Dear Editor,

Thank you very much for your email with regard to our manuscript (**bg-2014-523**) together with the comments from the reviewers. The comments from the editors and reviewers were very helpful and we agree that the previous version needed revision. We take all of these comments into account in preparing the revised manuscript. We believe that manuscript has been improved satisfactorily and hope it will be accepted for publication in **Biogeosciences**.

We thank again the reviewer for the helpful comments. Should you require any further information, please do not hesitate to ask.

To the Comments of Reviewer #1

QI-1: Most critical point of this manuscript is the number of measurement points: It is one for one plot, and only three plots were measured. As we know, soil respiration has quite large special variation. Thus, I don't think this result shows enough evidence of author's conclusion because special variation could be larger than seasonal variation. One of the solutions of this problem is to show that the special variation of soil respiration on this plot is enough small by doing field campaigns in the future.

R: We totally agree with the reviewer's comments that soil respiration has quite large spatial variation especially in the sites with complex terrain (causing the redistribution of SOC in the in the landscape) and different vegetation types (Banning et al, 2008, SBB; Sheng et al, 2010, GCB) (page 6, line 140-142). In our studies, however, the spatial variation of SOC

mineralization rate is enough small. This can be attributed to that there have been no vegetation or inputs of (aboveground and belowground) litter in our plots since 1984 (absolute fallow), and the soil was derived aeolian deposit loess and flat terrain (**page 6 and 7**, **line 144-148**). Additionally, five PVC collars were installed in our plots (attached pictures), and SOC mineralization rate was measured in the five PVC collars for investigating the spatial variation in summer (hot and rainy) and winter (cool and dry). On July 11, 2008 and November 18, 2008 (representing summer and winter), for instance the results presented herein clearly showed that the spatial variation of SOC mineralization rate is enough small, with CV was only 4% and 5% in summer and winter, respectively (Table. 1) (**page 6, line 142-145**).

Due to the small areas of our plots (66.95 m²) and time constraints (5 min for measuring SOC mineralization rate in a given PVC collar), only one PVC collar was used in each plot for measuring SOC mineralization rate (**page 7**, **line 147-150**). Additionally, the PVC collar located in the middle of the plot was used for measuring SOC mineralization rate, because the SOC mineralization rate in the middle of the plot was most close to the mean SOC mineralization rate (Table 1).

Attached pictures. The location of PVC collar in our plots

Table 1. SOC mineralization rate (μ mol m⁻² s⁻¹) in summer (July 11, 2008) and winter (November 18, 2008). Data are represented as mean ±S.D of five collars (**page 20, line 491-494**).

		SOC mineralization rate				
Dates	Collar 1	Collar 2	Collar 3	Collar 4	Collar 5	Mean value
Summer	1.55±0.11	1.60±0.20	1.58±0.21	1.49±0.07	1.65±0.18	1.57±0.06
Winter	0.29±0.01	0.30±0.02	0.31±0.01	0.32±0.02	0.33±0.02	0.31±0.02

Note: SOC mineralization rate was measured on July 11, 2008 and November 18, 2008 (representing summer and winter) using 5 PVC collars installed in our plots

QI-2: The other point is the meaning of 'soil organic carbon mineralization' in this manuscript. Normally, mineralization of SOC doesn't contain root respiration, but it in the manuscript might have. It contains the mineralization in the soil (it means not through the gas, for example leaching and so on), but it in the manuscript doesn't. Also, usually SOC doesn't contain litter, but it is

R: At the present study, SOC mineralization rate did not include root respiration due to the bare soil was established and is always in a state of fallow since June 1984. Our oversimplified information in the **2.2** sections made the reviewer misunderstand the meaning of SOC mineralization rate in our studies.

Based on the comments, the 2.2 Experimental design and management sections were rewrote and revised, for example "This study was a part of a long-term field experiment established in June 1984. The plot used in the present study is taken from a bare plot in a state of fallow since June 1984 after the harvesting of winter wheat (*Triticum aestivum* L. 'Chang Wu 131 series'), and living weed was artificially removed timely. **Therefore, there were no vegetation or inputs of aboveground and belowground litter, and then SOC mineralization rates in the bare fallow soil did not include root respiration and litter mineralization and decomposition.** In this paper, three bare fallow plots were used to investigate the mechanism of underground SOC mineralization rates. All plots of 10.3 m × 6.5 m (66.95 m²) were randomly arranged in three blocks. The plots were separated by 0.5 m spaces, whereas the blocks were separated by 1 m strips (**page 6, line 123-132**).

QI-3: P1454L2 SOC and WFPS should be defined

R: Yes, SOC and WFPS was defined in this part, for instance "Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q_{10}) determines how strong the feedback from global warming may be on the atmospheric CO₂ concentration (**page 2, line 26-28**) ", "annual soil moisture content ranged from 38.6 to 50.7% soil water-filled pore space (WFPS), with mean value of 43.8% WFPS and CV of 11% (**page 2, line 35-36**)".

QI-4: P1454 L2 The definition of Q10 is unclear. In the first line, it is defined as 'temperature sensitivity of SOC mineralization' but after described as 'Q10 of SOC'

R: We take the comment. In the text, Q_{10} is redefined as "Temperature sensitivity of soil organic carbon (SOC) mineralization (hereafter refer to as Q_{10})" (page 3, line 47-48), after then Q_{10} means temperature sensitivity of SOC mineralization in our manuscripts.

QI-5: P1454L12 not always 'negative'quadratic correlation P1455 L25 why the duration is 2004-2010 and not 2008-2013?

R: SOC mineralization rate was not always negative quadratic related with soil moisture at seasonal scale (Table 2), whereas annual Q_{10} showed a negative quadratic correlation with annual soil moisture at annual scale (Fig. 3b). We did not describe the response of SOC mineralization rate to soil moisture at seasonal scale due to objective of the studies for understanding the effect of soil moisture on interannual variation in Q_{10} in the abstract sections.

Additionally, with the results of Xiao et al, 2014 to prove the conclusion that soil moisture availability was controlled mainly by uneven rainfall distribution.

QI-6: P1456L10 SOM: I guess SOC. (If it is really SOM, need to be defined) P1456L15(3)analyze the relationship. . .. I don't think it is the object of this study, it is just authors did.The object is the aim of study, not process for the aim.

R: Yes, SOM was replaced by SOC, and (3) analyze the relationships among precipitation, soil moisture, and Q_{10} was deleted from our manuscripts (**page 5, line 95-100**).

QI-7: P1457L11-15 I don't think this part is needed as it is not used in the experiment.

R: Yes, the relative information for the purpose of the long-term experiment in the 2.2Experimental design and management sections was deleted. Additionally, 2.2 sections were rewrote and revised due to the oversimplified information. Detailed information sees the

replies for QI-2.

To the Comments of Reviewer #2

QII-1: I think the root effects can be potentially included in the difference of your and previous studies (P1455 L1-5), which also play important roles in Q10 of soil CO2 effluxes (ex. Booe et al 1998 Nature, Janssens et al. 2004 GCB). Thus, please be careful about this aspect.

R: Firstly, the bare fallow soil used in the present study is taken from a bare plot in a state of fallow since June 1984 after the harvesting of winter wheat (*Triticum aestivum* L. 'Chang Wu 131 series'), and living weed was artificially removed timely. Therefore, there were no vegetation or inputs of aboveground and belowground litter, and then SOC mineralization rates in the bare fallow soil did not include root respiration and litter mineralization and decomposition (**page 6, line 124-129**). Secondly, different components of soil respiration (root and microbial respiration) has different response to the increasing of temperature, with root respiration Q_{10} can be higher than that of microbial respiration (ex. Boone et al 1998 Nature, Janssens et al. 2004 GCB). Finally, in this part (**Page 3, Line 56-60**) we total cited ten previous studies, and in which six previous studies include root respiration, for instance,

"(Janssens and Pilegaard, 2003; Davidson et al., 2006; Zheng et al., 2009; Bond-Lamberty and Thomson,2010; Vanhala et al., 2011; Luan and Liu, 2012) ". Therefore, the six previous works reported Q_{10} of soil respiration was deleted from our manuscripts and replaced by the works reported Q_{10} of SOC mineralization, for instance "Previous studies have shown that Q_{10} variations are closely related to soil temperature (Kirschbaum, 2006; Von Lutzow and Kogel-Knabner, 2009), substrate availability (Ågren and Wetterstedt, 2007; Gershenson et al., 2009), substrate quality (Von Lutzow and Kogel-Knabner, 2009; Sakurai et al., 2012)" (**Page 3, Line 56-60**)

QII-2: P1454 L11: Please define WFPS in this part.

R: Yes, WFPS was defined in this part, for instance "annual soil moisture content ranged from 38.6 to 50.7% soil water-filled pore space (WFPS), with mean value of 43.8% WFPS and CV of 11%" (page 2, line 35-36).

QII-3: P1455 L1-5: In the sentences, some previous works reported Q10 of soil respiration including root respiration, which have different processes from SOC mineralization treated in your study.

R: See the replies for QII-1.

QII-4: P1456 L7: "agricultural ecosystems" -> "vegetation ecosystems"?, as the references included works in forests.

R: Yes, agricultural ecosystems were replaced by vegetation ecosystems due to the previous references included works in forests ecosystems (**page 4**, **line 91-92**).

QII-5: P1458 L10: Please recheck the equation of WFPS, and the 2.65 is the particle density? R: Yes, 2.65 is the particle density of the soil (g cm⁻³). After carefully checked the equation of WFPS, a mistake for spelling the equation was corrected. Soil water-filled pore space (WFPS) was calculated as follows: WFPS (%) = $100 \times [\text{volumetric water content} / (2.65 - \text{soil bulk} \text{density}) / 2.65]$, with 2.65 being the particle density of the soil (g cm⁻³) (**page 7**, **line 166-169**).

QII-6: P1459 L7-9: How about estimating annual cumulative SOC using Eq4? Also, the annual cumulative SOC mineralization rate estimated by the liner interpolation should be compared with average of the measurements in each year, to discuss the potential errors due to the estimation methods.

R: Soil temperature and moisture is the major abiotic factors to influence SOC mineralization rate, whereas the interactions of soil temperature with moisture content can more accurately simulate soil respiration than either soil temperature or moisture alone (Tang et al., 2005). After comparing different functions and resulting residual plots, a bivariate model was used to simulate the effect of soil moisture content and temperature on SOC mineralization rate (**page**)

8, line 172-190):

$$F = \beta_0 e^{\beta_1 \mathrm{T}\theta + \beta_2 \mathrm{T}\theta^2} \tag{4}$$

Annual cumulative SOC mineralization rate was estimated using Eq4 during the experimental period from 2008 to 2013 (Fig. 6). In most cases, we found that the Eq4 can well predict the SOC mineralization rate (**page 30**, **line 615-616**), which was in line with the previous studies (Tang et al, 2005; Tree Physiology). Additionally, in 4.2 sections we compared the annual cumulative SOC mineralization rate estimated by different methods for discussing the potential errors due to the different estimation methods (Table 4) (**page 13**

and 14, line 305-328).

For instance, "Annual cumulative SOC mineralization rate was estimated by different methods, including linear interpolation method, modeled method, and unit conversion method. The results clearly showed that there was no significant difference in the estimates of annual cumulative SOC mineralization rate between linear interpolation and modeled method, and the modeled method could well predict the SOC mineralization rate in most cases from 2008 to 2013 (Fig. 6), which was in line with the previous studies (Tang et al., 2005). However, unit conversion method seriously overestimated annual cumulative SOC mineralization rate (Table 4). This can be attributed to the following reasons: 1) the study site has a continental monsoon climate with 60% of rainfall occurring from July to September (rainy season), thus the study site is hot and rainy in the rainy season, but cool and dry in the non-rainy season; and 2) SOC mineralization rate in the rainy and non-rainy season is largely the same, but the duration of rainy season is only a quarter of a year. Thus, the SOC mineralization rate was much greater in rainy season than in non-rainy season, thus resulting in an overestimation of cumulative SOC mineralization rate in a given year (page 13 and 14, line 305-321).

In conclusion, linear interpolation method is a simple and controllable method for estimating annual cumulative SOC mineralization rate (Schindlbacher et al., 2014; Shi et al., 2014). Although the modeled method can well estimate annual cumulative SOC mineralization rate, it is limited in practice as it needs daily soil temperature and moisture. Unit conversion method may seriously overestimate annual cumulative SOC mineralization rate unless the SOC mineralization rate is very uniform in a given year" (**page 14, line**

Fig.6 Estimated daily (2008–2013) SOC mineralization rate (solid line) with periodic measurement values (filled circles) (page 30, line 615-616).

Table 4. Annual cumulative SOC mineralization rate (g C m^{-2} year⁻¹) estimated by linear interpolation method, modeled method, and unit conversed method from 2008 to 2013 (**page 23, line 548-553**).

Years	Annual cumulative SOC mineralization rate		
	Linear interpolation	Soil temperature and moisture modeled	Unit conversion
2008	293	258	462
2009	298	272	460
2010	238	268	344
2011	234	260	325
2012	226	271	314
2013	240	284	348
Mean	255±32	269±6	374±65

Note: Modeled method: using the interactions of soil temperature with moisture for estimating annual cumulative SOC mineralization rate with Eq. 4 (2.4 sections); Unit conversion method: estimating annual cumulative SOC mineralization rate with mean SOC mineralization rate in a given year.

QII-7: P1459 L19: Table 1 should be referred before Table 2?

R: Yes, we had revised the order for Table 1 and Table 2 in the **3.1 Interannual variation in** Q_{10} sections . For instance, "the annual cumulative SOC mineralization ranged from 226 g C m⁻² y⁻¹ (2012) to 298 g C m⁻² y⁻¹ (2009), with a mean of 253 g C m⁻² y⁻¹ and a CV of 13% (Table 2), and the annual Q_{10} in our sites was 1.65 in 2008, 1.94 in 2009, 1.72 in 2010, 1.48 in 2011, 1.86 in 2012, and 1.55 in 2013, respectively, with a mean Q_{10} of 1.72 and a CV of 10% (Table 3)" (page 9, line 205-209).

QII-8: P1459 L20: Again, please add the mean annual SOC mineralization rate using the unit of cCm-2yr-1 for readers' reference.

R: Yes, see the replies for QII-6. Additionally, in order to for readers' reference, the mean annual SOC mineralization rate was added in the Table 2 (**page 21, line 513-516**). Table 2. Cumulative SOC mineralization rate (g C m⁻² year⁻¹), annual precipitation amount (mm), annual precipitation days, and air temperature (°C) from 2009 to 2013. Data are represented as mean \pm S.D.

Years	Cumulative SOC	Precipitation amount	Precipitation days	Air temperature
	mineralization rate			
2008	293±10	520	105	9.76

2009	298±9	481	99	10.26
2010	238±50	588	101	10.39
2011	234±48	644	100	9.43
2012	226±19	481	98	9.43
2013	240±30	523	71	11.08
Mean	253±32	540±64	96±12	10.1±0.6

QII-9: L1460 L4: Please clearly define when the dry and wet season occurs? Every year same? Otherwise, there are some inter-annual variations

R: Yes, the dry and wet season had been clearly defined in the **3.2 Interannual variation in** soil microclimate sections. For example, "The seasonal mean soil moisture content was 49.2% WFPS in the wet season (July to September in each year) and 38.6% WFPS in the dry season (other months)" (page 10, line 220-223).

QII-10: P1460 L20: I think Raich and Schlesinger (1992) is the review paper for Q10 demined form soil respiration rates, which different from that of SOC mineralization. Note that root respiration Q10 can be higher than that of microbial respiration in response to the seasonal variations in root increments (ex. Boone et al 1998 Nature, Janssens et al. 2004 GCB)

R: Firstly, the bare fallow soil used in the present study is taken from a bare plot in a state of fallow since June 1984 after the harvesting of winter wheat (*Triticum aestivum* L. 'Chang Wu 131 series'), and living weed was artificially removed timely. Therefore, there were no

vegetation or inputs of aboveground and belowground litter, and then SOC mineralization rates in the bare fallow soil did not include root respiration and litter mineralization and decomposition (page 6, line 124-129). Secondly, different components of soil respiration (root and microbial respiration) has different response to the increasing of temperature, with root respiration Q_{10} can be higher than that of microbial respiration (ex. Boone et al 1998 Nature, Janssens et al. 2004 GCB). Thirdly, the Q_{10} for soil respiration was deleted from our manuscripts such as Raich and Schlesinger, 1992 and Peng et al., 2009 (page 10, line **239-241**). Finally, this part was revised for "he range of annual Q_{10} (1.48–1.94, with a CV of 10%) in our sites for the period 2008–2013 was within the limits reported for annual Q_{10} (1.20–4.89) at global scale (Boone et al., 1998; Zhou et al., 2007; Gaumont-Guay et al., 2008; Zhu and Cheng, 2011; Zimmermann et al., 2012). However, the mean annual Q_{10} in our sites (1.70) was lower than the global mean (2.47) (Boone et al., 1998; Zhou et al., 2007; Gaumont-Guay et al., 2008; Zhu and Cheng, 2011; Zimmermann et al., 2012), probably due to low SOC contents, small microbial communities, dry soil conditions in semi-arid regions (Conant et al., 2004; Gershenson et al., 2009; Cable et al., 2011), and different methods used for separating SOC mineralization rate (Boone et al., 1998; Zhu and Cheng, 2011; Zimmermann et al., 2012)" (page 10 and 11, line 239-248).

QII-11: P1461 L12: It seems the rainfall "distribution" was not examined in the current MS R: In the **3.2 Interannual variations in soil microclimate sections**, interannual variation in rainfall distribution was examined. For instance, "Annual precipitation showed a significant annual variation (Fig.1 and Table 2; P < 0.05). Rainfall ranged from 481 (2009 and 2012) to

644 mm (2011), with a 6-year mean of 540 ± 64 mm and a CV of 12%. Annual rainfall days ranged from 71 (2013) to 105 days (2008), with a 6-year mean of 96 ± 12 days and a CV of 13% (page 9, line 212-215)"

QII-12: P1461 L13: I cannot understand the definition of the "annual precipitation events" in the Figure 5b. Does this mean "rainfall days"? For the rainfall characteristics, you can use rainfall intensity, rainfall days, and rainfall frequency in addition to the rainfall amount (ex, D'Odorice et al 2000 Water Resource Res, Kao et al. 2013 Hydrological Processes).

R: In the present studies, annual precipitation events means rainfall days, thus annual precipitation events had been replaced by annual precipitation days in the Figure 5b in the latest manuscripts (page 29, line 603-604).

QII-13: P1461 L21: Please remove "However".

R: Yes, "However" was deleted from our old manuscripts.

QII-14: P1463 L5: I am not sure if the inter-annul variations in Q10 in your site were large or not. Please compare your results with previous studies if possible. Some previous studies reported inter-annul variations in soil respiration (ex. Savege and Davidson 2001 Global Biochem Cycle, Epron et al 2004 Ann For Sci, Irvine et al. 2008 GCB, Kume et al. Ecohydrol).

R: In the present studies, our bare fallow soil treatment is always in a state of fallow (31 years) from 1984 to now, thus respiration rate in our studies only means SOC mineralization (**page 6**,

line 124-129). Soil respiration is a complex process that includes two major sources of soil respiration: root-derived respiration, SOC mineralization and decomposition (Kuzyakov, 2006, SBB). Different components of soil respiration (root and microbial respiration) has different response to the increasing of temperature, with root respiration Q_{10} can be higher than that of microbial respiration (ex. Boone et al 1998 Nature, Janssens et al. 2004 GCB). To our knowledge, in the previous studies, inter-annul variations in soil respiration has been well studied (ex. Savege and Davidson 2001 Global Biochem Cycle, Epron et al 2004 Ann For Sci, Irvine et al. 2008 GCB, Kume et al. Ecohydrol), whereas there was no report for inter-annul variations in Q_{10} of SOC mineralization. Therefore, this is impossible to compare our results with previous studies.

The description of inter-annul variations in Q_{10} in your site were large was replaced by "T The results of this study showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m⁻² y⁻¹, with a CV of 13%, annual Q_{10} ranged from 1.48 to 1.94, with a CV of 10%, and annual soil moisture content ranged from 38.6 to 50.7% WFPS, with a CV of 11%" (page 14, line 332-336).

Soil moisture influenced the interannual variation in 1 temperature sensitivity of soil organic carbon mineralization 2 in the Loess Plateau 3

4

7

Yanjun Zhang^{1,2}, Shengli Guo^{1,23,3,4}*, Man Zhao³⁴, Lanlan Du¹, Rujian Li¹, Jishao+ 带格式的: 两端对齐 5 Jiang²³, Rui Wang³⁴, Nana Li¹ 6

Affiliation: 8

- 9 1. State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 10 712100, China 11 2. Geography and Environmental Engineering Department, Baoji University of Arts 12
- and Sciences, Baoji 721013, China 13
- 23. Institute of Soil and Water Conservation, Chinese Academy of Sciences and 14 Ministry of Water Resource, Yangling 712100, China 15
- 34. College of Resources and Environment, Northwest A&F University, Yangling 16 712100, China 17
- 18
- 19
- Number of text pages: 2530 20
- Number of tables: 2421
- Number of figures: 56 22
- 23 Corresponding author: Shengli Guo
- Address: Institute of Soil and Water Conservation, Xinong Road 26, Yangling, 24

25 Shaanxi 712100, China

26 Phone: +86-29-87012411, Fax: +86-29-87012210, E-mail: <u>slguo@ms.iswc.ac.cn</u>

域代码已更改

Abstract

Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q₁₀) 28 29 (Q_{10}) -determines how strong the feedback from global warming may be on the 30 atmospheric CO_2 concentration, thus understanding the factors influencing the 31 interannual variation in Q_{10} is important to accurately estimate the local soil carbon cycle. In situ SOC mineralization rate was measured using an automated CO2 flux 32 33 system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35°12' N, 107°40' E) in Changwu, Shaanxi, China frorm 2008 to 2013. The results showed that 34 the annual cumulative SOC mineralization ranged from 226 to 298 g C m⁻² y⁻¹, with a 35 36 Q₁₀ ranged from 1.48 to 1.94, with a mean value of _(mean=1.70; _ and a CV_=of 37 38 10%), and annual soil moisture content ranged from 38.6 to 50.7% soil water-filled pore space (WFPS), with a mean value of 43.8% WFPS and a CV of 11% 39 40 (mean=43.8% WFPS; CV=11%), which were mainly affected by the frequency and distribution of precipitation. Annual Q_{10} showed a negative quadratic correlation 41 with annual mean soil moisture content. In conclusion, understanding of the 42 43 relationships between interannual variation in Q_{10} of SOC mineralization, soil moisture and precipitation is are important to accurately estimate the local carbon 44 cycle, especially under the changing climate. 45

- 46
- 47

48

49

Keywords: Soil temperature; SOC mineralization; distribution and frequency of precipitation.

50

带格式的:字体:倾斜 **带格式的:**字体:倾斜,下标

1. Introduction

|

52	Temperature sensitivity of soil organic carbon (SOC) mineralization (hereafter	带格式的:字体颜色:自动设置
53	<u>refer to as Q_{10}, Q_{40}, Q_{40}, Q_{40}) is of critical importance because it determines how strong the</u>	
54	feedback from global warming may be on the atmospheric CO_2 concentration (Ågren	
55	and Wetterstedt, 2007). However, this is an issue of considerable debatable (Davidson	
56	et al., 2006; Kirschbaum, 2006), and the because Q_{10} is not constant and variations in	带格式的: 字体: 非倾斜
57	Q_{10} are the main source of controversies in this feedback intensity (Larionova et al.,	
58	2007; Karhu et al., 2010; Conant et al., 2011; Sakurai et al., 2012). Therefore,	
59	understanding the factors influencing Q_{10} of SOC mineralization is important to	
60	accurately estimate C cycle and the feedback from the expected warmer climate.	
61	Previous studies have shown that Q_{10} variations are closely related to soil	
62	temperature (Kirschbaum, 2006; Von Lutzow and Kogel-Knabner, 2009Janssens and	
63	Pilegaard, 2003; Zheng et al., 2009; Bond-Lamberty and Thomson, 2010), substrate	
64	availability (Ågren and Wetterstedt, 2007; Gershenson et al., 2009Davidson et al.,	
65	2006; Zheng et al., 2009), substrate quality (Von Lutzow and Kogel-Knabner, 2009;	
66	Sakurai et al., 2012 Luan and Liu, 2012), and the size composition and size of the	
67	constituent composition of microbial population (Djukic et al., 2010; Karhu et al.,	
68	2010; Vanhala et al., 2011). Soil moisture is the most significant limiting factor for	
69	underground physiological processes in dry and semi-dry ecosystems (Balogh et al.,	
70	2011; Cable et al., 2011; Wang et al., 2014). Soil water availability may indirectly	
71	affect Q_{10} by influencing the diffusion of substrates, because the diffusion of	
72	extracellular enzymes produced by microorganisms and available substrates must	
73	conduct in the liquid phase (Davidson et al., 1998; Illeris et al., 2004), but the	
74	response of Q_{10} to soil water availability is extremely complex and controversial	带格式的:字体:倾斜
75	(Davidson et al., 2000; Davidson et al., 2006; McCulley et al., 2007). For example,	

76	Gulledge and Schimel (2000) found that Q_{10} was larger in wet years than in drought
77	years, whereas the opposite result was found by Dorr and Mdnich (1987). However, 7
78	and many other studies that mainly focused on the short-term or seasonal variation in
79	Q_{10} (Davidson et al., 2006) have showed that Q_{10} was not affected by soil moisture
80	(Fang and Moncrieff, 2001; Reichstein et al., 2002; Jassal et al., 2008). Additionally,
81	soil water availability experienced marked seasonal and interannual fluctuations in
82	these ecosystems due to uneven rainfall distribution caused by the abnormal increase
83	of atmospheric CO ₂ concentrations (Solomon et al., 2007). The uneven rainfall
84	distribution inevitably influenced soil moisture availability (Coronato and Bertiller,
85	1996; Qiu et al., 2001; Cho and Choi, 2014). Xiao et al. (2014) have shown that the
86	interannual changes in soil moisture storage in the Loess Plateau were decided by the
87	difference in soil moisture storage between October and April, because precipitation
88	from April to October of 2004 to 2010 accounted for at least 86% of annual rainfall.
89	However, to our knowledge, there have been are few studies investigating the
90	relationship between interannual variation in Q_{10} for SOC mineralization and soil
91	moisture under natural conditions.
92	The Loess Plateau is located in northwest China covering an area of 640,000 km ² .
93	It has a continental monsoonal climate and shows a dramatically interannual
94	fluctuations in precipitation, with the highest precipitation of 1262 mm and the lowest
95	precipitation of only 80 mm, and a mean value of 150–750 mm (Lin and Wang, 2007).
96	The precipitation in the loess regions also shows a dramatically seasonal variation,
97	and approximately 60%-80% of the annual precipitation falls during the three
98	summer months from July to September (Guo et al., 2012) The mean annual rainfall
99	for a 30-year period (19842013) is 560 mm, with the highest rainfall of 954 mm
100	recorded in 2008 and the lowest rainfall of only 296 mm recorded in 1995. The

带格式的: 字体: 倾斜

 带格式的:字体:倾斜

 带格式的:</u>字体:倾斜

-{	带格式的:	非突出显示
-(带格式的:	非突出显示
	带格式的:	非突出显示

101	rainfall from July to September accounts for an average of 57% of yearly rainfall
102	(Guo et al., 2012). Several recent studies have attempted to determine the dominant
103	factors responsible for the variation of soil respiration in vegetation agricultural
104	ecosystems (Lafond et al., 2011; Shi et al., 2011; Jurasinski et al., 2012). However,
105	there have been no studies on the interannual variation in Q_{10} , nor the factors
106	responsible for these changes. This highlights the need to accurately evaluate the
107	response of SOM-SOC mineralization to increasing temperature under warmer
108	climate scenarios in the eroded or degraded regions, because air temperature has been
109	increasing over the past decades (Fan and Wang, 2011; Wang et al., 2012). Thus, the
110	objectives of the present study are to (1) quantify the interannual variation in Q_{10} of
111	SOC mineralization; (2) determine the effect of soil moisture on the thisthis
112	interannual variation; and (3) analyze the relationships among precipitation, soil
113	moisture, and Q_{10} for the period 2008–2013 in the Loess Plateau, China.

1

115 2. Materials and methods

116 2.1 Site description

This study was a part of a long-term field experiment that began in 1984 in the 117 State Key Agro-Ecological Experimental Station in the Loess Plateau in Changwu, 118 119 Shaanxi, China (35°12' N, 107°40' E; 1,200 m above sea level) (Fig. 1). This region 120 had a continental monsoon climate with a mean annual precipitation of 560 mm for the period 1984-2013, over 60% of which occurred from July to September. During 121 122 this 30-year period, the annual mean air temperature was 9.4 °C and the monthly mean temperature between July and September was 19.4 °C. The study site is also 123 characterized by a Site characteristics include the following: 210 °C accumulated 124 temperature of 3029 °C, an annual sunshine duration of 2230 h, an annual total 125

126 | radiation of 484 kJ cm $^{-2}$, and a frost-free period of 171 days.

127	The site was located in a typical rain-fed cropping region of the Loess Plateau
128	highland in northwest China. The soil was classified as a loam (Cumulic Haplustoll,
129	USDA Soil Taxonomy System) developed from loess deposits. Soils collected at the
130	study site in 1984 at a depth of 0-20 cm contained 10.5% CaCO ₃ , 6.5 g organic C
131	kg^{-1} , 0.80 g total N kg^{-1} , and 200 mg NH ₄ OAc-extractable K kg^{-1} , 3.0 g kg^{-1} available
132	phosphorus, and had a pH of 8.4 (with a 1: 1 ratio of soil: H ₂ O), a water-holding
133	capacity of 0.29 cm ³ cm ⁻³ (v/v), the wilting point of 11%, a soil bulk density of 1.3 g
134	cm^{-3} , soil porosity of 51%, and a clay content of 24%.

135

I

2.2 Experimental design and management

136	This study was a part of a long-term field experiment established in June 1984.
137	The bare fallow-plot used in the present studyies is taken from a bare plot one of the
138	long term experiments, which was established in 1984. The bare plot is always in a
139	state of fallow since June 1984 after the harvesting of winter wheat (Triticum aestivum
140	L. 'Chang Wu 131 series'), and any-living weed will bewas artificially removed
141	timely. Therefore, there were no any vegetation or and also no any inputs of
142	aboveground and belowground litter, and then SOC mineralization rates in the bare
143	fallow soil did does not include root respiration and litter mineralization and
144	decomposition. In this paper, we have used three bare fallow plots were used to
145	investigate <u>-to study-the mechanism of underground SOC mineralization rates. Each</u>
146	plot area is 10.3 m \times 6.5 m (66.95 m ²). All plots of 10.3 m $-\times$ -6.5 m (66.95 m ²)
147	each-were randomly arranged in three blocks. The plots were separated by 0.5 m
148	spaces, whereas the blocks were separated by 1 m strips. The purpose of this long-term
149	experiment was to investigate the effects of different crop rotations and fertilizers on
150	soil productivity, nutrient contents, and moisture contents in the semi arid Loess

-{	带格式的:	字体颜色:	自动设置
-(带格式的:	字体颜色:	自动设置
-{	带格式的:	字体颜色:	自动设置

带格式的: 字体:非加粗,字体颜 色:自动设置
带格式的: 字体颜色:自动设置
带格式的:字体:非加粗,字体颜 色:自动设置
带格式的:字体颜色:自动设置
带格式的:字体:非加粗,字体颜 色:自动设置
带格式的:字体颜色:自动设置

Approximately one day before the first measurement, a polyvinyl chloride (PVC) 160 161 collar (20 cm in diameter and 12 cm in height) was inserted to a depth of 2 cm into each plot, and left in place throughout the experimental period from 2008 to 2013. 162 Although previous studies have demonstrated a significant spatial variation of soil 163 respiration-rate, has quite large spatial variation especially in the sites with complex 164 terrain (causing the redistribution of SOC-in the in the landscape) and different 165 166 vegetation types (Epron et al., 2006; Luan et al., 2012), the spatial variation of SOC 167 mineralization rate in our sites is small with a variation coefficient of only 4% and 5% in summer and winter, respectively (Table 1). This can be attributed to that there have 168 been no <u>was no any</u> vegetation or inputs of (aboveground and belowground) litter in 169 170 our plots since 1984 (absolute fallow), and the spatial distribution of SOC was relatively homogeneous due to the soil was derived aeolian deposit loess and flat 171 172 terrain. Due to the small areas of our plots (66.95 m²) and time constraintssaving time (needing-5 minutes for measuring SOC mineralization rate in a given PVC collar), 173 174 thus we only had one PVC collar was used in each plot for measuring SOC

带格式的:字体颜色:自动设置

带格式的: 色:自动设	字体:非倾斜,字体颜 2置
带格式的:	字体颜色: 自动设置
带格式的: 色:自动设	字体:非倾斜,字体颜 2置
带格式的:	字体颜色: 自动设置
带格式的:	字体颜色: 自动设置

_	带格式的:	字体颜色:	自动设置
	带格式的:	字体: 小四	1
	带格式的:	字体颜色:	自动设置
_	带格式的:	字体颜色:	自动设置

mineralization rate during our experimental period. All visible living organisms were

176	removed before the measurement. If necessary, one or more additional measurements		
177	would be taken until the variations between two consecutive measurements were less		
178	than 15%. The final instantaneous soil respiration for a given collar was the average		
179	of the two measurements with a 90 s enclosure period and 30 s delay between them.		
180	Field measurements were performed between 09:00 and 11:00 AM from March 2008		
181	to November 2013, except in December, January, and February because of cold		
182	weather. A total of 17, 25, 26, 22, 26 and 17 SOC mineralization measurements were		
183	made in 2008–2013, respectively.		
184	Soil temperatures and water contents at a 5-cm depth were measured at a		
185	distance of 10 cm from the chamber collar at the same time as the SOC mineralization		
186	rates using a Li-Cor thermocouple probe and a Theta Probe ML2X with a HH2 water		
187	content meter (Delta-T Devices, Cambridge, England), respectively. Additionally,		
188	dDaily mean soil temperature and moisture data were provided by the State Key		
189	Agro-Ecological Experimental Station, both of which were measured at 5 cm below		
190	the surface using a Hydra soil moisture sensor (including Hydra Data Reader and		
191	Hydra Probe II Soil Moisture Sensor (SDI-12/RS485);) (Precision: Moisture, ±0.5%)		
192	vol; Temperature, ±0.6 °C); Stevens Water Monitoring Systems Inc., Australia). Soil		带格式的: 上标
193	water-filled pore space (WFPS) was calculated as follows: WFPS (%)=_ $-100 \times$		
194	[volumetric water content_/ $_{100}$ × (2.65soil bulk density)_/_2.65], with 2.65		
195	being the particle density of the soil $(g \text{ cm}^{-3})$.		带格式的: 上标
196			
197	2.4 Data analysis		
198	An exponential (or " Q_{10} ") function was used to simulate the relationship between		带格式的: 字体:倾斜
199	SOC mineralization rate and soil temperature (Xu and Qi, 2001):		
200	$F = \beta_0 e^{\beta_1 T} \tag{(1)}$	(1)	域代码已更改
	Q		

201	$Q_{10} = e^{10\beta_1} \tag{2}$	域代码已更改
202	Where $F (-\mu mol m^{-2} s^{-1})$ is the SOC mineralization rate, $T (\mathcal{C})$ is the soil	
203	temperature at a depth of 5 cm, and β_0 and β_1 are the fitted parameters.	
204	A quadratic polynomial function was used to simulate the relationship between	
205	SOC mineralization rate and soil moisture content (Tang et al., 2005):	
206	$F = \beta_3 \theta^2 + \beta_2 \theta + \beta_4 \tag{3}$	域代码已更改
207	Where θ is the soil moisture at a depth of 0–5 cm, and β_2 , β_3 , and β_4 are the fitted	
208	parameters.	
209	The interactions of soil temperature with moisture content can more accurately	
210	simulate soil respiration than either soil temperature or moisture alone (Tang et al.,	
211	2005). Our data indicated that SOC mineralization rate increased with increasing soil	
212	moisture content to a maximum at approximately 46% WFPS, and then decreased	
213	with further increase of soil moisture content. After comparing different functions and	
214	resulting residual plots, a bivariate model was used to simulate the effect of soil	
215	moisture content and temperature on SOC mineralization rate:	
216	$F = \beta_0 e^{\beta_1 \mathrm{T}\theta + \beta_2 \mathrm{T}\theta^2} \tag{4}$	域代码已更改
217	The annual cumulative SOC mineralization rate was estimated by linear	
218	interpolating between measurement dates to obtain the mean daily SOC	
219	mineralization rate for each plot, and then summing the mean daily SOC	
220	mineralization rate for a given year.	
221	The relationships between Q_{10} and meteorological factors were investigated	带格式的:字体:倾斜
222	using the SAS software (version 8.0; SAS Institute, Cary, NC). All other statistical	
223	analyses were performed with ANOVA at $P = 0.05$.	
224		
225	3. Results	
	10	

3.1 Interannual variation in Q_{10}

227	The temporal variation in the SOC mineralization rate was correlated with that of	
228	the-soil temperature in all six years (Figs. 2b and c), and it increased exponentially	
229	with soil temperature (P<0.01). The mean annual SOC mineralization rate ranged	
230	<u>from 0.83-μ mol m⁻²s⁻¹ (2012) to 1.22 μ mol m⁻²s⁻¹ (2008), with a mean of 0.99 μ</u>	带格式的:非突出显示
231	mol $m^{-2} s^{-1}$ and a CV of 17%; the annual cumulative SOC mineralization ranged from	带格式的: 非突出显示 带格式的: 非突出显示
232	<u>226 g C m⁻² y⁻¹ (2012) to 298 g C m⁻² y⁻¹ (2009), with a mean of 253 g C m⁻² y⁻¹ and</u>	
233	<u>a CV of 13% (Table 2), and The-the</u> annual Q_{10} in our sites was 1.65 in 2008, 1.94 in	带格式的: 字体:倾斜
234	2009, 1.72 in 2010, 1.48 in 2011, 1.86 in 2012, and 1.55 in 2013, respectively, with a	
235	mean Q_{10} of 1.72 and a CV of 10% (Table 23).; the mean annual SOC mineralization	带格式的: 字体:倾斜
236	rate ranged from 0.83 mol m ⁻² -s ⁻¹ (2012) to 1.22 mol m ⁻² -s ⁻¹ (2008), with a mean of	
237	$0.99 \text{ mol m}^{-2} \text{ s}^{-1}$ and a CV of 17%; and the annual cumulative SOC mineralization	
238	ranged from 226 g C m ^{$=2$} y ^{$=1$} (2012) to 298 g C m ^{$=2$} y ^{$=1$} (2009), with a mean of 253 g	
239	$C m^{=2} y^{=1}$ and a CV of 13% (Table 1).	
240		
241	3.2 Interannual variation in soil microclimate	
242	Annual precipitation showed a significantly annual variation (Fig.1 and Table 2;	带格式的: 缩进:首行缩进: 0.85 厘米
243	<u><i>P</i> <0.05</u>). Rainfall , with rainfall ranged from 481 mm ⁻ (2009 and 2012) to 644 mm	
244	(2011), with a 6-year mean value-of 540±64 mm and a CV of 12%. Annual rainfall	
245	days ranged from 71 days (2013) to 105 days (2008), with a 6-year mean value of	
246	96±12 days and a CV of 13%. Interannual variation in air temperature was not	带格式的: 字体:非加粗
247	significantly (Fig.1 and Table 2; $P > 0.05$). It , air temperature ranged from 9.43-°C	
248	(2011 and 2012) to 11.08 °C (2013), with a 6-year mean value of 10.1±0.6 °C and a	带格式的: 上标
249	CV of only 6%.	带格式的: 字体: 非加粗
250	Soil temperature and soil moisture at a depth of 0-5 cm showed significantly	

251	temporal variations over the six-year observation period (Fig. 2b). The seasonal mean					
252	soil moisture content was 49.2% WFPS in the wet season (July to September in each					
253	year) 38.6% WFPS in the dry season and 38.6% WFPS in the dry season (other					
254	monthsseasons except for wet season in each year) 49.2% WFPS in the wet season.					
255	The mean annual soil moisture content ranged from 38.6% WFPS (2013) to 50.7%					
256	WFPS (2011), with a mean of 43.8% WFPS and a CV of 11%. The seasonal mean soil					
257	temperature was 14.50 $^{\circ}$ C in the dry season and 20.39 $^{\circ}$ C in the wet season. The mean					
258	annual soil temperature ranged from 14.90 ${}^{\circ}\!$					
259	of 17.05 °C and a CV of only 7%.					
260						
261	3.3 Effect of soil moisture on the interannual variation of Q_{10}					
262	Annual Q_{10} showed a negative quadratic correlation with annual mean soil		带格式的:	字体:	倾斜	
263	moisture (Fig. 3b). Additionally, the seasonal SOC mineralization rate increased					
264	exponentially with soil temperature, and showed a negative quadratic correlation with					
265	soil moisture content (Table $\frac{23}{2}$). The response surface of SOC mineralization rate to					
266	soil temperature and moisture including both seasonal and interannual scales clearly					
267	described how soil microclimate influenced SOC mineralization rate (Fig. 4).					
268						
260			带校式的:	空休・	市地	
207	<u>۸</u> ــــــــــــــــــــــــــــــــــــ	\sim	带格式的:	缩进:	首行缩进:	0字
270			符			
271	4. Discussion			<u> </u>		
			带格式的:	字体:	小四	
272	4.1 Soil moisture influenced the interannual variation in Q ₁₀		带俗八的: 带松式的:	子(本: 空休:	加粗 価公	
			带格式的	丁四· 字体:	小四	\longrightarrow
273	The range of annual Q_{10} (1.48–1.94, with a CV of 10%) in our sites for the		带格式的:	字体:	· <u></u> 倾斜	\longrightarrow
274	period 2008 2013 was within the range of limits reported for annual O_{1} (1.20, 4.80)		带格式的:	字体:	倾斜	\longrightarrow
∠/4	period 2000–2013 was wrunn the range of minus reported for annual $Q_{10}(1.20-4.89)$		带格式的:	字体:	非倾斜	
275	at global scale (Boone et al., 1998; Zhou et al., 2007; Gaumont-Guay et al., 2008;		带格式的:	字体:	非倾斜	
			带格式的:	字体:	非倾斜	
	12					

276	ZHU-Zhu and CHENGCheng, 2011; Zimmermann et al., 2012). the range of the	带格式的:	字体:	非倾斜	
277	global mean Q ₁₀ for different ecosystems (1.3-3.3) (Raich and Schlesinger, 1992).				
278	However, the mean annual Q_{d0} in our sites (1.70) was lower than the global mean	带格式的:	字体: (顷斜	
279	(2.47) (Boone et al., 1998; Zhou et al., 2007; Gaumont-Guay et al., 2008; Zhu and	带格式的:	字体:	非倾斜	
280	Cheng, 2011; Zimmermann et al., 2012)(Raich and Schlesinger, 1992) and the mean	带格式的: 带格式的:	字体: 字体:	非倾斜 非倾斜	
281	for China (2.19) (Peng et al., 2009), probably due to the low SOM-SOC contents,	带格式的:	字体:	非倾斜	
282	small microbial communities, and dry soil conditions in semi-arid regions (Conant et				
283	al., 2004; Gershenson et al., 2009; Cable et al., 2011), additionallyand -the-different				
284	methods used for separating SOC mineralization rate may also contribute to this				
285	difference (Boone et al., 1998; Zhu and Cheng, 2011; Zimmermann et al., 2012).	带格式的:	字体:	非倾斜	
286	(Conant et al., 2004; Gershenson et al., 2009; Cable et al., 2011).				
287	The a <u>A</u> nnual Q_{l0} was negatively linearly correlated with annual mean	带格式的:	字体: (顷斜	
288	precipitation, but this correlation did not reach statistical significance (\underline{PP} >0.05);				
289	whereas it was significantly related to soil moisture content (Fig. 3). This was in				
290	agreement with previous studies (Suseela et al., 2012; Poll et al., 2013). However, Q_{10}	带格式的:	字体: (顷斜	
291	was found to be negatively correlated with mean annual precipitation (\underline{PP} <0.01) in				
292	different forest ecosystems in China, which could be due to the relatively abundant				
293	rainfall in the forest ecosystems (700-1956 mm) (Peng et al., 2009). Soil moisture				
294	was the major limiting factor for the that drived-underground biological processes,				
295	especially in water-limited regions (Reth et al., 2005; Balogh et al., 2011; Wang et al.,				
296	2014). Although precipitation was the only source of water for soil moisture				
297	underneath long-term bare fallow-soil, there was no significant relationship between				
298	annual mean soil moisture and annual precipitation amount (PP>0.05) (Fig. 5a), but				
299	rainfall frequency and distribution were closely related to annual mean soil moisture				
300	content (Fig. 5b). Similar results have also been found in other studies (Coronato and				

|

301 Bertiller, 1996; Qiu et al., 2001; Cho and Choi, 2014). The annual precipitation during 302 the six-year observation period of 2008–2013 ranged from 481 mm (2009) to 644 mm 303 (2011), with a CV of 12% (Table 42). The annual mean soil moisture content was high (51% WFPS) in 2011 due to relatively uniform distribution of precipitation, and 304 low (38% WFPS) in 2010 and 2013 due to relatively uneven distribution of 305 306 precipitation. For example, the rainfall amount on 23-July 23, 2010 (118 mm) and 22 July 22, 2013 (121 mm) was about 20% and 23% of that in 2010 (588 mm) and 2013 307 308 (523 mm), respectively. However, tThe annual mean soil moisture was moderate (43-47% WFPS) in 2008, 2009 and 2012 due to the normal distribution of 309 precipitation. Similarly, the interannual soil moisture regulation in the forest 310 311 ecosystems in the Loess Plateau was determined not only by rainfall amount but also by rainfall distribution (Li et al., 1998). 312

The aAnnual Q_{10} showed a negative quadratic relationship with soil moisture 313 带格式的: 字体: 倾斜 314 content, as it increased with increasing soil moisture content to a maximum at 315 approximately 42% WFPS, and then decreased with further increase of soil moisture 316 content (Fig. 3b), which was in agreement with other studies (Bowden et al., 1998; 317 Conant et al., 2004; Smith, 2005). This could be attributed to the following reasons: Firstly, lower soil water availability could reduce Q_{10} by limiting respiration substrate 318 319 availability and soil pore water became increasingly disconnected, thus slowing down 320 the diffusion rate of solutes (Wan et al., 2007; Balogh et al., 2011), and decreasing the 321 activity and quantity of organisms due to drought stress (Davidson et al., 2006). Secondly, higher soil moisture could also reduce Q_{10} by limiting O₂ diffusion rate 322 (Davidson et al., 1998; Byrne et al., 2005; Saiz et al., 2007) because of low effective 323 soil porosity, as the diffusion rate of O₂ through water was much slower than that 324 through air (Cook and Knight, 2003; Manzoni et al., 2012), thus the decomposition 325

带格式的:字体:倾斜

带格式的: 字体: 倾斜

351	SOC mineralization rate between linear interpolation and modeled method, and , and
352	in most cases, we found that the modeled method could can-well predict the SOC
353	mineralization rate in most cases from 2008 to 2013 –(Fig. 6), which was in line with
354	the previous studies (Tang et al., 2005). However, compared with linear interpolation
355	and modeled method for estimating annual cumulative SOC mineralization rate, unit
356	conversion method seriously overestimated annual cumulative SOC mineralization
357	rate (Table 4). This
358	The large errors for estimating annual cumulative SOC mineralization rate using
359	unit conversion method can be attributed to ascribed the following reasons: 1) the
360	study site hads a continental monsoon climate with 60% of rainfall occurring occurred
361	from July to September (rainy season), thus the study site the significantly seasonal
362	characteristic for climate in our sites-is hot and rainy in the rainy season, but cool and
363	dry in the non-rainy season; and 2) SOC mineralization rate measured-in the rainy and
364	non-rainy season is largely the same, but the duration of basically equal, whereas
365	the-rainy season is only a quarter of the time in a given-year;. Thus-3) due to the hot
366	and rainy climatic characteristics in the rainy season, the SOC mineralization rate was
367	much greater in rainy season than in non-rainy season, thus resulting in an
368	overestimation of seriously overestimated cumulative SOC mineralization rate in a
369	<u>given year.</u>
370	In conclusions, linear interpolation method is a simple and controllable
371	actionable-method for estimating annual cumulative SOC mineralization rate , which
372	had been well used in other studies (Schindlbacher et al., 2014; Shi et al., 2014).
373	Although ; the modeled method with soil temperature and moisture - can well
374	estimateing annual cumulative SOC mineralization rate, it is limited in practice as it
375	needs daily <u>but the method needing soil temperature and moisture</u> . <u>data every day</u> ,

-	带格式的: 字体:非倾斜,字体颜 色:自动设置
T	带格式的: 字体颜色:自动设置
$\left \right $	带格式的: 字体:非倾斜,字体颜 色:自动设置
Ì	带格式的:字体颜色:自动设置

376	thus the method is limited in practice; $\mathbf{u} \cup \mathbf{nit}$ conversion method may seriously	
377	overestimate annual cumulative SOC mineralization rate unless the measuring of SOC	
378	mineralization rate is very uniform in a given year.	
379	•	
380	5. Conclusions	
381	Understanding the factors influencing the temperature sensitivity of SOC	
382	mineralization is important to accurately estimate local carbon cycle. The results of	
383	this study showed that the annual cumulative SOC mineralization ranged from 226 to	
384	<u>298 g C m⁻² y⁻¹, with a CV of 13%, annual Q_{10} ranged from 1.48 to 1.94, with a CV</u>	
385	of 10%, and annual soil moisture content ranged from 38.6 to 50.7% WFPS, with a	
386	<u>CV of 11% annual cumulative SOC mineralization, mean soil moisture, and $Q_{I\theta}$</u>	

showed a large interannual variation, with a CV of 13%, 11%, and 10%, respectively.

The aAnnual Q_{10} showed a negative quadratic correlation with annual mean soil

moisture, which was determined by uneven distribution and frequency of rainfall. In

conclusion, the interannual variation in soil moisture content should be considered in

carbon cycle models in semi-arid areas.

带格式的

带格式的:缩进:首行缩进: 0字符

394 **References**

I

395	Ågren, G. I. and Wetterstedt, J.: What determines the temperature response of soil organic matter-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
396	decomposition?, Soil Biol. Biochem., 39, 1794-1798, 2007.	1
397	Balogh, J., Pinter, K., Foti, S., Cserhalmi, D., Papp, M., Nagy, Z.: Dependence of soil respiration	
398	on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands, Soil Biol.	
399	Biochem., 43, 1006-1013, 2011.	
400	Boone, R. D., Nadelhoffer, K. J., Canary, J. D., and Kaye, J.P.: Roots exert a strong influence on	
401	the temperature sensitivity of soil respiration, Nature, 396, 570-572, 1998.	
402	Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7,	
403	1915-1926, 2010.	
404	Bowden, R. D., Newkirk, K. M., and Rullo, G.M.: Carbon dioxide and methane fluxes by a forest	
405	soil under laboratory-controlled moisture and temperature conditions, Soil Biol. Biochem., 30,	
406	1591-1597, 1998.	
407	Byrne, K. A., Kiely, G., and Leahy, P.: CO ₂ fluxes in adjacent new and permanent temperate	
408	grasslands, Agr. Forest Meteorol., 135, 82-92, 2005.	
409	Cable, J. M., Ogle, K., Lucas, R. W., Huxman, T. E., Loik, M. E., Smith, S. D., Tissue, D. T.,	
410	Ewers, B. E., Pendall, E., and Welker, J.M.: The temperature responses of soil respiration in deserts: a	
411	seven desert synthesis, Biogeochemistry, 103, 71-90, 2011.	
412	Cho, E. and Choi, M.: Regional scale spatio-temporal variability of soil moisture and its	
413	relationship with meteorological factors over the Korean peninsula, J Hydrol, 516, 317-329, 2014.	
414	Conant, R. T., Dalla-Betta, P., Klopatek, C. C., and Klopatek, J. M.: Controls on soil respiration in	
415	semiarid soils, Soil Biol. Biochem., 36, 945-951, 2004.	
416	Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E.,	
417	Frey, S. D., Giardina, C. P., and Hopkins, F. M.: Temperature and soil organic matter decomposition	
418	rates-synthesis of current knowledge and a way forward, Glob. Change Biol., 17, 3392-3404, 2011.	
419	Cook, F. and Knight, J.: Oxygen Transport to Plant Roots: modeling for physical understanding of	
420	soil aeration, Soil Sci Soc Am J, 67, 20-31, 2003.	
421	Coronato, F.R. and Bertiller, M.B.: Precipitation and landscape related effects on soil moisture in	
422	semi-arid rangelands of Patagonia, J Arid Environ, 34, 1-9, 1996.	
423	Davidson, E., Belk, E., and Boone, R. D.: Soil water content and temperature as independent or	

带格式的: 缩进: 首行缩进: 2 字

424	confounded factors controlling soil respiration in a temperate mixed hardwood forest, Glob. Change	
425	Biol., 4, 217-227, 1998.	
426	Davidson, E. A., Janssens, I. A., and Luo, Y. Q.: On the variability of respiration in terrestrial	
427	ecosystems: moving beyond $Q_{(10)}$, Glob. Change Biol., 12, 154-164, 2006.	带格式的: 下标
428	Davidson, E. A., Verchot, L. V., Cattanio, J. H., Ackerman, I. L., and Carvalho, J. E. M.: Effects of	
429	soil water content on soil respiration in forests and cattle pastures of eastern Amazonia,	
430	Biogeochemistry, 48, 53-69, 2000.	
431	Djukic, I., Zehetner, F., Mentler, A., and Gerzabek, M.H.: Microbial community composition and	
432	activity in different Alpine vegetation zones, Soil Biol. Biochem., 42, 155-161, 2010	
433	Dörr, H. and Münnich, K.: Annual variation in soil respiration in selected areas of the temperate	
434	zone, Tellus B, 39, 114-121, 1987.	
435	Epron, D., Bosc, A., Bonal, D., and Freycon, V.: Spatial variation of soil respiration across a	
436	topographic gradient in a tropical rain forest in French Guiana, J Trop Ecol, 22, 565-574, 2006.	
437	Fan, X.H. and Wang, M. B.: Change trends of air temperature and precipitation over Shanxi	
438	Province, China, Theor Appl Climatol, 103, 519-531, 2011.	
439	Fang, C. and Moncrieff, J. B.: The dependence of soil CO ₂ efflux on temperature, Soil Biol.	带格式的:下标
439 440	Fang, C. and Moncrieff, J. B.: The dependence of soil CO ₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001	带格式的: 下标带格式的: 英语(美国)
439 440 441	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, <u>Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on</u> 	带格式的: 下标 带格式的: 英语(美国)
439440441442	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, <u>Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on</u> <u>rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree</u> 	带格式的: 下标 带格式的: 英语(美国)
439440441442443	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, <u>Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.: Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008.</u> 	带格式的: 下标 带格式的: 英语(美国)
 439 440 441 442 443 444 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, <u>Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008.</u> Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature 	带格式的: 下标 带格式的: 英语(美国)
 439 440 441 442 443 444 445 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008. Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. 	带格式的:下标 带格式的:英语(美国)
 439 440 441 442 443 444 445 446 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008. Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of 	(帶格式的:下标 (帶格式的:英语(美国)
 439 440 441 442 443 444 445 446 447 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008. Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000. 	(帶格式的:下标 (帶格式的:英语(美国)
 439 440 441 442 443 444 445 446 447 448 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008. Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000. Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., and Syers, J. K.: Winter wheat grain 	(帶格式的:下标 (帶格式的:英语(美国)
 439 440 441 442 443 444 445 446 447 448 449 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, <u>Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on thizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008.</u> Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000. Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., and Syers, J. K.: Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid 	(帶格式的:下标 (帶格式的:英语(美国)
 439 440 441 442 443 444 445 446 447 448 449 450 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, <u>Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on thizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008.</u> Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000. Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., and Syers, J. K.: Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China, Geoderma, 189, 442-450, 2012. 	带格式的: 下标 (#格式的: 英语(美国)
 439 440 441 442 443 444 445 446 447 448 449 450 451 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001 <u>Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on</u> rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008. Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000. Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., and Syers, J. K.: Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China, Geoderma, 189, 442-450, 2012. Illeris, L., Christensen, T. R., and Mastepanov, M.: Moisture effects on temperature sensitivity of 	带格式的: 下标 (黄格式的: 英语(美国)
 439 440 441 442 443 444 445 446 447 448 449 450 451 452 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, <u>Gaumont-Guay, D., Black, T. A., Barr, A. G. Jassal, R. S., and Nesic, Z.; Biophysical controls on</u> rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree <u>Physiol., 28, 161-171, 2008.</u> Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000. Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., and Syers, J. K.: Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China, Geoderma, 189, 442-450, 2012. Illeris, L., Christensen, T. R., and Mastepanov, M.: Moisture effects on temperature sensitivity of CO₂ exchange in a subarctic heath ecosystem, Biogeochemistry, 70, 315-330, 2004. 	帶格式的: 下标 一帶格式的: 英语(美国)
 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 	 Fang, C. and Moncrieff, J. B.: The dependence of soil CO₂ efflux on temperature, Soil Biol. Biochem., 33, 155-165, 2001, Gaumont-Guay, D., Black, T. A., Barr, A. G., Jassal, R. S., and Nesic, Z.; Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand, Tree Physiol., 28, 161-171, 2008. Gershenson, A., Bader, N. E., and Cheng, W.: Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition, Glob. Change Biol., 15, 176-183, 2009. Gulledge, J. and Schimel, J. P.: Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska, Ecosystems, 3, 269-282, 2000. Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., and Syers, J. K.: Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China, Geoderma, 189, 442-450, 2012. Illeris, L., Christensen, T. R., and Mastepanov, M.: Moisture effects on temperature sensitivity of CO₂ exchange in a subarctic heath ecosystem, Biogeochemistry, 70, 315-330, 2004. Janssens, I. A. and Pilegaard, K.: Large seasonal changes in Q₁₀ of soil respiration in a beech 	带格式的: 英语(美国)

|

434	torest, Gtob. Change Biol., 9, 911-918, 2005.
455	Jassal, R. S., Black, T. A., Novak, M. D., Gaumont-Guay, D., and Nesic, Z.: Effect of soil water
456	stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand,
457	Glob. Change Biol., 14, 1305-1318, 2008.
458	Jurasinski, G., Jordan, A., and Glatzel, S.: Mapping soil CO ₂ efflux in an old-growth forest using
459	regression kriging with estimated fine root biomass as ancillary data, Forest Ecol Manag, 263, 101-113,
460	2012.
461	Karhu, K., Fritze, H., Häm äl äinen, K., Vanhala, P., Jungner, H., Oinonen, M., Sonninen, E., Tuomi,
462	M., Spetz, P., and Kitunen, V.: Temperature sensitivity of soil carbon fractions in boreal forest soil,
463	Ecology, 91, 370-376, 2010.
464	Kirschbaum, M. U. F.: The temperature dependence of organic-matter decomposition-still a topic
465	of debate, Soil Biol. Biochem., 38, 2510-2518, 2006.
466	Lafond, J. A., Allaire, S. E., Dutilleul, P., Pelletier, B., Lange, S. F., and Cambouris, A. N.:
467	Spatiotemporal Analysis of the Relative Soil Gas Diffusion Coefficient in Two Sandy Soils: Variability
468	Decomposition and Correlations between Sampling Dates at Two Spatial Scales, Soil Sci Soc Am J, 75,
469	1613-1625, 2011.
470	Larionova, A. A., Yevdokimov, I. V., and Bykhovets, S. S.: Temperature response of soil
471	respiration is dependent on concentration of readily decomposable C, Biogeosciences, 4, 1073-1081.
472	2007.
473	Li H. J., Wang M. B., and Chai B. F.: Study on characteristics of soil water of planted forest and
474	its relation to precipitation in northwestern shanxiShanxi, Journal of Soil Erosion and Soil and Water
475	Conservation, 4, 60-65, 1998.
476	Lin, S. and Wang Y.R.: Spatial-temporal Evolution of Precipitation in China Loess Plateau,
477	Journal of Desert Research, 27, 502-508, 2007.
478	Luan, J., Liu, S., Zhu, X., Wang, J., and Liu, K.; Roles of biotic and abiotic variables in
479	determining spatial variation of soil respiration in secondary oak and planted pine forests, Soil Biol.
480	<u>Biochem., 44, 143-150, 2012.</u>
481	Luan, J. and Liu, S.: temeprature sensitivity of soil respiration: uncertainties of global warming
482	positive or negative feedback, Acta Ecologica Sinica, 32, 4902–4913, 2012.
483	Manzoni, S., Schimel, J. P., and Porporato, A.: Responses of soil microbial communities to water

488	respiration in different ecosystems in China, Soil Biol. Biochem., 41, 1008-1014, 2009.				
489	Poll, C., Marhan, S., Back, F., Niklaus, P. A., and Kandeler, E.: Field-scale manipulation of soil				
490	temperature and precipitation change soil CO ₂ flux in a temperate agricultural ecosystem, Agr, Ecosyst				
491	Environ, 165, 88-97, 2013.				
492	Qiu, Y., Fu, B. J., Wang, J., and Chen, L. D.: Spatial variability of soil moisture content and its				
493	relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China, J Arid				
494	Environ, 49, 723-750, 2001.				
495	Raich, J. W. and Schlesinger, W. H .: The global earbon dioxide flux in soil respiration and its				
496	relationship to vegetation and elimate, Tellus B, 44, 81-99, 1992.				
497	Reth, S., Reichstein, M., and Falge, E.: The effect of soil water content, soil temperature, soil				
498	pH-value and the root mass on soil CO_2 efflux-A modified model, Plant Soil, 268, 21-33, 2005.				
499	Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S., Dore, S., and Valentini,				
500	R.: Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and				
501	decomposition dynamics, Funct. Ecol., 16, 27-39, 2002.				
502	Saiz, G., Black, K., Reidy, B., Lopez, S., and Farrell, E. P.: Assessment of soil CO ₂ efflux and its				
503	components using a process-based model in a young temperate forest site, Geoderma, 139, 79-89,				
504	2007.				
505	37.Sakurai, G., Jomura, M., Yonemura, S., Iizumi, T., Shirato, Y., and Yokozawa, M.: Inversely	带格式	的: 项目	目符号和编	i号
506	estimating temperature sensitivity of soil carbon decomposition by assimilating a turnover model and				
507	long-term field data, Soil Biol. Biochem., 46, 191-199, 2012.				
508	Schindlbacher, A., Jandl, R., and Schindlbacher, S.: Natural variations in snow cover do not affect		4		
509 510 511 512 513 514 515 516	the annual soil CO ₂ efflux from a mid-elevation temperate forest, Glob. Change Biol., 20, 622-632, 2014. <u>Schindlbacher, A., Jandl, R., and Schindlbacher, S.: Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid elevation temperate forest, Glob. Change Biol., 20, 622-632, 2014.</u> Schindlbacher, A., Jandl, R., and Schindlbacher, S.: Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid - elevation temperate forest, Glob. Change Biol., 20, 622-632, 2014.	带格式	<u>的:</u> 下标	<u><u></u></u>	
517	Shi, W. Y., Tateno, R., Zhang, J. G., Wang, Y. L., Yamanaka, N., and Du, S.: Response of soil				
l	21				

McCulley, R. L., Boutton, T. W., and Archer, S. R.: Soil respiration in a subtropical savanna

Peng, S. S., Piao, S. L., Wang, T., Sun, J. Y., and Shen, Z. H.: Temperature sensitivity of soil

484 stress: results from a meta-analysis, Ecology, 93, 930-938, 2012.

parkland: Response to water additions, Soil Sci Soc Am J,71, 820-828, 2007.

- 518 respiration to precipitation during the dry season in two typical forest stands in the forest-grassland
- 519 transition zone of the Loess Plateau, Agr. Forest Meteorol., 151, 854-863, 2011.
- 520 Shi, W. Y., Yan, M. J., Zhang, J. G., Guan, J. H., and Du, S.: Soil CO₂ emissions from five different
- 521 types of land use on the semiarid Loess Plateau of China, with emphasis on the contribution of winter
- 522 soil respiration, Arid Environ, 88, 74-82, 2014.
- 523 Smith, V.R.: Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic
 524 island, Soil Biol. Biochem., 37, 81-91, 2005.
- Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H.:
 Climate change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth
 Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press,
 Cambridge, UK, 2007.
- Suseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S.: Effects of soil moisture on the
 temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change
 experiment, Glob. Change Biol., 18, 336-348, 2012.
- Tang, J., Qi, Y., Xu, M., Misson, L., and Goldstein, A. H.: Forest thinning and soil respiration in a
 ponderosa pine plantation in the Sierra Nevada, Tree Physiol., 25, 57-66, 2005.
- 534 Vanhala, P., Karhu, K., Tuomi, M., Bjorklof, K., Fritze, H., Hyvarinen, H., and Liski, J.:
- 535 Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but
- 536 not the temperature sensitivity of decomposition, Glob. Change Biol., 17, 538-550, 2011.
- 537 Von Lutzow, M. and Kogel-Knabner, I.: Temperature sensitivity of soil organic matter 538 decomposition-what do we know?, Biol Fert Soil S, 46, 1-15, 2009..
- Wan, S., Norby, R. J., Ledford, J., and Weltzin, J.F.: Responses of soil respiration to elevated CO₂,
 air warming, and changing soil water availability in a model old field grassland, Glob. Change Biol.,
 13, 2411-2424, 2007.
- 13, 2411-2424, 2007.
- Wang, B., Zha, T., Jia, X., Wu, B., Zhang, Y., and Qin, S.: Soil moisture modifies the response of
 soil respiration to temperature in a desert shrub ecosystem, Biogeosciences, 11, 259-268, 2014.
- Wang, Q. X., Fan, X. H., Qin, Z. D., and Wang, M. B: Change trends of temperature and
 precipitation in the Loess Plateau Region of China, 1961-2010, Global Planet Change, 92-93, 138-147,
 2012.
- 547 Xiao, L., Xue, S., Liu, G. B., and Zhang, C.: Soil Moisture Variability Under Different Land Uses

带格式的: 下标

548	in the Zhifanggou Catchment of the Loess Plateau, China, Arid Land Res Manag, 28, 274-290, 2014.		
549	48.Xu, M. and Qi, Y.: Spatial and seasonal variations of Q_{d0} determined by soil respiration.	 带格式的:	项目符号和编号
550	measurements at a Sierra Nevadan forest, Global Biogeochem. Cy., 15, 687-696, 2001.	带格式的:	字体:倾斜
551	49. Zhou, X., Wan, S., and Luo, Y.: Source components and interannual variability of soil CO2	 带格式的:	下标
552	efflux under experimental warming and clipping in a grassland ecosystem, Glob. Change Biol., 13,		
553	761-775, 2007.		
554	50. Zhu, B. and Cheng, W.: Rhizosphere priming effect increases the temperature sensitivity of soil		
555	organic matter decomposition, Glob. Change Biol., 17, 2172-2183, 2011.		
556	51. Zimmermann, M., Leifeld, J., Conen, F., Bird, M. I., and Meir, P.: Can composition and		
557	physical protection of soil organic matter explain soil respiration temperature sensitivity?,		
558	Biogeochemistry, 107, 423-436, 2012.		
559	52.		
560 561 562			
563			

|

564	<u>Table 1. S</u>	SOC mineraliz	zation rate (µ	$mol m^{-2} s^{-1}$) v	vas measured	in the five col	<u>lars in our plots</u> ∢	带格式的:	字体颜色: 自动设置
565	in summe	or (July 11, 20	带格式的:	左,1级					
505	in summer (July 11, 2008) and winter (November 18, 2008). Data are represented as mean \pm								丁仲颜色:日幼ర直
566	<u>S.D of fiv</u>	ve collars.						带格式的:	字体颜色: 自动设置
				SOC min	eralization rate			带格式的: 带格式的:	字体颜色:自动设置 之休·五号 之休颜色:
	_			<u>5000 mm</u>				自动设置	1件: 五寸, 1件厥也.
	<u>Dates</u>	<u>Collar 1</u>	<u>Collar 2</u>	<u>Collar 3</u>	<u>Collar 4</u>	<u>Collar 5</u>	<u>Mean value</u>	带格式表格	<u>i</u>
	Summer	<u>1.55±0.11</u>	<u>1.60±0.20</u>	<u>1.58±0.21</u>	<u>1.49±0.07</u>	<u>1.65±0.18</u>	<u>1.57±0.06</u>		
	Winter	<u>0.29±0.01</u>	<u>0.30±0.02</u>	<u>0.31±0.01</u>	<u>0.32±0.02</u>	<u>0.33±0.02</u>	<u>0.31±0.02</u>		
567	Note: Five	PVC collars we	ere installed in c	ur plots, and S C	OC mineralizatio	on rate was mea	sured in the five	带格式的:	字体:五号,非加粗
568	DVC collar	<u>e for investigati</u>	ng the spatial w	ariation Oon Jul	v 11 2008 and	November 18-2	2008 (representing	带格式的:	字体:五号
500		5 for investigati	ing the spatial w		<u>ly 11, 2008 and</u>		2008 (representing	带格式的:	字体颜色:自动设置
569	summer an	d winter) using	5 PVC collars i	nstalled in our p	<u>olots</u>			带格式的: 自动设置	子体: 五亏, 子体颜巴:
570	Ā							带格式的:	字体颜色: 自动设置
571								带格式的: 自动设置	字体:五号,字体颜色:
572								带格式的: 带格式的:	子体颜色: 百动设置 字体: 五号, 字体颜色:
								带格式的:	字体:五号
573									
574									
575									
576									
577									
578									
579									
580									
581									
582									
502									
585									
584									
585									
				24					

Table <u>+2</u>. Cumulative SOC mineralization rate (g C m⁻² year⁻¹), annual precipitation amount (mm), annual precipitation events-<u>days(times)</u>, and air temperature (°C) from 2009 to 2013.

590 Data are represented as mean \pm S.D.

	Years	Cumulative SOC	Precipitation amount	Precipitation events-	Air temperature	
		mineralization rate		<u>days</u>		
	2008	293±10	520	105	9.76	
	2009	298±9	481	99	10.26	
	2010	238±50	588	101	10.39	
	2011	234±48	644	100	9.43	
	2012	226±19	481	98	9.43	
	<u>2013</u>	<u>240±30</u>	<u>523</u>	<u>71</u>	<u>11.08</u>	
	<u>Mean</u>	253±32 240±30	540±64 523	96±12 71	.10.1±0.6 11.08	带格式的: 字体:五号
	2013					带格式的:字体:五号
591						带格式的: 字体: 五号带格式的: 字体: 五号
592						
593						
594						
595						
596						
597						
598						
599						

Table 23. Relationships between SOC mineralization rate and soil temperature (F-T) or soil

moisture (F- θ) for each year from 2008 to 2013.

	Years		F-T			F-θ		•	带格式表格
		Functions	R^2	<u> </u> <i><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></i>	Q_{10}	Functions	R^2	<u></u> ₽	带格式的:字体:倾斜
	2008	F=0.49e ^{0.0499T}	0.56	< 0.01	1.65	$F = -0.0008\theta^2 + 0.10\theta - 1.52$	0.53	<0.01	
	2009	F=0.34e ^{0.0661T}	0.63	< 0.01	1.94	$F = -0.0001\theta^2 - 0.02\theta + 2.63$	0.61	< 0.01	
	2010	F=0.35e ^{0.0544T}	0.47	< 0.01	1.72	$F=0.0002\theta^2 - 0.04\theta + 2.15$	0.86	< 0.01	
	2011	F=0.45e ^{0.0395T}	0.47	< 0.01	1.48	$F = -0.0008\theta^2 + 0.06\theta + 0.06$	0.46	< 0.01	
	2012	F=0.27e ^{0.0623T}	0.67	< 0.01	1.86	$F = -0.0019\theta^2 + 0.14\theta - 1.71$	0.35	< 0.05	
	2013	F=0.52e ^{0.0441T}	0.32	< 0.01	1.55	$F = -0.001\theta^2 + 0.08\theta - 0.60$	0.36	< 0.05	
609									
610									
611									
612									
612									
013									
614									
615									
616									
617									
618									
619									
					2	6			

620						
621						
622						
623						
624						
625						
625	Table	4 Annual aumulativa	SOC minoralization rate $(a C m^{-2} u c a^{-1})$	was actimated by linear		进攻于的, 会体, 小皿 一会体谿舟,
626		4. Annual cumulative	SOC mineralization rate (g C m year)	was estimated by linear	\bigwedge	带格式的: 子体: 小四, 子体颜色: 自动设置
627	<u>interpo</u>	plation method, model	ed method, and unit conversed method from	<u>m 2008 to 2013.</u>		带格式的: 字体颜色: 自动设置 带格式的: 字体: 小四, 字体颜色:
·	Years		Annual cumulative SOC mineralization rate	4		目动设置 带格式的:字体颜色:自动设置
		Linear interpolation	Soil temperature and moisture modeled	Unit conversion	· /	带格式的:字体颜色:自动设置
					. \`	带格式的:字体:五号,字体颜色: 自动设置
	<u>2008</u>	<u>293</u>	<u>258</u>	<u>462</u>	/	带格式表格
	<u>2009</u>	<u>298</u>	<u>272</u>	<u>460</u>		
	<u>2010</u>	238	<u>268</u>	<u>344</u>		
	<u>2011</u>	<u>234</u>	<u>260</u>	<u>325</u>		
	<u>2012</u>	226	<u>271</u>	<u>314</u>		
	<u>2013</u>	<u>240</u>	<u>284</u>	<u>348</u>		
	Mean	<u>255±32</u>	<u>269±6</u>	<u>374±65</u>		
628	Note: M	lodeled method: using the in	teractions of soil temperature with moisture for estim	ating annual cumulative SOC	•	带格式的:字体:小五,字体颜色: 自动设置
629	minerali	zation rate with Eq. 4 (2.4 sec	tions); Unit conversion method: estimating annual cumu	lative SOC mineralization rate		带格式的:字体颜色:自动设置
630	with me	an SOC mineralization rate in	a given year.		\mathbb{N}^{-}	带格式的:字体:小五,字体颜色: 自动设置
631						带格式的:字体:小五,非加粗
					$\langle \rangle$	带格式的: 字体: 小五, 字体颜色: 自动设置
632					\	带格式的: 字体:小五,加粗,字体颜色:自动设置
633						
634						
635						
636						
637						
			27			

638	
639	
640	
641	
642	
643	Figure captions
644	
645	Fig. 1
646	Location of the State Key Agro-Ecological Experimental Station (Changwu Station).
647	
648	Fig. 2
649	Temporal variations of (a) precipitation and air temperature, (b) soil moisture and soil
650	temperature, and (c) SOC mineralization rate from 2008 to 2013.
651	
652	
653	Fig. 3
654	Regression analysis performed between (a) Q_{10} and annual precipitation amount, and (b) Q_{10}
655	and annual mean soil moisture.
656	
657	Fig. 4
658	Response surface of SOC mineralization rate as a function of soil moisture and soil
659	temperature from 2008 to 2013.
660	
661	
662	Fig. 5
	28

I

