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Abstract
Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q1o)

determines how strong the feedback from global warming may be on the atmospheric
CO, concentration, thus understanding the factors influencing the interannual
variation in Qqois important to accurately estimate local soil carbon cycle. In situ SOC
mineralization rate was measured using an automated CO, flux system (Li-8100) in
long-term bare fallow soil in the Loess Plateau (35°12’ N, 107°40" E) in Changwu,
Shaanxi, China from 2008 to 2013. The results showed that the annual cumulative
SOC mineralization ranged from 226 to 298 g C m 2y *, with a mean of 253 g C m™2
y tand a CV of 13%, annual Qo ranged from 1.48 to 1.94, with a mean of 1.70 and a
CV of 10%, and annual soil moisture content ranged from 38.6 to 50.7% soil
water-filled pore space (WFPS), with a mean of 43.8% WFPS and a CV of 11%,
which were mainly affected by the frequency and distribution of precipitation. Annual
Q10 showed a quadratic correlation with annual mean soil moisture content. In
conclusion, understanding of the relationships between interannual variation in Qo,
soil moisture and precipitation are important to accurately estimate the local carbon

cycle, especially under the changing climate.

Keywords: Soil temperature; SOC mineralization; distribution and frequency of

precipitation.
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1. Introduction

Temperature sensitivity of soil organic carbon (SOC) mineralization (hereafter
refer to as Qo) is of critical importance because it determines how strong the
feedback from global warming may be on the atmospheric CO, concentration (Agren
and Wetterstedt, 2007). However, this is an issue of considerable debatable (Davidson
et al., 2006; Kirschbaum, 2006), and the variations in Qo are the main source of
controversies in this feedback intensity (Larionova et al., 2007; Karhu et al., 2010;
Conant et al., 2011; Sakurai et al.,, 2012). Therefore, understanding the factors
influencing Qo is important to accurately estimate C cycle and the feedback from the
expected warmer climate.

Previous studies have shown that Qo variations are closely related to soil
temperature (Kirschbaum, 2006; Von Lutzow and Kogel-Knabner, 2009), substrate
availability (Agren and Wetterstedt, 2007; Gershenson et al., 2009), substrate quality
(Von Lutzow and Kogel-Knabner, 2009; Sakurai et al., 2012), and the size and
composition of microbial population (Djukic et al., 2010; Karhu et al., 2010). Soil
moisture is the most significant limiting factor for underground physiological
processes in dry and semi-dry ecosystems (Balogh et al., 2011; Cable et al., 2011;
Wang et al., 2014). Soil water availability may indirectly affect Q1o by influencing the
diffusion of substrates, because the diffusion of extracellular enzymes produced by
microorganisms and available substrates must conduct in the liquid phase (Davidson
et al., 1998; Illeris et al., 2004), but the response of Qi to soil water availability is
extremely complex and controversial (Davidson et al., 2000; Davidson et al., 2006;
McCulley et al., 2007). For example, Gulledge and Schimel (2000) found that Q1o was
larger in wet years than in drought years, whereas the opposite result was found by

Dorr and Mdnich (1987). However, many other studies that mainly focused on the
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short-term or seasonal variation in Qi (Davidson et al., 2006) have showed that Qi
was not affected by soil moisture (Fang and Moncrieff, 2001; Reichstein et al., 2002;
Jassal et al., 2008). Additionally, soil water availability experienced marked seasonal
and interannual fluctuations in these ecosystems due to uneven rainfall distribution
caused by the abnormal increase of atmospheric CO, concentrations (Solomon et al.,
2007). The uneven rainfall distribution inevitably influenced soil moisture availability
(Coronato and Bertiller, 1996; Qiu et al., 2001; Cho and Choi, 2014). Xiao et al.
(2014) have shown that the interannual changes in soil moisture storage in the Loess
Plateau were decided by the difference in soil moisture storage between October and
April, because precipitation from April to October of 2004 to 2010 accounted for at
least 86% of annual rainfall. However, to our knowledge, there have been few studies
investigating the relationship between interannual variation in Qo and soil moisture
under natural conditions.

The Loess Plateau is located in northwest China covering an area of 640,000 km?.
It has a continental monsoonal climate and shows a dramatically interannual
fluctuations in precipitation, with the highest precipitation of 1262 mm and the lowest
precipitation of only 80 mm, and a mean value of 150-750 mm (Lin and Wang, 2007).
The precipitation in the loess regions also shows a dramatically seasonal variation,
and approximately 60%-80% of the annual precipitation falls during the three
summer months from July to September (Guo et al., 2012). Several recent studies
have attempted to determine the dominant factors responsible for the variation of soil
respiration in vegetation ecosystems (Lafond et al., 2011; Shi et al., 2011; Jurasinski
et al., 2012). However, there have been no studies on the interannual variation in Qy,
nor the factors responsible for these changes. This highlights the need to accurately

evaluate the response of SOC mineralization to increasing temperature under warmer
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climate scenarios in the eroded or degraded regions, because air temperature has been
increasing over the past decades (Fan and Wang, 2011; Wang et al., 2012). Thus, the
objectives of the present study are to (1) quantify the interannual variation in Qig; (2)
determine the effect of soil moisture on this interannual variation for the period

2008-2013 in the Loess Plateau, China.

2. Materials and methods
2.1 Site description

This study was a part of a long-term field experiment that began in 1984 in the
State Key Agro-Ecological Experimental Station in the Loess Plateau in Changwu,
Shaanxi, China (35°12’' N, 107°40" E; 1,200 m above sea level) (Fig. 1). This region
had a continental monsoon climate with a mean annual precipitation of 560 mm for
the period 1984-2013, over 60% of which occurred from July to September. During
this 30-year period, the annual mean air temperature was 9.4 <C and the monthly
mean temperature between July and September was 19.4 <C. The study site is also
characterized by a >10 <C accumulated temperature of 3029 <C, an annual sunshine
duration of 2230 h, an annual total radiation of 484 kJ cm?, and a frost-free period of
171 days.

The site was located in a typical rain-fed cropping region of the Loess Plateau
highland in northwest China. The soil was classified as a loam (Cumulic Haplustoll,
USDA Soil Taxonomy System) developed from loess deposits. Soils collected at the
study site in 1984 at a depth of 0—20 cm contained 10.5% CaCOs3, 6.5 g organic C
kg, 0.80 g total N kg, and 200 mg NH,OAc-extractable K kg™, 3.0 g kg * available
phosphorus, and had a pH of 8.4 (with a 1: 1 ratio of soil: H,0O), a water-holding

capacity of 0.29 cm® cm™2 (v/v), the wilting point of 11%, a soil bulk density of 1.3 g
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cm >, soil porosity of 51%, and a clay content of 24%.
2.2 Experimental design and management

This study was a part of a long-term field experiment established in June 1984.
The plot used in the present study is taken from a bare plot in a state of fallow since
June 1984 after the harvesting of winter wheat (Triticum aestivum L. ‘Chang Wu 131
series’), and living weed was artificially removed timely. Therefore, there were no
vegetation or inputs of aboveground and belowground litter, and then SOC
mineralization rates in the bare fallow soil did not include root respiration and litter
mineralization and decomposition. In this paper, three bare fallow plots were used to
investigate the mechanism of underground SOC mineralization rates. All plots of 10.3
m < 6.5 m (66.95 m?) were randomly arranged in three blocks. The plots were

separated by 0.5 m spaces, whereas the blocks were separated by 1 m strips.

2.3 Measurements of SOC mineralization rate and soil microclimate

SOC mineralization rate was measured using an automated closed soil CO; flux
system with a portable chamber (20 cm in diameter, Li-8100, Lincoln, NE, USA).
Approximately one day before the first measurement, a polyvinyl chloride (PVC)
collar (20 cm in diameter and 12 cm in height) was inserted to a depth of 2 cm into
each plot, and left in place throughout the experimental period from 2008 to 2013.
Although previous studies have demonstrated a significant spatial variation of soil
respiration, especially in the sites with complex terrain (causing the redistribution of
SOC) and different vegetation types (Epron et al., 2006; Luan et al., 2012), the spatial
variation of SOC mineralization rate in our sites is small with a variation coefficient
of only 4% and 5% in summer and winter, respectively (Table 1). This can be

attributed to that there have been no vegetation or inputs of (aboveground and



147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

belowground) litter in our plots since 1984 (absolute fallow), and the soil was derived
aeolian deposit loess and flat terrain. Due to the small areas of our plots (66.95 m?
and time constraints (5 min for measuring SOC mineralization rate in a given PVC
collar), only one PVC collar was used in each plot for measuring SOC mineralization
rate. All visible living organisms were removed before the measurement. If necessary,
one or more additional measurements would be taken until the variations between two
consecutive measurements were less than 15%. The final instantaneous soil
respiration for a given collar was the average of the two measurements with a 90 s
enclosure period and 30 s delay between them. Field measurements were performed
between 09:00 and 11:00 AM from March 2008 to November 2013, except in
December, January, and February because of cold weather. A total of 17, 25, 26, 22,
26 and 17 SOC mineralization measurements were made in 2008—-2013, respectively.
Soil temperatures and water contents at a 5-cm depth were measured at a
distance of 10 cm from the chamber collar at the same time as the SOC mineralization
rates using a Li-Cor thermocouple probe and a Theta Probe ML2X with a HH2 water
content meter (Delta-T Devices, Cambridge, England), respectively. Daily mean soil
temperature and moisture data were provided by the State Key Agro-Ecological
Experimental Station, both of which were measured at 5 cm below the surface using a
Hydra soil moisture sensor (Hydra Data Reader and Hydra Probe Il Soil Moisture
Sensor (SDI-12/RS485); Precision: Moisture, #0.5% vol; Temperature, #0.6 °C;
Stevens Water Monitoring Systems Inc., Australia). Soil water-filled pore space
(WFPS) was calculated as follows: WFPS (%) = 100 x< [volumetric water content /
(2.65 — soil bulk density) / 2.65], with 2.65 being the particle density of the soil (g

cm3).
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2.4 Data analysis
An exponential (or “Q19”") function was used to simulate the relationship between

SOC mineralization rate and soil temperature (Xu and Qi, 2001):

F = e )

Qo=e"" )
Where F (n mol m?s %) is the SOC mineralization rate, T (<) is the soil temperature
at a depth of 5 cm, and Sy and f, are the fitted parameters.

A quadratic polynomial function was used to simulate the relationship between

SOC mineralization rate and soil moisture content (Tang et al., 2005):

F = B,0% + B0+ B, ©)
Where 6 is the soil moisture at a depth of 0-5 cm, and S,, f3, and p, are the fitted
parameters.

The interactions of soil temperature with moisture content can more accurately
simulate soil respiration than either soil temperature or moisture alone (Tang et al.,
2005). Our data indicated that SOC mineralization rate increased with increasing soil
moisture content to a maximum at approximately 46% WFPS, and then decreased
with further increase of soil moisture content. After comparing different functions and
resulting residual plots, a bivariate model was used to simulate the effect of soil

moisture content and temperature on SOC mineralization rate:
= :ﬂoeﬂ1T6+ﬂ2T92 (4)

The annual cumulative SOC mineralization rate was estimated by linear
interpolating between measurement dates to obtain the mean daily SOC
mineralization rate for each plot, and then summing the mean daily SOC

mineralization rate for a given year.
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The relationships between Qio and meteorological factors were investigated
using the SAS software (version 8.0; SAS Institute, Cary, NC). All other statistical

analyses were performed with ANOVA at P = 0.05.

3. Results
3.1 Interannual variation in Qg

The temporal variation in SOC mineralization rate was correlated with that of
soil temperature in all six years (Figs. 2b and c), and it increased exponentially with
soil temperature (P<0.01). The mean annual SOC mineralization rate ranged from
0.83(2012) to 1.22 p mol m%s™*(2008), with a mean of 0.99 p mol m2s * and a CV
of 17%; the annual cumulative SOC mineralization ranged from 226 (2012) to 298 g
C m %y (2009), with a mean of 253 g Cm 2y * and a CV of 13% (Table 2), and the
annual Qo in our sites was 1.65 in 2008, 1.94 in 2009, 1.72 in 2010, 1.48 in 2011,
1.86 in 2012, and 1.55 in 2013, respectively, with a mean Qo of 1.72 and a CV of

10% (Table 3).

3.2 Interannual variation in soil microclimate

Annual precipitation showed a significant annual variation (Fig.1 and Table 2; P
<0.05). Rainfall ranged from 481 (2009 and 2012) to 644 mm (2011), with a 6-year
mean of 540364 mm and a CV of 12%. Annual rainfall days ranged from 71 (2013) to
105 days (2008), with a 6-year mean of 9612 days and a CV of 13%. Interannual
variation in air temperature was not significant (Fig.1 and Table 2; P >0.05). It ranged
from 9.43 (2011 and 2012) to 11.08 °C (2013), with a 6-year mean of 10.140.6 °C and
a CV of only 6%.

Soil temperature and soil moisture at a depth of 0-5 c¢cm showed significant
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temporal variations over the six-year observation period (Fig. 2b). The seasonal mean
soil moisture content was 49.2% WEFPS in the wet season (July to September in each
year) and 38.6% WFPS in the dry season (other months). The mean annual soil
moisture content ranged from 38.6% WFPS (2013) to 50.7% WFPS (2011), with a
mean of 43.8% WFPS and a CV of 11%. The seasonal mean soil temperature was
14.50 <T in the dry season and 20.39 <T in the wet season. The mean annual soil
temperature ranged from 14.90 <€ (2011) to 18.42 < (2009), with a mean of

17.05 T and a CV of only 7%.

3.3 Effect of soil moisture on the interannual variation of Qg

Annual Qo showed a negative quadratic correlation with annual mean soil
moisture (Fig. 3b). Additionally, the seasonal SOC mineralization rate increased
exponentially with soil temperature, and showed a negative quadratic correlation with
soil moisture content (Table 3). The response surface of SOC mineralization rate to
soil temperature and moisture including both seasonal and interannual scales clearly

described how soil microclimate influenced SOC mineralization rate (Fig. 4).

4. Discussion

4.1 Soil moisture influenced the interannual variation in Qg

The range of annual Qo (1.48-1.94, with a CV of 10%) in our sites for the
period 2008-2013 was within the limits reported for annual Q1 (1.20-4.89) at global
scale (Boone et al., 1998; Zhou et al., 2007; Gaumont-Guay et al., 2008; Zhu and
Cheng, 2011; Zimmermann et al., 2012). However, the mean annual Qi in our sites
(1.70) was lower than the global mean (2.47) (Boone et al., 1998; Zhou et al., 2007;

Gaumont-Guay et al., 2008; Zhu and Cheng, 2011; Zimmermann et al., 2012),

10
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probably due to low SOC contents, small microbial communities, dry soil conditions
in semi-arid regions (Conant et al., 2004; Gershenson et al., 2009; Cable et al., 2011),
and different methods used for separating SOC mineralization rate (Boone et al., 1998;
Zhu and Cheng, 2011; Zimmermann et al., 2012).

Annual Q1o was negatively linearly correlated with annual mean precipitation,
but this correlation did not reach statistical significance (P>0.05); whereas it was
significantly related to soil moisture content (Fig. 3). This was in agreement with
previous studies (Suseela et al., 2012; Poll et al., 2013). However, Q;o was found to be
negatively correlated with mean annual precipitation (P<0.01) in different forest
ecosystems in China, which could be due to the relatively abundant rainfall in the
forest ecosystems (700-1956 mm) (Peng et al., 2009). Soil moisture was the major
limiting factor for the underground biological processes, especially in water-limited
regions (Reth et al., 2005; Balogh et al., 2011; Wang et al., 2014). Although
precipitation was the only source of water for soil moisture underneath long-term bare
soil, there was no significant relationship between annual mean soil moisture and
annual precipitation amount (P>0.05) (Fig. 5a), but rainfall frequency and distribution
were closely related to annual mean soil moisture content (Fig. 5b). Similar results
have also been found in other studies (Coronato and Bertiller, 1996; Qiu et al., 2001;
Cho and Choi, 2014). The annual precipitation during the six-year observation period
of 2008-2013 ranged from 481 (2009) to 644 mm (2011), with a CV of 12% (Table 2).
The annual mean soil moisture content was high (51% WFPS) in 2011 due to
relatively uniform distribution of precipitation, and low (38% WFPS) in 2010 and
2013 due to relatively uneven distribution of precipitation. For example, the rainfall
amount on July 23, 2010 (118 mm) and July 22, 2013 (121 mm) was about 20% and

23% of that in 2010 (588 mm) and 2013 (523 mm), respectively. The annual mean

11
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soil moisture was moderate (43-47% WEFPS) in 2008, 2009 and 2012 due to the
normal distribution of precipitation. Similarly, the interannual soil moisture regulation
in the forest ecosystems in the Loess Plateau was determined not only by rainfall
amount but also by rainfall distribution (Li et al., 1998).

Annual Q1o showed a negative quadratic relationship with soil moisture content,
as it increased with increasing soil moisture content to a maximum at approximately
42% WFPS, and then decreased with further increase of soil moisture content (Fig.
3b), which was in agreement with other studies (Bowden et al., 1998; Conant et al.,
2004; Smith, 2005). This could be attributed to the following reasons: Firstly, lower
soil water availability could reduce Qi by limiting respiration substrate availability
and soil pore water became increasingly disconnected, thus slowing down the
diffusion rate of solutes (Wan et al., 2007; Balogh et al., 2011), and decreasing the
activity and quantity of organisms due to drought stress (Davidson et al., 2006).
Secondly, higher soil moisture could also reduce Qio by limiting O, diffusion rate
(Davidson et al., 1998; Byrne et al., 2005; Saiz et al., 2007) because of low effective
soil porosity, as the diffusion rate of O, through water was much slower than that
through air (Cook and Knight, 2003; Manzoni et al., 2012), thus the decomposition
activity of aerobic microbes was inhibited due to lack of oxygen (Davidson et al.,
2000). Finally, the diffusion rate of both soluble organic matter and O, were not
inhibited, also the survival of microorganisms not subject to water stress at suitable
soil water content, instead increasing temperature increased the diffusion of soluble
organic matter, thus resulting in an increase in Q1o (McCulley et al., 2007). Overall,
soil moisture content may be the most important factors that affected the interannual
variation in Q.

The variation in the temperature sensitivities of SOC mineralization could have

12
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potential implications for climate carbon modeling (Davidson and Janssens, 2006;
Conant et al., 2011), as uncertainty remains regarding environmental controls over
SOC mineralization (Larionova et al., 2007; Karhu et al., 2010; Conant et al., 2011;
Sakurai et al., 2012). The previous results have emphasized the importance of
seasonal variation in precipitation and soil moisture in determining Qi (Xu and Qi,
2001; Davidson et al., 2006; Davidson and Janssens, 2006), but have rarely taken into
account the interannual variation in soil moisture resulting from the uneven
distribution of precipitation. Carbon cycle modeling without considering this

interannual variation in soil moisture may produce misleading conclusions.

4.2 Comparison with annual cumulative SOC mineralization rate estimated by
different methods

Annual cumulative SOC mineralization rate was estimated by different methods,
including linear interpolation method, modeled method, and unit conversion method.
The results clearly showed that there was no significant difference in the estimates of
annual cumulative SOC mineralization rate between linear interpolation and modeled
method, and the modeled method could well predict the SOC mineralization rate in
most cases from 2008 to 2013 (Fig. 6), which was in line with the previous studies
(Tang et al., 2005). However, unit conversion method seriously overestimated annual
cumulative SOC mineralization rate (Table 4). This can be attributed to the following
reasons: 1) the study site has a continental monsoon climate with 60% of rainfall
occurring from July to September (rainy season), thus the study site is hot and rainy in
the rainy season, but cool and dry in the non-rainy season; and 2) SOC mineralization
rate in the rainy and non-rainy season is largely the same, but the duration of rainy

season is only a quarter of a year. Thus, the SOC mineralization rate was much greater
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in rainy season than in non-rainy season, thus resulting in an overestimation of
cumulative SOC mineralization rate in a given year.

In conclusion, linear interpolation method is a simple and controllable method
for estimating annual cumulative SOC mineralization rate (Schindlbacher et al., 2014;
Shi et al., 2014). Although the modeled method can well estimate annual cumulative
SOC mineralization rate, it is limited in practice as it needs daily soil temperature and
moisture. Unit conversion method may seriously overestimate annual cumulative
SOC mineralization rate unless the SOC mineralization rate is very uniform in a given

year.

5. Conclusions

Understanding the factors influencing the temperature sensitivity of SOC
mineralization is important to accurately estimate local carbon cycle. The results of
this study showed that the annual cumulative SOC mineralization ranged from 226 to
298 g C m 2y, with a CV of 13%, annual Qoranged from 1.48 to 1.94, with a CV
of 10%, and annual soil moisture content ranged from 38.6 to 50.7% WFPS, with a
CV of 11%. Annual Qo showed a negative quadratic correlation with annual mean
soil moisture, which was determined by uneven distribution and frequency of rainfall.
In conclusion, the interannual variation in soil moisture content should be considered

in carbon cycle models in semi-arid areas.
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Table 1. SOC mineralization rate (u mol m%s™) in summer (July 11, 2008) and winter

(November 18, 2008). Data are represented as mean £S.D of five collars.

SOC mineralization rate

Dates Collar 1 Collar 2 Collar 3 Collar 4 Collar 5 Mean value

Summer 1.5540.11 1.6040.20 1.5840.21 1.4940.07 1.6540.18 1.5740.06

Winter 0.2940.01 0.3049.02 0.314.01 0.3240.02 0.334.02 0.3140.02

Note: SOC mineralization rate was measured on July 11, 2008 and November 18, 2008 (representing

summer and winter) using 5 PVC collars installed in our plots
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Table 2. Cumulative SOC mineralization rate (g C m year %), annual precipitation amount
(mm), annual precipitation days, and air temperature (°C) from 2009 to 2013. Data are

represented as mean x=S.D.

Years Cumulative SOC  Precipitation amount Precipitation days Air temperature

mineralization rate

2008 293+0 520 105 9.76
2009 29849 481 99 10.26
2010 238450 588 101 10.39
2011 234448 644 100 9.43
2012 226419 481 98 9.43
2013 240430 523 71 11.08
Mean 253432 540464 96412 10.140.6
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Table 3. Relationships between SOC mineralization rate and soil temperature (F-T) or soil

moisture (F-6) for each year from 2008 to 2013.

Years F-T F-0
Functions R? P Qo Functions R? P

2008  F=0.49¢"™T 056 <0.01 1.65 F=-0.0008¢" + 0.106— 1.52 0.53 <0.01
2009  F=0.34¢%0%%17 0.63 <0.01 194 F=-0.00016" - 0.026+ 2.63 0.61 <0.01
2010 F=0.35¢"%*! 047 <0.01 172 F=0.00026*— 0.046+ 2.15 0.86 <0.01
2011  F=0.45e%%%%" 047 <0.01 1.48 F=-0.0008¢" + 0.066+ 0.06 046 <0.01
2012  F=0.27¢"%%%T 0.67 <0.01 1.86 F=-0.0019¢" + 0.146-1.71 0.35 <0.05
2013  F=0.52¢%%*47 032 <0.01 155 F=-0.0016*+ 0.086- 0.60 0.36 <0.05
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Table 4. Annual cumulative SOC mineralization rate (g C m % year ') estimated by linear

interpolation method, modeled method, and unit conversed method from 2008 to 2013.

Years Annual cumulative SOC mineralization rate
Linear interpolation Soil temperature and moisture modeled Unit conversion

2008 293 258 462
2009 298 272 460
2010 238 268 344
2011 234 260 325
2012 226 271 314
2013 240 284 348
Mean 255432 26946 374465

Note: Modeled method: using the interactions of soil temperature with moisture for estimating annual cumulative SOC

mineralization rate with Eq. 4 (2.4 sections); Unit conversion method: estimating annual cumulative SOC mineralization rate

with mean SOC mineralization rate in a given year.
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Figure captions

Fig. 1

Location of the State Key Agro-Ecological Experimental Station (Changwu Station).

Fig. 2
Temporal variations of (a) precipitation and air temperature, (b) soil moisture and soil

temperature, and (c) SOC mineralization rate from 2008 to 2013.

Fig. 3
Regression analysis performed between (a) Q1o and annual precipitation amount, and (b) Q1o

and annual mean soil moisture.

Fig. 4
Response surface of SOC mineralization rate as a function of soil moisture and soil

temperature from 2008 to 2013.

Fig. 5
Regression analysis performed between (a) annual mean soil moisture and annual

precipitation amount, and (b) annual mean soil moisture and annual precipitation days.

Fig. 6

Estimated daily (2008-2013) SOC mineralization rate (solid line) with periodic measurement

values (filled circles).
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