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Abstract. An accurate quantification of the role of the ocean
as source/sink of Green House Gases (GHGs) requires to ac-
cess the high-resolution of the GHG air-sea flux at the inter-
face. In this paper we present a novel method to reconstruct
maps of surface ocean partial pressure of CO2, pCO2, and5

air-sea CO2 fluxes at super resolution (4 km) using Sea Sur-
face Temperature (SST) and Ocean Colour (OC) data at this
resolution, and CarbonTracker CO2 fluxes data at low reso-
lution (110 km). Inference of super-resolution of pCO2, and
air-sea CO2 fluxes is performed using novel nonlinear signal10

processing methodologies that prove efficient in the context
of oceanography. The theoretical background comes from the
Microcanonical Multifractal Formalism which unlocks the
geometrical determination of cascading properties of phys-
ical intensive variables. As a consequence, a multiresolution15

analysis performed on the signal of the so-called singularity
exponents allows the correct and near optimal cross-scale in-
ference of GHGs fluxes, as the inference suits the geometric
realization of the cascade. We apply such a methodology to
the study offshore of the Benguela area. The inferred rep-20

resentation of oceanic partial pressure of CO2 improves and
enhances the description provided by CarbonTracker, captur-
ing the small scale variability. We examine different combi-
nations of Ocean Colour and Sea Surface Temperature prod-
ucts in order to increase the number of valid points and the25

quality of the inferred pCO2 field. The methodology is vali-
dated using in-situ measurements by means of statistical er-
rors. We obtain that mean absolute and relative errors in the
inferred values of pCO2 with respect to in-situ measurements

are smaller than for CarbonTracker.30

1 Introduction

The ocean can be thought of as a complex system in which a
large number of different processes (e.g. physical, chemical,
biological, atmosphere-ocean interactions) interact with each35

other at different spatial and temporal scales (Rind, 1999).
These scales extend from millimeters to thousands of kilo-
meters and from seconds to centuries (Dickey, 2003). In par-
ticular, recently there is a growing body of evidence that the
upper few hundred meters of the oceans are dominated by40

submesoscale activity, covering the range 1-10 km, and that
this activity is important to understand global ocean prop-
erties (Klein and Lapeyre, 2009). Accurately estimating the
sources and sinks of GHGs at the air-sea interface requires
to resolve these small scales (Mahadevan et al., 2004). How-45

ever, the scarcity of oceanographic cruises and the lack of
available satellite products for GHG concentrations at high
resolution prevent us from obtaining a global assessment of
their spatial variability at small scales. For example, from
the in-situ ocean measurements the uncertainty of the net50

global ocean-atmosphere CO2 fluxes is between 20 and 30%
(IOCCP, 2007), and could be higher in the Oxygen Minimum
Zones (OMZ) of the Eastern Boundary Upwelling Systems
(EBUS) due to the extreme regional variability in these areas
(Paulmier et al., 2008; Franco et al., 2014). This indeed sug-55

gests the design of proper methodologies to infer the fluxes
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at high resolution from presently available satellite images
data, in order to improve current estimates of gas exchanges
between the ocean and the atmosphere.

The most commonly used methods to estimate air-sea CO260

fluxes are based either on statistical methods, inverse mod-
eling with atmospheric transport models or global coupled
physical-biogeochemical models. Among others we can find
the work by Takahashi et al. (2002, 2009) where they inter-
polate sea surface pCO2 measurements with advanced sta-65

tistical methods to provide climatological monthly maps of
air-sea fluxes of CO2 in the global surface waters at a spatial
resolution of 4◦ × 5◦. Global maps at the same spatial res-
olution but at higher temporal resolution (daily) have been
estimated by Rödenbeck et al. (2014) by fitting the mixed-70

layer carbon budget equation to ocean pCO2 observations.
Beside the Takahashi’s works an international effort to com-
pile global surface CO2 fugacity (fCO2) measurements has
been recently performed and reported in Pfeil et al. (2013);
Bakker et al. (2014), and later interpolated by Sabine et al.75

(2013) generating a monthly gridded product with fCO2 val-
ues in a 1◦x1◦ grid cell. Other statistical approach based on
the neural-network statistical method has been shown to be
useful to estimate climatological and monthly 1◦x1◦ maps of
pCO2 by Landschützer et al. (2014) and Telszewski et al.80

(2009) respectively. Gruber et al. (2009) used an inverse
modeling of sources and sinks from the network of atmo-
spheric CO2 concentrations jointly with transport models.
The third type of methods is based on the direct computations
of the air-sea CO2 fluxes in coupled physical-biogeochemical85

models incorporating the biogeochemical processes of the
carbon dioxide system. In the latter, simulated surface ocean
pCO2 can be constrained with available ship observations as
shown by Valsala and Maksyutov (2010).

Another new avenue to infer air-sea GHG fluxes is90

through inverse modeling applied to vertical column densi-
ties (VCD) extracted from satellite spectrometers, i.e. Green-
house gases Observing SATellite (GOSAT) and SCanning
Imaging Absorption SpectroMeter for Atmospheric CHar-
tographY (SCIAMACHY), at low spatial resolution (Garbe95

and Vihharev, 2012). A global estimation of CO2 fluxes in the
ocean has been derived at 1◦ × 1◦ of spatial resolution from
global atmosphere observations used into a data assimilation
system for CO2 called CarbonTracker (Peters et al., 2007). In
all these datasets the rather coarse spatial resolution leads to100

uncertainties in the actual estimate of the sources and sinks
of CO2, calling for an improvement of the resolution of CO2

flux estimates.
In this regard, the last few years have seen the appear-

ance of interesting new developments on multiscale process-105

ing techniques for complex signals coming from Earth Ob-
servations (Yahia et al., 2010). These methods make use of
phenomenological descriptions of Fully Developed Turbu-
lence (FDT) in nonlinear physics, motivated by the values
taken on by Reynolds number in ocean dynamics. As pre-110

dicted from the theory and also observed in the ocean, in

a turbulent flow the coherent vortices (eddies) interact with
each other stretching and folding the flow generating smaller
eddies or small scale filaments and transition fronts charac-
terized by strong tracer gradients (Frisch, 1995). This results115

in a cascade of energy from large to smaller scales. There-
fore the inherent cascade of tracer variance under the turbu-
lent flow dominates the variability of the geometrical distri-
bution of tracers such as temperature or dissolved inorganic
carbon, as shown by Abraham et al. (2000), Abraham and120

Bowen (2002), Turiel et al. (2005). Geometrical organization
of the flow linked to the energy cascade allows to study its
properties from the geometrical properties of any tracer for
which the advection is the dominant process. The relation-
ships between the cascade and the multifractal organization125

of FDT has been set up either in a canonical (Arneodo et al.,
1995; Frisch, 1995) or microcanonical (Turiel et al., 2005;
Bouchet and Venaille, 2012) descriptions. Within the micro-
canonical framework (MMF) the singularity exponents un-
lock the geometrical realization of the multifractal hierarchy.130

Setting up a multiresolution analysis on the singularity ex-
ponents computed in the microcanonical framework allows
near optimal cross scale inference of physical variables (Su-
dre et al., 2015).

These advances open a wide field of theoretical and experi-135

mental research and their use in the analysis of complex data
coming from satellite imagery has been proven innovative
and efficient, showing a particular ability to perform fusion
of satellite data acquired at different spatial resolutions (Pot-
tier et al., 2008) or to reconstruct from satellite data currents140

maps at submesoscale resolution (Sudre et al., 2015). In this
paper we apply these novel techniques emerging from non-
linear physics and nonlinear signal processing for inferring
submesoscale resolution maps of the air-sea CO2 fluxes and
associated sinks and sources from available remotely sensed145

data. We use this methodology to derive cross scale infer-
ence according to the effective cascade description of an in-
tensive variable, through a fusion process between appropri-
ate physical variables which account for the fluxes exchanges
between the ocean and the atmosphere. This approach is not150

only very novel in signal processing, but also connects the
statistical description of acquired data with their physical
content. This makes the approach useful to reconstruct all
GHGs.

Unlike the Lagrangian approach to reconstruct tracer maps155

at high resolution (Berti and Lapeyre, 2014), our methodol-
ogy works in the Eulerian framework and we do not need
to know the trajectories of oceanic tracer particles but only
high resolution instantaneous maps of tracers which can be
directly obtained from remote sensing.160

The Eastern Boundary Upwelling Systems (EBUS) and
Oxygen Minimum Zones (OMZs) are likely to contribute
significantly to the gas exchange between the ocean and the
atmosphere (Hales et al., 2005; Waldron et al., 2009; Paul-
mier et al., 2011). The Benguela upwelling system, the re-165

gion of interest in this study, is one of the highest produc-
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Fig. 1. Estimated fluxes from CarbonTracker data. Shown are the results on the Benguela upwelling system on March 23, 2006. Left are the
CarbonTracker fluxes, right are our results.

tivity areas in the world ocean and may contribute signifi-
cantly to the global air-sea CO2 flux. More precisely, some
studies using data from in-situ samples have found the re-
gion of Benguela to be an annual sink of CO2 with -1.70170

(in 1995 and 1996) and -2.02Mt C/year in 2005 (Santana-
Casiano et al., 2009; Monteiro, 2010), with a strong variabil-
ity between 2005 and 2006 from -1.17 to -3.24 mol C/m2 per
year, respectively (González-Dávila et al., 2009).

The paper is organized as follows: Sect. 2 describes the175

datasets used as input in our algorithm. Sect. 3 is devoted
to describe the methodology used through the study. Statis-
tical description of the input datasets is presented in Sect.
4. Results of the inference method are given in Sect. 5 by
providing outputs of our algorithm, then evaluating the var-180

ious satellite products and assessing the performance of the
method using in situ measurements.

2 Data

The input data combines air-sea CO2 fluxes at low resolution
and satellite ocean data at high resolution. To validate the185

method we use in-situ measurements of oceanic pCO2.

2.1 Input data: Air-sea CO2 fluxes at low resolution

It is known that the evolution of a concentration, c, in the at-
mosphere is given by the advection-reaction-diffusion equa-
tion:190

∂c

∂t
=−u∇c+ 1

ρ
∇(ρTd∇c)+

1

ρ
g+F, (1)

with the wind field u, the density of the air ρ, the tur-
bulent diffusivity tensor Td, the chemical reaction rate g
and the net flux at the air-sea interface F (Garbe et al.,
2007, 2014). Using optimal control and inverse problem195

modeling, a map of F can be derived using Earth Obser-
vation data (Garbe and Vihharev, 2012). It would be ideal
if we could use data of atmospheric CO2 concentrations
from space measured by satellite sensors such as SCIA-
MACHY (SCanning Imaging Absorption SpectroMeter for200

Atmospheric CHartographY) aboard ENVISAT (Environ-
mental Satellite), in orbit since 2002, and GOSAT (Green-
house gases Observing SATellite), in orbit since January
2009, to derive the air-sea flux. However SCIAMACHY
and GOSAT sampling is not dense enough with very sub-205

optimal sampling of the Benguela upwelling system. This
led us to use data of CO2 fluxes from CarbonTracker
(http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) at spa-
tial resolution of 1◦ x 1◦ (∼100 km x∼100 km) (Peters et al.,
2007). CarbonTracker system assimilates and integrates a di-210

versity of atmospheric CO2 data into a computation of sur-
face CO2 fluxes, using a state-of-the-art atmospheric trans-
port model and an ensemble Kalman filter.

We obtain the partial pressure of ocean CO2 by using the
equation of the net flux in the air-sea interface:215
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F = αK(pairCO2
− poceanCO2

), (2)

where α is the gas solubility, which depends on SST and
Sea Surface Salinity SSS, and K, the gas transfer velocity,
is a function of wind, salinity, temperature, sea state, which
can be obtained from satellite data. To estimate the gas trans-220

fer velocity we use the well accepted relationships for the
transfer velocity in air-sea gas exchange from wind speed,
the parametrization developed by Sweeney et al. (2007). The
CO2 gas solubility is derived according to Weiss (1974).
Input data for SST are derived from OSTIA (Operational225

SST and Sea Ice Analysis system) product, SSS are de-
rived from LEGOS (Laboratoire d’Etudes en Géophysique
et Océanographie Spatiales) product compiled by Delcroix
et al. (2011) and winds from Cross Calibrated Multi-Platform
Ocean surface winds from JPL (Jet Propulsion Labora-230

tory) PO.DAAC (Physical Oceanography Distributed Active
Archive Center, http://podaac.jpl.nasa.gov/). We assume a
pairCO2

to be constant in the domain of study and it is de-
rived from the Globalview-CO2 product of the Cooperative
Atmospheric Data Integration Project coordinated by Car-235

bon Cycle Greenhouse Gases Group (GLOBALVIEW, 2013)
(www.esrl.noaa.gov/gmd/ccgg/globalview/). We use values
taken at the closest station off Benguela and closest to sea
level, located at Ascension Island (7.97◦S and 14.40◦W) as
our reference atmospheric CO2.240

The raw data of CarbonTracker fluxes of CO2 in the
area of interest are strongly binned and exhibit strong gra-
dients across those bins. This turns out to be suboptimal for
our super-resolution approach. Garbe and Vihharev (2012)
have developed an optimal control approach to invert in-245

terfacial fluxes using a simplified inverse problem of at-
mospheric transport. The inverse problem is solved using
the Galerkin finite element method and the Dual Weighted
Residual (DWR) method for goal-oriented mesh optimiza-
tion. An adaptation of this approach has been applied to the250

CarbonTracker data set. However, the estimations are expen-
sive and computing results for all the time frames of inter-
est was infeasible. Therefore, an anisotropic diffusion-based
approach has been applied to the raw fluxes of the Carbon-
Tracker data set. The diffusion is steered by the direction of255

the low-altitude wind field. The results thus retain the struc-
ture of the CarbonTracker fluxes very well while suppressing
artifacts. Results are comparable to the physically more ac-
curate approach of Garbe and Vihharev (2012). Examples of
this process are shown in Fig. 1.260

2.2 Input data: Satellite Ocean data at high resolution

Oceanic pCO2 is a complex signal depending, at any spa-
tial resolution, on sea surface temperature, salinity, chloro-
phyll concentration, dissolved inorganic carbon, alkalinity
and nutrients concentrations. Both the biological pump, with265

chlorophyll a as a proxy, and the physical pump, driven by

the temperature and salinity (e.g. solubility, water mass),
govern the evolution of pCO2, when dealing with CO2 for
instance, in the surface ocean.

We use here the high resolution satellite ocean data for270

chlorophyll a, as a proxy for the biological carbon pump and
for Sea Surface Temperature (SST), as a proxy for the ther-
modynamical pump, (see Section 3.2 for more details on the
connection of these oceanic variables).

2.2.1 Chlorophyll-a (Chl-a) from Ocean Colour (OC)275

In this study we use Chl-a concentrations from two differ-
ent Ocean Colour products: MERIS and GLOBCOLOUR.
MERIS (MEdium Resolution Imaging Spectrometer Instru-
ment) is on board the ENVISAT satellite and provides daily
maps of ocean colour at 1/24◦ (∼4 km). Ocean colour from280

GLOBCOLOUR product is obtained by merging data pro-
vided by MODIS (MODerate Resolution Imaging Spectro-
radiometer), MERIS and SeaWiFS instruments. The Chl-
a concentration is provided daily and at the spatial reso-
lution equal to 1/24◦ (∼4 km). Ocean Colour data have285

been regridded at 1/32◦ by linear interpolation. GLOB-
COLOUR products are generated using different merg-
ing methods (see the GLOBCOLOUR Product User Guide
document in http : //www.globcolour.info/CDR Docs
/GlobCOLOUR PUG.pdf ):290

– Averaging from single-instrument chl-a concentra-
tion. In this case CHL1 daily level 3 (L3) products
are generated for each instrument using the correspond-
ing L2 data. At the beginning of the averaging process,
an inter-calibration correction is applied to the MODIS295

and SeaWiFS (Sea-Viewing Wide Field-of-View Sen-
sor) CHL1 daily L3 products in order to get compatible
concentrations with respect to the MERIS sensor. The
merged CHL1 concentration is then computed as the av-
erage of the MERIS, MODIS and SeaWiFS quantities,300

both as: an arithmetic mean or a weighted average
value (AVW). In the AVW method, values of CHL1 are
weighted by the relative error for each sensor on the re-
sults of the simple averaging.

– Garver-Siegel-Maritorena model (GSM). In this305

method single-instrument daily L3 fully normalized wa-
ter leaving radiances (individually computed for each
band) and their associated error bars are used by the
GSM model. These radiances are not inter-calibrated
before incorporation in the model (see Maritorena and310

Siegel (2005) for more details).

Snapshots of both Chl-a fields derived from MERIS and
GSM GLOBCOLOUR corresponding to September 21, 2006
are displayed in Fig. 2 a) and b), respectively. This example
shows the clear difference in the remote sensing coverage be-315

tween the two products. The merged GLOBCOLOUR prod-
uct yields a more covered Chl field than the one obtained



Hernández-Carrasco et al.: Super-resolution CO2 fluxes from Earth Observations 5

from MERIS. The merging algorithm in GLOBCOLOUR
product tends to decrease the missing points induced by
clouds for each individual instrument.320

2.2.2 Sea Surface Temperature (SST)

We use SST derived from OSTIA and MODIS products.
OSTIA (Operational SST and Sea Ice Analysis system) is
a new analysis of SST that uses satellite data provided by
the GHRSST (Group for High Resolution SST) project, to-325

gether with in situ observations to determine the SST with a
global coverage and without missing data. The datasets are
produced daily and at spatial resolution of 1/20◦ (∼6km)
performing a multi-scale optimal interpolation using corre-
lation length scales from 10 km to 100 km (more details in330

Donlon et al. (2012)). The other SST product used in this
study is derived from MODIS (MODerate Resolution Imag-
ing Spectroradiometer) sensors carried on board the Aqua
satellite since December 2002. This SST product is derived
from the MODIS mid-infrared (IR) and thermal IR channels335

and is available in various spatial and temporal resolutions.
We use Level-3 daily maps of SST at the spatial resolution
of 1/24◦ (∼4 km) (Savtchenko et al., 2004). In Fig. 3 a) and
b), we show one snapshot of SST from OSTIA and MODIS
respectively corresponding to the same day on September 21,340

2006. In the case of OSTIA products, the SST field is fully
covered of points while for MODIS products there are gaps
due to cloudiness. On other hand, MODIS product offers a
more detailed visualization of the small structures. All SST
data have been regridded at 1/32◦ by bilinear interpolation.345

2.3 Validation data: in-situ measurements

Among the available data in SOCAT version 2 (Bakker et al.,
2014) (Surface Ocean CO2 Atlas, http://www.socat.info)
over the 2000-2010 period in our region of interest we find
the following cruises with pCO2 measurements:350

– 2000, one cruise: ANT-18-1

– 2004, one cruise: 0404SFC-PRT

– 2005, five cruises: QUIMA2005-0804, QUIMA2005-
0821, QUIMA2005-0922, QUIMA2005-1202,355

QUIMA2005-1220

– 2006, nine cruises: GALATHEA, QUIMA2006-0326,
QUIMA2006-0426, QUIMA2006-0514, QUIMA2006-
0803, QUIMA2006-0821, QUIMA2006-0921,
QUIMA2006-1013, QUIMA2006-1124360

– 2008, seven VOS cruises: QUIMA2008-1,
QUIMA2008-2, QUIMA2008-3, QUIMA2008-4,
QUIMA2008-5, QUIMA2008-6, QUIMA2008-7

– 2010, one cruise: ANT27-1
365

The small number of cruises found in one decade (24
cruises) shows that the scarcity of cruises in the Benguela
region is a fact. This indeed demonstrates the crucial need
of developing a robust method to infer high resolution pCO2

from space. Moreover for some of these cruises, for instance,370

the track of GALATHEA cruise is too close to the coast and
is out of the original CarbonTracker domain. Due to this re-
striction we only document the offshore conditions of this
upwelling system. Owing to the relatively large number of
cruises during 2005, 2006 and 2008 (a total of 20 cruises,375

representing 83% of all available cruise data from 2000
through 2010), in this validation, we focus the analysis on
the set of QUIMA-cruises during 2005 (QUIMA2005), 2006
(QUIMA2006) and 2008 (QUIMA2008) and we present the
global analysis using all available cruises during these three380

years. Santana-Casiano et al. (2009) analyzed this data to
study the sea surface pCO2, fCO2 and CO2 air-sea fluxes
offshore of the Benguela upwelling system between 2005
and 2006 (for each month from July 2005 up to November
2006) and González-Dávila et al. (2009) extended the study385

including cruises data from 2007 to 2008. The QUIMA line
crosses the region between 5◦S and 35◦S, with all the cruises
following the same track.

3 Method

The idea behind the methodology hinges on the fundamen-390

tal discovery of a simple functional dependency between
the transitions - those being measured by the dimension-
less values of the singularity exponents computed within the
framework of the Microcanonical Multifractal Formalism -
of the respective physical variables under study : SST, Ocean395

Colour and oceanic partial pressure (pCO2). That functional
dependency being adequately fitted into a linear regression
model, it becomes possible to compute, at any given time, a
precise evaluation of pCO2 singularity exponents using SST,
Ocean Colour and low resolution acquired pCO2. Once these400

singularity exponents are computed, they generate a mul-
tiresolution analysis from which low resolution pCO2 can
be cross-scale inferred to generate a high resolution pCO2

product. In this study we choose SST and Chl, and not
other variables like Sea Surface Height, because we focus405

on the use of physical variables which are correlated spa-
tially and temporally to pCO2 and that can be obtained
from satellite at high resolution.

3.1 Singularity exponents and the multifractal hierar-
chy of turbulence410

In the ocean, the turbulence causes the formation of unsteady
eddies on many scales which interact with each other (Frisch,
1995). Most of the kinetic energy of the turbulent motion is
contained in the large scale structures. The energy cascades
from the large scale structures to smaller scale structures by415
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a) b)

c) d)

Fig. 2. Snapshot of Chl-a fields corresponding to September 21, 2006, regridded at 1/32◦ of spatial resolution from MERIS (a) and GSM
GLOBCOLOUR (b). c) and d) are the spatial distribution of Singularity Exponents of the Chl-a plotted in a) and b) respectively

an inertial and essentially inviscid mechanism. This process
continues, creating smaller and smaller structures which pro-
duces a hierarchy of eddies. Moreover, the ocean is a system
displaying scale invariant behavior, that is, the correlations of
variables do not change when we zoom in or we zoom out the420

system, and can be represented by power-laws in particular,
with the scaling exponents h.

It can be shown that the scaling exponents are the values
taken on by localized singularity exponents, which can be
computed at high precision in the acquired data using the425

Microcanonical Multifractal Formalism. Hence, within that
framework, the multifractal hierarchy of turbulence, defined
by a continuum of sets Fh indexed by scaling exponents h,
is obtained as the level sets of the geometrically localized
singularity exponents.430

We will not review here the details in the computation of
the singularity exponents h(x), leaving the reader to consult
references (Turiel et al., 2005, 2008; Pont et al., 2011b; Maji
and Yahia, 2014; Sudre et al., 2015) for an effective descrip-
tion of an algorithm able to compute the h(x) at every point435

x in a signal’s domain.
Some examples of the singularity exponents of Chl and

SST images for the different products described in Section
2.2 are shown in Fig. 2 c) and 2 d) and Fig. 3 c) and 3 d), re-
spectively. As compared to the corresponding images of Chl440

and SST showed in Fig. 2 a) and 2 b) and Fig. 3 a) and 3
b), one can see the ability of the singularity exponents to un-
veil the cascade structures arisen by tracer-gradient variances
hidden in satellite images.
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a)

c) d)

b)

Fig. 3. Snapshot of SST fields corresponding to September 21, 2006 regridded at 1/32◦ of spatial resolution from OSTIA (a) and MODIS
(b). c) and d) are the spatial distribution of Singularity Exponents of the SST plotted in a) and b) respectively.

3.2 Functional dependencies between the singularity445

exponents of intensive physical variables

Another important idea implemented in the methodology is
the coupling of the physical information contained in SST
and OC images with the ocean pCO2. For instance, it is
known, that marine primary production is a key process in450

the oceanic carbon cycling, and variations in the concentra-
tion of phytoplankton biomass can be related to variations
in the carbon concentrations. Surface temperature is also re-
lated with the gas solubility in the ocean, and areas with high
temperatures are more suitable for releasing CO2 to the at-455

mosphere. We have studied the relationship of SST and Chl-
a variables with pCO2 using the outputs of a coupled Re-
gional Ocean Modeling System (ROMS) with the BIOgeo-
chemical model of the Eastern Boundary Upwelling System
(BIOEBUS) (Gutknecht et al., 2013). The ROMS includes460

several levels of nesting and composed grids, which makes
it an ideal model for the basis of our methodology in work-
ing in two spatial resolutions. BIOEBUS has been developed
for the Benguela to simulate the first trophic levels of the
Benguela ecosystem functioning and also to include a more465

detailed description of the complete nitrogen cycle, includ-
ing denitrification and anammox processes as well as the
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oxygen cycle and the carbonates system. This model cou-
pled to ROMS has been also shown to be skillful in simu-
lating many aspects of the biogeochemical environment in470

the Peru upwelling system (Montes et al., 2014). When one
compares SST and Chl with pCO2 one finds undetermined
functional dependency. However, when comparing their cor-
responding singularity exponents one obtains a clear simpler
dependency. This is due to the fact that SST, Chl and pCO2475

are variables of different dimensions while singularity expo-
nents are dimensionless quantities.

These results show that there is a good correlation be-
tween the turbulent transitions given by the singularity expo-
nents and that singularity exponents are good candidates for a480

multiresolution analysis performed on the three signals SST,
Chl and pCO2. Furthermore, they studied the log-histograms
and singularity spectrum to show that singularity exponents
of pCO2 images possess a multifractal character. Therefore,
such signals are expected to feature cascading, multiscale485

and other characteristic properties found in turbulent signals
as described in Turiel et al. (2008) and Arneodo et al. (1995).
Consequently the use of non-linear and multiscale signal pro-
cessing techniques is justified to assess the properties of the
pCO2 signal along the scales.490

Therefore, in our methodology, the local connection be-
tween different tracer concentrations, i.e., SST, Chl-a with
pCO2, in order to obtain a proxy for pCO2 at high resolu-
tion, is performed by using the following linear combination
of multiple linear regressions:495

S(pCO2)(x) =a(x)S(SST )(x)+ b(x)S(Chl a)(x)+
c(x)S(pCO2

LR)(x)+ d(x),
(3)

where S(pCO2)(x) refers to the singularity exponent of
pCO2 at x, S(SST )(x) to singularity exponent of SST at x,
S(Chl− a)(x) to singularity exponent of Chl-a signal at x.
In order to propagate the pCO2 signal itself along the scales500

in the multiresolution analysis we introduce S(pCO2
LR) to

refer to the singularity exponent from pCO2 at low resolution
interpolated on the high resolution grid. a(x), b(x) and c(x)
are the regression coefficients associated to singularity expo-
nents, and d(x) is the error associated to the multiple-linear505

regression. These regression coefficients are estimated using
simulated data from the ROMS-BIOEBUS model developed
for the Benguela upwelling system and described above.

Once we have introduced these coefficients in the linear
combination on satellite data, we obtain a proxy for singular-510

ity exponents of pCO2 at high resolution and we can perform
the multiresolution analysis to infer the information across
the scales.

3.3 Cross-scale inference of pCO2 data

Among the functional that are most commonly used to ana-515

lyze the scaling properties of multifractal systems, wavelets

occupy a prominent position. Wavelets projections are inte-
gral transforms that separate the relevant details of a signal at
different scale levels, and since they are scale-tunable, they
are appropriate to analyze the multiscale behavior of cascade520

processes and to represent them. However, as shown in Pot-
tier et al. (2008),Yahia et al. (2010) and Pont et al. (2011a)
not all multiresolution analyses are equivalent but the most
interesting are those which are optimal with respect to in-
ferring information along scales, in particular, in a context525

where information is to be propagated along the scales from
low resolution to high resolution.

The effective determination of an optimal wavelet for a
given category of turbulent signals is, in general, a very dif-
ficult open problem. This difficulty can be contoured by con-530

sidering multiresolution analysis performed on the signal of
the singularity exponents h(x) themselves. Indeed, since the
most singular manifold (the set Fh associated to the low-
est singularity exponents) is associated with the highest fre-
quencies in a turbulent signal, and since the multifractal hi-535

erarchy Fh converges to this set, it is physically evident that
the multifractal hierarchy corresponds to a description of the
detail spaces of a multiresolution analysis performed on a
turbulent signal. Consequently, designing by Vj and Wj re-
spectively the approximation and detail spaces computed on540

S(pCO2)(x) signal, and by Aj and Pj their corresponding
orthogonal projections from space L2(R2), the following re-
construction formula:

Aj−1pCO2 =AjpCO2 +Pjh (4)

consists in reconstructing a signal across the scales using545

the detail spaces of the singularity exponents, hence re-
generating a physical variable according to its cascade de-
composition. From these ideas, which are described more
fully in the paper by Sudre et al. (2015), we can deduce
the following algorithm for reconstructing a super-resolution550

pCO2 signal from available high-resolution SST, Chl-a, and
low-resolution pCO2:

i) After selecting a given area of study, compute the singu-
larity exponents of SST, Chl and pCO2 at low and high
resolution from ROMS-BIOEBUS output. This is done555

once and then they can be used for every computation
performed over the same area.

ii) Using Eq. 2 estimate ocean pCO2 at low resolution:
poceanCO2

= pairCO2
−F/αK , where:

- F : air-sea surface CO2 fluxes provided by Carbon-560

Tracker product.

- K: gas transfer velocity obtained by the
parametrization developed by Sweeney et al,
2007, as a function of the wind.

- α: gas solubility derived according to Weiss 1974.565

- pairCO2
: provided by Globalview-CO2 product.



Hernández-Carrasco et al.: Super-resolution CO2 fluxes from Earth Observations 9

iii) Obtain the regression coefficients a,b,c and d of Eq. 3
for the singularity exponents obtained in step ii)

iv) Calculate the singularity exponents of available satellite
SST, Chl at high resolution and ocean pCO2 at low res-570

olution (step i).

v) Use coefficients obtained in step iii) and apply Eq. 3 to
the singularity exponents from satellite data (step iv) to
estimate a proxy of singularity exponents of high reso-
lution ocean pCO2, S(pCO2).575

vi) Using Eq. 4 reconstruct pCO2 at high resolution
from the multiresolution analysis computed on signal
S(pCO2) and cross-scale inference on pCO2 at low res-
olution.

vii) Use Eq. 2 to calculate air-sea CO2 fluxes from the in-580

ferred pCO2 obtained in step vi)

The methodology has been successfully applied to dual
ROMS simulation data at two resolutions, obtaining a mean
absolute error of pCO2 reconstructed values with respect
to ROMS simulated high-resolution pCO2 equal to 3.2µatm585

(0.89% of relative error) (V. Garçon 2014, pers. comm.).

4 Preliminary analysis of Sea Surface Temperature
(SST) and Chlorophyll images

Since the key element for the application of our inferring al-
gorithm relies on the ability in obtaining the singularity ex-590

ponents and their quality, the success of our methodology
applied to satellite data depends on the quality and the prop-
erties of the input data. In order to assess such properties
we perform a statistical analysis of the different datasets.
First, we analyze the Chl and SST Probability Distribution595

Functions (PDFs). In Fig. 4a) we present the PDFs for Chl
from MERIS, GLOBCOLOUR-GSM and GLOBCOLOUR-
AVW; the required histograms are built using daily Chl val-
ues over 2006 and 2008 at each point of the spatial grid in
the area of Benguela. Each one of these PDFs is broad and600

asymmetric, with a small mode (i.e. the value of Chl at which
the probability reaches its maximum) between 0.1 and 0.2
mg/m3 and a heavy tail. The heavy tail (i.e. non-gaussianity)
means that the extreme values can not be neglected. In this
case Chl values are mostly low (small mode) but there is a605

significant number of isolated and dispersed patches with
very high Chl values producing intermittency (long tails in
the PDF). Intermittency in the context of turbulence is the
tendency of the probability distributions of some quantities to
develop long tails, i.e. the occurrence of very extreme events.610

Further information can be obtained by computing statisti-
cal quantities such as standard deviation, skewness and kur-
tosis. Table 1 shows that standard deviation is rather the same
for the three OC products while skewness and kurtosis val-
ues hugely differ. The degree of intermittency is measured615

by the kurtosis, the higher the kurtosis, the higher the inter-
mittency. We found that kurtosis is almost ten times higher
in GLOBCOLOUR products than in MERIS.

We have repeated the same analysis for SST datasets. The
PDFs of the SST values for OSTIA and MODIS products620

are shown in Fig. 4b). In this case both PDFs possess similar
shape, broad with the mode around 18◦C with a much less
deviation from gaussianity as compared to Chl values. This
is confirmed with the computation of the statistical moments
showed in Table 1. We obtain small values of the standard625

deviation and kurtosis in both cases, although slightly higher
in the case of MODIS. The kurtosis is less than 3, meaning
that there is not an important number of atypical values of
SST and therefore weak and short tails in the PDFs.

PRODUCT Standard Deviation Skewness Kurtosis

MERIS 0.116 mg/m3 2.6 21.9
GLOBCOLOUR-AVW 0.122 mg/m3 4.7 204.6
GLOBCOLOUR-GSM 0.123 mg/m3 5.3 215.4
OSTIA 1.97◦C -0.05 1.9
MODIS 2.11◦C -0.17 2.6

Table 1. Values of the standard deviation, skewness and kurtosis for
the different products.

If turbulence is dominated by coherent structures localized630

in space and time, then PDFs are not Gaussian, and the kur-
tosis will be higher than 3. To analyze this feature we turn
to the statistical analysis of the singularity exponents, which,
as explained before, have the ability to unveil the cascade
structures given by the tracer gradients. In Fig. 4c), it can635

be seen that the PDFs of the singularity exponents of the
Chl for the three products are rather similar with almost the
same standard deviation and with a slightly higher value of
the kurtosis in the GLOBCOLOUR-GSM product, 4.3, than
for MERIS, 3.1, and GLOBCOLOUR-AVW, 3.1, (see Table640

2). This shows that Chl from GLOBCOLOUR-GSM prod-
uct contains more extreme values which produce intermit-
tency likely given by the strongest structures. The PDFs of
the singularity exponents of the SST for OSTIA is narrower
and with a highest peak than for MODIS SST. However, sur-645

prisingly the kurtosis is larger for singularity exponents of
OSTIA SST, 5.1, than for MODIS SST, 3.2.

PRODUCT Standard Deviation Skewness Kurtosis

MERIS 0.32 mg/m3 0.59 3.1
GLOBCOLOUR-AVW 0.36 mg/m3 0.40 3.1
GLOBCOLOUR-GSM 0.35 mg/m3 0.63 4.3
OSTIA 0.29◦C 1.0 5.1
MODIS 0.32◦C 0.5 3.2

Table 2. Values of the standard deviation, skewness and kurtosis of
the singularity exponents for the different products.
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Fig. 4. a) Probability distribution functions (PDF) of Chl-a values derived from the three products: MERIS, GLOBCOLOUR-AVW and
GLOBCOLOUR-GSM. (b) PDF of SST values for OSTIA and MODIS products. c) PDFs for the singularity exponents of Chl for the different
Ocean Colour products. d) PDFs for the singularity exponents of Chl for the different SST products. e) Singularity spectra corresponding to
c). f) Singularity spectra corresponding to d).

Finally, we obtain the singularity spectra from the em-
pirical distributions of singularity exponents shown in Fig.
4c) and d). One can see in Fig. 4e) that for the two GLOB-650

COLOUR products the shape of the spectrum is closer to bi-
nomial cascade of multiplicative processes than for MERIS

(we will come back to this discussion in more depth in next
sections).
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5 Results655

5.1 Inference of super-resolution pCO2 and air-sea
fluxes of CO2 offshore of the Benguela upwelling
system

We now apply the methodology to infer ocean pCO2 maps at
super-resolution from pCO2 at low resolution derived from660

CarbonTracker data (see Section 2) in the offshore area of
the Benguela region.

From now on we are going to use the following notation
for the three different sources of pCO2: we refer to the values
of ocean pCO2 derived from CarbonTracker as pCOCtrack

2 ,665

values of inferred pCO2 at higher resolution from pCO2 at
low resolution together with computation of the cascade onto
SST and chlorophyll-a concentration as pCOinfer

2 , and finally
pCOinsitu

2 refers to the values of the in-situ measurements of
pCO2.670

For the inference we use the following three combinations
of Chl and SST products described in Section 2.1: MERIS-
OSTIA, GLOBCOLOUR-OSTIA, GLOBCOLOUR-
MODIS. We do not include the MERIS-MODIS combi-
nation in the analysis due to the fact that the use of such675

satellite data results in a too drastic reduction of the coverage
of the resulting pCOinfer

2 field, but using merged products
offers wider coverage instead. The inferred pCO2 obtained
from two merged products for Chl-a, GLOBCOLOUR
GSM and GLOBCOLOUR AVW is rather the same, with a680

slightly improvement when GSM is used. Thus for the sake
of clarity, we only show Figures for GLOBCOLOUR-GSM
and some statistical results making comparisons with AVW.
Therefore from now on we refer GLOBCOLOUR to the
Chl-a obtained by the GSM merged method.685

Figure 5d shows one example of pCOinfer
2 field corre-

sponding to March 22, 2006 when we use SST data from
OSTIA (Fig. 5a), Ocean Colour from GLOBCOLOUR (Fig.
5b) at high resolution and pCO2 at low resolution (Fig. 5c)
derived from CarbonTracker air-sea flux of CO2 (Fig. 5e) and690

using the Eq. 2. The air-sea flux of CO2 at super-resolution
(Fig. 5f) is obtained from the pCOinfer

2 field and a constant
value of atmospheric pCO2 equal to 385.6µatm. On this day
the images of the pCOinfer

2 and fluxes of CO2 combine a good
coverage and a clear identification of small scale structures695

and gradients, as described below. Note that the air-sea CO2

flux from CarbonTracker presents a large land mask close
to the coast and consequently, we will rather study the off-
shore area of the Benguela upwelling. Comparing the figures
one can see that values of pCO2 and CO2 flux over the do-700

main (from 4.5◦E to coast (taking out the mask of the Car-
bonTracker domain and from 20.5◦S to 35◦S) vary between
360 and 380µatm and between -4x10−8 and 0.5x10−8 mol C
m−2 s−1, respectively. The resultant flux of CO2 is positive
(towards the atmosphere) in the region 25◦-28◦S and from705

7◦E eastward to the coast and is negative (into the ocean)
south of 30◦S and east of 6◦E. Thus, we see that in the south-

ern part of the Benguela area there is a strong CO2 sink and
the northern part behaves as a weak CO2 source.

What is new in the reconstructed pCO2 is, for instance,710

that the cascade of information across the scales enhances
gradients in the field of pCO2. It is striking that the high-
resolution map provides the position of the North-South
dipole ”front” located at 30◦S (i.e. -1.5x10−8 isoline in
green) which could not be inferred accurately from the low715

resolution map. The low resolution map would provide an
estimate of the location of the ”front” that is ∼1.5◦ north-
ern of the location inferred from the high-resolution map.
Moreover one can see small structures in the pCOinfer

2 field
between 33-35◦S and 9-12◦E in the pCOinfer

2 field (Fig. 5d)720

. The small spatial scale variability is captured in the super-
resolution pCO2 field and not in pCOCtrack

2 as shown in the
longitudinal profile of the images plotted in Fig. 5 at lati-
tude 33.5◦S (see Fig. 6). The same high spatial variability
given by the small scale structures of the SST and OC im-725

ages can be appreciated in their corresponding longitudinal
profiles displayed in the panel a) and b) of Fig. 6. It is wor-
thy to note the change in the shape of the profiles between
the pCOinfer

2 and pCOCtrack
2 and fluxes of CO2 at large scale,

from 5.5◦E to 10.5◦E, showing that the method not only in-730

troduces small scale features but also modifies the large scale
spatial variability.

5.2 Evaluation of using different satellite products

Since the underlying aim of this work is to develop a method-
ology to infer super-resolution pCO2 from space using re-735

mote observations, we perform a validation study of the dif-
ferent data used in the inferring computations. This provides
us an evaluation of which satellite products are more suit-
able for our methodology and thus a gain in confidence in
our method as well as a better understanding of its limita-740

tions. The evaluation analysis is addressed taking into ac-
count two main concerns: one related to the number of valid
points yielded in the pCOinfer

2 field, and another with regard
to the degradation of the information contained in the tran-
sition fronts. A valid point is a pixel where we have simul-745

taneously Chl, SST and pCO2 values from CarbonTracker,
from which we can obtain a value of pCOinfer

2 , in other words
without missing information. One example comparing the re-
constructed pCO2 field obtained from the mentioned above
three products combinations is plotted in Fig. 7. The general750

pattern is quite similar in all of them with some differences in
the details of the small scales and in the missing points due to
cloudiness (white patches). This example clearly shows how
different coverage of the pCO2 can be in the field depending
on the products combination.755

Similar results are found when one compares the spa-
tial distribution of time average over 2006 and 2008 of the
pCOinfer

2 values for the three product combinations (Fig 8).
The same pattern with an area of higher pCO2 between 24◦S
and 30◦S and lower pCO2 values outside this region is pro-760
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a)

d)

f)e)

c)

b)

Fig. 5. Maps of a) SST from OSTIA at 1/32◦ of spatial resolution, b) Chl at 1/32◦ of spatial resolution from GSM GLOBCOLOUR products,
c) ocean pCO2 from CarbonTracker at the spatial resolution of 1◦, d) inferred pCO2 at super-resolution (1/32◦) derived from OSTIA SST
and GLOBCOLOUR-GSM Chl-a shown in a) and b) respectively, e) Air-sea CO2 flux as derived from CarbonTracker and f) Air-sea CO2

flux computed from super-resolution pCO2 shown in d) at 1/32◦. All images correspond to March 22, 2006. White color corresponds to
invalid pixels due to cloudiness and points inside of the CarbonTracker land mask
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Fig. 6. Longitudinal profiles of a) SST from OSTIA products in
units of ◦C, b) Chl from GLOBCOLOUR-GSM ocean in mg/m3, c)
pCOCtrack

2 (black line) and pCOinfer
2 (red line) in µatm, and d) air-

sea CO2 fluxes from CarbonTracker (black line) and inferred air-
sea CO2 fluxes (red line) in mol C m−2 s−1. All these longitudinal
profiles correspond to the fixed latitude equal to 33.5◦S of the plots
shown in Fig. 5 for March 22, 2006.

duced with the three combinations. The most noticeable dif-
ferences are located in the most northern region and in the
south-eastern region off Benguela. This can be quantified by
computing the standard deviation of the reconstructed pCO2

values among the different combination of datasets. Fig. 8 d)765

shows the spatial distribution of the time average over 2006
and 2008 of the standard deviation computed in each pixel
among the pCOinfer

2 values obtained from the three products
combinations. The larger values of the dispersion (not greater
than 5µatm) are found in the northern region from 23◦S to770

the north and and in the southern region, in particular, in the
area from 31.5 ◦S to the south and from 11◦E to the east.
The low value of the dispersion indicates that the method is
robust when different datasets are used in the inference.

First, we compute the number of valid points in the775

pCOinfer
2 field for each product combination. Table 3 sum-

marizes the total number of valid points for each prod-
ucts combination for both years 2006 and 2008. As ex-
pected, the number of valid points is found to be the high-
est for the combination of merged products OSTIA SST780

and GLOBCOLOUR-GSM with NGO=27313043 points,
followed by the combination MODIS SST and GLOB-
COLOUR Chl with NMG=20397047 points and finally
by the OSTIA SST and MERIS Chl combination with

Valid Points in the inferred pCO2 fields: 2006/2008

Nb total pixels domain 55711378
Nb Points OSTIA-MERIS 9800776
Nb Points OSTIA-GLOBCOLOUR(AVW) 26382072
Nb Points OSTIA-GLOBCOLOUR(GSM) 27313043
Nb Points MODIS-GLOBCOLOUR(GSM) 20397047
Proportion OSTIA-GSM/OSTIA-MERIS 2.78
Proportion OSTIA-GSM/MODIS-GSM 1.33
Proportion MODIS-GSM-/OSTIA-MERIS 1.08
LPOM 82%
LPOG(AVW) 53%
LPOG(GSM) 51%
LPMG 63%

Table 3. Number of valid points in the pCO2 fields and their differ-
ence between the three combinations of MERIS or GLOBCOLOUR
CHL with OSTIA or MODIS SST in the area of Benguela.

NOM=9800776 points. Looking at the different propor-785

tions, we find that the number of valid points is 2.78
times larger when using the merged products OSTIA and
GLOBCOLOUR-GSM than using OSTIA and MERIS, 1.33
times larger than using MODIS and GLOBCOLOUR-GSM
and 1.08 times larger using OSTIA SST and GSM Chl-790

a than using MODIS SST and GSM Chl a. Further, if
we know that the total number of pixels in the domain
taking out the points of the CarbonTracker mask and for
the two years is Np=55711378, one can estimate the loss
of valid points for each combination, LPx. LPx is com-795

puted by dividing the relative difference between the num-
ber of total available pixels in the domain Np and the
number of points in the inferred pCO2 field obtained for
each product combination,Nx, with respect to the total
number of pixels Np, LPx =

Np−Nx

Np
100%. Here the sub-800

script x refers to the product combination (e.g. LPx =
LPOM , LPOG and LPMG for the loss of valid points with
the OSTIA-MERIS, OSTIA-GLOBCOLOUR and MODIS-
GLOBCOLOUR products combination, respectively). The
loss of valid points due to cloudiness in the ocean colour and805

SST images is less severe for the OSTIA-GLOBCOLOUR
combination with a loss of 51% and being the more affected
by the cloudiness the OSTIA-MERIS combination with a
loss of 82%.

Next we explore the quality of the information contained810

in the transition fronts, in particular, in the non-merged
products such as MERIS OC and MODIS SST as compared
to the merged products: GLOBCOLOUR OC and OSTIA
SST. The PDFs of pCO2 values from CarbonTracker and
pCOinfer

2 values for the three combinations of OC and SST815

products, i.e. MERIS-OSTIA, GLOBCOLOUR-OSTIA,
MODIS-GLOBCOLOUR (see Fig. 9) show that there is
a good correspondence of all pCOinfer

2 values with those
from pCOCtrack

2 . Indeed the histograms show also a better
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a) b)

d)c)

Fig. 7. a) Map of pCO2 field at low resolution from CarbonTracker. Reconstructed pCO2 field at super-resolution using: b) OSTIA SST and
MERIS Chl-a, c) OSTIA SST and GSM-GLOBCOLOUR Chl-a and d) MODIS SST and GSM-GLOBCOLOUR Chl-a. All maps correspond
to September 21 2006.

agreement between merged products and CarbonTracker:820

the peak of the PDF for pCOinfer
2 is closer to CarbonTracker

peak in the case of OSTIA and GLOBCOLOUR than when
using MERIS and MODIS products.

Furthermore, to analyze the realism of the transitions825

fronts for the different products we compute the singularity
spectra for the three product combinations (see Figure 10).
One can see that at low values of h (singularity exponent),
related to the most singular manifolds, the shape of singular-
ity spectrum for inferred data from merged products better830

matches a binomial cascade, with an improved description
of the dimension of the sharpest transition fronts. We know
from the theory, that tracers advected by the flow in the
turbulent regime, as it happens in the ocean, shows a mul-
tifractal behavior with a characteristic singularity spectrum835

D(h) similar, for some types of turbulence, to D(h) for the

binomial multiplicative process.

5.3 Validation with in-situ measurements

Next, we perform a validation analysis of the results of our840

algorithm to infer pCO2 at super-resolution with field obser-
vations of oceanic pCO2. In particular we perform the val-
idation using pCO2 ocean data from in-situ measurements
(pCOinsitu

2 ) taken in the Benguela region (see Section 2.3).
We decided to carry out directly the validation on pCO2845

rather than on the air-sea CO2 flux since the field measure-
ments do provide oceanic pCO2 data.

An example of the qualitative comparison of values of
pCOCtrack

2 , pCOinfer
2 for all the products combinations and

pCOinsitu
2 at the intersections of the QUIMA cruise during850

July 4-7th, 2008, as a function of the longitudinal coordinate
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a) b)

c) d)

Fig. 8. Spatial distribution of the time average over both 2006 and 2008 years of the pCOinfer
2 values using: a) OSTIA SST and MERIS Chl-a,

b) OSTIA SST and GSM-GLOBCOLOUR Chl-a and c) MODIS SST and GSM-GLOBCOLOUR Chl-a. d) Map with spatial distribution of
the standard deviation for the pCOinfer

2 among the different combination of the datasets.

of the intersections, is shown in Figure 11. While there are
visible differences between various pCO2 values, the values
of pCOinfer

2 approximate better pCOinsitu
2 values than those

of pCOCtrack
2 . The small scale patterns are well reproduced855

in the inferred pCO2 field. Values of pCOinfer
2 exhibit gradi-

ents and small scale fluctuations, likely induced by the pres-
ence of fronts, which can be also detected on the profile of
the in situ measurements of pCO2. Most of days pCOinfer

2 and
pCOCtrack

2 values overestimate pCOinsitu
2 values. In some860

days, pCOinfer
2 values follow the same trend, with the same

small scale fluctuations than pCOinsitu
2 .

First, we analyze the number of valid intersections for each
product combination. A valid intersection is a placement in
space and time common to the inferred, CarbonTracker and865

in-situ pCO2, without missing values. On one hand, among
the 20 available cruises in the Benguela through 2005, 2006

and 2008 we find that the total number of in-situ measure-
ments in the Benguela region under study is Ninsitu=17355
and within the CarbonTracker domain this number is reduced870

toNCtrack= 8377 measurements. To estimate the loss of valid
intersections due to the land mask of of the CarbonTracker
we compute the relative difference of the number of intersec-
tions between the cruise trajectories and the CarbonTracker
domain with respect to the number of the in-situ measure-875

ments, LCtrack =
Ninsitu−NCtrack

Ninsitu
100% = 52%, showing

that half of the measurements fall within the coastal region
of the Benguela (land masked by CarbonTracker).

The number of valid intersections is the largest with the
OSTIA-GLOBCOLOUR combination (Table 4). To quan-880

tify the loss of valid intersections between the in-situ mea-
surements and points in the pCOinfer

2 field, likely due to
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Fig. 9. Comparison of the Probability Distribution Functions of Car-
bonTracker and inferred pCO2 values over the Benguela area for the
three different SST and OC product combinations: MERIS Chl and
OSTIA SST, GLOBCOLOUR merged Chl and OSTIA SST, and
GLOBCOLOUR merged Chl and MODIS SST

the cloudiness, we compute the relative difference between
the number of measurements into the CarbonTracker domain
and the valid points in the inferred pCO2 field with respect885

to the number of intersections measurements of each cruise
and the pCOCtrack

2 field, Linfer =
NCtrack−Ninfer

NCtrack
100%.

We repeat such a computation for the three product combi-
nations. The percentage of losses of intersections in inferred
field Linfer becomes twice as large than in the case of the890

OSTIA-SST and MERIS-Chl combination, and even higher
than with the CarbonTracker domain mask.

In order to quantitatively study the difference be-
tween values of pCOCtrack

2 and pCOinfer
2 with respect to

pCOinsitu
2 measurements we compute the following statisti-895

cal quantities:

– Mean Difference (MD): average over all the in-
tersections of the difference between pCOCtrack

2 ,
pCOinfer

2 and pCOinsitu
2 at the same intersection, i,

MDCtrack =
1

N

N∑
i=1

(pCOCtrack
2 (i)− pCOinsitu

2 (i)) (5)900

MDinfer =
1

N

N∑
i=1

(pCOinfer
2 (i)− pCOinsitu

2 (i)) ,(6)

where N is the number of intersections.

– Mean Absolute Error (AE): average over all the inter-
sections of the absolute values of the difference between
pCOCtrack

2 or pCOinfer
2 and pCOinsitu

2 at the same inter-905
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Fig. 10. a) Empirical PDFs for the singularity exponents of pCO2

fields from CarbonTracker and from the cascade of the three product
combinations. b) Associated singularity spectra. In these computa-
tions we use all the pCO2 values obtained in 2006 and 2008.

section,

AECtrack =
1

N

N∑
i=1

∣∣pCOCtrack
2 (i)− pCOinsitu

2 (i)
∣∣ (7)

AEinfer =
1

N

N∑
i=1

∣∣∣pCOinfer
2 (i)− pCOinsitu

2 (i)
∣∣∣ (8)

– Mean Relative Error (RE): average over all the inter-
sections of the errors of the estimated values of pCO2910

(CarbonTracker or inferred) with respect to the refer-
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Fig. 11. Values of pCOCtrack
2 (black points), pCOinfer

2 (MODIS-SST/GLOBCOLOUR-Chl) (red points), pCOinfer
2 (OSTIA-

SST/GLOBCOLOUR-Chl) (blue points) pCOinfer
2 (OSTIA-SST/MERIS-Chl) (yellow points) and pCOinsitu

2 (green points) in the
intersections as a function of latitude corresponding to the valid intersections during the QUIMA cruise through July 4-6th, 2008

ence pCO2 values (in-situ) at the same intersection,

RECtrack =
1

N

N∑
i=1

∣∣∣∣pCOCtrack
2 (i)− pCOinsitu

2 (i)

pCOinsitu
2 (i)

∣∣∣∣ (9)

REinfer =
1

N

N∑
i=1

∣∣∣∣∣pCOinfer
2 (i)− pCOinsitu

2 (i)

pCOinsitu
2 (i)

∣∣∣∣∣ (10)

We started the statistical validation by analyzing each915

QUIMA cruise separately (not shown) and we found that in
most of the cruises, the absolute error for inferred pCO2 is
relatively small (less than 15 µatm) except on August 21,
2006 and May 17, 2008 with an error of 44 µatm and 30
µatm, respectively. Then we address the global validation us-920

ing all available cruises during these years.
We summarize in Table 4 the results of the computations

of the errors given by Eq. 7 to Eq.10 by making averages
over all valid intersections found during 2005, 2006 and
2008. The absolute error, AE is smaller in the three cases of925

pCOinfer
2 (17.77, 16.47 and 16.62 µatm for OSTIA-MERIS,

OSTIA-GLOBCOLOUR and MODIS-GLOBCOLOUR
combinations, respectively) than for pCOCtrack

2 (21.34,

OST-MER OST-GLOB MOD-GLOB
Nb valid intersections 747 1928 1460
Linfer (%) 91 76 82
MDCtrack (µatm) 2.97 8.83 14.93
MDinfer (µatm) 0.15 3.42 8.42
AECtrack (µatm) 21.34 22.08 22.07
AEinfer (µatm) 17.77 16.47 16.62
RECtrack 0.059 0.060 0.061
REinfer 0.048 0.045 0.046

Table 4. Mean error, absolute error and relative error of pCO2

values obtained from CarbonTracker and pCO2 values inferred
at super-resolution with respect to values of pCO2 measurements
during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the
Benguela region.

22.08 and 22.07 µatm, respectively), showing the fact
that the estimated pCO2 field at super-resolution using930

our algorithm is improving the pCO2 field obtained from
CarbonTracker. The smallest AE is for the combination of
SST and Chl provided by merged products. The values of
pCOCtrack

2 are, in average, larger than pCOinsitu
2 (MDCtrack
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= 2.97, 8.83 and 14.93 µatm) while the differences be-935

tween pCOinfer
2 and pCOinsitu

2 values compensate each other
(MDinfer = 0.15, 3.42 and 8.42 µatm). In all cases the
MDCtrack andMDinfer are positive, meaning that the pCO2

values are overestimated. Finally, comparing the relative
error of pCOCtrack

2 and pCOinfer
2 with respect to pCOinsitu

2 ,940

we found that the relative error is low in all cases, being
smaller for pCOinfer

2 than for pCOCtrack
2 .

Finally, if we only compare the statistics errors at the
common valid intersections between the pCOinfer

2 using the945

three product combinations with pCOCtrack
2 and with the

in-situ measurements (see Table 5), we obtain 458 mutual
intersections. We obtain similar results that when taking into
account all the intersections. The absolute error is smaller
in the case of pCOinfer

2 , 17.65 µatm, than with pCOCtrack
2 ,950

20.24 µatm, indicating that our algorithm is improving the
estimation of ocean pCO2. The smallest AE is again for the
combination with merged products. MD is positive showing
that the most of the time pCOinfer

2 and pCOCtrack
2 values are

overestimated (It can be appreciated in Figure 11). Again955

the relative error is small, less than 0.06, for all the product
combinations.

OST-MER OST-GLOB MOD-GLOB
Nb valid intersections 458 458 458
MDCtrack (µatm) 8.01 8.01 8.01
MDinfer (µatm) 4.37 1.62 3.32
AECtrack (µatm) 23.23 23.23 23.23
AEinfer (µatm) 19.92 16.31 18.85
RECtrack 0.065 0.065 0.065
REinfer 0.055 0.045 0.051

Table 5. Mean error, absolute error and relative error of pCO2

values obtained from CarbonTracker and pCO2 values inferred
at super-resolution with respect to values of pCO2 measurements
during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the
Benguela region at the same intersections.

6 Conclusions

In this work we have presented a method to infer high reso-960

lution CO2 fluxes by propagating the small scales informa-
tion given in satellite images across the scales of a multi-
resolution analysis determined on the critical transitions giv-
ing by singularity exponents. More specifically, we have re-
constructed maps of CO2 fluxes at high resolution (4 km)965

offshore of the Benguela region using SST and ocean colour
data at this resolution, and CarbonTracker CO2 fluxes data
at low resolution (110 km). The inferred representation of
ocean surface pCO2 improves the description provided by
CarbonTracker, enhancing the small scale variability. Spatial970

fluctuations observed in latitudinal profiles of in-situ pCO2

have been also obtained in the inferred pCO2, showing that
the inferring algorithm is catching the small scales features of
the pCO2 field. The examination of different combinations of
Ocean Colour and Sea Surface Temperature (SST) products975

reveals that using merged products, i.e. GLOBCOLOUR, the
quality and the number of valid points in the pCO2 field are
increased. We have obtained that mean absolute errors of the
inferred values of pCO2 with respect to in-situ measurements
are smaller than for CarbonTracker. The statistical compari-980

son of inferred and CarbonTracker pCO2 values with in-situ
data shows the potential of our method as well as the short-
comings of using CarbonTracker data for the estimation of
air-sea CO2 fluxes. From these results it can be said that the
outputs of our algorithm will only be as good as the inputs.985

We are aware that further investigations can be performed
in order to improve the algorithm. On one hand the multi-
ple linear regression coefficients could be derived differenti-
ating the seasons (i.e. coefficients would vary as a function
of calendar month) considering the marked seasonal cycle in990

the Benguela upwelling system. Additionally, future works
will be focused in the extension of the computations towards
larger areas until being able to infer global high resolution
CO2 fluxes. This will allow us to perform an even more com-
prehensive and robust validation from in situ measurements995

since more in-situ measurements will be used to make the
comparison.
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Oxygen Minimum Zone (OMZ), Biogeosciences, 8, 1–14, 2011.1125

Peters, W., Jacobson, A., C. Sweeney, A. A., Conway, T., Masarie,
K., J.B. Miller, a. L. B., Petron, G., Hirsch, A., Worthy, D.,
van der Werf, G., Randerson, J., Wennberg, P., Krol, M., and
Tans, P.: An atmospheric perspective on North American carbon
dioxide exchange : CarbonTracker, Proceedings of the National1130

Academy of Sciences of the USA, 104(48), 18 925–18 930, 2007.
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H.,

Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L.,
Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A.,
Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A.,1135

Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M.,
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Lüger, H., Olsen, A., Omar, A., Padin, X. A., Rı́os, A., Steinhoff,1220

T., Santana-Casiano, M., Wallace, D. W. R., and Wanninkhof, R.:
Estimating the monthly pCO2 distribution in the North Atlantic
using a self-organizing neural network, Biogeosciences Discuss.,
6, 3373–3414, 2009.

Turiel, A., Isern-Fontanet, J., Garcı́a-Ladona, E., and Font, J.: Mul-1225

tifractal Method for the Instantaneous Evaluation of the Stream
Function in Geophysical Flows, Phys. Rev. Lett., 95, 104 502,
2005.
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