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Referee 1 Response and changes made 

The paper is clear, scientifically sound, and well written. 

It represents an important study in the field of biomass 

and carbon forest monitoring, as few multitemporal 

lidar studies are available and none in the 

Mediterranean ecosystem under analysis. The methods 

are sound and the discussion is interesting. Minor 

scientific questions are posed below. 

 

Line 118-121: How did you measure DBH, crowns etc. for 

shrubs? The list of what measured seems as better suited 

for trees not shrubs. Same applies for biomas calculation 

(line 122 to 130). In Med. Woodlands shrubs below and 

among trees can be consistent, and it would be 

interesting to understand if you measure them (and how) 

and how shrubs presence influence your study 

We measure shrubs and trees setting 

the DBH threshold to 7.5. We  

considered that smaller sizes do not 

significantly contribute to plot-level 

biomass: this is now explained with 

appropriate reference (Stephenson et 

al 2014, Nature) in lines 122-4. 

Line 152: The amount of ground truth plots for developing 

the lidar biomass map is quite limited. How this 

influenced the goodness of estimates (and the low coeff. 

Of determination you obtained). Did you perform 

additional validation of the lidar modelled AGB i.e with 

leave one out or similar method? May the low R2 be 

responsible for the large st. dev. of your AGB change 

map? Which are the reference values (R2) for lidar based 

AGB estimation in Mediterranean woodlands? The 

analysis of this issues can improve the study. 

We acknowledge that the number of 

ground truth plots is low, and have 

added some text to:  

- emphasise the importance of the 

validation of the lidar modelled AGB 

using independent datasets (lines 

178-79), and  

- suggest that the results of this 

validation indicate that the sample 

size was sufficient statistically to 

obtain the estimated parameters of 

our model.  

We also compare the coefficient of 

determination of the AGB model 

(0.53) with a reference value from the 

region (0.67) (lines 299-302).  

 

Despite these additions to the revised 

version we didn’t consider that the 

additional analysis suggested, 

because we are confident that the 

results will remain the same and 

anyway the data is enough to support 



the results and conclusions of our 

analyses. 

Line 63: airborne lidar cannot support large scale 

applications, is not cost-effective. Line 70: to lidar in? Line 

77: I would add that multitemporal lidar acquisitions are 

still too expensive tool 

We agree that the costs of lidar are 

still high, and this point has now been 

emphasised in the discussion of 

making lidar operational in the future 

for better spatial and temporal 

coverage (lines 76, 344). We mention 

future space lidar capability as being 

an exciting development in this 

regard. However, it cannot be 

disputed that national level lidar 

applications are emerging, so the 

‘large-scale’ use is still referred to. 

Referee 2  

Very good and inspiring paper that I really enjoyed 

reading. It is a step ahead in the process of 

operationalising the use of LiDAR for quantifying AGB 

and Carbon fluxes. The authors use a study in central 

Spain with data from archive and ground data collection 

as an example of other research work worldwide. I liked 

the use of cores and dendrochronology applied to the 

estimation of carbon. It opens my mind personally for a 

lot of possible applications using the same data 

 

Please, include a couple of sentences describing how 

cores are being extracted (e.g. just one core, two cores in 

N-S, E-W, at dbh level, at mid point from ground to base 

of canopy .etc). I assume most of the readers, including 

myself, may not get access to the reference you 

mentioned that supposedly describes this process 

Further information has been 

inserted, as follows: One core was 

extracted from each selected tree at a 

height of 1.3 m off the 

ground. Following a size-stratified 

random sampling approach, 12 trees 

per plot were cored in monocultures 

and 6 trees per species were cored in 

mixtures (lines 196-200) 

Please specify whether altitude is referred to above 

ground or above sea level 

Comment refers to flying altitude in 

Table 1. It is now clarified that this is 

above sea level (asl) 

Page 14750, I think the authors should be talking more 

openly about Return Periods for extreme events in years 

rather than probabilities. I believe the first concept 

Agreed, and return rates are now 

referred to in lines 38, 284 and 384-5. 



is better understood and transmit a far more powerful 

message 

The probabilities they used for their predictions are 

perhaps not very realistic, as the authors noticed at the 

end of the paper. They only contemplate fire events every 

100, 250 and 500 years, whereas in Cataluña these 

returns periods are far shorter 

The rates we used did seem 

conservative but were based on the 

only two sources of information that 

we found for the Guadalajara region: 

(Ministerio de Agricultura, 2002, 

2012) and (Purves et al., 2007). 

I think the size of the plots (30x30m) is big enough for 

calibrating the system. I do not believe they may 

introduce important errors. In our experiments with 

plantation forests, 30 meters is precisely the point where 

accuracy levels of. 

This is encouraging, and we have 

made this point in line 328-329.  
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Abstract 24 

Woodlands represent highly significant carbon sinks globally, though could lose this function 25 

under future climatic change. Effective large-scale monitoring of these woodlands has a 26 

critical role to play in mitigating for, and adapting to, climate change. Mediterranean 27 

woodlands have low carbon densities, but represent important global carbon stocks due to 28 

their extensiveness and are particularly vulnerable because the region is predicted to become 29 

much hotter and drier over the coming century.  Airborne lidar is already recognized as an 30 

excellent approach for high-fidelity carbon mapping, but few studies have used multi-31 

temporal lidar surveys to measure carbon fluxes in forests and none have worked with 32 

Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset 33 

for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics 34 

in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the 35 

lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the 36 

resulting AGB change werewas estimated. There was a close agreement between the lidar-37 

based AGB growth estimate (1.22 Mg/ha/yr) and those derived from two independent 38 

sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 39 

Mg/ha/yr, respectively). We parameterised a simple simulator of forest dynamics using the 40 

lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. 41 

Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass 42 

and carbon is evident over the next 100 years with an average carbon sequestration rate of 43 

1.95 Mg C /ha/year. This rate reduces by almost a third when fire probability is increased to 44 

0.01, (fire return rate of 100 years), as has been predicted under climate change. Our work 45 

shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and 46 
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provide parameters for carbon dynamics models. Space deployment of lidar instruments in the 47 

near future could open the way for rolling out wide-scale forest carbon stock monitoring to 48 

inform management and governance responses to future environmental change. 49 

 50 

Keywords: forest, woodland, lidar, laser scanning, carbon accounting 51 

 52 

 53 

1. Introduction 54 

The world’s forests are currently acting as an important carbon sink, in 2000–2007 taking up 55 

2.3 ± 0.5 PgC each year compared with anthropogenic emissions of 8.7 ± 0.8 PgC (Pan et al., 56 

2011). For this reason, the international community recognises that forest protection could 57 

play a significant role in climate change abatement and that the feedback between climate and 58 

the terrestrial carbon cycle will be a key determinant of the dynamics of the Earth System 59 

(Purves et al., 2007). However, there is major uncertainty over forest responses to 60 

anthropogenic global change, and concerns that the world’s forests may switch from being a 61 

sink to a source within the next few decades (Nabuurs et al., 2013; Ruiz-Benito et al., 2014b), 62 

through gradual effects on regeneration, growth and mortality, as well as climate-change 63 

related disturbance (Frank et al., 2015). For instance, severe droughts in many parts of the 64 

world are causing rapid change, killing trees directly through heat-stress and indirectly by fire 65 

(Allen et al., 2010). Disturbance events can cause major perturbations to regional carbon 66 

fluxes (Chambers et al., 2013; Vanderwel et al., 2013). A major goal in biogeosciences, 67 

therefore, is to improve understanding of the terrestrial vegetation carbon cycle to enable 68 

better constrained projections (Smith et al., 2012).  69 

In this context, remote sensing methods for modelling above ground storage of carbon in 70 

biomass have received much recent attention, with airborne light detection and ranging (lidar) 71 

showing the most potential for accurate and large-scale applications. Lidar metrics of canopy 72 

structure are highly correlated with field-based estimates of above -ground biomass (AGB) 73 

and carbon (AGC) (Drake et al., 2003; Lefsky et al., 2002). With such relationships being 74 

repeatedly demonstrated, it has been possible to develop a conceptual and technical approach 75 

linking plot-based carbon density estimates with lidar top-canopy heights using regional 76 

inputs on basal area and wood density (Asner and Mascaro, 2014). With the increasing 77 

availability of multi-temporal (repeat survey) lidar datasets, including some of national 78 

coverage, a few researchers have started to use lidar in large-scale studies of vegetation 79 

productivity and carbon dynamics (Englhart et al., 2013; Hudak et al., 2012) as well as forest 80 

disturbance and gap dynamics (Blackburn et al., 2014; Kellner and Asner, 2014; Vepakomma 81 

et al., 2008, 2010, 2011). As such, and despite its high costs, lidar is transitioning from 82 

research to practical application, notably in supporting baseline surveys and monitoring of 83 

carbon stocks required for the implementation of the REDD+ mechanism (Reducing 84 

Emissions from Deforestation and Forest Degradation) (Asner et al., 2013). However, 85 
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monitoring carbon fluxes using multi-temporal lidar is technically challenging because 86 

instrument and flight specifications vary over time (Réjou-Méchain et al., 20142015). 87 

The applications of airborne lidar for modelling AGB and AGC have largely been tested in 88 

cool temperate and tropical forest systems (see Zolkos et al., 2013). Less attention has been 89 

given to the effectiveness of the technology for the modelling of biomass and carbon in sub-90 

tropical and Mediterranean climate zones dominated by dry woodlands. These woodlands 91 

have lower carbon densities, but represent important global carbon stocks due to their 92 

extensiveness and also vulnerability in the face of climate change (Ruiz-Benito et al., 2014b). 93 

As elsewhere in Europe, carbon stocks in such woodlands have been increasing in recent 94 

decades (Nabuurs et al., 2003, 2010; Vayreda et al., 2012), as woodland management for 95 

charcoal and timber has declined in profitability. However, with Earth System models 96 

predicting some of the most severe warming and drying trends of anywhere in the world 97 

(Giorgi and Lionello, 2008; Valladares et al., 2014), abrupt shifts in increasing fire frequency 98 

and intensity may reverse such trends across the Mediterranean region (Pausas et al., 2008). 99 

Lidar has been used to measure carbon stocks in some Mediterranean woodlands (García et 100 

al., 2010) but, to our knowledge, not for measuring carbon dynamics.  101 

In this study we demonstrate the potential to build a patchwork dynamics simulator for the 102 

biomass and carbon dynamics in Mediterranean woodlands based on multi-temporal lidar data 103 

(Fig. 1). Our aim is to model the direction and rate of landscape-scale AGC change for mixed 104 

oak-pine woodland in central Spain. We first calibrate a lidar top-of-canopy height model 105 

using selective ground-based estimations of tree- and plot-level biomass. The lidar-based 106 

AGB growth models are then validated using two independent datasets: the Spanish National 107 

Forest Inventory (SFI) and tree-ring measurements, before parameterising a simulation model 108 

to explore the dynamics of carbon change over a 100 year period. In doing so, we explore 109 

sensitivity of the long-term carbon sequestration potential of the regional landscape to 110 

increasing forest fire frequency, as is to be expected under future climate change.  111 

 112 

2. Methods 113 

2.1 Study area 114 

Alto Tajo (40° 47´ N, 2° 14´ W) is a Natural Park (32,375 ha) situated in the Guadalajara 115 

province of Central Spain. The dominant woody vegetation is Mediterranean mixed 116 

woodland, comprising Pinus sylvestris, P. nigra, Quercus faginea, Q. ilex, Juniperus 117 

oxycedrus and J. thurifera. The region has a complex topography ranging from 960 to 1400 m 118 

a.s.l. The mean annual temperature here is 10.2 °C, with mean annual rainfall of 499 mm.  119 

Contained within the Park is one of the six Exploratory platform sites contributing to 120 

FunDivEurope: Functional Significance of Biodiversity in European Forests (Baeten et al., 121 

2013). Field data used in the current study were taken from plots surveyed as part of this 122 

programme. The landscape-level analysis focused on a belt overlapping this areasarea and 123 

running 20 km north–south and 3 km east–west (Fig. 2). 124 
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2.2 Plot-based tree measurements and allometric biomass modelling 125 

Field measurement of plots was undertaken in March 2012. Each plot was of dimension 30 x 126 

30 m and was carefully geo-located, recording GPS corner coordinates and orientation using a 127 

Trimble GeoXT - Geoexplorer 2008. For each tree and shrub (diameter at breast height, DBH 128 

> 7.5 cm), the2.2 Plot-based tree measurements and allometric biomass modelling 129 

Field measurement of plots was undertaken in March 2012. Each plot was of dimension 30 x 130 

30 m and was carefully geo-located, recording GPS corner coordinates and orientation using a 131 

Trimble GeoXT - Geoexplorer 2008. Measurements were made of trees and shrubs of 132 

diameter at breast height (DBH) > 7.5 cm, given that smaller sizes contribute less to plot-level 133 

biomass (Stephenson et al., 2014). The following were measured and recorded: position 134 

within plot, species, height, height of lowest branch, DBH (at 1.3 m), and crown diameter 135 

(two orthogonal measurements). A vertex hypsometer was used for the crown dimensions.  136 

The above ground biomass of individual trees was estimated according to published 137 

allometries, and summed to arrive at plot and hectare totals. The allometric equations of Ruiz-138 

Peinado, del Rio, & Montero (2011) and Ruiz-Peinado, Montero, & del Rio (2012) were used 139 

for softwood species (Juniperus and Pinus) and hardwood species (Quercus), respectively 140 

(Appendix A). The equations were developed from tree samples across Spain including sites 141 

close to the Alto Tajo study area. The equations for Juniperus thurifera were applied to the 142 

other two junipers (J. oxycedrus and J. phoenicia) as well as box (Buxus sempervirens). In all 143 

cases, the equations compartmented the biomass into trunks and large, medium and fine 144 

branches/leaves, using DBH and tree height data. 145 

2.3 Lidar surveys, calibration and above-ground biomass and carbon change analysis 146 

The lidar surveys were undertaken by the NERC Airborne Research and Survey Facility 147 

(ARSF) and took place on 16 May 2006 (project WM06_04; García et al., 2011, 2010) and 21 148 

May 2011 (project CAM11_03). A Dornier 228 aircraft was employed for both, but lidar 149 

instruments differed between years: Optech ALTM-3033 in 2006 and Leica ALS050 in 2011. 150 

Instrument and flight parameters are given in Table 1. Simultaneous GPS measurement was 151 

carried out on the ground allowing for differential correction during post-processing.  152 

We assumed accurate georeferencing of the 2006 and 2011 datasets during post-processing, 153 

and did no further co-registration. We performed initial modelling of terrain and canopy 154 

heights from the 2006 and 2011 lidar datasets using ‘Tiffs’ 8.0: Toolbox for Lidar Data 155 

Filtering and Forest Studies, which employs a computationally efficient, grid-based 156 

morphological filtering method described by Chen et al. (2007). Outputs included filtered 157 

ground and object points, as well as digital terrain models (DTM) and canopy height models 158 

(CHM). The subsequent GIS and statistical analyses described below were undertaken in 159 

ArcInfo 10.0 (ESRI 2013) and R 2.13.1 (R Development Core Team, 2011), respectively.  160 

Spatially overlaying the lidar dataset with land cover information derived from the 2006 161 

CORINE map (EEA, 1995), indicated the local presence of two main forest types: coniferous 162 

and mixed (oak-juniper-pine) woodland. For the purposes of calibrating the lidar height 163 

models based on field-estimated biomass, only the latter forest type was adequately sampled 164 



(13 plots), so subsequent analysis and modelling focused on these mixed woodland systems. 165 

We predicted biomass as a function of top -of -canopy heights, which has been found to be a 166 

good predictor (Asner et al., 2013). Digitised plot boundaries for the 13 FunDiv plots of 167 

square 30 x 30 m were used to extract mean top-of-canopy height values from the lidar CHM 168 

(TCHL). Reassuringly, these values were remarkably similar to the mean canopy height 169 

estimated from plot data (TCHP), calculated from height and crown area of each tree obtained 170 

by allometric formulae (see Kent et al. 2015); there was almost a 1:1 relationship between the 171 

two estimates of height: TCHG = 1.79 + 0.999 × TCHL (R2 = 0.88). Field-estimated AGB was 172 

modelled on the basis of lidar mean height by linear regression of log transformed variables. 173 

Our selected model (log(AGB) = 3.02 + 0.89*log(TCHL), R2 = 0.53, RMSE = 0.28) was back-174 

transformed and multiplied by a correction factor (CF) to account for the back-transformation 175 

of the regression error (Baskerville, 1972); the correction factor is given by CF = eMSE/2, 176 

where MSE is the mean square error of the regression model. 177 

We used the regression model and lidar dataset to map biomass and biomass change. We 178 

aggregated canopy heights at 1 m resolution to mean values per 30 x 30 m grid cell, to reduce 179 

mismatches with the field inventory plots (Réjou-Méchain et al., 2014).We aggregated 180 

canopy heights at 1 m resolution to mean values per 30 x 30 m grid cell, to reduce mismatches 181 

with the field inventory plots (Réjou-Méchain et al., 2015). The aggregation was also 182 

effective in dealing with gappiness noted in the 2006 dataset due to uneven distribution of 183 

scan lines and lower point density (Table 1). Negative values caused by occasional 184 

inaccuracies evident in the DTM models, especially for 2006, were removed from the dataset 185 

to avoid anomalies. For each grid cell along the three north–south transects, we were able use 186 

the mean height–AGB regression relationship to generate estimates of AGB in 2006 and 187 

2011, and AGB change 2006–2011.  188 

2.4 Validation 189 

We validatedDue to the relatively low number of ground truth plots, it was especially 190 

important to validate the lidar-modelled AGB estimates, and this was done using two different 191 

datasets. Firstly, equivalent estimates of AGB and AGB change were developed using 192 

detailed tree measurements from the Spanish National Forest Inventory (SFI). The SFI covers 193 

the forested areas of the country on a 1-km2 grid (Villanueva, 2004). A subset of 234 SFI 194 

plots surrounding the study area and of comparable topography and climate were selected, 195 

and the data extracted for the second and third surveys (2SFI, 1992–94 and 3SFI, 2003–2006; 196 

i.e. an 11-year interval for this region). For each, plot-level AGB was calculated by applying 197 

the allometric equations of Ruiz-Peinado et al (2011, 2012; Appendix A) to individual tree 198 

height and stem diameter measurements and summing these up to the plot level. Information 199 

on topoclimate (altitude, rainfall, temperature; Gonzalo 2008) and management/fire 200 

disturbance were also available per plot, although areas significantly burned after the first 201 

inventory were removed from the dataset.  202 

Secondly, plot-level above-ground wood productivity values were calculated from tree-ring 203 

measurements from the same FunDiv plots used to calibrate the lidar data, according to a 204 

four-step procedure described in Jucker et al. (2014): measuring growth increments from 205 



wood cores, converting diameter increments into biomass growth, modelling individual tree 206 

biomass growth, and scaling up to plot level. In this approach, plot level estimates were based 207 

on the growth of trees present in 2011 and did not account for the growth of trees thatFor the 208 

coring, bark-to-pith increment cores were collected for a subset of trees in each plot (using a 209 

5.15 mm diameter increment borer, Haglöf AB, Sweden). Following a size-stratified random 210 

sampling approach, one core was extracted from each selected tree at a height of 1.3 m off the 211 

ground; 12 trees per plot were cored in monocultures and 6 trees per species were cored in 212 

mixtures (Jucker et al., 2014). In this approach, plot level estimates were based on the growth 213 

of trees present in 2011 and did not account for the growth of trees that died between 1992 214 

and 2011. 215 

died between 1992 and 2011. 216 

 217 

 218 

2.5 Biomass growth estimation and simulation modelling 219 

Plotting the 30 x 30 m pixel-level AGB estimates from 2006 versus 2011 revealed a small 220 

number of outliers of AGB change that may have resulted from anomalies in the DTM and 221 

top-of-canopy modelling (see discussion). We used robust regression to remove these outliers 222 

in order to obtain reliable estimates of mean growth and its uncertainty. This was performed 223 

with the rlm command in the MASS package of R, which uses iterative re-weighted least 224 

squares (M-estimation) (Venables and Ripley, 2002). Robust regression assigns lower weights 225 

to outliers than to points close to the regression line (in our case, using a bisquare weighting 226 

function), and then uses these weights to downplay the importance of these outliers in the 227 

linear regression. On inspection of the weights, we observed that all the obvious outliers had 228 

been assigned a weight of zero, so were easily filtered out.  Some 3.3% of the data were 229 

trimmed in this way. The residuals of the remaining dataset were close to normally 230 

distributed. Change in AGB was calculated for each plot in the trimmed dataset as (AGB2011 231 

-  AGB2006)/5, and the mean and standard deviation estimated. There was significant spatial 232 

auto-correlation of AGB2006 values (Moran’s I = 0.138, p < 0.001) and also AGB change 233 

(Moran’s I = 0.038, p < 0.001). However, following the conclusion of Hawkins et al. (2007) 234 

that regression estimates are not significantly affected by spatial autocorrelation, we 235 

considered it unnecessary to subsample the gridded dataset to avoid it.   236 

The trimmed dataset was used to model AGB growth as a function of biomass, using 237 

Bayesian inference, and to create a woodland dynamics simulator. The growth model was:  238 

AGB2011 = a + b × AGB2006 + ε  where ε ~ N (0, c + d × AGB2006 ) (1)  239 

where a, b, c and d are parameters calculated using STAN (STAN Development Team, 2014), 240 

a Bayesian inference package. We used uninformative prior and a burn-in of 5000 iterations 241 

(well in excess of that needed for convergence), then took 100 samples from the posterior 242 

distribution. We also fitted a model containing a quadratic biomass term, but the 95% 243 

confidence intervals of the quadratic term overlapped with zero, indicating no support for its 244 

inclusion. 245 



Parameter values drawn from the posterior distribution were fed into a simple simulation 246 

model. We created a 5000 cell “landscape” with starting biomass sampled randomly from 247 

AGB2006. For each cell the annual biomass increments were estimated by drawing parameters 248 

randomly from the posterior distribution 249 

 ΔAGB = (a + (b - 1) × AGB + ε)/5      (2)  250 

where ε was drawn at random from N (0, c + d × AGB). The biomass of each cell was then 251 

altered by ΔAGB and the iterative process continued for 100 years. Mean AGB values for the 252 

landscape each year were recorded and plotted with 95% confidence intervals.  253 

We also included the effect of various fire scenarios on mean biomass change and carbon 254 

dynamics in a simplistic way. We assumed that the probability of a cell being destroyed by 255 

fire, p, did not depend on that cell’s AGB and did not vary among years. For each time step 256 

and pixel, we decided whether a fire event had occurred in a cell by drawing random numbers 257 

from the binomial distribution, with the AGB being reset to zero as a result of a fire event. An 258 

annual probability of fire occurrence for the region of Guadalajara, based on areas burned 259 

each year 1991–2010 (Ministerio de Agricultura, 2002, 2012) is p=0.002, whilst that from a 260 

model parameterized from topoclimatic data from southern Spain is p=0.004 (Purves et al., 261 

2007). A five-fold increase in area burned as a result of a high emission climate scenario is 262 

predicted for similar forest types in Portugal (see Carvalho et al. 2009). Thus, as well as the 263 

no-fire scenario, we tested the three fire probabilities of p= 0.002, 0.004 and 0.01 to look at 264 

the sensitivity of carbon accumulation in the mixed woodlands to a realistic range of fire 265 

frequencies. Carbon sequestration potential (mean carbon storage in biomass over the 266 

simulation period, Mg/ha) was calculated using the IPCC default 0.47 carbon fraction 267 

(McGroddy, M.E., Daufresne and Hedin, 2004), and scaled up to a total value of carbon (and 268 

CO2 equivalent, 3.67 x C, Mt) for all mixed woodland in the autonomous community of 269 

Castilla La Mancha (181,000 ha) under the no-fire and three fire scenarios. We acknowledge 270 

that the simulation model is basic, and since it is not spatially explicit it makes no 271 

consideration of landscape connectivity. However, the results provide insight into the likely 272 

effect of varying fire rates on carbon dynamics. 273 

3. Results 274 

Lidar estimated mean AGB of mixed woodlands was 41.8 Mg/ha in 2006 and 47.9 Mg/ha in 275 

2011. Mean biomass change in this five-year period was 1.22 Mg/ha/yr, with a considerable 276 

degree of variation around this estimate (SD = 1.92 Mg/ha) and a large number of pixels 277 

losing biomass (Fig. 3), presumably as a result of disturbance. There was very good 278 

agreement between above-ground biomass estimated from the lidar modelling and Spanish 279 

National Inventory plots for mixed oak-juniper-pine woodland (Table 2). The lidar-based 280 

estimate is also in reasonable agreement with that calculated from the 2006 dataset in an 281 

earlier analysis: 44.7 Mg/ha for holm oak woodland (García et al., 2010). AGB change as 282 

modelled by the lidar approach was also close to estimates derived from the SFI and the 283 

Fundiv tree ring data (Table 2). The standard deviation of the lidar -based AGB change 284 

estimate is relatively high, probably as a result of lidar sampling/processing errors that are 285 



greater than measurement errors associated with plots and tree rings. From the lidar dataset, 286 

there was a statistically significant but minor effect on AGB change of altitude (range 908–287 

1322 m; ΔAGB = 21.17 – 0.01 × altitude,  R2 = 0.0180, p < 0.001) and aspect (calculated as 288 

folded aspect |aspect–180|; ΔAGB = 3.31 – 0.03 × aspect,  R2 = 0.0057, p < 0.001).  289 

Biomass change was modelled according to the relationship: 290 

AGB2011 = 3.98 + 1.05 × AGB2006 + ε  where ε ~ N (0, 4.32 + 1.10 × AGB2006 )  (3) 291 

Because b > 1, (i.e. With b = 1.05) (i.e. > 1), the woodlands are accumulating biomass over 292 

time, and althoughthough the variance term is large and so some cells are losing biomass (Fig. 293 

3). The disturbance-free simulation model showed a strong increase in accumulated AGB 294 

over the whole 100 year period (Fig. 4a). The mean AGB rose from 42.6 (± 5.6) to 236.9 (± 295 

18.5) Mg/ha, which equates to a mean carbon flux of 1.95 MgC/ha/yr. By modelling the 296 

occurrence of fire at probabilities of p = 0.002, 0.004 and 0.01, we showed its potential 297 

impact on biomass and therefore carbon accumulation (Fig. 4, Table 3). Mean (and standard 298 

deviation) values for AGB after 100 years were 200.6 (± 21.1), 174.2 (± 22.7), and 114.1 (± 299 

21.5) Mg/ha for a fire probability of 0.002, 0.004 and 0.01 (or return rate of 500, 250 and 100 300 

years) respectively. The effects of increasing fire occurrence also have dramatic effects on the 301 

carbon sequestration potential of the mixed woodlands considered at a regional level (i.e. 302 

Castilla la Mancha, Table 3), with the most severe fire regime reducing that potential by 303 

almost a half.  304 

 305 

4. Discussion 306 

Here we provide a demonstration of the potential of lidar remote sensing to deliver large-scale 307 

high-fidelity maps of above-ground biomass and carbon dynamics. Our lidar -based biomass 308 

growth model, estimating a mean annual growth of 1.22 MgC/ha/yr, is in excellent agreement 309 

with the estimate independently derived from the Spanish National Forest Inventory (1.19 310 

MgC/ha/yr). Even though there is a large standard deviation around our estimate, the 311 

enormous sample size (9136 pixels) means that standard errors become miniscule, so our 312 

landscape level projections are delivered with high precision and reliability (Coomes et al., 313 

2002). The number of field sampling plots used to calibrate the lidar top-of-canopy model is 314 

statistically enough given the parameters calculated and, therefore, for the purposes of our 315 

study. The coefficient of determination of the resulting model (R2 = 0.53) can be compared 316 

with a value of 0.67 obtained by García et al. (2010) for the same region. The difference could 317 

be due to that fact that García et al. (2010) included more plots across a greater range of 318 

woodland types, heights and carbon densities. 319 

In the Anthropocene era of rapid climate and environmental change, there is an urgent need 320 

for reliable large-scale monitoring of above-ground biomass and carbon stocks in forests and 321 

woodlands (Henry et al., 2015), and developing our understanding of how carbon stocks will 322 

change in the future. Forests serve the critical function of sequestering atmospheric carbon 323 

and reducing the potential rate of climate change. However, they also provide other highly 324 
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important services, including provision of timber, food and other non-timber products, 325 

regulation of water cycle and habitat for biodiversity (Gamfeldt et al., 2013; Ojea et al., 2012; 326 

WRI, 2005). The amount of biomass in forest is a metric relevant to all of these functions, 327 

with an especially close relationship with sequestered and stored carbon (Boisvenue and 328 

Running, 2006). In the context of climate change mitigation and emissions target agreements 329 

made at national level, robust methodologies are needed for the regular assessment of carbon 330 

stocks in forests (Gibbs et al., 2007).  331 

Our work demonstrates one such robust approach that has delivered a credible model of 332 

landscape-level carbon stocks and fluxes based on a five-year interval repeat-survey lidar 333 

dataset. The methodology involved identifying and discarding a small number of outliers in 334 

the AGB estimates, and it is worth reflecting on their origin. One of the challenges of multi-335 

temporal lidar analyses are when different instruments and specifications are used in the 336 

surveys. In our case, the 2006 lidar survey had a much lower point density than for 2011, and 337 

inspection of the resulting point cloud indicated a considerably uneven distribution of the scan 338 

lines. The accuracy of the resulting terrain and canopy models will therefore be lower, 339 

potentially giving rise to some of the anomalies in our results. We sought to quantify the 340 

source of this error by performing a comparison of top -of-canopy height (TCH) models from 341 

crossing flight-lines (data not given) for both years at the 30 m grid scale, for which the 342 

standard deviation for 2006 was more than double that for 2011. TCH is known to be quite 343 

robust across different instruments (Asner and Mascaro, 2014), being less susceptible to 344 

differences in laser canopy penetration than mean canopy height (MCH) (Næsset, 2009). 345 

However, our plots are quite small and this means thatWe considered that the size of our plots 346 

was sufficient for calibrating the system, though in comparison with larger plots: (1) errors 347 

caused by spatial misalignment of plots and lidar data are greater (Asner et al., 2009); (2) 348 

integrating measurements provides a less representative average (Zolkos et al., 2013); and (3) 349 

disagreement in protocol between lidar and field observations is greater (influenced by the 350 

effects of bisecting tree crowns in lidar data versus calling a tree ‘in’ or ‘out’ of the plot in 351 

field data; Mascaro et al., 2011). With regard to the latter issue, the potential error is affected 352 

by the average crown size relative to plot dimensions, such that it will be less in our situation 353 

(as it also is for boreal forest, Næsset et al., 2011), than it would be for tropical forests. 354 

At the extensive spatial scales required, remote sensing methodologies offer the only 355 

practicable approach to the challenge of forest monitoring, with lidar being the remote sensing 356 

instrument of choice given its potential to characterise the three dimensional structure of 357 

canopies and understories to a high degree of accuracy and resolution. Whilst spatial and 358 

temporal lidar coverage of the terrestrial and wooded surface of the planet is still limited, 359 

thisand the costs still high, this situation is improving continuously. A number of national 360 

surveys have been undertaken or commissioned, and building on the experience of the GLAS 361 

(Geoscience Laser Altimetry System) instrument on ICESAT (2003–2010), the GEDI Lidar 362 

space-borne facility is planned for deployment in 2019 (Dubayah et al., 2014). With these 363 

advancements, it is an important time to develop proof of principle of lidar monitoring of 364 

forest biomass and carbon stocks and fluxes. In this respect, a number of important multi-365 

temporal lidar studies have emerged. Typical of these are an analysis of AGB dynamics, tree 366 



growth and peat subsidence in peat swamp forests of Central Kalimantan, Indonesia 2007–367 

2011 (Boehm et al., 2013; Englhart et al., 2013), biomass changes in conifer forests of 368 

northern Idaho 2003–2009 at the pixel, plot and landscape level and looking at the impacts of 369 

logging (Hudak et al., 2012), studies of canopy gap dynamics (Blackburn et al., 2014; 370 

Vepakomma et al., 2008, 2010, 2011), and treefall rates and spatial patterns in a savanna 371 

landscape 2008–2010 (Levick and Asner, 2013). A study employing four lidar surveys 372 

between 2000–2005 established an optimum interval (3 years) for measuring tree growth in 373 

red pine forests at an acceptable level of uncertainty (Hopkinson et al., 2008). 374 

Our study makes an important additional contribution to this literature. It demonstrates how a 375 

relatively low-intensive field sampling campaigna woodland system with a small number of 376 

field plots can effectively calibrate a lidar dataset to scale up credible estimates of AGB and 377 

AGC at the landscape level. It is also novel in studying these dynamics within a 378 

Mediterranean environment. Much focus of lidar-based biomass modelling has been on 379 

tropical forest systems, given their importance to the global carbon cycle. Mediterranean 380 

woodlands hold a much lower carbon density, yet are valuable carbon stores given their 381 

extensive nature not just in the Mediterranean Basin but also other similar climate regions in 382 

the world. Furthermore, the potential effects of climate change in Mediterranean woodlands 383 

are suggested to be particularly strong (Benito-Garzón et al., 2013; Ruiz-Benito et al., 2014b). 384 

In the absence of fire in one such region, our simulation suggests a significant AGB increase 385 

from 42.6 to 236.9 Mg/ha over a 100 year period (equivalent to 1.94 MgC/ha/yr). Pan et al. 386 

(2011) estimates an annual increase of 1.68 MgC/ha/yr in European temperate forests in 387 

2000–2007, whilst the annual carbon sink in Mediterranean pine plantations range between 388 

1.06–2.99 MgC/ha/yr depending on species and silvicultural treatment (Bravo et al., 2008). 389 

Estimates provided by Ruiz-Benito et al. (2014) range from 0.55 (sclerophyllous vegetation) 390 

to 0.73 (natural pine forest) and 1.45 (pine plantation). Our own estimate of carbon 391 

sequestration potential equates to a regional carbon sequestration potential of over 10 M kg 392 

(19 kt CO2 equivalent) for mixed woodlands in Castilla la Mancha. Such a figure can be set in 393 

the context of national level commitments to the reduction of greenhouse gas emissions of 394 

10% against the Kyoto base year value of 289.8 Mt CO2 equivalent (EEA, 2014). Under 395 

Spain’s ‘Socioeconomic Plan of Forest Activation’, land use, land use change and forestry 396 

(LULUCF) is projected to absorb 20–30 Mt CO2 equivalent per year.  397 

The contribution of Mediterranean forests to the greenhouse gas balance sheet is vulnerable to 398 

the effects of climate change, for which the Mediterranean is a hotspot region (Giorgi and 399 

Lionello, 2008; Lindner et al., 2010). One of the mediating drivers is forest fire risk. We 400 

found that an increase in fire probability from 0.002 to 0.01 (return rate increase from 500 to 401 

100 years) dramatically altered the carbon sequestration potential of the landscape, with 402 

carbon stocks much reduced after 100 years with the highest fire probability scenario. It is 403 

worth noting in this respect that our modelled range of fire probabilities are conservative 404 

compared to estimates used in other simulations for similar regions (e.g. 0.01–0.2 for 405 

Catalonia, Lloret et al., 2003). However, it is also necessary to note that our simplistic 406 

modelling of fire, using a set probability of a burn irrespective of factors such as landscape 407 

position and temporal variability, mean that our results can only be treated as indicative of the 408 



scale of effect of different scenarios on the landscape carbon dynamics. For example, our 409 

modelling does not account for the way in which small changes in temperature and rainfall 410 

regimes could lead to tipping points of much higher risk and frequency, if not severity, of 411 

burns (Moritz et al., 2012), and dramatically different carbon dynamics outcomes.  412 

Our modelling is neither able to account for ecophysiological factors. Tree physiology is 413 

responsive to changing temperature and soil water availability, influencing rates of 414 

regeneration, growth and mortality (Choat and Way, 2013; Choat et al., 2012; Frank et al., 415 

2015; Williams et al., 2012). One study of low productivity forests (including Alto Tajo as a 416 

continental Mediterranean study area) showed how leaf respiration rates, and their ability to 417 

acclimate to seasonal changes in the environment, have a profound effect on whether trees can 418 

maintain productivity – and continue to act as carbon sinks – in dryland areas (Zaragoza-419 

Castells et al., 2008).  420 

Nevertheless, our modelling approach shows considerable promise for understanding the 421 

effects of different drivers on vegetation dynamics and making informative future predictions 422 

(Chambers et al., 2013; Coomes and Allen, 2007; Espírito-Santo et al., 2014). We compared 423 

no-fire with three different fire scenarios, but it would be equally possible to develop our 424 

approach further to consider other environmental and ecological drivers of the AGB and AGC 425 

dynamics, including tree diversity (Jucker et al., 2014; Ruiz-Benito et al., 2014a) and 426 

competition effects (Ruiz-Benito et al., 2014a, 2014b; Vayreda et al., 2012). With regard to 427 

understanding the landscape-level carbon dynamics of Spanish forests, in further work we 428 

propose coverage of a full range of different forest types and the development of more 429 

sophisticated climate change scenarios using models based on meteorological data, 430 

environmental parameters and different IPCC projections. More widely, the further 431 

development and testing of these methods is critical for exploring the prospects for, and 432 

contribution of, forests in the global carbon cycle under future environmental change.   433 
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Table 1: Specifications for the lidar surveys undertaken at Alto Tajo (Spain) in 2006 and 715 

2011.  716 

 2006 2011 
Lidar sensor Optech-ALTM3033 Leica ALS050 
Wavelength (nm) 1064 1064 
Beam divergence (mrad) 0.20 0.22 
Vertical discrimination (m)  2.8 
Detection system Two return Four return 
Date of deployment 16 May 2006 21 May 2011 
Pulse rate frequency (MHz) 33.33 67.2–74.4 
FoV (degrees) 12 40 
Scan frequency (Hz) 42.4 35.8–40.0 
Point density (m-2) 0.5 2 
Number of flight lines 3(N–W) 4 (E–W) + 3(N–W) 
Altitude (m) a.s.l.) 2063–2073 2097–2140 
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Table 2: Comparison of the lidar modelling of above-ground biomass (AGB) and biomass 719 

change (AGB change) with forest inventory and tree-ring data: values given are mean (and 720 

standard deviation in parentheses). 721 

 Lidar data Forest inventory 

data 

Tree-ring data 

AGB (Mg/ha) 41.80 (± 25.68) 42.8 (± 52.7) - 

AGB change 
(Mg/ha/yr) 

1.22 (± 1.92) 1.19 (± 1.17) 1.13(±0. 54) 

Sample size 9136 grid cells 66 plots 13 plots 

 722 

  723 



Table 3: Average above-ground biomass (AGB) and carbon sequestration potential over a 100 724 

year period for the four forest fire scenarios (no fire and at annual fire probability of occurrence 725 

of p=0.002, 0.004 and 0.01), scaled up to the regional level (181,000 ha of mixed forest in 726 

Castilla la Mancha) for carbon and carbon-dioxide equivalence. 727 

Fire scenario AGB 

(Mg/ha) 

Carbon 

sequestration 

potential 

(Mg/ha) 

Regional 

carbon (Kt) 

Regional CO2 

equivalent (Kt) 

No fire 124.9 58.7 10.6 39.0 

P=0.002 111.6 52.4 9.5 34.8 

P=0.004 101.9 47.9 8.7 31.8 

P=0.01 77.7 36.5 6.6 24.3 
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 735 

Figure 1: Methodological approach. 736 
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 738 

 739 

Figure 2: Study area. Shown in lighter green, mixed forest, and darker green, coniferous 740 

forest. Other land covers (including agricultural) in shades of grey, with darkest grey 741 

indicating an area burned by forest fire in 2005 and excluded from these analyses. The three 742 

north-south parallel strips show the lidar survey coverage. 743 
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 745 

 746 

Figure 3: Scatterplot of above-ground biomass (AGB) estimates for 2006 and 2011: lidar 747 

(black dots), Spanish Forest Inventory (red bordered circles), with one-to-one line (black) and 748 

fitted model (green).  749 
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Figure 4: Simulation model results for AGB over a 100 year period without fire (a) and at 751 

annual fire probability of occurrence of p=0.002 (b), 0.004 (c) and 0.01 (d). Figures show 752 

mean (black line) and 95% confidence intervals (grey shading).  753 
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Appendix A 757 

Allometric equations used in the estimation of tree biomass from height and stem diameter 758 

measurements 759 

(Ruiz-Peinado, del Rio, & Montero, 2011; Ruiz-Peinado, Montero, & del Rio, 2012) 760 

(Ruiz-Peinado et al., 2011, 2012) 761 

Pinus nigra Arn. 762 

Stem Ws =     0.0403 ·  d1.838 ·  h0.945  763 

Thick branches     If d ≤ 32.5 cm then Z = 0; If d > 32.5 cm then Z = 1; 764 

Wb7 =      [0.228 ·  (d-32.5)2] ·  Z 765 

Medium branches Wb2-7 =   0.0521 ·  d2 766 

Thin branches + needles Wb2+n =  0.0720 ·  d2 767 

Roots Wr =     0.0189 ·  d2.445 768 

Pinus sylvestris L. 769 

Stem Ws =     0.0154 ·  d2 ·  h 770 

Thick branches     If d ≤ 37.5 cm then Z = 0; If d > 37.5 cm then Z = 1; 771 

Wb7 =      [0.540 ·  (d-37.5)2 – 0.0119 ·  (d-37.5)2 ·  h] ·  Z 772 

Medium branches Wb2-7 =   0.0295 ·  d2.742 ·  h–0.899  773 

Thin branches + needles Wb2+n =  0.530 ·  d2.199 ·  h–1.153 774 

Roots      Wr = 0.130 ·  d2 775 

Juniperus thurifera L. (applied for all Juniperus) 776 

Stem Ws =     0.0132 ·  d2 ·  h + 0.217 ·  d · h  777 

Thick branches     If d ≤ 22.5 cm then Z = 0; If d > 22.5 cm then Z = 1; 778 

Wb7 =      [0.107 ·  (d-22.5)2] ·  Z 779 

Medium branches Wb2-7 =   0.00792 ·  d2 ·  h 780 

Thin branches + needles Wb2+n =  0.273 ·  d ·  h 781 

Roots Wr =     0.0767 ·  d2  782 

Quercus faginea 783 

Stem Ws =     0.154 ·  d2 784 

Thick branches Wb7 =    0.0861 ·  d2 785 

Medium branches Wb2–7 =   0.127 ·  d2 – 0.00598 ·  d2 ·  h 786 

Thin branches + leaves Wb2 + l =   0.0726 · d2 – 0.00275 ·  d2 ·  h 787 

Roots Wr =     0.169 ·  d2 788 

Quercus ilex 789 

Stem Ws =     0.143 ·  d2 790 

Thick branches     If d ≤ 12.5 cm then Z = 0; If d > 12.5 cm then Z = 1; 791 

Wb7 =      [0.0684 ·  (d – 12.5)2 ·  h] ·  Z 792 

Medium branches Wb2–7 =   0.0898 ·  d2 793 

Thin branches + leaves Wb2 + l =   0.0824 · d2 794 

Roots Wr =     0.254 ·  d2 795 

 796 

Notes: 797 

Ws: Biomass weight of the stem fraction (kg);  798 

Wb7: Biomass weight of the thick branches fraction (diameter larger than 7 cm) (kg); 799 

Wb2–7: Biomass weight of medium branches fraction (diameter between 2 and 7 cm) (kg);  800 

Wb2 + l: Biomass weight of thin branches fraction (diameter smaller than 2 cm) with leaves (kg);  801 

Wr: Biomass weight of the belowground fraction (kg);  802 
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d: diameter at breast height (cm);  803 

h: tree height (m); 804 


