

1 **Soil moisture influenced the interannual variation in temperature**
2 **sensitivity of soil organic carbon mineralization in the Loess**
3 **Plateau**

4

5 Y.J Zhang^{1,2}, S.L Guo^{1,3,4*}, M Zhao⁴, L.L Du¹, R.J Li¹, J.S Jiang³, R Wang⁴, and N.N Li¹

6 **Affiliation:**

7 1. State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Institute
8 of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China

9 2. Geography and Environmental Engineering Department, Baoji University of Arts and
10 Sciences, Baoji 721013, China

11 3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of
12 Water Resource, Yangling 712100, China

13 4. College of Resources and Environment, Northwest A&F University, Yangling 712100,
14 China

15

16 Number of text pages: 30

17 Number of tables: 4

18 Number of figures: 6

19 Corresponding author: Shengli Guo

20 Address: Institute of Soil and Water Conservation, Xinong Road 26, Yangling, Shaanxi
21 712100, China

22 Phone: +86-29-87012411, Fax: +86-29-87012210, E-mail: slguo@ms.iswc.ac.cn

23 **Abstract**

24 Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q_{10})
25 determines how strong the feedback from global warming may be on the atmospheric CO₂
26 concentration, thus understanding the factors influencing the interannual variation in Q_{10} is
27 important to accurately estimate local soil carbon cycle. *In situ* SOC mineralization rate was
28 measured using an automated CO₂ flux system (Li-8100) in long-term bare fallow soil in the
29 Loess Plateau (35°12' N, 107°40' E) in Changwu, Shaanxi, China from 2008 to 2013. The
30 results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C
31 m⁻² y⁻¹, with a mean of 253 g C m⁻² y⁻¹ and a CV of 13%, annual Q_{10} ranged from 1.48 to
32 1.94, with a mean of 1.70 and a CV of 10%, and annual soil moisture content ranged from
33 38.6 to 50.7% soil water-filled pore space (WFPS), with a mean of 43.8% WFPS and a CV of
34 11%, which were mainly affected by the frequency and distribution of precipitation. Annual
35 Q_{10} showed a quadratic correlation with annual mean soil moisture content. In conclusion,
36 understanding of the relationships between interannual variation in Q_{10} , soil moisture and
37 precipitation are important to accurately estimate the local carbon cycle, especially under the
38 changing climate.

39

40

41 **Keywords:** Soil temperature; SOC mineralization; distribution and frequency of
42 precipitation.

43

44 **1. Introduction**

45 Temperature sensitivity of soil organic carbon (SOC) mineralization (hereafter refer to
46 as Q_{10}) is of critical importance because it determines how strong the feedback from global
47 warming may be on the atmospheric CO₂ concentration (Ågren and Wetterstedt, 2007).
48 However, this is an issue of considerable debatable (Davidson et al., 2006; Kirschbaum,
49 2006), and the variations in Q_{10} are the main source of controversies in this feedback intensity
50 (Larionova et al., 2007; Karhu et al., 2010; Conant et al., 2011; Sakurai et al., 2012).
51 Therefore, understanding the factors influencing Q_{10} is important to accurately estimate C
52 cycle and the feedback from the expected warmer climate.

53 Previous studies have shown that Q_{10} variations are closely related to soil temperature
54 (Kirschbaum, 2006; Von Lutzow and Kogel-Knabner, 2009), substrate availability (Ågren
55 and Wetterstedt, 2007; Gershenson et al., 2009), substrate quality (Von Lutzow and
56 Kogel-Knabner, 2009; Sakurai et al., 2012), and the size and composition of microbial
57 population (Djukic et al., 2010; Karhu et al., 2010). Soil moisture is the most significant
58 limiting factor for underground physiological processes in dry and semi-dry ecosystems
59 (Balogh et al., 2011; Cable et al., 2011; Wang et al., 2014). Soil water availability may
60 indirectly affect Q_{10} by influencing the diffusion of substrates, because the diffusion of
61 extracellular enzymes produced by microorganisms and available substrates must conduct in
62 the liquid phase (Davidson et al., 1998; Illeris et al., 2004), but the response of Q_{10} to soil
63 water availability is extremely complex and controversial (Davidson et al., 2000; Davidson et
64 al., 2006; McCulley et al., 2007). For example, Guldge and Schimel (2000) found that Q_{10}
65 was larger in wet years than in drought years, whereas the opposite result was found by Dorr
66 and Mdnich (1987). However, many other studies that mainly focused on the short-term or
67 seasonal variation in Q_{10} (Davidson et al., 2006) have showed that Q_{10} was not affected by
68 soil moisture (Fang and Moncrieff, 2001; Reichstein et al., 2002; Jassal et al., 2008).

69 Additionally, soil water availability experienced marked seasonal and interannual fluctuations
70 in these ecosystems due to uneven rainfall distribution caused by the abnormal increase of
71 atmospheric CO₂ concentrations (Solomon et al., 2007). The uneven rainfall distribution
72 inevitably influenced soil moisture availability (Coronato and Bertiller, 1996; Qiu et al., 2001;
73 Cho and Choi, 2014). Xiao et al. (2014) have shown that the interannual changes in soil
74 moisture storage in the Loess Plateau were decided by the difference in soil moisture storage
75 between October and April, because precipitation from April to October of 2004 to 2010
76 accounted for at least 86% of annual rainfall. However, to our knowledge, there have been
77 few studies investigating the relationship between interannual variation in Q_{10} and soil
78 moisture under natural conditions.

79 The Loess Plateau is located in northwest China covering an area of 640,000 km². It has
80 a continental monsoonal climate and shows a dramatically interannual fluctuations in
81 precipitation, with the highest precipitation of 1262 mm and the lowest precipitation of only
82 80 mm, and a mean value of 150–750 mm (Lin and Wang, 2007). The precipitation in the
83 loess regions also shows a dramatically seasonal variation, and approximately 60%–80% of
84 the annual precipitation falls during the three summer months from July to September (Guo et
85 al., 2012). Several recent studies have attempted to determine the dominant factors
86 responsible for the variation of soil respiration in vegetation ecosystems (Lafond et al., 2011;
87 Shi et al., 2011; Jurasic et al., 2012). However, there have been no studies on the
88 interannual variation in Q_{10} , nor the factors responsible for these changes. This highlights the
89 need to accurately evaluate the response of SOC mineralization to increasing temperature
90 under warmer climate scenarios in the eroded or degraded regions, because air temperature
91 has been increasing over the past decades (Fan and Wang, 2011; Wang et al., 2012). Thus, the
92 objectives of the present study are to (1) quantify the interannual variation in Q_{10} ; (2)
93 determine the effect of soil moisture on this interannual variation for the period 2008–2013 in

94 the Loess Plateau, China.

95

96 **2. Materials and methods**

97 **2.1 Site description**

98 This study was a part of a long-term field experiment that began in 1984 in the State
99 Key Agro-Ecological Experimental Station in the Loess Plateau in Changwu, Shaanxi, China
100 (35°12' N, 107°40' E; 1,200 m above sea level) (Fig. 1). This region had a continental
101 monsoon climate with a mean annual precipitation of 560 mm for the period 1984–2013,
102 over 60% of which occurred from July to September. During this 30-year period, the annual
103 mean air temperature was 9.4 °C and the monthly mean temperature between July and
104 September was 19.4 °C. The study site is also characterized by a ≥ 10 °C accumulated
105 temperature of 3029 °C, an annual sunshine duration of 2230 h, an annual total radiation of
106 484 kJ cm⁻², and a frost-free period of 171 days.

107 The site was located in a typical rain-fed cropping region of the Loess Plateau highland
108 in northwest China. The soil was classified as a loam (Cumulic Haplustoll, USDA Soil
109 Taxonomy System) developed from loess deposits. Soils collected at the study site in 1984 at
110 a depth of 0–20 cm contained 10.5% CaCO₃, 6.5 g organic C kg⁻¹, 0.80 g total N kg⁻¹, and
111 200 mg NH₄OAc-extractable K kg⁻¹, 3.0 g kg⁻¹ available phosphorus, and had a pH of 8.4
112 (with a 1: 1 ratio of soil: H₂O), a water-holding capacity of 0.29 cm³ cm⁻³ (v/v), the wilting
113 point of 11%, a soil bulk density of 1.3 g cm⁻³, soil porosity of 51%, and a clay content of
114 24%.

115 **2.2 Experimental design and management**

116 This study was a part of a long-term field experiment established in June 1984. The plot
117 used in the present study is taken from a bare plot in a state of fallow since June 1984 after
118 the harvesting of winter wheat (*Triticum aestivum* L. 'Chang Wu 131 series'), and living

119 weed was artificially removed timely. Therefore, there were no vegetation or inputs of
120 aboveground and belowground litter, and then SOC mineralization rates in the bare fallow
121 soil did not include root respiration and litter mineralization and decomposition. In this paper,
122 three bare fallow plots were used to investigate the mechanism of underground SOC
123 mineralization rates. All plots of $10.3\text{ m} \times 6.5\text{ m}$ (66.95 m^2) were randomly arranged in three
124 blocks. The plots were separated by 0.5 m spaces, whereas the blocks were separated by 1 m
125 strips.

126

127 **2.3 Measurements of SOC mineralization rate and soil microclimate**

128 SOC mineralization rate was measured using an automated closed soil CO_2 flux system
129 with a portable chamber (20 cm in diameter, Li-8100, Lincoln, NE, USA). Approximately
130 one day before the first measurement, a polyvinyl chloride (PVC) collar (20 cm in diameter
131 and 12 cm in height) was inserted to a depth of 2 cm into each plot, and left in place
132 throughout the experimental period from 2008 to 2013. Five PVC collars were installed in
133 our plots for investigating the spatial variation of SOC mineralization rate in summer (11 July
134 2008) and winter (18 November 2008), respectively. Although previous studies have
135 demonstrated a significant spatial variation of soil respiration, especially in the sites with
136 complex terrain (causing the redistribution of SOC) and different vegetation types (Epron et
137 al., 2006; Luan et al., 2012), the spatial variation of SOC mineralization rate in our sites is
138 small with a variation coefficient of only 4% and 5% in summer and winter, respectively
139 (Table 1). The results implied that the temporal fluctuation during the measurement have little
140 effect on the spatial variation of SOC mineralization rate. This can be attributed to that there
141 have been no vegetation or inputs of (aboveground and belowground) litter in our plots since
142 1984 (absolute fallow), and the soil was derived aeolian deposit loess and flat terrain. Due to
143 the small areas of our plots (66.95 m^2) and time constraints (5 min for measuring SOC

144 mineralization rate in a given PVC collar), only one PVC collar was used in each plot for
145 measuring SOC mineralization rate and only twice measures were conducted for studying the
146 spatial variation of SOC mineralization rate in our plots. All visible living organisms were
147 removed before the measurement. If necessary, one or more additional measurements would
148 be taken until the variations between two consecutive measurements were less than 15%. The
149 final instantaneous soil respiration for a given collar was the average of the two
150 measurements with a 90 s enclosure period and 30 s delay between them. Field measurements
151 were performed between 09:00 and 11:00 AM from March 2008 to November 2013, except
152 in December, January, and February because of cold weather. A total of 17, 25, 26, 22, 26 and
153 17 SOC mineralization measurements were made in 2008–2013, respectively.

154 Soil temperatures and water contents at a 5-cm depth were measured at a distance of 10
155 cm from the chamber collar at the same time as the SOC mineralization rates using a Li-Cor
156 thermocouple probe and a Theta Probe ML2X with a HH2 water content meter (Delta-T
157 Devices, Cambridge, England), respectively. Daily mean soil temperature and moisture data
158 were provided by the State Key Agro-Ecological Experimental Station, both of which were
159 measured at 5 cm below the surface using a Hydra soil moisture sensor (Hydra Data Reader
160 and Hydra Probe II Soil Moisture Sensor (SDI-12/RS485); Precision: Moisture, $\pm 0.5\%$ vol;
161 Temperature, $\pm 0.6\text{ }^{\circ}\text{C}$; Stevens Water Monitoring Systems Inc., Australia). Soil water-filled
162 pore space (WFPS) was calculated as follows: $\text{WFPS} (\%) = 100 \times [\text{volumetric water content} /$
163 $(2.65 - \text{soil bulk density}) / 2.65]$, with 2.65 being the particle density of the soil (g cm^{-3}).

164

165 **2.4 Data analysis**

166 An exponential (or “ Q_{10} ”) function was used to simulate the relationship between SOC
167 mineralization rate and soil temperature (Xu and Qi, 2001):

$$168 F = \beta_0 e^{\beta_1 T} \quad (1)$$

$$Q_{l0} = e^{l0\beta_l} \quad (2)$$

170 Where F ($\mu \text{ mol m}^{-2} \text{ s}^{-1}$) is the SOC mineralization rate, T ($^{\circ}\text{C}$) is the soil temperature at a
 171 depth of 5 cm, and β_0 and β_1 are the fitted parameters.

172 A quadratic polynomial function was used to simulate the relationship between SOC
173 mineralization rate and soil moisture content (Tang et al., 2005):

$$F = \beta_3 \theta^2 + \beta_2 \theta + \beta_1 \quad (3)$$

175 Where θ is the soil moisture at a depth of 0–5 cm, and β_2, β_3 , and β_4 are the fitted parameters.

176 The interactions of soil temperature with moisture content can more accurately simulate
177 soil respiration than either soil temperature or moisture alone (Tang et al., 2005). Our data
178 indicated that SOC mineralization rate increased with increasing soil moisture content to a
179 maximum at approximately 46% WFPS, and then decreased with further increase of soil
180 moisture content. After comparing different functions and resulting residual plots, a bivariate
181 model was used to simulate the effect of soil moisture content and temperature on SOC
182 mineralization rate:

$$F = \beta_0 e^{\beta_1 T \theta + \beta_2 T \theta^2} \quad (4)$$

184 The annual cumulative SOC mineralization rate was estimated by linear interpolating
185 between measurement dates to obtain the mean daily SOC mineralization rate for each plot,
186 and then summing the mean daily SOC mineralization rate for a given year.

187 The relationships between Q_{10} and meteorological factors were investigated using the
188 SAS software (version 8.0; SAS Institute, Cary, NC). All other statistical analyses were
189 performed with ANOVA at $P = 0.05$.

190

191 3. Results

192 3.1 Interannual variation in O_{10}

193 The temporal variation in SOC mineralization rate was correlated with that of soil

194 temperature in all six years (Figs. 2b and c), and it increased exponentially with soil
195 temperature ($P<0.01$). The mean annual SOC mineralization rate ranged from 0.83 (2012) to
196 $1.22 \mu \text{ mol m}^{-2} \text{ s}^{-1}$ (2008), with a mean of $0.99 \mu \text{ mol m}^{-2} \text{ s}^{-1}$ and a CV of 17%; the annual
197 cumulative SOC mineralization ranged from 226 (2012) to 298 $\text{g C m}^{-2} \text{ y}^{-1}$ (2009), with a
198 mean of $253 \text{ g C m}^{-2} \text{ y}^{-1}$ and a CV of 13% (Table 2), and the annual Q_{10} in our sites was 1.65
199 in 2008, 1.94 in 2009, 1.72 in 2010, 1.48 in 2011, 1.86 in 2012, and 1.55 in 2013,
200 respectively, with a mean Q_{10} of 1.72 and a CV of 10% (Table 3).

201

202 **3.2 Interannual variation in soil microclimate**

203 Annual precipitation showed a significant annual variation (Fig.1 and Table 2; $P <0.05$).
204 Rainfall ranged from 481 (2009 and 2012) to 644 mm (2011), with a 6-year mean of 540 ± 64
205 mm and a CV of 12%. Annual rainfall days ranged from 71 (2013) to 105 days (2008), with a
206 6-year mean of 96 ± 12 days and a CV of 13%. Interannual variation in air temperature was
207 not significant (Fig.1 and Table 2; $P >0.05$). It ranged from 9.43 (2011 and 2012) to 11.08 °C
208 (2013), with a 6-year mean of 10.1 ± 0.6 °C and a CV of only 6%.

209 Soil temperature and soil moisture at a depth of 0–5 cm showed significant temporal
210 variations over the six-year observation period (Fig. 2b). The seasonal mean soil moisture
211 content was 49.2% WFPS in the wet season (July to September in each year) and 38.6%
212 WFPS in the dry season (other months). The mean annual soil moisture content ranged from
213 38.6% WFPS (2013) to 50.7% WFPS (2011), with a mean of 43.8% WFPS and a CV of 11%.
214 The seasonal mean soil temperature was 14.50 °C in the dry season and 20.39 °C in the wet
215 season. The mean annual soil temperature ranged from 14.90 °C (2011) to 18.42 °C (2009),
216 with a mean of 17.05 °C and a CV of only 7%.

217

218 **3.3 Effect of soil moisture on the interannual variation of Q_{10}**

219 Annual Q_{10} showed a negative quadratic correlation with annual mean soil moisture (Fig.
220 3b). Additionally, the seasonal SOC mineralization rate increased exponentially with soil
221 temperature, and showed a negative quadratic correlation with soil moisture content (Table 3).
222 The response surface of SOC mineralization rate to soil temperature and moisture including
223 both seasonal and interannual scales clearly described how soil microclimate influenced SOC
224 mineralization rate (Fig. 4).

225

226 **4. Discussion**

227 **4.1 Soil moisture influenced the interannual variation in Q_{10}**

228 The range of annual Q_{10} (1.48–1.94, with a CV of 10%) in our sites for the period
229 2008–2013 was within the limits reported for annual Q_{10} (1.20–4.89) at global scale (Boone
230 et al., 1998; Zhou et al., 2007; Gaumont-Guay et al., 2008; Zhu and Cheng, 2011;
231 Zimmermann et al., 2012). However, the mean annual Q_{10} in our sites (1.70) was lower than
232 the global mean (2.47) (Boone et al., 1998; Zhou et al., 2007; Gaumont-Guay et al., 2008;
233 Zhu and Cheng, 2011; Zimmermann et al., 2012), probably due to low SOC contents, small
234 microbial communities, dry soil conditions in semi-arid regions (Conant et al., 2004;
235 Gershenson et al., 2009; Cable et al., 2011), and different methods used for separating SOC
236 mineralization rate (Boone et al., 1998; Zhu and Cheng, 2011; Zimmermann et al., 2012).

237 Annual Q_{10} was negatively linearly correlated with annual mean precipitation, but this
238 correlation did not reach statistical significance ($P>0.05$); whereas it was significantly related
239 to soil moisture content (Fig. 3). This was in agreement with previous studies (Suseela et al.,
240 2012; Poll et al., 2013). However, Q_{10} was found to be negatively correlated with mean
241 annual precipitation ($P<0.01$) in different forest ecosystems in China, which could be due to
242 the relatively abundant rainfall in the forest ecosystems (700–1956 mm) (Peng et al., 2009).
243 Soil moisture was the major limiting factor for the underground biological processes,

especially in water-limited regions (Reth et al., 2005; Balogh et al., 2011; Wang et al., 2014). Although precipitation was the only source of water for soil moisture underneath long-term bare soil, there was no significant relationship between annual mean soil moisture and annual precipitation amount ($P>0.05$) (Fig. 5a), but rainfall frequency and distribution were closely related to annual mean soil moisture content (Fig. 5b). Similar results have also been found in other studies (Coronato and Bertiller, 1996; Qiu et al., 2001; Cho and Choi, 2014). The annual precipitation during the six-year observation period of 2008–2013 ranged from 481 (2009) to 644 mm (2011), with a CV of 12% (Table 2). The annual mean soil moisture content was high (51% WFPS) in 2011 due to relatively uniform distribution of precipitation, and low (38% WFPS) in 2010 and 2013 due to relatively uneven distribution of precipitation. For example, the rainfall amount on 23 July 2010 (118 mm) and 22 July 2013 (121 mm) was about 20% and 23% of that in 2010 (588 mm) and 2013 (523 mm), respectively. The annual mean soil moisture was moderate (43–47% WFPS) in 2008, 2009 and 2012 due to the normal distribution of precipitation. Similarly, the interannual soil moisture regulation in the forest ecosystems in the Loess Plateau was determined not only by rainfall amount but also by rainfall distribution (Li et al., 1998).

Annual Q_{10} showed a negative quadratic relationship with soil moisture content, as it increased with increasing soil moisture content to a maximum at approximately 42% WFPS, and then decreased with further increase of soil moisture content (Fig. 3b), which was in agreement with other studies (Bowden et al., 1998; Conant et al., 2004; Smith, 2005). This could be attributed to the following reasons: Firstly, lower soil water availability could reduce Q_{10} by limiting respiration substrate availability and soil pore water became increasingly disconnected, thus slowing down the diffusion rate of solutes (Wan et al., 2007; Balogh et al., 2011), and decreasing the activity and quantity of organisms due to drought stress (Davidson et al., 2006). Secondly, higher soil moisture could also reduce Q_{10} by limiting O₂ diffusion

269 rate (Davidson et al., 1998; Byrne et al., 2005; Saiz et al., 2007) because of low effective soil
270 porosity, as the diffusion rate of O₂ through water was much slower than that through air
271 (Cook and Knight, 2003; Manzoni et al., 2012), thus the decomposition activity of aerobic
272 microbes was inhibited due to lack of oxygen (Davidson et al., 2000). Finally, the diffusion
273 rate of both soluble organic matter and O₂ were not inhibited, also the survival of
274 microorganisms not subject to water stress at suitable soil water content, instead increasing
275 temperature increased the diffusion of soluble organic matter, thus resulting in an increase in
276 Q_{10} (McCulley et al., 2007). Overall, soil moisture content may be the most important factors
277 that affected the interannual variation in Q_{10} .

278 The variation in the temperature sensitivities of SOC mineralization could have potential
279 implications for climate carbon modeling (Davidson and Janssens, 2006; Conant et al., 2011),
280 as uncertainty remains regarding environmental controls over SOC mineralization (Larionova
281 et al., 2007; Karhu et al., 2010; Conant et al., 2011; Sakurai et al., 2012). The previous results
282 have emphasized the importance of seasonal variation in precipitation and soil moisture in
283 determining Q_{10} (Xu and Qi, 2001; Davidson et al., 2006; Davidson and Janssens, 2006), but
284 have rarely taken into account the interannual variation in soil moisture resulting from the
285 uneven distribution of precipitation. Carbon cycle modeling without considering this
286 interannual variation in soil moisture may produce misleading conclusions.

287

288 **4.2 Comparison with annual cumulative SOC mineralization rate estimated by different
289 methods**

290 Annual cumulative SOC mineralization rate was estimated by different methods,
291 including linear interpolation method, modeled method, and unit conversion method. The
292 results clearly showed that there was no significant difference in the estimates of annual
293 cumulative SOC mineralization rate between linear interpolation and modeled method, and

294 the modeled method could well predict the SOC mineralization rate in most cases from 2008
295 to 2013 (Fig. 6), which was in line with the previous studies (Tang et al., 2005). However,
296 unit conversion method seriously overestimated annual cumulative SOC mineralization rate
297 (Table 4). This can be attributed to the following reasons: 1) the study site has a continental
298 monsoon climate with 60% of rainfall occurring from July to September (rainy season), thus
299 the study site is hot and rainy in the rainy season, but cool and dry in the non-rainy season;
300 and 2) SOC mineralization rate in the rainy and non-rainy season is largely the same, but the
301 duration of rainy season is only a quarter of a year. Thus, the SOC mineralization rate was
302 much greater in rainy season than in non-rainy season, thus resulting in an overestimation of
303 cumulative SOC mineralization rate in a given year.

304 In conclusion, linear interpolation method is a simple and controllable method for
305 estimating annual cumulative SOC mineralization rate (Schindlbacher et al., 2014; Shi et al.,
306 2014). Although the modeled method can well estimate annual cumulative SOC
307 mineralization rate, it is limited in practice as it needs daily soil temperature and moisture.
308 Unit conversion method may seriously overestimate annual cumulative SOC mineralization
309 rate unless the SOC mineralization rate is very uniform in a given year.

310

311 **5. Conclusions**

312 Understanding the factors influencing the temperature sensitivity of SOC mineralization
313 is important to accurately estimate local carbon cycle. The results of this study showed that
314 the annual cumulative SOC mineralization ranged from 226 to 298 g C m⁻² y⁻¹, with a CV of
315 13%, annual Q_{10} ranged from 1.48 to 1.94, with a CV of 10%, and annual soil moisture
316 content ranged from 38.6 to 50.7% WFPS, with a CV of 11%. Annual Q_{10} showed a negative
317 quadratic correlation with annual mean soil moisture, which was determined by uneven
318 distribution and frequency of rainfall. In conclusion, the interannual variation in soil moisture

319 content should be considered in carbon cycle models in semi-arid areas.

320

321 **Author contribution.**

322 S.L Guo and M Zhao conceived and designed the experiments, R Wang and N.N Li
323 performed the experiments, L.L Du and J.S Jiang analyzed the data, Y.J Zhang and R.J Li
324 wrote the paper.

325

326 **Acknowledgements.**

327 This study was funded by National Natural Science Foundation of China, No. 41371279.
328 The anonymous reviewers were greatly appreciated for their constructive comments on the
329 manuscript.

330

331 **References**

332 Ågren, G I. and Wetterstedt, J.: What determines the temperature response of soil organic matter
333 decomposition?, *Soil Biol. Biochem.*, 39, 1794-1798, 2007.

334 Balogh, J., Pinter, K., Foti, S., Cserhalmi, D., Papp, M., Nagy, Z.: Dependence of soil respiration
335 on soil moisture, clay content, soil organic matter, and CO₂ uptake in dry grasslands, *Soil Biol.*
336 *Biochem.*, 43, 1006-1013, 2011.

337 Boone, R. D., Nadelhoffer, K. J., Canary, J. D., and Kaye, J.P.: Roots exert a strong influence on
338 the temperature sensitivity of soil respiration, *Nature*, 396, 570-572, 1998.

339 Bowden, R. D., Newkirk, K. M., and Rullo, GM.: Carbon dioxide and methane fluxes by a forest
340 soil under laboratory-controlled moisture and temperature conditions, *Soil Biol. Biochem.*, 30,
341 1591-1597, 1998.

342 Byrne, K. A., Kiely, G, and Leahy, P.: CO₂ fluxes in adjacent new and permanent temperate
343 grasslands, *Agr. Forest Meteorol.*, 135, 82-92, 2005.

344 Cable, J. M., Ogle, K., Lucas, R. W., Huxman, T. E., Loik, M. E., Smith, S. D., Tissue, D. T.,
345 Ewers, B. E., Pendall, E., and Welker, J.M.: The temperature responses of soil respiration in deserts: a
346 seven desert synthesis, *Biogeochemistry*, 103, 71-90, 2011.

347 Cho, E. and Choi, M.: Regional scale spatio-temporal variability of soil moisture and its
348 relationship with meteorological factors over the Korean peninsula, *J Hydrol.*, 516, 317-329, 2014.

349 Conant, R. T., Dalla-Betta, P., Klopatek, C. C., and Klopatek, J. M.: Controls on soil respiration in
350 semiarid soils, *Soil Biol. Biochem.*, 36, 945-951, 2004.

351 Conant, R. T., Ryan, M. G, Ågren, G I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E.,
352 Frey, S. D., Giardina, C. P., and Hopkins, F. M.: Temperature and soil organic matter decomposition
353 rates—synthesis of current knowledge and a way forward, *Glob. Change Biol.*, 17, 3392-3404, 2011.

354 Cook, F. and Knight, J.: Oxygen Transport to Plant Roots: modeling for physical understanding of
355 soil aeration, *Soil Sci Soc Am J*, 67, 20-31, 2003.

356 Coronato, F.R. and Bertiller, M.B.: Precipitation and landscape related effects on soil moisture in
357 semi-arid rangelands of Patagonia, *J Arid Environ.*, 34, 1-9, 1996.

358 Davidson, E., Belk, E., and Boone, R. D.: Soil water content and temperature as independent or
359 confounded factors controlling soil respiration in a temperate mixed hardwood forest, *Glob. Change*

360 Biol., 4, 217-227, 1998.

361 Davidson, E. A., Janssens, I. A., and Luo, Y. Q.: On the variability of respiration in terrestrial
362 ecosystems:moving beyond Q_{10} , Glob. Change Biol., 12, 154-164, 2006.

363 Davidson, E. A., Verchot, L. V., Cattanio, J. H., Ackerman, I. L., and Carvalho, J. E. M.: Effects of
364 soil water content on soil respiration in forests and cattle pastures of eastern Amazonia,
365 Biogeochemistry, 48, 53-69, 2000.

366 Djukic, I., Zehetner, F., Mentler, A., and Gerzabek, M.H.: Microbial community composition and
367 activity in different Alpine vegetation zones, Soil Biol. Biochem., 42, 155-161, 2010..

368 Dörr, H. and Münnich, K.: Annual variation in soil respiration in selected areas of the temperate
369 zone, Tellus B, 39, 114-121, 1987.

370 Epron, D., Bosc, A., Bonal, D., and Freycon, V.: Spatial variation of soil respiration across a
371 topographic gradient in a tropical rain forest in French Guiana, J Trop Ecol, 22, 565-574, 2006.

372 Fan, X.H. and Wang, M. B.: Change trends of air temperature and precipitation over Shanxi
373 Province, China, Theor Appl Climatol, 103, 519-531, 2011.

374 Fang, C. and Moncrieff, J. B.: The dependence of soil CO_2 efflux on temperature, Soil Biol.
375 Biochem., 33, 155-165, 2001.

376 Gau mont-Guay, D., Black, T. A., Barr, A. G, Jassal, R. S., and Nesic, Z.; Biophysical controls on
377 rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree
378 Physiol., 28, 161-171, 2008.

379 Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature
380 sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009.

381 Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of
382 taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000.

383 Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., and Syers, J. K.: Winter wheat grain
384 yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid
385 Loess Plateau in China, Geoderma, 189, 442-450, 2012.

386 Illeris, L., Christensen, T. R., and Maste panov, M.: Moisture effects on temperature sensitivity of
387 CO_2 exchange in a subarctic heath ecosystem, Biogeochemistry, 70, 315-330, 2004.

388 Jassal, R. S., Black, T. A., Novak, M. D., Gau mont-Guay, D., and Nesic, Z.: Effect of soil water
389 stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand,

390 Glob. Change Biol., 14, 1305-1318, 2008.

391 Jurasinski, G., Jordan, A., and Glatzel, S.: Mapping soil CO₂ efflux in an old-growth forest using
392 regression kriging with estimated fine root biomass as ancillary data, Forest Ecol Manag, 263, 101-113,
393 2012.

394 Karhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H., Oinonen, M., Sonninen, E., Tuomi,
395 M., Spetz, P., and Kitunen, V.: Temperature sensitivity of soil carbon fractions in boreal forest soil,
396 Ecology, 91, 370-376, 2010.

397 Kirschbaum, M. U. F.: The temperature dependence of organic-matter decomposition-still a topic
398 of debate, Soil Biol. Biochem., 38, 2510-2518, 2006.

399 Lafond, J. A., Allaire, S. E., Dutilleul, P., Pelletier, B., Lange, S. F., and Cambouris, A. N.:
400 Spatiotemporal Analysis of the Relative Soil Gas Diffusion Coefficient in Two Sandy Soils: Variability
401 Decomposition and Correlations between Sampling Dates at Two Spatial Scales, Soil Sci Soc Am J, 75,
402 1613-1625, 2011.

403 Larionova, A. A., Yevdokimov, I. V., and Bykhovets, S. S.: Temperature response of soil
404 respiration is dependent on concentration of readily decomposable C, Biogeosciences, 4, 1073-1081.
405 2007.

406 Li H. J., Wang M. B., and Chai B. F.: Study on characteristics of soil water of planted forest and
407 its relation to precipitation in northwestern Shanxi, Journal of Soil Erosion and Soil and Water
408 Conservation, 4, 60-65, 1998.

409 Lin, S. and Wang Y.R.: Spatial-temporal Evolution of Precipitation in China Loess Plateau,
410 Journal of Desert Research, 27, 502-508, 2007.

411 Luan, J., Liu, S., Zhu, X., Wang, J., and Liu, K.; Roles of biotic and abiotic variables in
412 determining spatial variation of soil respiration in secondary oak and planted pine forests, Soil Biol.
413 Biochem., 44, 143-150, 2012.

414 Manzoni, S., Schimel, J. P., and Porporato, A.: Responses of soil microbial communities to water
415 stress: results from a meta-analysis, Ecology, 93, 930-938, 2012.

416 McCulley, R. L., Boutton, T. W., and Archer, S. R.: Soil respiration in a subtropical savanna
417 parkland: Response to water additions, Soil Sci Soc Am J, 71, 820-828, 2007.

418 Peng, S. S., Piao, S. L., Wang, T., Sun, J. Y., and Shen, Z. H.: Temperature sensitivity of soil
419 respiration in different ecosystems in China, Soil Biol. Biochem., 41, 1008-1014, 2009.

420 Poll, C., Marhan, S., Back, F., Niklaus, P. A., and Kandeler, E.: Field-scale manipulation of soil
421 temperature and precipitation change soil CO₂ flux in a temperate agricultural ecosystem, *Agr. Ecosyst*
422 *Environ.*, 165, 88-97, 2013.

423 Qiu, Y., Fu, B. J., Wang, J., and Chen, L. D.: Spatial variability of soil moisture content and its
424 relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China, *J Arid*
425 *Environ.*, 49, 723-750, 2001.

426 Reth, S., Reichstein, M., and Falge, E.: The effect of soil water content, soil temperature, soil
427 pH-value and the root mass on soil CO₂ efflux-A modified model, *Plant Soil*, 268, 21-33, 2005.

428 Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S., Dore, S., and Valentini,
429 R.: Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and
430 decomposition dynamics, *Funct. Ecol.*, 16, 27-39, 2002.

431 Saiz, G., Black, K., Reidy, B., Lopez, S., and Farrell, E. P.: Assessment of soil CO₂ efflux and its
432 components using a process-based model in a young temperate forest site, *Geoderma*, 139, 79-89,
433 2007.

434 Sakurai, G., Jomura, M., Yonemura, S., Iizumi, T., Shirato, Y., and Yokoza, M.: Inversely
435 estimating temperature sensitivity of soil carbon decomposition by assimilating a turnover model and
436 long-term field data, *Soil Biol. Biochem.*, 46, 191-199, 2012.

437 Schindlbacher, A., Jandl, R., and Schindlbacher, S.: Natural variations in snow cover do not affect
438 the annual soil CO₂ efflux from a mid-elevation temperate forest, *Glob. Change Biol.*, 20, 622-632,
439 2014.

440 Shi, W. Y., Tateno, R., Zhang, J. G., Wang, Y. L., Yamanaka, N., and Du, S.: Response of soil
441 respiration to precipitation during the dry season in two typical forest stands in the forest-grassland
442 transition zone of the Loess Plateau, *Agr. Forest Meteorol.*, 151, 854-863, 2011.

443 Shi, W. Y., Yan, M. J., Zhang, J. G., Guan, J. H., and Du, S.: Soil CO₂ emissions from five different
444 types of land use on the semiarid Loess Plateau of China, with emphasis on the contribution of winter
445 soil respiration, *Arid Environ.*, 88, 74-82, 2014.

446 Smith, V.R.: Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic
447 island, *Soil Biol. Biochem.*, 37, 81-91, 2005.

448 Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H.:
449 Climate change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth

450 Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press,
451 Cambridge, UK, 2007.

452 Suseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S.: Effects of soil moisture on the
453 temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change
454 experiment, *Glob. Change Biol.*, 18, 336-348, 2012.

455 Tang, J., Qi, Y., Xu, M., Misson, L., and Goldstein, A. H.: Forest thinning and soil respiration in a
456 ponderosa pine plantation in the Sierra Nevada, *Tree Physiol.*, 25, 57-66, 2005.

457 Von Lutzow, M. and Kogel-Knabner, I.: Temperature sensitivity of soil organic matter
458 decomposition-what do we know?, *Biol Fert Soil S*, 46, 1-15, 2009..

459 Wan, S., Norby, R. J., Ledford, J., and Weltzin, J.F.: Responses of soil respiration to elevated CO₂,
460 air warming, and changing soil water availability in a model old - field grassland, *Glob. Change Biol.*,
461 13, 2411-2424, 2007.

462 Wang, B., Zha, T., Jia, X., Wu, B., Zhang, Y., and Qin, S.: Soil moisture modifies the response of
463 soil respiration to temperature in a desert shrub ecosystem, *Biogeosciences*, 11, 259-268, 2014.

464 Wang, Q. X., Fan, X. H., Qin, Z. D., and Wang, M. B: Change trends of temperature and
465 precipitation in the Loess Plateau Region of China, 1961-2010, *Global Planet Change*, 92-93, 138-147,
466 2012.

467 Xiao, L., Xue, S., Liu, G B., and Zhang, C.: Soil Moisture Variability Under Different Land Uses
468 in the Zhifanggou Catchment of the Loess Plateau, China, *Arid Land Res Manag*, 28, 274-290, 2014.

469 Xu, M. and Qi, Y.: Spatial and seasonal variations of Q_{10} determined by soil respiration
470 measurements at a Sierra Nevadan forest, *Global Biogeochem. Cy.*, 15, 687-696, 2001.

471 Zhou, X., Wan, S., and Luo, Y.: Source components and interannual variability of soil CO₂ efflux
472 under experimental warming and clipping in a grassland ecosystem, *Glob. Change Biol.*, 13, 761-775,
473 2007.

474 Zhu, B. and Cheng, W.: Rhizosphere priming effect increases the temperature sensitivity of soil
475 organic matter decomposition, *Glob. Change Biol.*, 17, 2172-2183, 2011.

476 Zimmermann, M., Leifeld, J., Conen, F., Bird, M. I., and Meir, P.: Can composition and physical
477 protection of soil organic matter explain soil respiration temperature sensitivity?, *Biogeochemistry*, 107,
478 423-436, 2012.

479

480 Table 1. SOC mineralization rate (μ mol $m^{-2} s^{-1}$) in summer (11 July 2008) and winter (18
481 November 2008). Data are represented as mean \pm S.D of five collars.

Dates	SOC mineralization rate					
	Collar 1	Collar 2	Collar 3	Collar 4	Collar 5	Mean value
Summer	1.55 \pm 0.11	1.60 \pm 0.20	1.58 \pm 0.21	1.49 \pm 0.07	1.65 \pm 0.18	1.57 \pm 0.06
Winter	0.29 \pm 0.01	0.30 \pm 0.02	0.31 \pm 0.01	0.32 \pm 0.02	0.33 \pm 0.02	0.31 \pm 0.02

482 Note: SOC mineralization rate was measured on 11 July 2008 and 18 November 2008 (representing
483 summer and winter) using 5 PVC collars installed in our plots

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502 Table 2. Cumulative SOC mineralization rate ($\text{g C m}^{-2} \text{ year}^{-1}$), annual precipitation amount
 503 (mm), annual precipitation days, and air temperature ($^{\circ}\text{C}$) from 2009 to 2013. Data are
 504 represented as mean \pm S.D.

Years	Cumulative SOC mineralization rate	Precipitation amount	Precipitation days	Air temperature
2008	293 \pm 10	520	105	9.76
2009	298 \pm 9	481	99	10.26
2010	238 \pm 50	588	101	10.39
2011	234 \pm 48	644	100	9.43
2012	226 \pm 19	481	98	9.43
2013	240 \pm 30	523	71	11.08
Mean	253 \pm 32	540 \pm 64	96 \pm 12	10.1 \pm 0.6

505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518

519 Table 3. Relationships between SOC mineralization rate and soil temperature (F-T) or soil
 520 moisture (F- θ) for each year from 2008 to 2013.

Years	F-T				F- θ			
	Functions	R^2	P	Q_{10}	Functions	R^2	P	
2008	$F=0.49e^{0.0499T}$	0.56	<0.01	1.65	$F=-0.0008\theta^2 + 0.10\theta - 1.52$	0.53	<0.01	
2009	$F=0.34e^{0.0661T}$	0.63	<0.01	1.94	$F=-0.0001\theta^2 - 0.02\theta + 2.63$	0.61	<0.01	
2010	$F=0.35e^{0.0544T}$	0.47	<0.01	1.72	$F=0.0002\theta^2 - 0.04\theta + 2.15$	0.86	<0.01	
2011	$F=0.45e^{0.0395T}$	0.47	<0.01	1.48	$F=-0.0008\theta^2 + 0.06\theta + 0.06$	0.46	<0.01	
2012	$F=0.27e^{0.0623T}$	0.67	<0.01	1.86	$F=-0.0019\theta^2 + 0.14\theta - 1.71$	0.35	<0.05	
2013	$F=0.52e^{0.0441T}$	0.32	<0.01	1.55	$F=-0.001\theta^2 + 0.08\theta - 0.60$	0.36	<0.05	

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538 Table 4. Annual cumulative SOC mineralization rate ($\text{g C m}^{-2} \text{ year}^{-1}$) estimated by linear
 539 interpolation method, modeled method, and unit conversed method from 2008 to 2013.

Years	Annual cumulative SOC mineralization rate		
	Linear interpolation	Soil temperature and moisture modeled	Unit conversion
2008	293	258	462
2009	298	272	460
2010	238	268	344
2011	234	260	325
2012	226	271	314
2013	240	284	348
Mean	255 ± 32	269 ± 6	374 ± 65

540 Note: Modeled method: using the interactions of soil temperature with moisture for estimating annual cumulative SOC
 541 mineralization rate with Eq. 4 (2.4 sections); Unit conversion method: estimating annual cumulative SOC mineralization rate
 542 with mean SOC mineralization rate in a given year.

543

544

545

546

547

548

549

550

551

552

553

554

555

556 Figure 1. Location of the State Key Agro-Ecological Experimental Station (Changwu
557 Station).

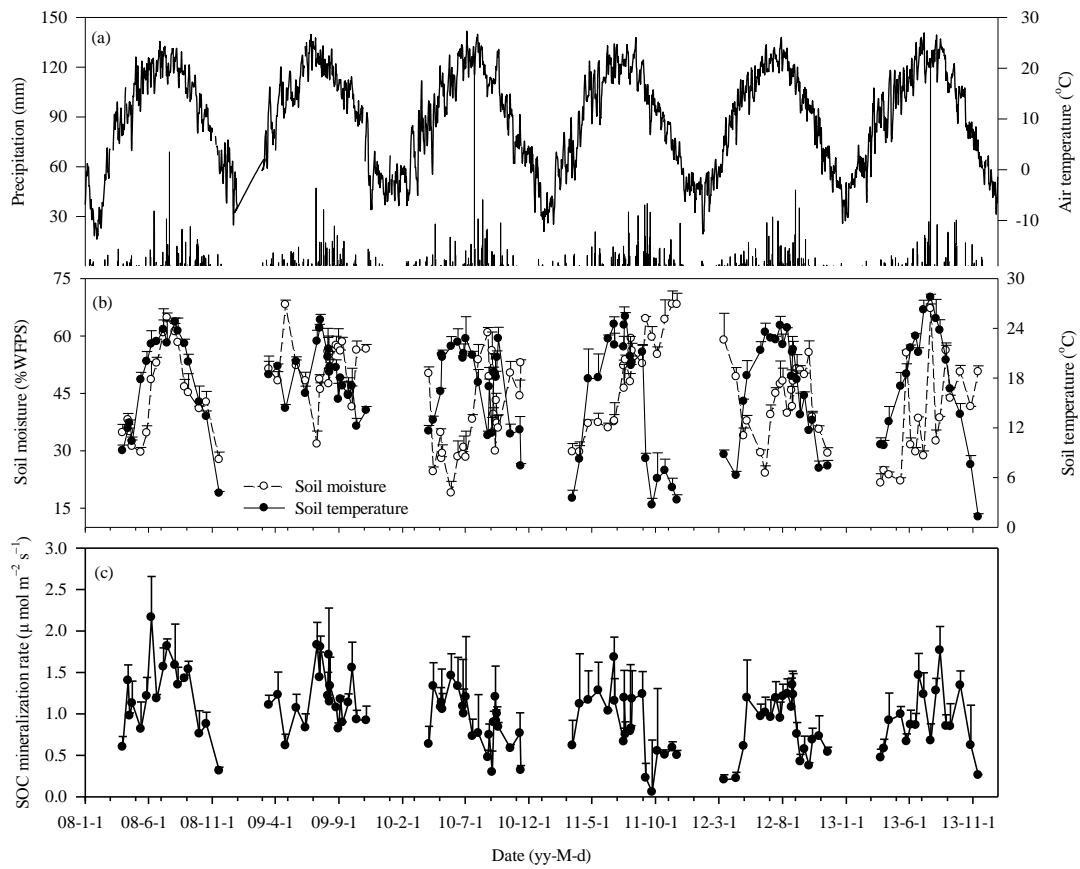
558

559

560

561

562


563

564

565

566

567

568

569 Figure 2. Temporal variations of (a) precipitation and air temperature, (b)
 570 soil moisture and soil temperature, and (c) SOC mineralization rate from 2008 to 2013.

571

572

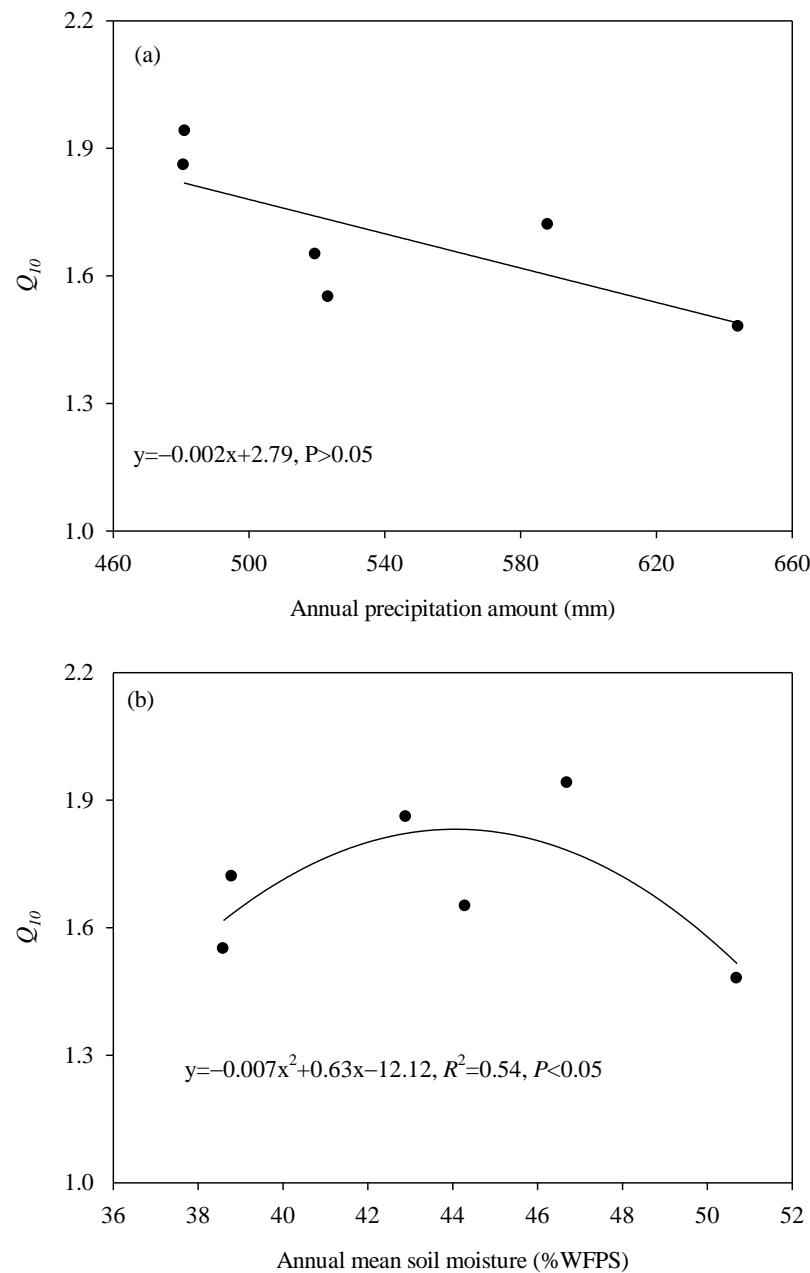
573

574

575

576

577


578

579

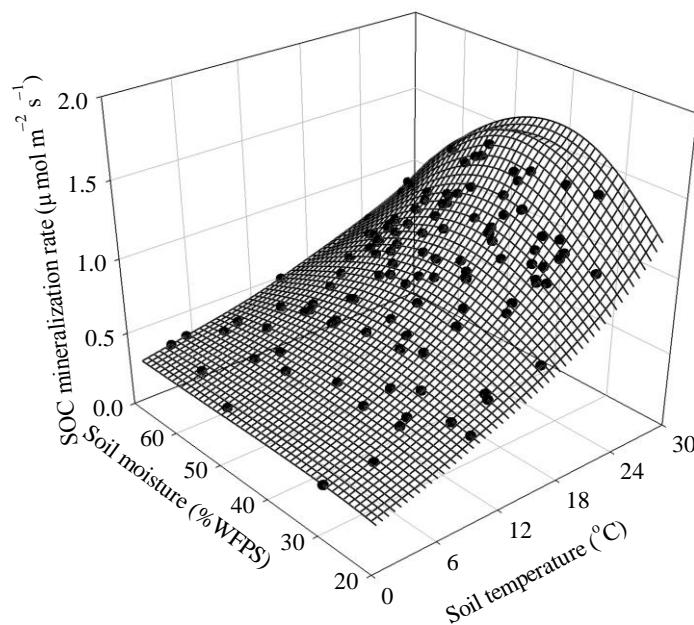
580

581

582

583

584 Figure 3. Regression analysis performed between (a) Q_{10} and annual precipitation amount,
585 and (b) Q_{10} and annual mean soil moisture.


586

587

588

589

590

591

592 Figure 4. Response surface of SOC mineralization rate as a function of soil moisture and soil
593 temperature from 2008 to 2013.

594

595

596

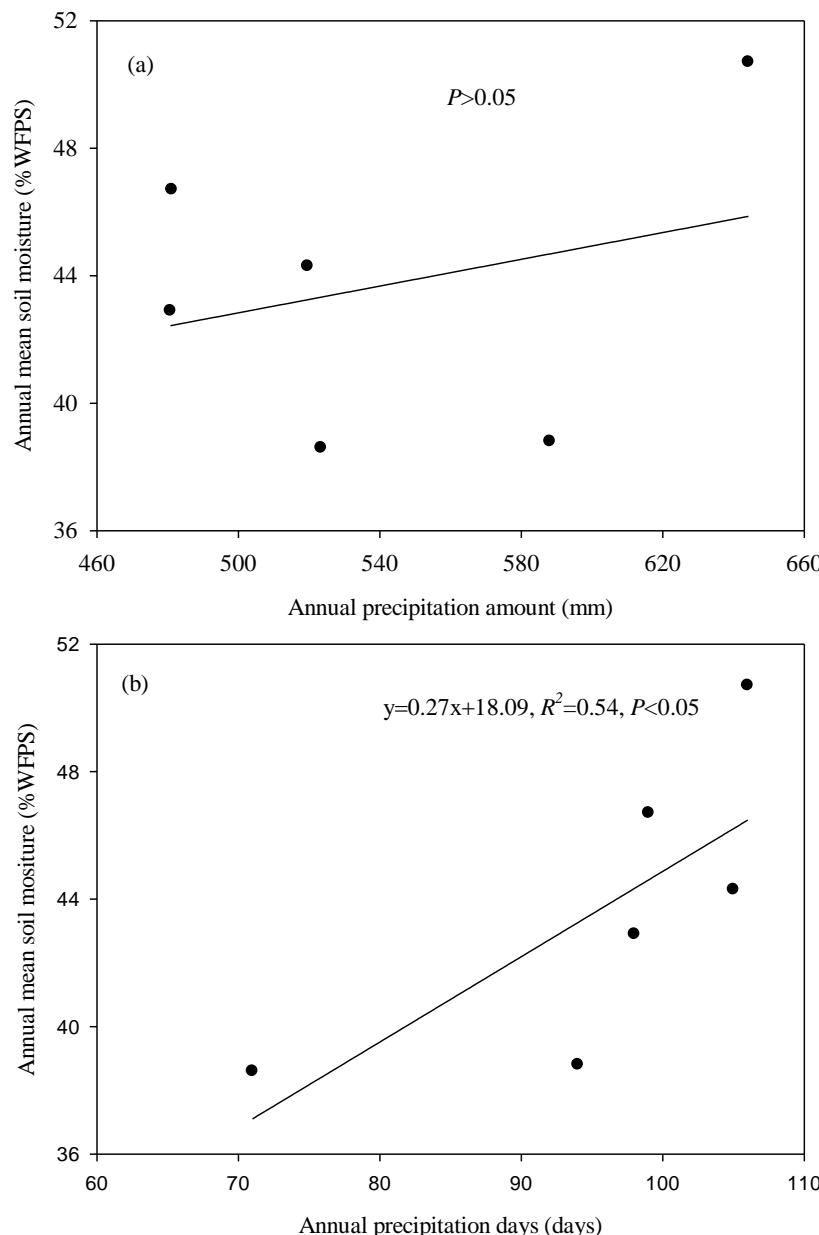
597

598

599

600

601


602

603

604

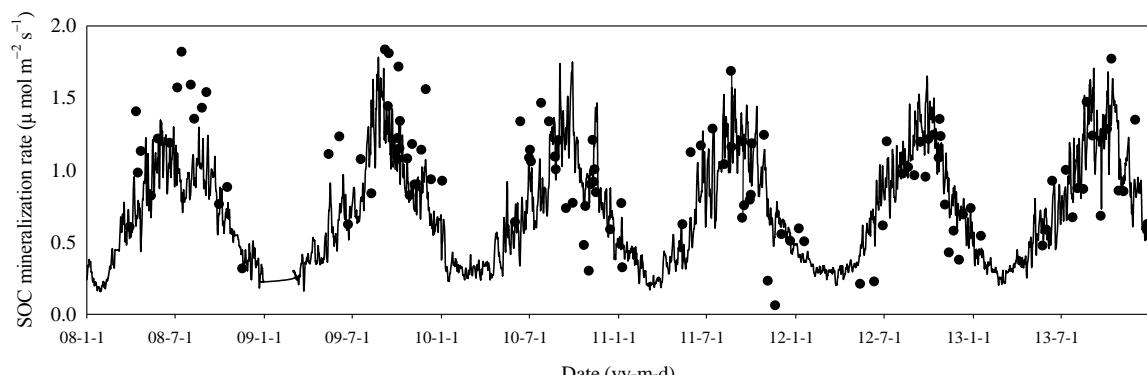
605

606

607

608 Figure 5. Regression analysis performed between (a) annual mean soil moisture and annual
609 precipitation amount, and (b) annual mean soil moisture and annual precipitation days.

610


611

612

613

614

615

616

617 Figure 6. Estimated daily (2008–2013) SOC mineralization rate (solid line) with periodic
618 measurement values (filled circles).

619

620

621

622

623

624

