
1 

 

Constant diversification rates of endemic gastropods in ancient Lake Ohrid: 1 

Ecosystem resilience likely buffers environmental fluctuations 2 

 3 

Authors: K. Föllera, B. Stelbrinka, T. Hauffe, C. Albrecht, and T. Wilke 4 

Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 5 

26-32, 35392 Giessen, Germany 6 

 7 

aJoint first authorship (these authors have contributed equally to the manuscript) 8 

 9 

Correspondence to: B. Stelbrink (bjoern.stelbrink@allzool.bio.uni-giessen.de) 10 

11 



2 

 

Abstract 12 

Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic 13 

biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the 14 

principle role of this mode of diversification is generally acknowledged, actual diversification rates in 15 

ancient lakes remain little understood. At least four modes are conceivable. Diversification rates may 16 

be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or 17 

there may be a pronounced lag phase between colonization and subsequent diversification. As 18 

understanding the tempo of diversification in ancient lake environments may help unrevealing the 19 

underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a 20 

model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model 21 

taxon to study changes in diversification rates over time together with the respective drivers.  22 

Based on phylogenetic, molecular-clock, lineage-through-time plot and diversification-rate 23 

analyses we found that this monophyletic group is comparatively old and that it most likely evolved 24 

with a constant diversification rate. Preliminary data of the SCOPSCO deep-drilling program do 25 

indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far 26 

there is no evidence for the occurrence of catastrophic environmental events. We therefore propose 27 

that the constant diversification rate observed in endemic gastropods has been caused by two factors: 28 

i) a potential lack of catastrophic environmental events in Lake Ohrid and/or ii) a probably high 29 

ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the 30 

lake’s high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst 31 

hydrology. 32 

The current study not only contributes to one of the overall goals of the SCOPSCO deep-33 

drilling program – inferring the driving forces for biotic evolution in Lake Ohrid. It might also enhance 34 

our understanding of how ecosystem resilience, in general, may promote relative constant 35 

diversification rates in isolated ecosystems. However, we encourage future studies testing hypotheses 36 

about the lack of catastrophic events in Lake Ohrid. These studies should be based on high-resolution 37 

data for the entire geological history of the lake, and potentially involving information from the 38 

sediment fossil record, not only for gastropods but also for other groups with a high share of endemic 39 

taxa. 40 

41 
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1 Introduction 42 

Ancient lakes represent key ecosystems for the world’s endemic freshwater biodiversity (Brooks, 43 

1950; Martens et al., 1994; Martens, 1997; Rossiter and Kawanabe, 2000). Two hypotheses have 44 

been suggested for the underlying processes generating their often high levels of species richness. 45 

Originally, ancient lakes were considered to be evolutionary refugia that accumulate immigrating 46 

elements from extralimital areas during periods of environmental changes (‘reservoir function’). 47 

Accordingly, distantly related ‘relic’ species may have colonized the lake at different times and 48 

possibly from different geographic areas (e.g., Hauswald et al., 2008; Wilson et al., 2004). However, 49 

with the advance of molecular techniques, several researchers noted that many endemic species are 50 

considerably younger than the lake they inhabit. Hence, they suggested that the high endemic 51 

biodiversity in ancient lakes is predominantly a result of intra-lacustrine diversification (‘cradle 52 

function’) (e.g., Martens, 1997; Salzburger et al., 2005; Sherbakov, 1999).  53 

Though the principle role of the cradle function is hardly disputed today, rates of 54 

diversification in ancient lakes remain little understood (e.g., Cristescu et al., 2010; Martens et al., 55 

1994). As ancient lakes are considered to be comparatively stable systems (Martens, 1997), originally 56 

diversification rates (i.e., speciation minus extinction rates) have been assumed to be constant over 57 

time. However, in the past decades, several factors, typically related to environment change, have 58 

been proposed to alter the tempo of diversification in species flocks. The most renowned theory, 59 

punctuated equilibrium, suggests little net evolutionary change during periods of environmental 60 

stability (Gould and Eldredge, 1977; but see e.g., Pennell et al., 2014; Van Bocxlaer et al., 2008). This 61 

equilibrium might be ‘punctuated’ during phases of rapid environmental change. Another theory 62 

suggests that diversification rates can be higher in the initial phase of diversification (particularly in 63 

groups that diversify through an adaptive radiation) and may decline once niche spaces becomes 64 

successively occupied (e.g., Purvis et al., 2009; Schluter, 2000). This may happen after a lake first 65 

came into existence or after the occurrence of major environmental events such as volcanic ash 66 

deposits, severe lake-level drops, and desiccation or salinization events (Cristescu et al., 2010; Kroll 67 

et al., 2012; Salzburger et al., 2014). A forth theory proposes the opposite, i.e., the existence of a 68 

pronounced lag phase between colonization and onset of diversification (e.g., Cristescu et al., 2010). 69 

However, these scenarios have rarely been tested in ancient lake environments due to the 70 

lack of appropriate candidate lakes and suitable model taxa. Criteria for a candidate lake would be a 71 
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long and continuous existence, providing sufficient time for repetitive cladogenesis, and a good 72 

knowledge of its palaeo-limnological history, enabling a link between geological and biotic evolution. 73 

The model taxon, in turn, should be monophyletic, permitting unbiased calculations of diversification 74 

rates; species rich, thus providing sufficient power for evolutionary analyses; and reasonably old, 75 

allowing for studying the effect of environmental changes on speciation rates over an extended period 76 

of time. 77 

Of the few ancient lakes in the world, even less fulfil the above criteria. Some lakes, though 78 

being old, went through a series of major environmental events, and the respective endemic species 79 

are often comparable young, as observed in Lake Malawi (e.g., Schultheiß et al., 2009, 2011) and 80 

Lake Titicaca (Kroll et al., 2012). Other lakes such as Lake Baikal (e.g., Ivanov et al., 2013) and Lake 81 

Tanganyika (e.g., Salzburger et al., 2014; Scholz et al., 2007) might be sufficiently old but lack a 82 

continuous palaeo-limnological record. In fact, one of the very few ancient lakes enabling a link 83 

between geological and biotic evolution throughout its existence, is the Balkan Lake Ohrid (Wagner et 84 

al., 2014). It is the oldest freshwater lake in Europe and perhaps the most speciose in the world when 85 

considering lake size (Albrecht and Wilke, 2008). Though the exact age of the lake remains 86 

controversially discussed, biological data suggest an age of no older than 2–3 million years (Ma) (e.g., 87 

Albrecht et al., 2006; Trajanovski et al., 2010; Wysocka et al., 2013). Newer sedimentological and 88 

seismological data obtained during the recently conducted SCOPSCO deep-drilling project in Lake 89 

Ohrid revealed a minimum lake age (deep-water conditions) of c. 1.2 Ma (Wagner et al., 2014), and an 90 

age of its oldest sediments of approximately 2.0 Ma (Lindhorst et al., 2015). This timeframe of 1.2–2.0 91 

Ma for the origin of extant Lake Ohrid is also considered in the current study.  92 

Besides its relatively well characterized limnological history, Lake Ohrid also harbors a high 93 

number of endemic animal species. So far, at least 185 taxa have been described (Albrecht and 94 

Wilke, 2008; Pešić, 2015; Stocchino et al., 2013; Wysocka et al., 2013). In addition, there is a rich 95 

protist flora. Diatoms alone account for 789 taxa with 117 of them being endemic to the lake (Levkov 96 

and Williams, 2012). Accordingly, a number of more than 300 endemic eukaryotic species for ancient 97 

Lake Ohrid is conceivable. The majority of the animal groups form relatively old species flocks in 98 

several higher taxa including gammarids (Wysocka et al., 2008, 2013, 2014), leeches (Trajanovski et 99 

al., 2010), and gastropods (Albrecht et al., 2006; Wilke et al., 2007, 2009). In fact, gastropods 100 

represent the most speciose animal group in Lake Ohrid with 74 species described, 56 of which are 101 
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endemic to the lake and its catchment (Albrecht and Wilke, 2008; Albrecht et al., 2009, 2014; Hauffe 102 

et al., 2011; Radoman, 1985). The largest share of this diversity is held by snails of the family 103 

Hydrobiidae (Caenogastropoda: Truncatelloidea), including 13 pyrgulinid and 27 other endemic 104 

species (Radoman, 1983). The latter group comprises the nominal genera Dolapia, Gocea, Lyhnidia, 105 

Ohrigocea, Ohridohauffenia, Ohridohoratia, Polinskiola, Pseudohoratia, Strugia, and Zaumia (see Fig. 106 

1). Pending a formal classification of this potentially monophyletic taxon, it is from hereon called the 107 

‘non-pyrgulinid Hydrobiidae’. Given that this group probably represents the largest species flock in 108 

Lake Ohrid (see also Radoman, 1983), it appears to be a suitable candidate taxon to study speciation 109 

processes in this ancient lake. 110 

Therefore, the major goal of the present study is to test for changes in diversification rates 111 

over time and to assess the underlying drivers. In order to achieve this objective, three specific goals 112 

are addressed. 113 

i) Based on molecular-clock analyses, we estimate the age of the most recent common ancestor 114 

(MRCA) of this group as a baseline for our temporal studies. 115 

ii) Utilizing lineage-through-time (LTT) plot and diversification-rate analyses, hereinafter we assess 116 

changes in diversification rates over time. 117 

iii) If deviations from a constant diversification model are inferred, we finally attempt to link 118 

environmental and climatic fluctuations derived from the SCOPSCO program to these biotic 119 

changes. 120 

 121 

Given that Lake Ohrid has long been considered to be a relatively stable system with considerable 122 

ecosystem resilience (sensu Stankovic, 1960), our working hypothesis is that there are no significant 123 

changes in diversification rates over time in the lake’s non-pyrgulinid Hydrobiidae. 124 

The current study will complement palaeontological evidences for evolutionary processes 125 

obtained from the SCOPSCO high-resolution sediment record and thus contribute to one of the overall 126 

goals of the deep-drilling program – inferring the driving forces for biotic evolution in this fascinating 127 

ancient lake. It might also enhance our general understanding of how environment change alters the 128 

tempo of diversification in isolated ecosystems and how ecosystem stability may buffer such changes. 129 

 130 

2 Material and methods 131 
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2.1 Sampling 132 

Hydrobiid gastropods were collected during fieldtrips to Lake Ohrid and other waterbodies in the 133 

Balkan region between 2003 and 2011 (Fig. 2; see Table 1 for details). The collection methods 134 

followed those described in Schreiber et al. (2012) and included hand collecting, snorkeling, sieving 135 

and dredging from small boats or the research vessel of the Hydrobiological Institute Ohrid. Samples 136 

were preserved in 80% ethanol and determined in the laboratory to species level based on Radoman 137 

(1983).  138 

 139 

2.2 DNA isolation, PCR amplification and DNA sequencing 140 

Genomic DNA was isolated from whole specimens using the CTAB protocol described in Wilke et al. 141 

(2006). Voucher specimens and digital images were deposited in the Systematics and Biodiversity 142 

Collection of the University of Giessen (UGSB). Fragments of the mitochondrial genes for cytochrome 143 

oxidase c subunit I (COI) and large subunit rRNA (LSU rRNA or 16S rRNA) were amplified using the 144 

universal primers LCO 1490 (Folmer et al., 1994) and COR722b (Wilke and Davis, 2000) as well as 145 

16Sar-L and 16Sbr-H (Palumbi et al., 1991), respectively (for PCR conditions see Schreiber et al., 146 

2012). Subsequent Sanger sequencing was conducted either on a Long Read IR2 4200 sequencer 147 

(LI-COR, Lincoln, NE, USA) using the Thermo Sequenase fluorescent labelled primer cycle 148 

sequencing Kit (Amersham Pharmacia Biotech, Piscataway, NJ, USA) or on a ABI 3730 XL sequencer 149 

(Life Technologies, Carlsbad, CA, USA) using the Big Dye Terminator Kit (Life Technologies, 150 

Carlsbad, CA, USA). In total, we sequenced 65 specimens of 17 nominal species of the endemic non-151 

pyrgulinid Hydrobiidae. For comparison, we also analyzed 20 specimens of 15 closely-related species 152 

occurring in lakes Prespa and Mikri Prespa as well as in surrounding waterbodies (Fig. 2; see Table 1 153 

for locality details, UGSB collection numbers and GenBank accession numbers). 154 

 155 

2.3 Preliminary genetic analyses 156 

The protein-coding COI sequences were unambiguously aligned in BioEdit 7.0.9.0 (Hall, 1999), 157 

resulting in a final alignment of 638 base pairs (bp). The 16S rRNA sequences were aligned using the 158 

secondary structure model for the Hydrobiidae suggested by (Wilke et al., 2013), resulting in a final 159 

alignment of 462 bp including gaps (an internal fragment of 45 bp was removed since no reliable 160 

alignment could be achieved for this region). 161 
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 162 

2.4 Phylogenetic inference and molecular clock analyses 163 

Prior to the phylogenetic analyses, our dataset of non-pyrgulinid Hydrobiidae was supplemented with 164 

sequences of closely related species. We first performed searches with BLASTN 2.2.32 (Zhang et al., 165 

2000) against the NCBI nucleotide database as well as against the nucleotide database of the Wilke 166 

lab, which contains DNA information for more than 300 hydrobiid species. A preliminary phylogenetic 167 

analysis was conducted in order to identify the hydrobiid groups that are most closely related to our 168 

endemic non-pyrgulinid Hydrobiidae. These preliminary analyses (details not shown) indicated that 169 

endemic species from the sister Lake Prespa (Fig. 2) as well as from other Balkan waterbodies are the 170 

closest relatives to the Ohrid taxa. These taxa were included in our final dataset (see Table 1). 171 

The main phylogenetic analyses using Bayesian inference were performed in BEAST v. 172 

1.8.0 (Drummond and Rambaut, 2007). Best-fit substitution models were estimated using jModelTest 173 

0.1.1 (Posada, 2008) based on the Akaike information criterion. The models suggested for the COI 174 

and 16S rRNA fragments were GTR+I+Γ and GTR+I, respectively. We tested the COI dataset for 175 

substitutional saturation using the test by Xia and Xie (2001) as implemented in DAMBE 5.0.23 (Xia 176 

and Xie, 2001). The value for the proportion of invariant sites (Pinv = 0.46) was obtained from the 177 

jModelTest output. The observed saturation was significantly lower than the critical values (p < 0.001), 178 

suggesting that this partition can be used for further (molecular-clock) analyses. Note that we did not 179 

test for saturation in the 16S dataset as, within the family Hydrobiidae, the 16S gene is more 180 

conservative than the COI gene (Wilke et al., 2001, 2013). 181 

We first ran two unconstrained analyses in BEAST, one under the strict-clock and one under 182 

the relaxed-clock model using relative rates for both partitions. These initial runs, however, revealed 183 

an extremely low effective sample size for the prior and posterior distributions suggesting that the runs 184 

might have been over-parameterized due to the complex GTR+I+Γ model (see e.g., Grummer et al., 185 

2014; Slager et al., 2014). Hence, the less complex HKY+I+Γ and HKY+I models were used for the 186 

final analyses for the COI and 16S rRNA partition, respectively. 187 

For calibrating the molecular clock, an external trait-specific clock rate of 1.57±0.45% Ma-1 188 

for the HKY+I+Γ model was utilized for the COI portion of our dataset (Wilke et al., 2009). This rate 189 

has been established for small, dioecious, subtropical or tropical Protostomia with a generation time of 190 

approximately one year – all of these criteria apply to our non-pyrgulinid Hydrobiidae. 191 
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The final analyses (two strict-clock and two relaxed-clock runs) with a total of 85 sequences 192 

were run for 100,000,000 generations each, sampling every 5,000 generations. The resulting log and 193 

tree files for each strict-clock and relaxed-clock run were combined using LogCombiner v. 1.8.0 194 

(BEAST) with a 50% burn-in. The maximum clade credibility (MCC) tree was identified based on the 195 

posterior distribution (20,000 trees). Information from the post-burnin posterior distribution including 196 

mean node ages and 95% highest posterior densities (HPD) was summarized using TreeAnnotator v. 197 

1.8.0 (BEAST; no additional burn-in). A Bayes factor (BF) analysis of the likelihoods of both runs 198 

(strict-clock vs. relaxed-clock model) was performed in Tracer 1.5 (Rambaut and Drummond, 2007); 199 

1,000 bootstrap replicates) in order to determine the best-fitting clock model (see Newton and Raftery, 200 

1994; Suchard et al., 2001). 201 

The BF analysis, which compares the likelihoods of both BEAST runs (strict vs. relaxed clock 202 

model), showed a decisive support for the relaxed-clock model with a BF of 45.61 (ln Prelaxed = -203 

5,213.40 vs. ln Pstrict = -5,318.42).  204 

 205 

2.6 Lineage-through-time plot and diversification-rate analyses 206 

In a first explorative analysis, LTT plot analyses were conducted using the packages ape v. 3.3 207 

(Paradis et al., 2004) and phytools v. 0.4-56 (Revell, 2012) for the R statistical environment 3.2.1 (R 208 

Core Team, 2015) in order to examine whether major deviations from a constant diversification rate 209 

can be directly observed through time. Thereby, all but the endemic non-pyrgulinid Hydrobiidae from 210 

Lake Ohrid were pruned from the posterior distribution (20,000 trees) and the BEAST MCC tree. In a 211 

second step, a LTT plot was generated for the MCC tree plus a 95% confidence interval based on the 212 

posterior distribution. 213 

However, generating LTT plots and detecting changes in the slope is an explorative 214 

approach and might lead to misinterpretations (see Stadler, 2011). Therefore, potential shifts in 215 

diversification rates through time were analyzed using the R package TreePar v. 3.3 (Stadler, 2015) 216 

by testing a maximum of three shifts for ten trees randomly sampled from the posterior distribution. 217 

This package implements a birth-death shift model (Stadler, 2011), which allows changes in speciation 218 

and extinction rates along a phylogeny for a given timeframe and for pre-defined time intervals. Shifts 219 

were analyzed along the pruned tree with default settings and a time interval of 0.1 Ma. The sampling 220 

fraction was set to 17/27 = 0.63 according to the actual number of species included divided by the 221 
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number of nominal species described. Results (log likelihoods of different runs, i.e., constant 222 

diversification rate vs. 1 shift, 1 shift vs. 2 shifts, and 2 shifts vs. 3 shifts) were compared by applying 223 

likelihood ratio tests in order to examine whether shifts in rates explain the tree significantly better than 224 

a constant diversification rate (indicated by p values > 0.95; see Stadler, 2011, 2015). 225 

 226 

3 Results 227 

3.1 Phylogenetic inference and molecular clock analyses 228 

The relaxed-clock MCC tree (Fig. 3) shows that the endemic non-pyrgulinid Hydrobiidae from Lake 229 

Ohrid likely form a monophyletic group (Bayesian posterior probability (BPP) = 0.87). Potential sister 230 

to the Lake Ohrid group is a monophyletic group containing endemic non-pyrgulinid Hydrobiidae 231 

species from its sister lakes, lakes Prespa and Mikri Prespa and their catchments. The split from a 232 

MRCA for these two groups is supported by a BPP of 1.0. Closest relatives to the Ohrid/(Mikri) Prespa 233 

group are other Balkan hydrobiids (BPP = 1.0) previously classified into the nominal subfamilies 234 

Belgrandiellinae, Belgrandiinae, and Horatiinae (see Wilke et al., 2013).  235 

The molecular-clock analyses indicates an age for the MRCA of the endemic non-pyrgulinid 236 

Hydrobiidae from Lake Ohrid (i.e., the onset of diversification within this group) under the favored 237 

relaxed-clock model of 1.75–3.76 Ma (95% HPD; see Fig. 3). Under the inferior strict-clock model, the 238 

upper value is slightly lower with 1.75–2.68 Ma. 239 

 240 

3.2 Diversification-rate analysis 241 

The 95% LTT plot does not show major deviations from a constant diversification rate (Fig. 4A). This 242 

finding is supported by the TreePar (birth-death shift) diversification-rate analysis. Accordingly, the 243 

likelihood ratio tests suggest for eight out of ten random trees a constant rate through time. Only in two 244 

of the random trees a single shift at an age of 0.1 Ma is detected (Fig. 4B and Table 2). 245 

 246 

4 Discussion 247 

4.1 The Ohrid non-pyrgulinid Hydrobiidae: an old species flock 248 

Our phylogenetic analyses indicate that the non-pyrgulinid Hydrobiidae form a potential monophyletic, 249 

speciose and endemic clade, and thus, by definition, represent a species flock (Greenwood et al., 250 
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1984; Schön and Martens, 2004). Therefore, in situ diversification appears to be a main process in this 251 

group. This conclusion even holds under the assumption of a non-monophyly of the Ohrid taxa.  252 

The age estimates obtained from the molecular-clock analyses revealed that the Lake Ohrid 253 

flock potentially started to diversify before extant Lake Ohrid came into existence (i.e., in a pre-254 

lake/palaeo-lake phase or in other waterbodies of the Ohrid Graben system such as rivers or springs; 255 

see Fig. 3 and Fig. 4A). In fact, karst springs have previously been proposed as potential ancestral 256 

habitats for other invertebrate flocks inhabiting Lake Ohrid such as the pulmonate snail genus Ancylus 257 

(Albrecht et al., 2006), leeches of the genus Dina (Trajanovski et al., 2010), and the isopod genus 258 

Proasellus (Kilikowska et al., 2013). This may also be the case for the species flock studied here, 259 

given that karst springs are the dominant habitat of its closest relatives outside lakes Ohrid and 260 

Prespa. However, testing this hypothesis is beyond the scope of the current study and probably would 261 

require a denser sampling, more precise limnological information about the early stage of Lake Ohrid, 262 

and more specific approaches such as the reconstruction of ancestral waterbodies as well as better 263 

calibration points for molecular clock analyses.  264 

 265 

4.2 The Ohrid non-pyrgulinid Hydrobiidae: constant rate of diversification over time 266 

As mentioned in the Introduction, at least four modes of tempo of speciation in ancient lake species 267 

flocks are conceivable. Diversification rates may 1) be constant over time, 2) fluctuate (‘punctuated 268 

equilibrium’), 3) be higher in the initial phase of diversification, or 4) show a pronounced lag phase 269 

between colonization and subsequent diversification. 270 

As understanding the temporal frame of speciation in Lake Ohrid is of considerable 271 

importance for reaching one of the main goals of the Ohrid scientific deep-drilling program – inferring 272 

the driving forces for biotic evolution – the second specific goal of the current study aims at estimating 273 

diversification rates over time. Given that Lake Ohrid has long been regarded as a relatively stable 274 

system (Stankovic, 1960), our working hypothesis assumes no significant changes in diversification 275 

rates over time in the lake’s non-pyrgulinid Hydrobiidae. 276 

Interestingly, our LTT plot showed that the species flock most likely evolved with a constant 277 

diversification rate. This finding is supported by our diversification-rate analysis, indicating a single 278 

recent shift (drop of rates) at 0.1 Ma for two out of ten random trees (i.e., a timeframe in which 279 

incomplete lineage sorting may play a role; Fig. 4B and Table 2). Therefore, our initial working 280 
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hypothesis – a constant diversification rate – cannot be rejected. However, we cannot rule out a type II 281 

error here due to poorly resolved phylogenetic trees or insufficient sampling size. As for the quality of 282 

the phylogenetic tree used for the LTT plot and the subsequent diversification-rate analyses, our 283 

analyses, indeed, revealed some poorly supported (especially recent) nodes (Fig. 3). However, 284 

timetree studies are relatively robust against phylogenetic uncertainties (see e.g., Morvan et al., 2013) 285 

as a poorly supported topology does not necessarily affect the timing of rapid speciation events (e.g., 286 

Pagel, 1999). We are therefore confident that the low BPP support of some nodes in our tree had no 287 

significant influence on the outcome of our hypothesis testing.  288 

Moreover, we also think that our conclusions are not affected by a non-monophyly of the 289 

Ohrid group (see random tree #2) as the split between Prespa and Ohrid taxa is, in any event, older 290 

than 2 Ma and thus does not affect intra-lacustrine diversification rates within the Lake Ohrid clade. 291 

As for the sampling size (i.e., 17 out of 27 nominal species studied), the high diversity of 292 

evolutionary lineages found in our phylogenetic analyses indicates that our sampling design likely 293 

recovered most major evolutionary lineages within this group. Our sampling includes the majority of 294 

genera described except for Dolapia (which some authors included in the genus Ohrigocea) and 295 

Zaumia. We also included a variety of specimens collected at various types of habitats and type 296 

localities across the lake and its surroundings (see Fig. 2). Moreover, the diversification-rate analysis 297 

does account for incomplete sampling and we did infer a single rate shift in two of the random trees 298 

tested in the present study. Thus the method used seems to have enough power to detect deviations 299 

from a constant diversification rate in our data set. 300 

 301 

4.3 Ecosystem resilience of Lake Ohrid 302 

If we assume that the rate of diversification in the non-pyrgulinid Hydrobiidae from Lake Ohrid is 303 

constant, linking environmental/climatic fluctuations to changes in tempo of diversification becomes 304 

impossible (see specific goal iii). 305 

However, an important question is whether a non-constant diversification rate could not be 306 

demonstrated because Lake Ohrid never experienced massive environmental and/or climatic changes 307 

or whether the lake has a high ecosystem resilience that might buffer such perturbations. Preliminary 308 

data of the SCOPSCO deep-drilling program based on core catcher data for the last 1.2 Ma and high-309 

resolution data for the last 640 thousand years (ka) so far do not indicate the occurrence of 310 
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catastrophic environmental events (Francke et al., 2015; Wagner et al., 2014), i.e., events that lead to 311 

sudden drastic regime shifts (sensu Scheffer and Carpenter, 2003; Scheffer et al., 2001) and thus 312 

potentially to mass extinction. By comparison, such events have been observed in other ancient lakes 313 

including Lake Titicaca (Kroll et al., 2012; Lavenu, 1992) and Lake Malawi (Cohen et al., 2007; Scholz 314 

et al., 2007; Schultheiß et al., 2009, 2011). We do, however, see signatures of severe 315 

environmental/climatic perturbations in Lake Ohrid including significant lake-level drops (Lindhorst et 316 

al., 2010), volcanic ash deposits (Sulpizio et al., 2010; Wagner et al., 2014), and glacial/interglacial 317 

cycles (Lézine et al., 2010; Reed et al., 2010; Wagner et al., 2014). 318 

Therefore, we think that the lack of changes in tempo of diversification of Lake Ohrid’s non-319 

pyrgulinid Hydrobiidae might be potentially a result of two factors: i) either Lake Ohrid never 320 

experienced catastrophic environmental events that resulted in the extinction of all or most of its 321 

endemic taxa and thus caused a ‘reset’ of diversification processes; or ii) Lake Ohrid possibly has a 322 

high ecosystem resilience that buffers environmental changes and potentially mitigates extinction 323 

events. Note that the two factors might not be mutually exclusive as it has been shown that a loss of 324 

resilience may set the scene for a catastrophic event-induced switch to an alternative state (reviewed 325 

in Scheffer et al., 2001). 326 

The second scenario is supported by the mollusk and diatom fossil records for the past ~100 327 

ka (Albrecht et al., 2010) and (Cvetkovska et al., 2015; Jovanovska et al., 2015). For instance, the 328 

Campanian Ignimbrite Y5 tephra influx 39.6 ka ago (see Leicher et al., 2015) altered the water 329 

chemistry of Lake Ohrid and increased the content of silica, which in turn, amplified diatom growth 330 

rates. However, it did not cause severe changes in diatom community structures or even extinction 331 

events (Jovanovska et al., 2015). 332 

The suggested high ecosystem resilience of Lake Ohrid might be sustained by several 333 

factors including the lake’s bathymetry (deep lake with steep flanks, allowing habitats to move 334 

vertically with lake-level changes; Lindhorst et al., 2010), ongoing moderate tectonic activities 335 

(compensating sedimentation; Hinderer and Einsele, 2001), and its peculiar limnology (the lake is fed 336 

by numerous karstic sublacustrine springs, locally buffering environmental changes; Matzinger et al., 337 

2006). 338 

Although we think that the patterns inferred from mtDNA sequencing data of extant taxa are 339 

highly informative, future analyses utilizing additional (nuclear) markers may help better resolving 340 
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some of the basal relationships of Ohrid taxa. Moreover, the temporal resolution is still limited, the 341 

error rate for time estimates is relatively high, and some important processes such as extinction 342 

events are difficult to infer from extant organisms (see also Rabosky, 2010 for a discussion). 343 

Therefore, we encourage future palaeontological studies on endemic species using the sediment 344 

cores gained during the SCOPSCO deep-drilling campaign. This concerns, for example, diatoms and 345 

ostracods. Moreover, besides the main core ‘DEEP’, obtained from the deepest part of Lake Ohrid, 346 

several other cores were retrieved in shallower parts of Lake Ohrid. The latter appears to be relatively 347 

rich in mollusk fossils (see Wagner et al., 2014), which could potentially be used to directly study 348 

extinction and speciation events (for a proof of principle see Albrecht et al., 2010). 349 

 350 

5 Conclusions 351 

Our molecular-clock analyses indicate that the non-pyrgulinid Hydrobiidae of ancient Lake Ohrid 352 

represent an old endemic group, which is characterized by a constant rate of diversification. We 353 

propose that this constant rate has been caused by two factors: i) a possible lack of catastrophic 354 

environmental events in Lake Ohrid and/or ii) a high ecosystem resilience, buffering environmental 355 

changes. Parameters potentially contributing to Lake Ohrid’s ecosystem resilience are its distinct 356 

bathymetry, ongoing tectonic activities, and karst hydrology. These findings are not only of interest for 357 

one of the overall goals of the SCOPSCO deep-drilling program – inferring the driving forces for biotic 358 

evolution in Lake Ohrid. They might also enhance our understanding of how ecosystem resilience, in 359 

general, may promote a relative constant diversification in highly isolated ecosystems. 360 

However, high-resolution sedimentological data are currently only available for the last 640 361 

ka. Therefore, we encourage future studies specifically testing hypotheses about the lack of 362 

catastrophic events in Lake Ohrid based on high-resolution data for the entire geological history of the 363 

lake, and potentially involving information from the sediment fossil record not only for gastropods but 364 

also for other groups with a high share of endemic taxa. 365 

366 
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Table 2. Reduced output of the diversification-rate analyses (TreePar). P values >0.95 indicate that a 625 

single shift in rates explain the tree significantly better than constant diversification rates, that two 626 

shifts explain the tree significantly better than a single shift, and that three shifts explain the tree 627 

significantly better than two shifts (see main text for details). 628 

Random tree # Max. age (Ma) Rate shifts -Log-likelihood P value Shift (Ma ago) 
1 3.29 0 vs. 1 45.882 vs. 42.043 0.947  
  1 vs. 2 42.043 vs. 38.749 0.914  
  2 vs. 3 38.749 vs. 37.060 0.663  
2 3.06 0 vs. 1 46.292 vs. 45.073 0.514  
  1 vs. 2 45.073 vs. 43.192 0.712  
  2 vs. 3 43.192 vs. 42.478 0.301  
3 2.77 0 vs. 1 36.879 vs. 32.362 0.971  
  1 vs. 2 32.362 vs. 30.577 0.688 1 shift: 0.1 
  2 vs. 3 30.577 vs. 28.505 0.754  
4 2.40 0 vs. 1 28.083 vs. 26.171 0.712  
  1 vs. 2 26.171 vs. 25.507 0.278  
  2 vs. 3 25.507 vs. 23.337 0.773  
5 2.32 0 vs. 1 18.364 vs. 14.942 0.923  
  1 vs. 2 14.942 vs. 12.978 0.731  
  2 vs. 3 12.978 vs. 10.751 0.784  
6 2.42 0 vs. 1 31.850 vs. 29.342 0.829  
  1 vs. 2 29.342 vs. 27.932 0.580  
  2 vs. 3 27.932 vs. 26.219 0.670  
7 2.64 0 vs. 1 31.770 vs. 29.237 0.833  
  1 vs. 2 29.237 vs. 28.266 0.415  
  2 vs. 3 28.266 vs. 27.571 0.292  
8 2.96 0 vs. 1 34.733 vs. 30.793 0.951  
  1 vs. 2 30.793 vs. 28.986 0.694 1 shift: 0.1 
  2 vs. 3 28.986 vs. 27.431 0.625  
9 2.85 0 vs. 1 34.152 vs. 31.644 0.829  
  1 vs. 2 31.644 vs. 29.433 0.781  
  2 vs. 3 29.433 vs. 27.109 0.801  
10 2.13 0 vs. 1 31.492 vs. 28.169 0.916  
  1 vs. 2 28.169 vs. 25.885 0.794  
  2 vs. 3 25.885 vs. 23.883 0.739  

 629 

630 
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Figure captions 631 

 632 

Fig. 1. Selected representatives of genera belonging to the endemic non-pyrgulinid Hydrobiidae from 633 

Lake Ohrid. Scale bar = 1 mm. 634 

 635 

636 
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 637 

Fig. 2. Sampling sites for non-pyrgulinid Hydrobiidae in lakes Ohrid, Prespa and Mikri Prespa, and 638 

their watersheds. 639 

 640 

641 
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 642 

Fig. 3. MCC tree based on a relaxed-clock BEAST analysis for non-pyrgulinid Hydrobiidae from the 643 

Balkans. Posterior probabilities >0.5 are shown at the respective branches. The grey bar indicates the 644 

95% HPD for the age of the MRCA of the Ohrid endemics. The blue bar in the timescale ranging from 645 

1.2–2.0 Ma ago shows the assumed age of Lake Ohrid. 646 

647 
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 648 

Fig. 4. (A) LTT plot for the endemic non-pyrgulinid Hydrobiidae in Lake Ohrid. The plot is based on a 649 

relaxed-clock BEAST analysis with the black line showing the BEAST MCC and the shaded area 650 

indicating the 95% confidence interval based on 20,000 post-burnin BEAST trees. The blue bar 651 

ranging from 1.2–2.0 Ma ago shows the assumed age of Lake Ohrid. (B) Diversification rates obtained 652 

from the diversification rate-analyses (TreePar); trees with a single shift in diversification rates at 0.1 653 

Ma (trees #3 and #8) are highlighted in red and yellow. 654 
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