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Abstract

The atmospheric supply of dust iron (Fe) plays a crucial role in the Earth’s biogeochem-
ical cycle and is of specific importance as a micronutrient in the marine environment.
Observations show several orders of magnitude variability in the fractional solubility of
Fe in dust aerosols, making it hard to assess the role of mineral dust for global ocean
biogeochemical Fe cycle. In this study we compare the operational solubility of dust
aerosol Fe associated with one of the flow-through leaching protocols to the results
of the global 3-D chemical transport model GEOS-Chem. In the protocol aerosol Fe
is defined soluble by first deionized water leaching of mineral dust through a 0.45 pm
pore size membrane followed by acidification and storage of the leachate over a long
period of time prior to the analysis. To assess the concentrations of soluble Fe inferred
by this flow-through leaching protocol we are using in situ measurements of dust size
distribution with the prescribed of 50 % fractional solubility of Fe in less than 0.45 pm
sized dust particles collected in the leachate. In the model, the fractional solubility of Fe
is either explicitly calculated using complex dust Fe dissolution module, or prescribed
to be 1 and 4 %. Calculations show that the fractional solubility of Fe derived through
the flow-through leaching is typically higher compared to the model results. The largest
differences (> 30 %) are predicted to occur farther away from the dust source regions,
over the areas where sub-0.45 um sized mineral dust particles contribute a larger frac-
tion of the total dust mass. This study suggests that inconsistences in the operational
definition of soluble Fe could contribute to the wide range of the fractional solubility of
dust aerosol Fe reported in the literature.

1 Introduction

Earth system science models pay particular interest to interactions between ocean
ecosystems and the atmosphere. These interactions have implications on trace gas ex-
change, bidirectional flux of particulates, and the overall global carbon budget. The im-
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proved understanding of ocean—atmosphere interaction and assessment of the ocean’s
role in the carbon cycle necessitates coupling of physicochemical and biological pro-
cesses in the ocean. Characterization of ocean biological communities, however, re-
quires quantitative knowledge of nutrient distribution in the Earth’s oceans. Iron (Fe) is
one of the crucial micronutrients in surface oceans as nearly all forms of life require
sufficient amounts of Fe to carry out biological processes. Fe limitations in the oceans
can be seen most readily in so-called high nitrate low chlorophyll (HNLC) waters that
comprise ~ 30 % of the global oceans (Martin and Fitzwater, 1988; Boyd et al., 2000).

Previous studies that examined the sources of new Fe (not acquired via nutrient re-
cycling) to the oceans have largely focused on the delivery of Fe and physicochemical
processes that mediate the conversion of Fe from the refractory to the soluble pool
either in the surface ocean (Waite and Morel, 1984; Barbeau and Moffett, 2000) or the
atmosphere (Duce et al., 1991; Zhuang et al., 1992; Zhu et al., 1993; Meskhidze et al.,
2003). Sources of new Fe to the surface ocean include upwelling and entrainment of
Fe-rich waters from below the euphotic zone (Gordon et al., 1997), glacial meltwater
(Smith et al., 2007; Raiswell, 2011), seasonal sea-ice retreat (Lannuzel et al., 2008),
and aerosols associated with volcanism (Langmann, 2013; Hoshyaripour et al., 2014),
biomass burning (Guieu et al., 2005), anthropogenic emissions (Chuang et al., 2005),
and mineral dust (Prospero, 1981; Duce et al., 1991; Jickells et al., 2005). Although
different sources of aerosols seem to contribute to total Fe fluxes to the ocean and in-
fluence the fractional solubility of Fe in the bulk aerosol, here we only consider mineral
dust. It is estimated that 1.7 x 10'° g of mineral dust (Jickells et al., 2005) with an aver-
age of 3.5wt % of Fe (Duce and Tindale, 1991) gets deposited to the surface oceans
every year. The fraction of this Fe that is in a bioavailable form and the details for the
pathways that may be involved in aeolian Fe acquisition by ocean biological organisms
remain the subject of active research. For example, the oversimplistic nature of the
term “bioavailability” has been pointed out by Shaked and Lis (2012), suggesting that
elements of Fe speciation and kinetics, phytoplankton physiology, light, temperature,
and microbial interactions, are all intricately intertwined into the term bioavailability. In
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the marine environment greater than 99 % of filterable Fe is bound to organic colloidal
phases and macromolecules, usually less than 0.45 um in size (Rue and Bruland, 1995;
Barbeau, 2006; Raiswell and Cainfield, 2012). So, in the ocean “filterable” or “dissolved”
Fe has been operationally defined as the size fraction that passes through a 0.45 (or
0.4) um filter membrane (Raiswell and Cainfield, 2012). Since such organically-bound
Fe can be taken up by phytoplankton through several known pathways (Shaked and
Lis, 2012), it is considered to be bioavailable.

Because it is so difficult to quantify the bioavailability of particulate Fe in mineral
dust, studies often report soluble Fe (sol-Fe) in aerosols and define this as the frac-
tion of total Fe that contributes to the dissolved Fe inventory of surface seawater
(e.g., Sholkovitz et al., 2012). However, compared to seawater, the definition of sol-
Fe in mineral aerosols is less straightforward as Fe in sub-0.45 um sized dust particles
can contain crystalline Fe-(oxyhydr)oxides (e.g., hematite and goethite), Fe-substituted
into aluminosilicate minerals, and Fe-rich nanoparticles (Claquin et al., 1999; Nick-
ovic et al., 2013; Shi et al., 2009) that may not be readily bioavailable in seawater.
Different research groups have been using a range of different leaching techniques
(“batch” leaching, “flowthrough” leaching, and a combination of these two), types of
Fe extraction solutions (seawater or high-purity deionized (DI) water), pH values of the
solutions (from less than 2 to greater than 8), extraction times (from minutes to days),
and (photo)reductant agents (oxalic, ascorbic, glyoxalic, and pyruvic acids) leading to
large discrepancies in sol-Fe results (e.g., Sholkovitz et al., 2012). In addition to the
range of different methods used for Fe extraction, different groups are using different
operational definitions for fractional solubility of Fe in mineral dust. The sol-Fe is de-
fined as the material that passes through a 0.2, 0.4, or 0.45 um pore diameter filters
and commonly detected through Graphite Furnace Atomic Absorption Spectroscopy
(GFAAS), Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP-OES), or
High Resolution Inductively Coupled Plasma—Mass Spectrometry (HR-ICP-MS) (e.g.,
Lim and Jickells, 1990; Zhuang et al., 1990; Bonnet and Guieu, 2004; Baker et al.,
2006; Mackie et al., 2006; Buck et al., 2006, 2010; Paris et al., 2011). As mentioned
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above, sub-0.45um sized dust particles can contain numerous different forms of Fe
(both in a soluble and insoluble form), so the operational definition based on the size-
sorting is bound to introduce some uncertainty in sol-Fe results. Finally, the sol-Fe por-
tion of mineral Fe can also be defined as the sum of aqueous ferrous iron (Fe(ll)) and
reducible ferric (Fe(lll)) iron species and measured in the solution using the hydrox-
ylamine hydrochloride-ferrozine technique (e.g., Zhu et al., 1997; Chen and Siefert,
2004). However, such a definition is also not precise as it is known that hydroxylamine
hydrochloride can reduce ferric iron in forms ranging from aqueous to amorphous and
even in some crystalline forms (Chao and Zhou, 1983; Lovely and Phillips, 1987; Ver-
schoor and Molot, 2013).

Despite the wide variety of methods that have been used to define sol-Fe, the global-
scale compilation of data carried out by Sholkovitz et al. (2012) revealed a remarkably
consistent trend (similar to hyperbolic cotangent function) in the fractional solubility of
aerosol Fe as a function of total aerosol Fe loading. Baker and Jickells (2006) sug-
gested that such variability in aerosol Fe solubility is physical rather than chemical in
nature, caused by preferential removal of larger mineral dust particles during atmo-
spheric transport. Increase in surface area to volume ratio of mineral aerosol particles
with transport time was proposed to yield higher solubilities (Baker and Jickells, 2006).
However, using a combination of laboratory measurements of sol-Fe (in dust particles
with diameters from less than 0.18 to greater than 18 um) and global aerosol model
simulations, Shi et al. (2011a) showed that that physical size sorting alone can not
explain observed large variability in sol-Fe values of mineral dust samples. The chem-
ical and/or physical processing of soil dust during long-range atmospheric transport,
as well as source-dependent chemical and mineralogical variations in the Fe-bearing
aerosols were proposed as possible explanations for the observed variability of sol-Fe
(Sholkovitz et al., 2012).

In this study using the 3-D global chemical transport model GEOS-Chem, imple-
mented with a complex dust-Fe mobilization scheme (Johnson and Meskhidze, 2013),
we examine the uncertainty in Fe solubility values associated with leaching techniques.
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In particular, we will examine the effect of using 0.45 um pore size filters for separating
soluble and particulate forms of Fe. The intent of this article is in no way to criticize
any of the methods used in sol-Fe measurements, but rather to make the reader aware
of the fact that in addition to proposed physicochemical processing of soil dust during
long-range atmospheric transport, the reported uncertainty in the fractional solubility of
aerosol Fe could be attributed to the pore diameter of the filter used for separation of
soluble and particulate forms of Fe. The priorities for future studies of the atmospheric
deposition of sol-Fe to the oceans are also discussed.

2 Materials and methods
2.1 Model configuration

The global 3-D chemical transport model GEOS-Chem (v8-01-01) was applied in this
study to quantify size-dependent emission rates, atmospheric concentrations, and de-
position fluxes of mineral dust. The model was run with a 2° x 2.5° (latitude — longi-
tude) horizontal resolution and 47 vertical hybrid sigma-pressure levels and is driven by
Goddard Earth Observing System (GEOS-5) assimilated meteorology from the NASA
Global Modeling Assimilation Office (GMAO) (Bey et al., 2001). Dust mobilization is cal-
culated through the Dust Entrainment and Deposition (DEAD) scheme (Zender et al.,
2003) with the source function used in the Goddard Chemistry Aerosol Radiation and
Transport (GOCART) model (Ginoux et al., 2001). The detailed mineralogy of wind-
blown dust from the major desert regions is prescribed using the dust mineralogy
database of Nickovic et al. (2012). Once mineral dust is mobilized from the surface,
the model uses four standard dust size bins with diameter boundaries of 0.2-2.0, 2.0—
3.6, 3.6—6.0 and 6.0—12.0 um to simulate global dust transport and deposition (Fairlie
et al., 2007). Dry deposition in the model is based on the resistance-in-series scheme
described in Wesely (1989), with the surface resistances for aerosols following the work
of Zhang et al. (2001). Dust removal by wet deposition processes includes both convec-
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tive updraft scavenging and rainout/washout from large-scale precipitation (Liu et al.,
2001). Production of sol-Fe during the atmospheric transport of mineral dust is explic-
itly calculated based on the chemical composition of dust at the source region, aerosol
solution pH, organic (oxalate)-promoted Fe dissolution processes, and photochemical
redox cycling between Fe(ll) and Fe(lll) (Johnson and Meskhidze, 2013). Johnson and
Meskhidze (2013) examined three major Fe-containing minerals within dust, however,
during this study the baseline hematite-based dissolution scheme is used.

2.2 Dust size distribution

GEOS-Chem does not resolve explicitly dust size distribution within each bin. To cal-
culate dust mass concentrations with particle diameter D, < 0.45pum [Dusty 45], we
used in situ measurements of the dust particle size distributions compiled in Mahowald
et al. (2014). The solid line on Fig. 1 shows the normalized volume size distribution (V)
as a function of dust aerosols size (D,) using Kok (2011)

dv, D, e p/D "
— =—|1+er exp
dInDp Cy 2Ino

with the following parameters: ¢, =6.26, D, =30um, o, =14.5, and 1=13. The
dashed line in Fig. 1 shows the dust size distribution at the emission source based
on a brittle fragmentation theory from Kok (2011). To calculate [Dust, 45] we integrated
dust volume size distributions for 0.2 < D, <0.45pm and 0.2 <D, <2pm. The ratio
of these two volume distributions multiplied by GEOS-Chem dust mass concentration
within the smallest transport bin (0.2 < D, < 2.0 um) is assumed to be equivalent to
[Dust, 45]. The difference between the Kok (2011) parameterization (applicable at the
source region) and the measurements of dust size distributions downwind from desert
regions are thought to be attributed to differences in particle lifetime. Larger particles
typically fall from the atmosphere much faster than smaller ones. Under identical at-
14383
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mospheric conditions, particles of size 1 and 10 um will have deposition velocities 50
and 1000 times higher compared to 0.1 um sized particles (Seinfeld and Pandis, 1998).
Clouds also affect dust size distribution, with in-cloud and below-cloud scavenging of
mostly larger (=1 um in diameter) particles (Mahowald et al., 2014 and references
therein). Overall, when using the least square fit to the experimental data, mineral dust
with 0.2 < D, < 0.45um represents 1.6 % of dust within the smallest transport bin of
the model (0.2 < D, < 2pm).

2.3 Model simulations for sol-Fe

To determine the possible uncertainty in sol-Fe concentrations introduced by size-
sorting of sol-Fe, we have selected a method (hereinafter called DI-Method) in which
dust is leached though a 0.45pum pore size filter using high-purity DI water (pH 5.6)
and subsequently acidified (typically at pH ~ 1.7) and stored (often more than several
months) for the offline analysis (Buck et al., 2006). The advantages of such a method
are: (i) the similar operational definition of sol-Fe in atmospheric aerosols as does for
dissolved Fe in the ocean, (ii) the use of a rapid, flow-through leaching protocol allevi-
ates the potential for precipitation of iron hydroxides prior to collection of the leachate
solution, and (iii) the Fe extraction from the solution happens through the use of an Fe
chelating resin, allowing high efficiency and recovery (Buck et al., 2006; Milne et al.,
2010).

We have carried out three model simulations. In the first model simulation we explic-
itly calculate sol-Fe production during the atmospheric transport of mineral dust, while
in the last two simulations 1 and 4 % fractional solubility of Fe is prescribed to GEOS-
Chem dust. Note, that the last two simulations are independent from the GEOS-Chem
Fe dissolution scheme and the range in fractional solubility of Fe is the value required
by global ocean biogeochemical Fe cycle models to enter the ocean as bioavailable Fe
to reproduce the broad features of the Fe distribution observed in the modern ocean
(Aumont et al., 2003; Parekh et al., 2004; Tagliabue et al., 2014). All model results are
then compared to the value expected from the DI-Method. The following ratio, R, can
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be viewed as the difference between the DI-Method determined and model-predicted
fractional solubility of Fe:

([Dusty,] — [Dusty 45]) x Fe,, x Fegy + [Dusty 45] x Fe,, x Fegy;

R = (2)

[Dusty,] x Fe, x Feq,

where [Dust,;] is the surface level (from surface to ~ 100 m) concentration of dust
predicted by GEOS-Chem (inug m™3), Fe,, is the weight percentage of Fe in dust (as-
sumed to be 3.5 %), Fey; is the fractional solubility of Fe predicted by the DI-Method,
and Fey, is explicitly calculated through GEOS-Chem Fe dissolution scheme or pre-
scribed to be 1 and 4 %. Past studies designed to mimic acidification of mineral dust
aerosols during atmospheric transport showed that the rate of release of Fe from
acid-leachable pool is directly related to pH of the solution (e.g., Mackie et al., 20086;
Cwiertny et al., 2008). The fractional solubility of Fe was shown to vary from 30 to
70 % when treated extensively with different acids of pH ~ 1.7 over different time peri-
ods (e.g., Kim et al., 1999; Mackie et al., 2006; Cwiertny et al., 2008). These studies
also revealed that the release of acid-leachable Fe continued even after 25 days (e.g.,
Mackie et al., 2006). Here we prescribe the fraction of acid-leachable Fe (i.e., Fey¢) in
the DI-Method to be 50 % of total mineral Fe in the dust.

3 Results
3.1 Dissolved Fe fraction in mineral dust particles

Figure 2 shows the yearly averaged (from March 2009 to February 2010) distribution
of R values when GEOS-Chem model-predicted fractional solubility of Fe is used in
Eq. (2). According to this figure the higher R values ~ 1.2 to 1.25 (i.e., 20 to 25%
higher sol-Fe by the DI-Method) are expected to occur farther away from the source re-
gions, over the areas where mineral dust particles with D, < 0.45 um contribute a larger
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fraction of the surface level dust mass concentration. The R values close to 1 are pre-
dicted in the vicinity of large desert regions, e.g., North African and Middle East regions,
where the majority of dust mass is in particles with D, > 1 pm and therefore the amount
of Fe mobilized in sub-0.45 um particles (due to extended treatment of the leachate with
acidic solution) will add minor amounts to total sol-Fe.

Figure 3 shows model-predicted normalized frequencies of daily averaged R values
from March 2009 to February 2010 over the Southern Ocean (defined here as oceanic
regions south of 40° S), Equatorial Pacific (15° S—15°N, 75—-150° W), the North Pacific
Ocean (40-80°N, 130° E-120° W), and globally. The data show that for the prescribed
range of Fe solubility (1% in Fig. 3a and 4 % in Fig. 3b), the globally averaged R
values are ~ 1.02 and 1.2, i.e., sol-Fe overestimation over the oceans ranges from ~ 2
to 20 %. According to Fig. 3, the calculated R values are predicted to be highest over
the Equatorial Pacific, while the North Pacific Ocean and the Southern Ocean show
lower (and comparable) values.

4 Discussion

A large number of studies have attempted to measure sol-Fe concentrations in mineral
dust particles present over the oceans. However, differences in the dust source re-
gions (i.e., mineralogy and size distribution), environmental conditions (contamination
of in situ measurements by species other than dust, interaction of mineral dust particles
with different acidic and organic species at variable relative humidity and temperature
encountered during the atmospheric transport), sol-Fe definitions (i.e., aqueous Fe(ll)
and reducible Fe(lll), or 0.2, 0.4, and 0.45um pore size filtered), and measurement
methodologies (leaching procedures, chemical composition and pH values of the so-
lutions), lead to large uncertainty in fractional solubility of Fe reported in the literature
(Shi et al., 2012; Sholkovitz et al., 2012).

The DI-Method, although using a similar operational definition of sol-Fe as the dis-
solved Fe used in marine environments, is not consistent with the definition of bioavail-
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able Fe in the oceans. The differences stem from the fact the sub-0.45um sized
organically-bound Fe (the vast majority of all dissolved Fe in the oceans) can be
acquired by most phytoplankton, while particulate dust-Fe in the form of crystalline
Fe-(oxyhydr)oxides such as hematite and goethite, and as Fe(lll) substituted into alu-
minosilicate minerals that could be present in sub-0.45um sized mineral dust is not
bioavailable. To date, major ligand-complexed Fe uptake pathways have been de-
scribed for phytoplankton (e.g., Shaked and Liss, 2012), while only a few organisms,
e.g., the dinitrogen-fixing cyanobacterium, Trichodesmium spp., were shown to be ca-
pable of dissolving mineral Fe on the cell surface, and acquiring bioavailable Fe directly
from dust particles (Rueter et al., 1992; Rubin et al., 2011). All studies agree that long-
term exposure of dust samples to low pH conditions can cause sol-Fe release from the
crystalline Fe pool that is not expected to be easily soluble under typical atmospheric
conditions (e.g., Mackie et al., 2006; Cwiertny et al., 2008). Therefore, passing mineral
dust through 0.45 um sized filters followed by extensive acid digestion of samples is
likely leading to overestimations of sol-Fe values in dust aerosols.

To assess the possible uncertainty in sol-Fe concentration measured using the DI-
Method, we carried out GEOS-Chem model simulations in which model-predicted frac-
tional solubility of Fe were compared to the expected Fey; from the DI-Method. If one
assumes that particle morphology and Fe content does not change with size (we will
come back to this point below), model simulations for annually-averaged R values for
surface-level mineral dust reveal that overestimations in sol-Fe are trivial (i.e., R ~ 1)
near the source regions and increase with the distance downwind as large particles get
removed from the atmosphere through dry and wet deposition. In the regions where
dust concentration is high (i.e., above 100 pg m'3), sub-0.45 um sized mineral particles
contribute less than 0.3 % of total dust. Therefore when dust in this small size frac-
tion is assumed to be 50 % soluble, its contribution to total fractional solubility of Fe in
dust samples is small. It should be noted here that no model is precise and our past
studies show that GEOS-Chem derived daily averaged sol-Fe values often have more
than 50 % biases compared to the measurements (Johnson and Meskhidze, 20183).
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However, those uncertainties are irregularly distributer over the oceans and likely as-
sociated with uncertainties in emissions, transport and deposition schemes as well as
inconsistent chemical treatment of aerosols between different models. The difference
between the DI-Method derived and model-predicted sol-Fe values, on the other hand,
increases consistently with the distance from the dust source regions, as particles with
D, < 0.45 um contribute a growing fraction of the surface level dust mass concentration.

Although in this study we focus on the uncertainty in sol-Fe introduced solely by
the DI-Method, the derived increases in fractional solubility of Fe in dust aerosols are
comparable with the results of Shi et al. (2011a) study using different measurement
methodology and operational definition of sol-Fe. Using a combination of laboratory
measurements of Fe solubility in size-fractionated dust samples and a global aerosol
microphysical model, Shi et al. (2011a) conclude that physical size-sorting leads to
a systematic increase in sol-Fe in mineral dust, but the magnitude of the increase is
not high enough to explain high values in dust aerosol Fe solubility over the open-
oceans. For example, both our calculated (for the DI-Method) and Shi et al. (2011a)
measured (for size-fractionated dust samples) fractional solubility of Fe in mineral dust
are considerably lower than 12 to 15 % average value reported for high atmospheric
Fe loading (> 2 g Fe m~° air) of Saharan dust aerosols over the North Atlantic Ocean
(Buck et al., 2010). Moreover, results of both studies are inconsistent with reported
~50% and ~ 20 % Fe solubility for 1.8 <D, <3.2pum and 0.32 < D, < 1.8 ym sized
dust particles, respectively (Buck et al., 2010). To explain these findings, we propose
possible changes in dust size distribution caused by wetting of the mineral dust grains
and long-term acidification involved in the DI-Method. Discrepancies between wet and
dry sieved size distributions are well known in aeolian research (e.g., Marticorena
and Bergametti, 1995; Chatenet et al., 1996). The wetting of dust can cause physical
breakage of grains, dissolution of salts and release of finest particles (often defined as
nanoparticles, i.e., particles with < 100 nm diameter) loosely bonded to each other or to
the surface of larger particles. For example, high-resolution microscopy did not show Fe
rich nanoparticle aggregates in dry Saharan dust samples, but revealed their presence
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in wet-deposited dust (Shi and Krom, 2009). Such nanoparticles, including aluminosil-
icates with Fe incorporated in crystal lattice, nanogoethite, hematite, and ferrihydrite
(Shi and Krom, 2009; Journet et al., 2008; She et al., 2011b; Scheuvens et al., 2011)
could be mobilized in the solution and pass through 0.45 um sized filter. When highly
acidified and stored over long period of time, most of the Fe in these nanopatrticles will
show up as sol-Fe, enhancing fractional solubility of dust Fe. Available size-fractionated
dust-aerosol Fe solubility measurements (Buck et al., 2010; Shi et al., 2011a) did not
specifically examine presence of nanoparticle Fe in the leaching solution, so it is hard
to ascertain fractional solubility of Fe contributed by nanoparticles in different sized
dust. However, as the abundance of nanoparticles bonded to the grains or the number
of nanoparticles in dry dust that remain aggregated due to cohesive forces change with
the aerosol size distribution (Ogata et al., 2011; Baddock et al., 2013), the measure-
ment techniques involving separation of soluble and particulate forms of Fe by passing
the Fe-laden dust solutions through different pore-size filters may not even be viable
methodologies for characterization of size-fractionated dust Fe solubility.

5 Conclusion

In this study, we examined uncertainty in fractional solubility of Fe in mineral dust asso-
ciated with usage of one of the flow-through leaching protocol. We argue that usage of
the same operational definition of “soluble” Fe in atmospheric aerosols as “dissolved”
Fe in seawater (i.e., passage of Fe-laden solutions through 0.45 pm pore-size filter)
does not facilitate the companion of the results between different fields, as sub-0.45 ym
sized mineral dust could include crystalline Fe-(oxyhydr)oxides such as hematite and
goethite, Fe(lll) substituted into aluminosilicate minerals, and nanoparticles that are not
considered to be readily bioavailable in seawater. The long-term exposure of Fe-laden
leachate solution to low pH conditions can then cause release of Fe from the pool that
is not expected to be soluble under typical atmospheric conditions, leading to overes-
timation of sol-Fe values of mineral dust. Our model results show that for the three
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simulations carried out here (explicit calculation of sol-Fe production and prescribed 1
and 4 % fractional solubility of Fe) the DI-Method derived sol-Fe can be rioughly 30 %
higher compared to the model results. The differences are particularly higher over the
HNLC waters, where mineral dust particles with D, < 0.45um can contribute highest
fraction of the surface level dust mass concentration.

In terms of the wider significance, our study shows that operational definition of frac-
tional solubility of Fe in dust aerosols, as the material that passes through a 0.2, 0.4,
or 0.45um pore diameter filter, could introduce large uncertainty in the results. This
is particularly true for different sized dust-aerosol Fe solubility. Wetting of dry mineral
dust grains during the leaching procedures could cause physical breakage of grains,
dissolution of salts and release of nanoparticles loosely bonded to each other or to
the surface of larger particles. Since nanoparticles can be highly abundant in Fe and
have greater dissolution rate compared to more crystalline (larger) Fe oxide minerals,
operational solubility leaching procedure through 0.45 um pore diameter filter can yield
large uncertainties in aerosol Fe solubility as a function of particle size. Future studies
should develop improved measurement techniques capable to chemically measure the
speciation of Fe (in different size fractions) that are truly bioavailable in seawater. Re-
sults from such measurement techniques should be scalable for different environmental
conditions and interpretable for the wider biogeochemical context.
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Figure 1. In situ measurements of the dust particle size distribution close to North African
source regions adapted from Mahowald et al. (2014). Solid curve shows the least square fit
used in this study. The measurements are from the DODO (Fig. 7 in McConnell et al., 2008),
DABEX (Fig. 6 in Chou et al., 2008) and Fig. 10 in Osborne et al., 2008, SAMUM-1 (Fig. 8 in
Weinzierl et al., 2009), and Fennec (Fig. 5 in Ryder et al., 2013) field campaigns. See text for
more details.

14398

| Jadeq uoissnosigq | Jedeq uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

BGD
12, 14377-14400, 2015

Influence of
measurement
uncertainties on
soluble aerosol iron
over the oceans

N. Meskhidze et al.

(8)
K] (=)



http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/14377/2015/bgd-12-14377-2015-print.pdf
http://www.biogeosciences-discuss.net/12/14377/2015/bgd-12-14377-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

13

80°N

40°N

oo

40°s §.

80°s
180°W 120°W 60°W 0° 60°E 120°E 180°E

Figure 2. GEOS-Chem-predicted annually-averaged R values for surface-level mineral dust.
Sol-Fe concentrations in mineral dust are explicitly calculated and particles with D, < 0.45um
are assumed to contain 50 % sol-Fe.
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Figure 3. GEOS-Chem-predicted normalized frequencies (%) of daily-averaged R values in
surface-level mineral dust when (a) 1% and (b) 4 % all Fe is assumed to be soluble and parti-
cles with D, < 0.45 um contain 50 % sol-Fe.
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