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Abstract

Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic
biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the
principle role of this mode of diversification is generally acknowledged, actual diversification rates in
ancient lakes remain little understood. At least four modes are conceivable. Diversification rates may
be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or
there may be a pronounced lag phase between colonization and subsequent diversification. As
understanding the tempo of diversification in ancient lake environments may help unrevealing the
underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a
model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model
taxon to study changes in diversification rates over time together with the respective drivers.

Based on phylogenetic, molecular-clock, lineage-through-time plot and diversification-rate
analyses we found that this monophyletic group is comparatively old and that it most likely evolved
with a constant diversification rate. Preliminary data of the SCOPSCO deep-drilling program do
indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far
there is no evidence for the occurrence of catastrophic environmental events. We therefore propose
that the constant diversification rate observed in endemic gastropods has been caused by two factors:
i) a potential lack of catastrophic environmental events in Lake Ohrid and/or ii) a probably high
ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the
lake’s high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst
hydrology.

The current study not only contributes to one of the overall goals of the SCOPSCO deep-
drilling program — inferring the driving forces for biotic evolution in Lake Ohrid. It might also enhance
our understanding of how ecosystem resilience, in general, may promote relative constant
diversification rates in isolated ecosystems. However, we encourage future studies testing hypotheses
about the lack of catastrophic events in Lake Ohrid. These studies should be based on high-resolution
data for the entire geological history of the lake, and potentially involving information from the
sediment fossil record, not only for gastropods but also for other groups with a high share of endemic

taxa.
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1 Introduction

Ancient lakes represent key ecosystems for the world’s endemic freshwater biodiversity (Brooks,
1950; Martens et al.,, 1994; Martens, 1997; Rossiter and Kawanabe, 2000). Two hypotheses have
been suggested for the underlying processes generating their often high levels of species richness.
Originally, ancient lakes were considered to be evolutionary refugia that accumulate immigrating
elements from extralimital areas during periods of environmental changes (‘reservoir function’).
Accordingly, distantly related ‘relic’ species may have colonized the lake at different times and
possibly from different geographic areas (e.g., Hauswald et al., 2008; Wilson et al., 2004). However,
with the advance of molecular techniques, several researchers noted that many endemic species are
considerably younger than the lake they inhabit. Hence, they suggested that the high endemic
biodiversity in ancient lakes is predominantly a result of intra-lacustrine diversification (‘cradle
function’) (e.g., Martens, 1997; Salzburger et al., 2005; Sherbakov, 1999).

Though the principle role of the cradle function is hardly disputed today, rates of
diversification in ancient lakes remain little understood (e.g., Cristescu et al., 2010; Martens et al.,
1994). As ancient lakes are considered to be comparatively stable systems (Martens, 1997), originally
diversification rates (i.e., speciation minus extinction rates) have been assumed to be constant over
time. However, in the past decades, several factors, typically related to environment change, have
been proposed to alter the tempo of diversification in species flocks. The most renowned theory,
punctuated equilibrium, suggests little net evolutionary change during periods of environmental
stability (Gould and Eldredge, 1977; but see e.g., Pennell et al., 2014; Van Bocxlaer et al., 2008). This
equilibrium might be ‘punctuated’ during phases of rapid environmental change. Another theory
suggests that diversification rates can be higher in the initial phase of diversification (particularly in
groups that diversify through an adaptive radiation) and may decline once niche spaces becomes
successively occupied (e.g., Purvis et al., 2009; Schluter, 2000). This may happen after a lake first
came into existence or after the occurrence of major environmental events such as volcanic ash
deposits, severe lake-level drops, and desiccation or salinization events (Cristescu et al., 2010; Kroll
et al., 2012; Salzburger et al., 2014). A forth theory proposes the opposite, i.e., the existence of a
pronounced lag phase between colonization and onset of diversification (e.g., Cristescu et al., 2010).

However, these scenarios have rarely been tested in ancient lake environments due to the

lack of appropriate candidate lakes and suitable model taxa. Criteria for a candidate lake would be a
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long and continuous existence, providing sufficient time for repetitive cladogenesis, and a good
knowledge of its palaeo-limnological history, enabling a link between geological and biotic evolution.
The model taxon, in turn, should be monophyletic, permitting unbiased calculations of diversification
rates; species rich, thus providing sufficient power for evolutionary analyses; and reasonably old,
allowing for studying the effect of environmental changes on speciation rates over an extended period
of time.

Of the few ancient lakes in the world, even less fulfil the above criteria. Some lakes, though
being old, went through a series of major environmental events, and the respective endemic species
are often comparable young, as observed in Lake Malawi (e.g., Schultheil et al., 2009, 2011) and
Lake Titicaca (Kroll et al., 2012). Other lakes such as Lake Baikal (e.g., Ivanov et al., 2013) and Lake
Tanganyika (e.g., Salzburger et al., 2014; Scholz et al., 2007) might be sufficiently old but lack a
continuous palaeo-limnological record. In fact, one of the very few ancient lakes enabling a link
between geological and biotic evolution throughout its existence, is the Balkan Lake Ohrid (Wagner et
al., 2014). It is the oldest freshwater lake in Europe and perhaps the most speciose in the world when
considering lake size (Albrecht and Wilke, 2008). Though the exact age of the lake remains
controversially discussed, biological data suggest an age of no older than 2—3 million years (Ma) (e.g.,
Albrecht et al., 2006; Trajanovski et al., 2010; Wysocka et al., 2013). Newer sedimentological and
seismological data obtained during the recently conducted SCOPSCO deep-drilling project in Lake
Ohrid revealed a minimum lake age (deep-water conditions) of c. 1.2 Ma (Wagner et al., 2014), and an
age of its oldest sediments of approximately 2.0 Ma (Lindhorst et al., 2015). This timeframe of 1.2-2.0
Ma for the origin of extant Lake Ohrid is also considered in the current study.

Besides its relatively well characterized limnological history, Lake Ohrid also harbors a high
number of endemic animal species. So far, at least 185 taxa have been described (Albrecht and
Wilke, 2008; Pesi¢, 2015; Stocchino et al., 2013; Wysocka et al., 2013). In addition, there is a rich
protist flora. Diatoms alone account for 789 taxa with 117 of them being endemic to the lake (Levkov
and Williams, 2012). Accordingly, a number of more than 300 endemic eukaryotic species for ancient
Lake Ohrid is conceivable. The majority of the animal groups form relatively old species flocks in
several higher taxa including gammarids (Wysocka et al., 2008, 2013, 2014), leeches (Trajanovski et
al., 2010), and gastropods (Albrecht et al., 2006; Wilke et al., 2007, 2009). In fact, gastropods

represent the most speciose animal group in Lake Ohrid with 74 species described, 56 of which are
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endemic to the lake and its catchment (Albrecht and Wilke, 2008; Albrecht et al., 2009, 2014; Hauffe
et al., 2011; Radoman, 1985). The largest share of this diversity is held by snails of the family
Hydrobiidae (Caenogastropoda: Truncatelloidea), including 13 pyrgulinid and 27 other endemic
species (Radoman, 1983). The latter group comprises the nominal genera Dolapia, Gocea, Lyhnidia,
Ohrigocea, Ohridohauffenia, Ohridohoratia, Polinskiola, Pseudohoratia, Strugia, and Zaumia (see Fig.
1). Pending a formal classification of this potentially monophyletic taxon, it is from hereon called the
‘non-pyrgulinid Hydrobiidae’. Given that this group probably represents the largest species flock in
Lake Ohrid (see also Radoman, 1983), it appears to be a suitable candidate taxon to study speciation
processes in this ancient lake.

Therefore, the major goal of the present study is to test for changes in diversification rates
over time and to assess the underlying drivers. In order to achieve this objective, three specific goals
are addressed.

i) Based on molecular-clock analyses, we estimate the age of the most recent common ancestor

(MRCA) of this group as a baseline for our temporal studies.

ii) Utilizing lineage-through-time (LTT) plot and diversification-rate analyses, hereinafter we assess
changes in diversification rates over time.

i) If deviations from a constant diversification model are inferred, we finally attempt to link
environmental and climatic fluctuations derived from the SCOPSCO program to these biotic

changes.

Given that Lake Ohrid has long been considered to be a relatively stable system with considerable
ecosystem resilience (sensu Stankovic, 1960), our working hypothesis is that there are no significant
changes in diversification rates over time in the lake’s non-pyrgulinid Hydrobiidae.

The current study will complement palaeontological evidences for evolutionary processes
obtained from the SCOPSCO high-resolution sediment record and thus contribute to one of the overall
goals of the deep-drilling program — inferring the driving forces for biotic evolution in this fascinating
ancient lake. It might also enhance our general understanding of how environment change alters the

tempo of diversification in isolated ecosystems and how ecosystem stability may buffer such changes.

2 Material and methods
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2.1 Sampling

Hydrobiid gastropods were collected during fieldtrips to Lake Ohrid and other waterbodies in the
Balkan region between 2003 and 2011 (Fig. 2; see Table 1 for details). The collection methods
followed those described in Schreiber et al. (2012) and included hand collecting, snorkeling, sieving
and dredging from small boats or the research vessel of the Hydrobiological Institute Ohrid. Samples
were preserved in 80% ethanol and determined in the laboratory to species level based on Radoman

(1983).

2.2 DNA isolation, PCR amplification and DNA sequencing

Genomic DNA was isolated from whole specimens using the CTAB protocol described in Wilke et al.
(2006). Voucher specimens and digital images were deposited in the Systematics and Biodiversity
Collection of the University of Giessen (UGSB). Fragments of the mitochondrial genes for cytochrome
oxidase c subunit | (COI) and large subunit rRNA (LSU rRNA or 16S rRNA) were amplified using the
universal primers LCO 1490 (Folmer et al., 1994) and COR722b (Wilke and Davis, 2000) as well as
16Sar-L and 16Sbr-H (Palumbi et al., 1991), respectively (for PCR conditions see Schreiber et al.,
2012). Subsequent Sanger sequencing was conducted either on a Long Read IR2 4200 sequencer
(LI-COR, Lincoln, NE, USA) using the Thermo Sequenase fluorescent labelled primer cycle
sequencing Kit (Amersham Pharmacia Biotech, Piscataway, NJ, USA) or on a ABI 3730 XL sequencer
(Life Technologies, Carlsbad, CA, USA) using the Big Dye Terminator Kit (Life Technologies,
Carlsbad, CA, USA). In total, we sequenced 65 specimens of 17 nominal species of the endemic non-
pyrgulinid Hydrobiidae. For comparison, we also analyzed 20 specimens of 15 closely-related species
occurring in lakes Prespa and Mikri Prespa as well as in surrounding waterbodies (Fig. 2; see Table 1

for locality details, UGSB collection numbers and GenBank accession numbers).

2.3 Preliminary genetic analyses

The protein-coding COIl sequences were unambiguously aligned in BioEdit 7.0.9.0 (Hall, 1999),
resulting in a final alignment of 638 base pairs (bp). The 16S rRNA sequences were aligned using the
secondary structure model for the Hydrobiidae suggested by (Wilke et al., 2013), resulting in a final
alignment of 462 bp including gaps (an internal fragment of 45 bp was removed since no reliable

alignment could be achieved for this region).
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2.4 Phylogenetic inference and molecular clock analyses

Prior to the phylogenetic analyses, our dataset of non-pyrgulinid Hydrobiidae was supplemented with
sequences of closely related species. We first performed searches with BLASTN 2.2.32 (Zhang et al.,
2000) against the NCBI nucleotide database as well as against the nucleotide database of the Wilke
lab, which contains DNA information for more than 300 hydrobiid species. A preliminary phylogenetic
analysis was conducted in order to identify the hydrobiid groups that are most closely related to our
endemic non-pyrgulinid Hydrobiidae. These preliminary analyses (details not shown) indicated that
endemic species from the sister Lake Prespa (Fig. 2) as well as from other Balkan waterbodies are the
closest relatives to the Ohrid taxa. These taxa were included in our final dataset (see Table 1).

The main phylogenetic analyses using Bayesian inference were performed in BEAST v.
1.8.0 (Drummond and Rambaut, 2007). Best-fit substitution models were estimated using jModelTest
0.1.1 (Posada, 2008) based on the Akaike information criterion. The models suggested for the COI
and 16S rRNA fragments were GTR+I+I" and GTR+I, respectively. We tested the COI dataset for
substitutional saturation using the test by Xia and Xie (2001) as implemented in DAMBE 5.0.23 (Xia
and Xie, 2001). The value for the proportion of invariant sites (Pinv = 0.46) was obtained from the
jModelTest output. The observed saturation was significantly lower than the critical values (p < 0.001),
suggesting that this partition can be used for further (molecular-clock) analyses. Note that we did not
test for saturation in the 16S dataset as, within the family Hydrobiidae, the 16S gene is more
conservative than the COI gene (Wilke et al., 2001, 2013).

We first ran two unconstrained analyses in BEAST, one under the strict-clock and one under
the relaxed-clock model using relative rates for both partitions. These initial runs, however, revealed
an extremely low effective sample size for the prior and posterior distributions suggesting that the runs
might have been over-parameterized due to the complex GTR+I+I" model (see e.g., Grummer et al.,
2014; Slager et al., 2014). Hence, the less complex HKY+I+I" and HKY+l models were used for the
final analyses for the COIl and 16S rRNA partition, respectively.

For calibrating the molecular clock, an external trait-specific clock rate of 1.57+0.45% Ma™
for the HKY+I+I" model was utilized for the COI portion of our dataset (Wilke et al., 2009). This rate
has been established for small, dioecious, subtropical or tropical Protostomia with a generation time of

approximately one year — all of these criteria apply to our non-pyrgulinid Hydrobiidae.
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The final analyses (two strict-clock and two relaxed-clock runs) with a total of 85 sequences
were run for 100,000,000 generations each, sampling every 5,000 generations. The resulting log and
tree files for each strict-clock and relaxed-clock run were combined using LogCombiner v. 1.8.0
(BEAST) with a 50% burn-in. The maximum clade credibility (MCC) tree was identified based on the
posterior distribution (20,000 trees). Information from the post-burnin posterior distribution including
mean node ages and 95% highest posterior densities (HPD) was summarized using TreeAnnotator v.
1.8.0 (BEAST; no additional burn-in). A Bayes factor (BF) analysis of the likelihoods of both runs
(strict-clock vs. relaxed-clock model) was performed in Tracer 1.5 (Rambaut and Drummond, 2007);
1,000 bootstrap replicates) in order to determine the best-fitting clock model (see Newton and Raftery,
1994; Suchard et al., 2001).

The BF analysis, which compares the likelihoods of both BEAST runs (strict vs. relaxed clock
model), showed a decisive support for the relaxed-clock model with a BF of 45.61 (In Preaxed = -

5,213.40 vs. In Pgict = -5,318.42).

2.6 Lineage-through-time plot and diversification-rate analyses

In a first explorative analysis, LTT plot analyses were conducted using the packages ape v. 3.3
(Paradis et al., 2004) and phytools v. 0.4-56 (Revell, 2012) for the R statistical environment 3.2.1 (R
Core Team, 2015) in order to examine whether major deviations from a constant diversification rate
can be directly observed through time. Thereby, all but the endemic non-pyrgulinid Hydrobiidae from
Lake Ohrid were pruned from the posterior distribution (20,000 trees) and the BEAST MCC tree. In a
second step, a LTT plot was generated for the MCC tree plus a 95% confidence interval based on the
posterior distribution.

However, generating LTT plots and detecting changes in the slope is an explorative
approach and might lead to misinterpretations (see Stadler, 2011). Therefore, potential shifts in
diversification rates through time were analyzed using the R package TreePar v. 3.3 (Stadler, 2015)
by testing a maximum of three shifts for ten trees randomly sampled from the posterior distribution.
This package implements a birth-death shift model (Stadler, 2011), which allows changes in speciation
and extinction rates along a phylogeny for a given timeframe and for pre-defined time intervals. Shifts
were analyzed along the pruned tree with default settings and a time interval of 0.1 Ma. The sampling

fraction was set to 17/27 = 0.63 according to the actual number of species included divided by the
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number of nominal species described. Results (log likelihoods of different runs, i.e., constant
diversification rate vs. 1 shift, 1 shift vs. 2 shifts, and 2 shifts vs. 3 shifts) were compared by applying
likelihood ratio tests in order to examine whether shifts in rates explain the tree significantly better than

a constant diversification rate (indicated by p values > 0.95; see Stadler, 2011, 2015).

3 Results
3.1 Phylogenetic inference and molecular clock analyses
The relaxed-clock MCC tree (Fig. 3) shows that the endemic non-pyrgulinid Hydrobiidae from Lake
Ohrid likely form a monophyletic group (Bayesian posterior probability (BPP) = 0.87). Potential sister
to the Lake Ohrid group is a monophyletic group containing endemic non-pyrgulinid Hydrobiidae
species from its sister lakes, lakes Prespa and Mikri Prespa and their catchments. The split from a
MRCA for these two groups is supported by a BPP of 1.0. Closest relatives to the Ohrid/(Mikri) Prespa
group are other Balkan hydrobiids (BPP = 1.0) previously classified into the nominal subfamilies
Belgrandiellinae, Belgrandiinae, and Horatiinae (see Wilke et al., 2013).

The molecular-clock analyses indicates an age for the MRCA of the endemic non-pyrgulinid
Hydrobiidae from Lake Ohrid (i.e., the onset of diversification within this group) under the favored
relaxed-clock model of 1.75-3.76 Ma (95% HPD; see Fig. 3). Under the inferior strict-clock model, the

upper value is slightly lower with 1.75-2.68 Ma.

3.2 Diversification-rate analysis

The 95% LTT plot does not show major deviations from a constant diversification rate (Fig. 4A). This
finding is supported by the TreePar (birth-death shift) diversification-rate analysis. Accordingly, the
likelihood ratio tests suggest for eight out of ten random trees a constant rate through time. Only in two

of the random trees a single shift at an age of 0.1 Ma is detected (Fig. 4B and Table 2).

4 Discussion
4.1 The Ohrid non-pyrgulinid Hydrobiidae: an old species flock
Our phylogenetic analyses indicate that the non-pyrgulinid Hydrobiidae form a potential monophyletic,

speciose and endemic clade, and thus, by definition, represent a species flock (Greenwood et al.,
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1984; Schén and Martens, 2004). Therefore, in situ diversification appears to be a main process in this
group. This conclusion even holds under the assumption of a non-monophyly of the Ohrid taxa.

The age estimates obtained from the molecular-clock analyses revealed that the Lake Ohrid
flock potentially started to diversify before extant Lake Ohrid came into existence (i.e., in a pre-
lake/palaeo-lake phase or in other waterbodies of the Ohrid Graben system such as rivers or springs;
see Fig. 3 and Fig. 4A). In fact, karst springs have previously been proposed as potential ancestral
habitats for other invertebrate flocks inhabiting Lake Ohrid such as the pulmonate snail genus Ancylus
(Albrecht et al., 2006), leeches of the genus Dina (Trajanovski et al., 2010), and the isopod genus
Proasellus (Kilikowska et al., 2013). This may also be the case for the species flock studied here,
given that karst springs are the dominant habitat of its closest relatives outside lakes Ohrid and
Prespa. However, testing this hypothesis is beyond the scope of the current study and probably would
require a denser sampling, more precise limnological information about the early stage of Lake Ohrid,
and more specific approaches such as the reconstruction of ancestral waterbodies as well as better

calibration points for molecular clock analyses.

4.2 The Ohrid non-pyrgulinid Hydrobiidae: constant rate of diversification over time

As mentioned in the Introduction, at least four modes of tempo of speciation in ancient lake species
flocks are conceivable. Diversification rates may 1) be constant over time, 2) fluctuate (‘punctuated
equilibrium’), 3) be higher in the initial phase of diversification, or 4) show a pronounced lag phase
between colonization and subsequent diversification.

As understanding the temporal frame of speciation in Lake Ohrid is of considerable
importance for reaching one of the main goals of the Ohrid scientific deep-drilling program — inferring
the driving forces for biotic evolution — the second specific goal of the current study aims at estimating
diversification rates over time. Given that Lake Ohrid has long been regarded as a relatively stable
system (Stankovic, 1960), our working hypothesis assumes no significant changes in diversification
rates over time in the lake’s non-pyrgulinid Hydrobiidae.

Interestingly, our LTT plot showed that the species flock most likely evolved with a constant
diversification rate. This finding is supported by our diversification-rate analysis, indicating a single
recent shift (drop of rates) at 0.1 Ma for two out of ten random trees (i.e., a timeframe in which

incomplete lineage sorting may play a role; Fig. 4B and Table 2). Therefore, our initial working
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hypothesis — a constant diversification rate — cannot be rejected. However, we cannot rule out a type Il
error here due to poorly resolved phylogenetic trees or insufficient sampling size. As for the quality of
the phylogenetic tree used for the LTT plot and the subsequent diversification-rate analyses, our
analyses, indeed, revealed some poorly supported (especially recent) nodes (Fig. 3). However,
timetree studies are relatively robust against phylogenetic uncertainties (see e.g., Morvan et al., 2013)
as a poorly supported topology does not necessarily affect the timing of rapid speciation events (e.g.,
Pagel, 1999). We are therefore confident that the low BPP support of some nodes in our tree had no
significant influence on the outcome of our hypothesis testing.

Moreover, we also think that our conclusions are not affected by a non-monophyly of the
Ohrid group (see random tree #2) as the split between Prespa and Ohrid taxa is, in any event, older
than 2 Ma and thus does not affect intra-lacustrine diversification rates within the Lake Ohrid clade.

As for the sampling size (i.e., 17 out of 27 nominal species studied), the high diversity of
evolutionary lineages found in our phylogenetic analyses indicates that our sampling design likely
recovered most major evolutionary lineages within this group. Our sampling includes the majority of
genera described except for Dolapia (which some authors included in the genus Ohrigocea) and
Zaumia. We also included a variety of specimens collected at various types of habitats and type
localities across the lake and its surroundings (see Fig. 2). Moreover, the diversification-rate analysis
does account for incomplete sampling and we did infer a single rate shift in two of the random trees
tested in the present study. Thus the method used seems to have enough power to detect deviations

from a constant diversification rate in our data set.

4.3 Ecosystem resilience of Lake Ohrid

If we assume that the rate of diversification in the non-pyrgulinid Hydrobiidae from Lake Ohrid is
constant, linking environmental/climatic fluctuations to changes in tempo of diversification becomes
impossible (see specific goal iii).

However, an important question is whether a non-constant diversification rate could not be
demonstrated because Lake Ohrid never experienced massive environmental and/or climatic changes
or whether the lake has a high ecosystem resilience that might buffer such perturbations. Preliminary
data of the SCOPSCO deep-drilling program based on core catcher data for the last 1.2 Ma and high-

resolution data for the last 640 thousand years (ka) so far do not indicate the occurrence of
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catastrophic environmental events (Francke et al., 2015; Wagner et al., 2014), i.e., events that lead to
sudden drastic regime shifts (sensu Scheffer and Carpenter, 2003; Scheffer et al., 2001) and thus
potentially to mass extinction. By comparison, such events have been observed in other ancient lakes
including Lake Titicaca (Kroll et al., 2012; Lavenu, 1992) and Lake Malawi (Cohen et al., 2007; Scholz
et al., 2007; Schulthei? et al., 2009, 2011). We do, however, see signatures of severe
environmental/climatic perturbations in Lake Ohrid including significant lake-level drops (Lindhorst et
al., 2010), volcanic ash deposits (Sulpizio et al., 2010; Wagner et al., 2014), and glacial/interglacial
cycles (Lézine et al., 2010; Reed et al., 2010; Wagner et al., 2014).

Therefore, we think that the lack of changes in tempo of diversification of Lake Ohrid’s non-
pyrgulinid Hydrobiidae might be potentially a result of two factors: i) either Lake Ohrid never
experienced catastrophic environmental events that resulted in the extinction of all or most of its
endemic taxa and thus caused a ‘reset’ of diversification processes; or ii) Lake Ohrid possibly has a
high ecosystem resilience that buffers environmental changes and potentially mitigates extinction
events. Note that the two factors might not be mutually exclusive as it has been shown that a loss of
resilience may set the scene for a catastrophic event-induced switch to an alternative state (reviewed
in Scheffer et al., 2001).

The second scenario is supported by the mollusk and diatom fossil records for the past ~100
ka (Albrecht et al., 2010) and (Cvetkovska et al., 2015; Jovanovska et al., 2015). For instance, the
Campanian Ignimbrite Y5 tephra influx 39.6 ka ago (see Leicher et al., 2015) altered the water
chemistry of Lake Ohrid and increased the content of silica, which in turn, amplified diatom growth
rates. However, it did not cause severe changes in diatom community structures or even extinction
events (Jovanovska et al., 2015).

The suggested high ecosystem resilience of Lake Ohrid might be sustained by several
factors including the lake’s bathymetry (deep lake with steep flanks, allowing habitats to move
vertically with lake-level changes; Lindhorst et al., 2010), ongoing moderate tectonic activities
(compensating sedimentation; Hinderer and Einsele, 2001), and its peculiar limnology (the lake is fed
by numerous karstic sublacustrine springs, locally buffering environmental changes; Matzinger et al.,
2006).

Although we think that the patterns inferred from mtDNA sequencing data of extant taxa are

highly informative, future analyses utilizing additional (nuclear) markers may help better resolving
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some of the basal relationships of Ohrid taxa. Moreover, the temporal resolution is still limited, the
error rate for time estimates is relatively high, and some important processes such as extinction
events are difficult to infer from extant organisms (see also Rabosky, 2010 for a discussion).
Therefore, we encourage future palaeontological studies on endemic species using the sediment
cores gained during the SCOPSCO deep-drilling campaign. This concerns, for example, diatoms and
ostracods. Moreover, besides the main core ‘DEEP’, obtained from the deepest part of Lake Ohrid,
several other cores were retrieved in shallower parts of Lake Ohrid. The latter appears to be relatively
rich in mollusk fossils (see Wagner et al., 2014), which could potentially be used to directly study

extinction and speciation events (for a proof of principle see Albrecht et al., 2010).

5 Conclusions

Our molecular-clock analyses indicate that the non-pyrgulinid Hydrobiidae of ancient Lake Ohrid
represent an old endemic group, which is characterized by a constant rate of diversification. We
propose that this constant rate has been caused by two factors: i) a possible lack of catastrophic
environmental events in Lake Ohrid and/or ii) a high ecosystem resilience, buffering environmental
changes. Parameters potentially contributing to Lake Ohrid’'s ecosystem resilience are its distinct
bathymetry, ongoing tectonic activities, and karst hydrology. These findings are not only of interest for
one of the overall goals of the SCOPSCO deep-drilling program — inferring the driving forces for biotic
evolution in Lake Ohrid. They might also enhance our understanding of how ecosystem resilience, in
general, may promote a relative constant diversification in highly isolated ecosystems.

However, high-resolution sedimentological data are currently only available for the last 640
ka. Therefore, we encourage future studies specifically testing hypotheses about the lack of
catastrophic events in Lake Ohrid based on high-resolution data for the entire geological history of the
lake, and potentially involving information from the sediment fossil record not only for gastropods but

also for other groups with a high share of endemic taxa.
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Table 2. Reduced output of the diversification-rate analyses (TreePar). P values >0.95 indicate that a

single shift in rates explain the tree significantly better than constant diversification rates, that two

shifts explain the tree significantly better than a single shift, and that three shifts explain the tree

significantly better than two shifts (see main text for details).

Random tree # Max. age (Ma) Rate shifts -Log-likelihood P value Shift (Ma ago)
1 3.29 Ovs. 1 45.882 vs. 42.043 0.947
1vs. 2 42.043 vs. 38.749 0.914
2vs.3 38.749 vs. 37.060 0.663
2 3.06 Ovs. 1 46.292 vs. 45.073 0.514
1vs.2 45.073 vs. 43.192 0.712
2vs.3 43.192 vs. 42.478 0.301
3 2.77 Ovs. 1 36.879 vs. 32.362 0.971
1vs. 2 32.362 vs. 30.577 0.688 1 shift: 0.1
2vs.3 30.577 vs. 28.505 0.754
4 2.40 Ovs. 1 28.083 vs. 26.171 0.712
1vs. 2 26.171 vs. 25.507 0.278
2vs.3 25.507 vs. 23.337 0.773
5 2.32 Ovs. 1 18.364 vs. 14.942 0.923
1vs.2 14.942 vs. 12.978 0.731
2vs.3 12.978 vs. 10.751 0.784
6 242 Ovs. 1 31.850 vs. 29.342 0.829
1vs. 2 29.342 vs. 27.932 0.580
2vs.3 27.932 vs. 26.219 0.670
7 2.64 Ovs. 1 31.770 vs. 29.237 0.833
1vs. 2 29.237 vs. 28.266 0.415
2vs.3 28.266 vs. 27.571 0.292
8 2.96 Ovs. 1 34.733 vs. 30.793 0.951
1vs. 2 30.793 vs. 28.986 0.694 1 shift: 0.1
2vs. 3 28.986 vs. 27.431 0.625
9 2.85 Ovs. 1 34.152 vs. 31.644 0.829
1vs.2 31.644 vs. 29.433 0.781
2vs.3 29.433 vs. 27.109 0.801
10 2.13 Ovs. 1 31.492 vs. 28.169 0.916
1vs. 2 28.169 vs. 25.885 0.794
2vs.3 25.885 vs. 23.883 0.739
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Figure captions

= )

Ohrigocea Ohridohauffenia  Pseudohoratia

stankovici depressa

o

Strugia Lyhnidia Ohridohoratia
ohridana gjorgjevici

-
-

Gocea
ohridana

Polinskiola
polinskii

Fig. 1. Selected representatives of genera belonging to the endemic non-pyrgulinid Hydrobiidae from

Lake Ohrid. Scale bar = 1 mm.
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%(5)8 m — Watershed boundaries
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Fig. 2. Sampling sites for non-pyrgulinid Hydrobiidae in lakes Ohrid, Prespa and Mikri Prespa, and

their watersheds.
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Ohrigocea samuili 3
Ohridohoratia pygmaea 13
Ohridohoratia pygmaea 14
Ohrigocea samuili 4
Ohrigocea samuili 5
Ohridohoratia pygmaea 15
Ohridohoratia pygmaea 16
Strugia ohridana 1
Gocea ohridana 1
Gocea ohridana 2
Gocea ohridana 3
Polinskiola sturanyi 1
Polinskiola sturanyi 2
Polinskiola polinskii 3
Polinskiola sturanyi 3
Polinskiola polinskii 4
Polinskiola polinskii 5
Pseudohoratia ohridana 1
Pseudohoratia ohridana 2
Pseudohoratia ohridana 3
Pseudohoratia brusinae
Pseudohoratia ohridana 4
Pseudohoratia ohridana 5
Pseudohoratia ohridana 6
Lyhnidia stankovici
Strugia ohridana 2
Ohridohauffenia minuta 3 .
Prespolitorea valvataeformis 1
Prespolitorea valvataeformis 2
Prespolitorea valvataeformis 3
Prespolitorea malaprespensis
Prespolitorea valvataeformis 4
Prespolitorea valvataeformis 5
Prespolitorea valvataeformis 6
Malaprespia albanica
Albaniana albanica
Daphniola louisi
Islamia hadei
Daphniola exigua
Daphniola graeca
Grossuana serbica
Grossuana vurliana
Grossuana delphica
Trichonia kephalovrissonia
Grossuana sp.
Grossuana codreanui
Belgrandia mariatheresia

Ma ago

Fig. 3. MCC tree based on a relaxed-clock BEAST analysis for non-pyrgulinid Hydrobiidae from the

Balkans. Posterior probabilities >0.5 are shown at the respective branches. The grey bar indicates the

95% HPD for the age of the MRCA of the Ohrid endemics. The blue bar in the timescale ranging from

1.2-2.0 Ma ago shows the assumed age of Lake Ohrid.
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Fig. 4. (A) LTT plot for the endemic non-pyrgulinid Hydrobiidae in Lake Ohrid. The plot is based on a
relaxed-clock BEAST analysis with the black line showing the BEAST MCC and the shaded area
indicating the 95% confidence interval based on 20,000 post-burnin BEAST trees. The blue bar
ranging from 1.2—2.0 Ma ago shows the assumed age of Lake Ohrid. (B) Diversification rates obtained
from the diversification rate-analyses (TreePar); trees with a single shift in diversification rates at 0.1

Ma (trees #3 and #8) are highlighted in red and yellow.
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