition ofDIC (Dissolved Inorganic Carbon)
according to the weighted adjoints. The iterations are trun-
cated when the mismatch falls below a minimum value of1145

10% of its initial value (see Valsala and Maksyutov, 2010).
Documentation: Valsala and Maksyutov (2010)
Contact: Vinu Valsala
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14 C. Rödenbeck et al.: An Ensemble ofpCO2-based sea–airCO2 flux estimates

Griffies, S., Harrison, M., Pacanowski, R., and Rosati, A.: A tech-
nical guide to MOM4, Tech. Rep., NOAA GFDL, Princeton, NJ,
2004.1275

Gruber, N., Gloor, M., Fletcher, S. E. M., Doney, S. C., Dutkiewicz,
S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lind-
say, K., Menemenlis, D., Mouchet, A., M̈uller, S. A., Sarmiento,
J. L., and Takahashi, T.: Oceanic sources, sinks, and transport
of atmospheric CO2, Global Biogeochem. Cycles, 23, GB1005,1280

2009.
Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Midorikawa, T., and

Ishii, M.: Trends inpCO2 and sea-air CO2 flux over the global
open oceans for the last two decades., Journal of Oceanography,
DOI 10.1007/s10872-015-0306-4, 2015.1285

Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento,
J. L., and Gloor, M.: A joint atmosphere-ocean inversion for sur-
face fluxes of carbon dioxide: 1. Methods and global-scale fluxes,
Global Biogeochemical Cycles, 21, GB1019, 2007.

Jacobson et al.: Trends in surface oceanpCO2, Global Biogeochem-1290

ical Cycles, in preparation.
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Table 1.General information on the mapping methods.

Version used Contact Reference Method type

UEA-SI v1.0 Steve Jones Jones et al. (2015) Stat. Interpol.
OceanFlux-SI v0.95 Jamie Shutler Shutler et al. (in revision) Stat. Interpol.
Jena-MLS oc v1.3 Christian R̈odenbeck update of R̈odenbeck et al. (2014) Stat. Interpol.
CU-SCSE v1.0 Andy Jacobson Jacobson et al. (in preparation) Stat. Interpol.
AOML-EMP v2 Geun-Ha Park Park et al. (2010a) Regression
UEx-MLR v2.0 Ute Schuster Schuster et al. (2013) Regression
JMA-MLR v2 Yosuke Iida Iida et al. (2015) Regression
UNSW-SOMLO v1 Tristan Sasse Sasse et al. (2013) Regression
ETH-SOMFFN ETH30yr01 Peter Landschützer Landscḧutzer et al. (2014) Regression
CARBONES-NN 2014-02-18 Philippe Peylin http://www.carbones.eu/wcmqs/ Regression
NIES-SOM v1.2 Shin-ichiro Nakaoka update of Nakaoka et al. (2013) Regression
NIES-NN v1.0 Jiye Zeng Zeng et al. (2014) Regression
PU-MCMC v1.0 Keith Rodgers Majkut et al. (2014) Model-based
NIES-OTTM 2013-08-11 Vinu Valsala Valsala and Maksyutov (2010) Model-based

Table 2.Original domains and grid resolutions of the products

Original domain Original grid resolution
–spatiallya –temporally –spatially –temporally

UEA-SI Global (up to 70◦ N) 1985–2011 2.5◦ × 2.5◦ monthly
OceanFlux-SI Global 1995–2009 1◦ × 1◦ monthly
Jena-MLS Global 1987–2013 ≈ 4◦ × 5◦ daily
CU-SCSE Global 1970–2011 1◦ × 1◦ monthly
AOML-EMP Global 1985–2011 ≈ 4◦ × 5◦ monthly
UEx-MLR Global 1990–2012 1◦ × 1◦ monthly
JMA-MLR Global 1990–2012 (Chl IAV since 1997) 1◦ × 1◦ monthly
UNSW-SOMLO Global (open-ocean) 1998–2011 1◦ × 1◦ monthly
ETH-SOMFFN Global (up to 79◦ N) 1982-2011 1◦ × 1◦ monthly
CARBONES-NN Global 1990–2009 2◦ × 2◦ monthly
NIES-SOM Global 1998–2009 1◦ × 1◦ monthly
NIES-NN Global 1990–2012 1◦ × 1◦ monthly
PU-MCMC Global 1980–2009 4◦ × 5◦ monthly
NIES-OTTM Global 1980–2010 1◦ × 1◦ monthly

a Even if designated “global”, most methods exclude some coastal areasor the Arctic, or treat coastal areas as open ocean.
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Table 3. Specifications of the mapping methods with respect to the constraints and assumptions used (see Appendix A for details and
references).

pCO2 data Adjusted variable Coherence scales of adjustmentse Regression ofpCO2 againstl Prescribed
–spatially –temporally relation

UEA-SI SOCATv2 pCO2 Correlated pixels 1–4 harmonics -/- -/-
OceanFlux-SI SOCATv2 pCO2 Correlated pixels Correlated time steps -/- -/-
Jena-MLS SOCATv3k Internal C fluxesc Correlated pixels Correlated days -/- -/-
CU-SCSE SOCATv2 Pattern magnitudes 10 ocean basins Correlated time stepsg Spatial basis functions (EOFs based on models) Linear
AOML-EMP Takah. clim. Regr. coeff. Independent pixels 1-4 sub-annual periods SST Linear
UEx-MLR SOCATv2a Regr. coeff. 20 ocean regions Entire period SST, MLD, Chl,pCO2

atm Linear
JMA-MLR SOCATv2b Regr. coeff. 44 regions Entire period SST, SSS, Chl Linear
UNSW-SOMLO SOCATv2 Regr. coeff. Biogeochem. fingerprintsf Entire period SST, SSS, MLD, ChlxCO2 Lin. (Non-lin.)f

ETH-SOMFFN SOCATv2 Network weights Biogeochem. provinces Entire period SST, SSS, MLD, Chl,xCO2 Non-linear
CARBONES-NN LDEOv1.0 Network weights Global Moving window SST, SSS, MLD, Chl, lath, longh Non-linear
NIES-SOM SOCATv2 Assignments Global Entire period SST, SSS, MLD, Chl, lat, long, time Non-linear
NIES-NN SOCATv2a,b Network weights Global Entire period SST, SSS, Chl, lat, long, month Non-linear
PU-MCMC LDEO2010 Regr. coeff. Independent pixels Entire period Mean, trend, seas., and IAV from model simulation Scaled model
NIES-OTTM LDEOv1.0 IC + BC ofDIC

d Independent pixels 2-months windows Various drivers through the process model Model

a plus additional recent data
b except some coastal data
c Ocean-internal sources and sinks of carbon to the mixed layer
d Initial and boundary conditions of theDIC field
e Spatial and temporal domains of the adjustable degrees of freedom. Roughly speaking, pCO2 structureswithin these domains originate from the structures in the driving variables,
while structuresbetween these domains are directly determined by thepCO2 data. Thus, the coherence scales determine the balance between the ability of a method to bridge data
gaps and its ability to directly follow the observed signals.
f The fingerprints are derived by non-linear clustering of the data themselves, thus the mapping as a whole is non-linear.
g The individual basis functions have widely different relaxation time scales (3months – 5 years).
h Only for step 1 (seasonality), not for step 2 (IAV)
k Values with flags A–D, not E
l Note that the data sets used for the same quantity may differ between the individual methods.
Glossary: Regr. coeff.=Regression coefficients, lat=latitude, long=longitude
Variables: Chl=Chlorophyll-a, MLD=Mixed layer depth, SSS=Sea Surface Salinity, SST=Sea Surface Temperature,xCO2=AtmosphericCO2 mixing ratio

Table 4. Information content about various modes of variability as implemented bythe individual mapping methods. Modes labelled as
“EST.” (= estimated) are considered to reflect data-based information, as they either are directly estimated by time-dependent adjustments,
or are regressed against drivers through multiple adjustable degreesof freedom. The trend is considered estimated if the interannual degrees
of freedom allow a data-based trend to establish or ifpCO2 is explicitly regressed against a rising term (time or atmosphericCO2).

Method Mean Seasonality IAV Trend Day-to-day

UEA-SI EST. EST. partly est. EST. -/-
OceanFlux-SI EST. EST. parameterized prescribed -/-
Jena-MLS EST. EST. EST. EST. parameterized
CU-SCSE EST. EST. EST. EST. interpolated
AOML-EMP EST. EST. EST. modelled -/-
UEx-MLR EST. EST. EST. EST. -/-
JMA-MLR EST. EST. EST. prescribed -/-
UNSW-SOMLO EST. EST. EST. EST. -/-
ETH-SOMFFN EST. EST. EST. EST. -/-
CARBONES-NN EST. EST. EST. EST. -/-
NIES-SOM EST. EST. EST. EST. -/-
NIES-NN EST. EST. EST. EST. -/-
PU-MCMC EST. scaled model scaled model EST. -/-
NIES-OTTM EST. EST. EST. -/- -/-
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Table 5. Biomes of Fay and McKinley (2014) used for time series
comparison (see Fig. 2).

No. Abbreviation Name

1 NP ICE (omitted) North Pacific Ice
2 NP SPSS North Pacific Subpolar Seasonally Stratified
3 NP STSS North Pacific Subtropical Seasonally Stratified
4 NP STPS North Pacific Subtropical Permanently Stratified
5 PEQU-W West Pacific Equatorial
6 PEQU-E East Pacific Equatorial
7 SP STPS South Pacific Subtropical Permanently Stratified
8 NA ICE (omitted) North Atlantic Ice
9 NA SPSS North Atlantic Subpolar Seasonally Stratified
10 NA STSS North Atlantic Subtropical Seasonally Stratified
11 NA STPS North Atlantic Subtropical Permanently Stratified
12 AEQU Atlantic Equatorial
13 SA STPS South Atlantic Subtropical Permanently Stratified
14 IND STPS Indian Ocean Subtropical Permanently Stratified
15 SO STSS Southern Ocean Subtropical Seasonally Stratified
16 SO SPSS Southern Ocean Subpolar Seasonally Stratified
17 SO ICE Southern Ocean Ice
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Fig. 1. Classes ofpCO2 mapping methods:Statistical interpola-
tion methods essentially only use thepCO2 data themselves, filling
spatio-temporal gaps by assuming a statistical relation to neighbour-
ing data points. In well-constrained areas/periods, they closely fol-
low the signals contained in the data, while in areas/periods far from
neighbouring data points, they remain essentially unconstrained.
Regression methods establish a quantitative relation betweenpCO2

and a set of external variables assumed to capture the major modes
of spatio-temporal variability. Adjustable degrees of freedom are
constant in time and within certain spatial regions, such that data
gaps can be filled according to the spatio-temporal structure in the
external variables; however, variability not contained in any of the
chosen external data sets cannot be reproduced. Non-linear regres-
sion methods (feed-forward neural networks, self-organizing maps)
essentially do not impose any structure to this relation between
pCO2 and the drivers. (Multi-)linear regression imposes a linear
relationship, thereby restricting the type of responses but ensuring
a unique and mathematically well-defined solution. Finally, knowl-
edge of biogeochemical processes can be brought to bear by regres-
sion ofpCO2 against fields simulated by abiogeochemical process
model, or by tuning initial conditions or parameters in such a model
simulation to match the observations. However, this relies heavily
on the structure of the process simulation to be correct.
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Fig. 2. Map of biomes (Fay and McKinley, 2014) used for time
series comparison. (See Table 5 for biome names.)
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Fig. 3. pCO2 time series from all 14 presented mapping methods
averaged over the North Atlantic Subtropical Permanently Stratified
biome of Fay and McKinley (2014, illustrated by the little map).
Line styles indicate the relative monthly mismatch:Rmonth < 30%

(thick), 30–60% (medium),60–75% (thin), above75% (dashed).
(a) pCO2 on monthly time steps for 3 selected years.
(b) As (a), but averages only calculated over pixels with data in the
SOCATv2 monthly gridded data set.
(c) Mismatch: Biome-average difference between the submitted
pCO2 fields and the co-located SOCATv2 monthly gridded values.
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Fig. 4. pCO2 time series from selected mapping methods (having
a relative IAV mismatchRiav < 75%) averaged over the East
Pacific Equatorial biome of Fay and McKinley (2014, illustrated
by the little map). Line styles indicate the relative IAV mismatch:
Riav < 30% (thick), 30–60% (medium),60–75% (thin).
(a) InterannualpCO2 variations (12-months running mean).
(b) As (a), but averages only calculated over pixels with data in the
SOCATv2 monthly gridded data set.
(c) Mismatch: Biome/yearly-average difference between the sub-
mittedpCO2 fields and the co-located SOCATv2 monthly gridded
values.
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Fig. 5. Interannual sea–airCO2 flux variations in the East Pacific Equatorial biome (left) and the global ocean (right) from selected mapping
methods (having relative IAV mismatchRiav < 75% for pCO2 averaged in the respective region).(a,c)Time series (yearly flux sum). Line
styles indicate the relative IAV mismatch:Riav < 30% (thick), 30–60% (medium),60–75% (thin). The vertical dotted lines delimit the
analysis period for the amplitude computation.(b,d) AmplitudesAiav

i of interannualCO2 flux variations (see Sect. 4.2) plotted against
the relative IAV mismatch amplitudeRiav

i for each submission (cases not fully covering the analysis period havebeen omitted to avoid
inconsistencies). The weighted meanAiav (Eq. 3) is given as horizontal line.
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Fig. A1. Monthly pCO2 variations over years 2003–2005 (arbitrarily selected) as estimated by all mapping methods, averaged over the
biomes by Fay and McKinley (2014) (see Fig. 2, panels roughly in geographical arrangement). Vertical scales span the same range for all
biomes (100µatm), but some vertical shift has been chosen according to the mean spatial pCO2 pattern. Line styles indicate the relative
monthly mismatch:Rmonth < 30% (thick), 30–60% (medium),60–75% (thin), above75% (dashed); the legend reflects “Global”. In some
biomes, lines of certain mapping methods with higher mismatches have beenclipped (rather than enlarging the vertical scale), in order to
maintain clarity. Biomes 1 (North Pacific Ice) and 8 (North Atlantic Ice) havebeen omitted due to extremely sparse data coverage.
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Fig. A2. InterannualpCO2 variations as estimated by all mapping methods, averaged over the biomesby Fay and McKinley (2014) (see Fig.
2, panels roughly in geographical arrangement). Line styles indicate therelative IAV mismatch:Riav < 30% (thick), 30–60% (medium),
60–75% (thin), above75% (dashed); the legend reflects “Global”. Vertical scales span the same range for all biomes (100µatm), but some
vertical shift has been chosen according to the mean spatialpCO2 pattern. In some biomes, lines of certain mapping methods with higher
mismatches have been clipped (rather than enlarging the vertical scale),in order to maintain clarity. Biomes 1 (North Pacific Ice) and 8
(North Atlantic Ice) have been omitted due to extremely sparse data coverage.
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Fig. A3. Mismatch between the interannualpCO2 variations as estimated by all mapping methods and the SOCATv2 monthly gridded values
(biome/yearly averages of the map-data difference sampled at the location/time of the comparison data, Sect. 3.5.1).



26 C. Rödenbeck et al.: An Ensemble ofpCO2-based sea–airCO2 flux estimates

Biome 2 - NP SPSS

     
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

Biome 3 - NP STSS

     
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

Biome 4 - NP STPS

     
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

Biome 5 - PEQU-W

     
-0.4

-0.2

0.0

0.2

0.4

Y
ea

rly
 C

O
2 

flu
x 

(P
gC

/y
r)

     
 

 

 

 

 

Biome 6 - PEQU-E

     
0.0

0.2

0.4

0.6

0.8

     
 

 

 

 

 

Biome 7 - SP STPS

1990 1995 2000 2005 2010
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

UEA-SI
OceanFlux-SI
Jena-MLS
CU-SCSE
AOML-EMP
UEx-MLR
JMA-MLR
UNSW-SOMLO
ETH-SOMFFN
CARBONES-NN
NIES-SOM
NIES-NN
PU-MCMC
NIES-OTTM

Biome 9 - NA SPSS

     
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

Biome 10 - NA STSS

     
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

Biome 11 - NA STPS

     
-0.4

-0.2

0.0

0.2

0.4

     
 

 

 

 

 

Biome 12 - AEQU

     
-0.4

-0.2

0.0

0.2

0.4

     
 

 

 

 

 

Biome 13 - SA STPS

1990 1995 2000 2005 2010
-0.4

-0.2

0.0

0.2

0.4

     
 

 

 

 

 

Global

1990 1995 2000 2005 2010
-3.0
-2.5

-2.0

-1.5

-1.0
-0.5

     
 

 

 

 

 

 

Biome 14 - IND STPS

     
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

Biome 15 - SO STSS

     
-1.0

-0.8

-0.6

-0.4

-0.2

     
 

 

 

 

 

Biome 16 - SO SPSS

     
-0.6

-0.4

-0.2

0.0

0.2

     
 

 

 

 

 

Biome 17 - SO ICE

1990 1995 2000 2005 2010
-0.4

-0.2

0.0

0.2

0.4

     
 

 

 

 

 

Fig. A4. Interannual variations of the sea–airCO2 flux as estimated by all mapping methods, integrated over the biomes by Fayand
McKinley (2014) (see Fig. 2, panels roughly in geographical arrangement). Line styles indicate the relative IAV mismatch:Riav < 30%

(thick), 30–60% (medium),60–75% (thin), above75% (dashed); the legend reflects “Global”. Vertical scales span the same range for all
biomes (0.8PgCyr−1 except the global flux), but some vertical shift has been chosen according to the mean spatial flux pattern. In some
biomes, lines of certain mapping methods with higher mismatches have beenclipped (rather than enlarging the vertical scale), in order to
maintain clarity. Biomes 1 (North Pacific Ice) and 8 (North Atlantic Ice) havebeen omitted due to extremely sparse data coverage.



C. Rödenbeck et al.: An Ensemble ofpCO2-based sea–airCO2 flux estimates 27

Biome 2 - NP SPSS

     
0

50
100
150
200
250
300

     
 
 

 

 

 

 
 

Biome 3 - NP STSS

     
0

50

100

150

200
250

     
 

 

 

 

 

 

Biome 4 - NP STPS

     
0

50
100
150
200
250
300

     
 
 

 

 

 

 
 

Biome 5 - PEQU-W

     
0

50

100

150

200

S
O

C
A

T
v2

 d
at

a 
de

ns
ity

 (
pi

xe
ls

/m
on

th
)

     
 

 

 

 

 

Biome 6 - PEQU-E

     
0

50

100

150

200

     
 

 

 

 

 

Biome 7 - SP STPS

1990 1995 2000 2005 2010
0

50

100

150

200

     
 

 

 

 

 

Biome 9 - NA SPSS

     
050

100
150
200
250
300
350
400
450500

     
 
 
 
 
 
 
 
 
 
 
 

Biome 10 - NA STSS

     
0

50

100

150

     
 

 

 

 

Biome 11 - NA STPS

     
0

50
100
150
200
250
300

     
 
 

 

 

 

 
 

Biome 12 - AEQU

     
0

50

100

150

     
 

 

 

 

Biome 13 - SA STPS

1990 1995 2000 2005 2010
0

50

100

150

     
 

 

 

 

Global

1990 1995 2000 2005 2010
0

250

500

750

1000

1250

1500

     
 
 

 

 

 

 
 

Biome 14 - IND STPS

     
0

50

100

150

     
 

 

 

 

Biome 15 - SO STSS

     
0

50

100

150

200

     
 

 

 

 

 

Biome 16 - SO SPSS

     
0

50

100

150

     
 

 

 

 

Biome 17 - SO ICE

1990 1995 2000 2005 2010
0

50

100

150

200
250

     
 

 

 

 

 

 

Fig. A5. Data density of the gridded SOCATv2 product used for comparison: Number of data-covered pixels per month in each biome. (Note
that these values are only roughly indicative of the strength of data constraint, which not only depends on the number of data but also strongly
on their distribution within the biome. Also, the magnitudes cannot be compared between biomes, because they have differently many pixels
and the pixel size depends on latitude. Further note that several methodsuse LDEO or other SOCAT versions, thus may be constrained more
strongly or more weakly in certain periods.)
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Fig. A6. Valid domain for each mapping method (colored area). The color givesthe number of valid months within the period of the method;
a number less than the maximum (dark red) indicates either (1) a fractional sea mask along coasts (Jena-MLS), (2) seasonally invalid months
due to unavailable Chlorophyll-a input data (JMA-MLR, ETH-SOMFFN, NIES-SOM), or (3) occasional invalid months due to missing SST
input (OceanFlux-SI) or numerical reasons (UEx-MLR).
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Fig. A7. Decadal sea–airCO2 flux variations in the global ocean
from selected mapping methods (having relative IAV mismatch
Riav < 75% for globally averagedpCO2). (a) Interannual time se-
ries as in Fig. 5(c). Line styles indicate the relative IAV mismatch:
Riav < 30% (thick), 30–60% (medium),60–75% (thin). The ver-
tical dotted lines delimit the periods for the trend computation.(b)
Linear trends over 1991–2001 (smaller symbols) and 2001–2011
(larger symbols) plotted against the relative IAV mismatch ampli-
tudeRiav

i for each submission (cases not fully covering the two
trend periods have been omitted to avoid inconsistencies). Error
bars only reflect the uncertainty of the linear fit due to interannual
variations (calculated assuming consecutive years to be statistically
independent). Despite the very short periods, a more negative trend
in the later period is a significant and consistent feature. The solid
black horizontal lines give the weighted mean trends for the two
periods, where submissions have been weighted both according to
Riav and to the uncertainty of the linear fit.


