1 We would like to thank all reviewers for their critical comments, which we think helped to improve

- 2 the quality and clarity of this manuscript. We hope our responses and adaptations are adequate to 3 accept this manuscript for publication in Biogeosciences. Please find our detailed responses below.
- accept this manuscript for publication in Biogeosciences. Please find our detailed responses below.
- 5 The uploaded revised manuscript includes the reviewer changes as well as revised English spelling 6 and grammar.

7 Ronald Oremland, Referee #1

- 8 Received and published: 15 September 2015
- 9 The manuscript by Maltby et al. examines the processes of methanogenesis and
- 10 sulfate-reduction along a transect of seafloor transiting a near-shore depositional-rich
- 11 region to an offshore, deeper sediment locale. The work was done on the Peruvian
- 12 shelf, a region of high productivity and oxygen-minimum zone/anoxic bottom waters.
- 13 The work also acquired a number of relevant parameters along with the bioassays.
- 14 The main finding was that the shallow sediments nearest shore had high rates of
- 15 methanogenesis at the sediment surface, implying a contribution of non-competitive
- 16 substrate precursors (e.g., methylated amines and methylated sulfides) as precursors of methane.
- 17 Methanol was added as a proxy non-competitive substrate while molybdate was employed to detect
- 18 use of competitive substrates to underscore this point. Although considerable work has been done
- 19 along these lines in salt-marsh sediments and hypersaline systems, very little has been done in open
- 20 marine systems like the one described here.
- I do not have substantive technical criticisms, but offer the following points to strengthen and clarify
 the manuscript:
- page 14871, lines 26-27: the logic here is not obvious that H2/acetate increase with
- 24 depth as organic matter becomes more recalcitrant.
- 25 Authors Reply: We agree with the reviewer and decided to delete this sentence to avoid confusion.
- page 14872, lines 27 28: some statement should be made about probable sources of non competitive substrate precursors, such as degradation of organic osmolytes (e.g., DMSP, betaine).
- 29 Authors Reply: We thank the reviewer for this comment and added this information in the text.
- page 14878,lines 2-3: since the sediments were mixed with bottom water, which contained abundant
 sulfate, these rates may underestimate the potential of deeper sediment regions where sulfate is
 low.
- Authors Reply: The focus of the paper was to determine methanogenesis activity within the sulfate
 reduction zone, i.e., in the presence of sulfate. Within the investigated sediment (0-30 cmbsf) sulfate
 was always above 9 mM in situ. We are therefore confident that the detected methanogenis activity
 reflects its potential under the given environmental conditions.
- 40 page 14879, line 1 (and elsewhere, page 14885 bottom): what percentage of the added 10 mM41 methanol went to CH4 (plus CO2) in the incubations?
- 42

28

30

Authors Reply: We expect that close to 100 % of the methanol was converted to CH4 (plus CO2). We
 did similar experiments in another study where we followed the conversion of methanol by 13C-

45 46 47	Labeling. However, as we did not conduct these experiments in the current study, we rather do not want to make any assumptions.
48	Minor corrections:
49 50	page 14870, line 1: co-occurrence (concurrence implies an agreement)
51 52	Authors Reply: Done
53 54	page 14870, line 10: multiple cores (not multicorer cores)
55 56	Authors Reply: Done
57 58	page 14870, line 23: decrease (not decline)
59 50	Authors Reply: Done
51 52	page 14873, line 15:an environment where both(no comma)
53 54	Authors Reply: Done
55 56 57	page 14875, line 11: a 5 m steel barrel (not "steal" unless the authors actually pilfered the corer from another lab)
58 59	Authors Reply: Done. We would never steal from our colleagues ;-)
70 71	page 14877, line 24 - 25: sliced into 5 cm
72 73	Authors Reply: Done
74 75	page 14878, line 28: molybdate
76 77	Authors Reply: Done
78 79	page 14882, line 2: a grey color
30 31	Authors Reply: Done
32 33	page 14887, line 19: co-occurred
84 85	Authors Reply: Done
86 87	page 14889, line 23: were (not "where")
38 39	Authors Reply: Done
90 91	page 14895, line 10: were (not "was")
92 93 94 95	Authors Reply: Done

- 96 97

99 Anonymous Referee #2

98

100 Received and published: 19 October 2015 101 The manuscript of Maltby et al. describes rates of sulfate reduction and methanogenesis were measured in various radiotracer incubations. The study highlights the role 102 103 of methanogenesis in near-surface sediments (here termed shallow methanogenesis) 104 in overall carbon mineralization. Methodologically the study is extremely well designed 105 and the experimental setup is flawless. 106 107 The only flaw that I see in this paper is in the treatment of the bag incubations in relation to the 108 whole-core incubations. While whole core incubations are next best thing to in-situ experiments with 109 benthic landers (which come with their own set of problems and limitations), bag experiments for 110 rate measurements will definitely give results that are different to measurements on intact 111 sediment cores. Numerous studies have reported the effects of structural disturbance 112 on turnover rates. Although the bag experiments were only perfomed in order to study 113 the effect of various substrate additions, especially non-competitive subtrates, the measured rates are presented in a way that the reader might get the impression that these 114 115 rates are actually comparable to the whole core incubation data. I would therefore suggest 116 to stress the differences between the whole core and bag incubations and discuss 117 the limitations of the different techniques. 118 119 Authors Reply: We thank the reviewer for this helpful comment. There is indeed a difference 120 between the sulfate reduction rates (whole core method) and the net methanogenesis rates (slurry 121 incubations with anoxic deep water). The additional experiments with addition of substrate (slurry 122 incubations with artificial seawater) are marked by a different title: "potential methanogenesis"), 123 which stresses the difference compared to net methanogenesis and sulfate reduction. However, we 124 agree that we have to point out the differences in net methanogenesis rates and sulfate reduction 125 rates during our comparison. Therefore, we added this information to the discussion. 126 127 Minor comments: 128 p14872, line 26: Why do these conditions favour methanogenesis, anoxia and fresh organic matter 129 130 are also perfect conditions for sulfate reduction 131 132 Authors Reply: Methanogens have a high sensitivity to oxygen (sulfate reducers tolerate oxygen 133 much better). We argue that the depletion of oxygen in the bottom water (and with that also 134 absence of bioirrigation) allow methanogens to colonize and thrive close to (or at the) sediment-135 water interface. We added a few words to clarify this point. 136 137 p14873, line 2: As far as I know Limfjorden sediment is permanently anoxic, at least below the upper 138 few mm, only the oxygen concentration in the water column changes over the year. I think 139 this sentence should be rephrased to avoid confusion. 140 Authors Reply: We agree with the reviewer and changed the sentence. 141 142 143 144 p14875 line 8 and 15: Why did you process the samples in two different cold rooms with different

145 temperatures? 146

147 Authors Reply: This was a matter of space. The cores from the multicores were all processed in a 9°C cold laboratory container, which was used by different scientific parties on board. When we 148 149 processed the gravity core, space was limited so we moved to the 4 °C cold room (a storage room), 150 which was not acclimated to 9°C. 151 152 p14875 line 11: I still think that you paid for the barrel on your corer and did not steal 153 it... 154 155 Authors Reply: Done. 156 p14878, line 21: What do you mean by "transfered completely"? Did you do a 157 158 quantitative transfer or did you fill the bottle without headspace? 159 160 Authors Reply: We filled the bottles without headspace. To avoid confusion, we changed the 161 sentence. 162 163 p14879, line 27f: Section 2.3 describes porewater sampling, not rate measurements. What do you mean by "according to the above scheme"? Did you use a slurry? How did you get the sediment 164 165 into the glass syringes? Or do you mean the old Jørgensen glass barrels (Glass tube 166 with syringe plunger)? 167 168 Authors Reply: "According to the above scheme" refers to the sampled sediment depths, not the 169 type of measurements. We changed the wording to make it clearer. 170 By "glass syringes" we indeed meant the Jørgensen glass barrels. We changed the sentence 171 accordingly. 172 173 p14880, line 9f: Why did you do change your technique? I always thought that the old one was just 174 fine? 175 176 Authors Reply: Absolutely. It is basically the same method just that for the methanogenesis rate 177 calculation you need the total DIC concentration and not the total methane concentration (which 178 you need for AOM calculation). We therefore did DIC analyses instead of gas chromatography. 179 180 p14887, line 12: Why didn't you use for example the SO4 or DIC PW profile to align the cores? Comparison between the topmost Gravity Core sample and the MUC cores should give you a 181 182 reasonable estimate how much sediment was blown off by the Gravity Core 183 Authors Reply: We did look at the SO4 profiles to check if the statement of \sim 20 cm fits in our case. 184 185 However, as the sampling intervals in the gravity core were rather large, we did not feel comfortable 186 to align the cores. 187 188 p14889, line 13-15: Please show the data, this could be important. 189 190 Authors Reply: As the deep sediment layers are not the focus of the presented study, we do not 191 think adding the iron data will change the view on our findings and rather distract from our story. We 192 therefore refrain from showing this data. 193 194 p14890, line 21: To me the term "transport velocity" implies an active movement, which would only 195 be important in zones with active fluid flow. Here we are talking about purely diffusive systems and I 196 would recommend sticking to those to avoid confusion.

- **Authors Reply**: In this context (introducing the SMTZ) we actually meant both diffusive and advective transport. We changed the wording to "flux" as a more neutral term, which considers both diffusive and advective transport.
- 201

203	Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the
204	Peruvian margin
205	Johanna Maltby ^{a*} , Stefan Sommer ^a , And <u>rewy</u> W. Dale ^a , Tina Treude ^{a,b*}
206	^a GEOMAR Helmholtz Centre for Ocean Research Kiel, Department of Marine Biogeochemistry,
207	Wischhofstr. 1-3, 24148 Kiel, Germany
208	^b Present address: Department of Earth, Planetary & Space Sciences and Atmospheric & Oceanic
209	Sciences, University of California, Los Angeles (UCLA), CA, USA
210	Correspondence: jmaltby@geomar.de, ttreude@g.ucla.edu
211	
212	Abstract
213	We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm
214	below seafloor) at six stations (70, 145, 253, 407, 990 and 1024 m) along the Peruvian margin (12°S).
215	This oceanographic region is characterized by high carbon export to the seafloor creating an extensive
216	oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis.

Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (³⁵S-sulfate radiotracer incubation) were determined in the upper 0-25 cmbsf of multiplecorer cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cmbsf, ¹⁴C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis.

Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cmbsf, were observed on the shelf (70-253 m, 0.06-0.1 mmol m⁻² d⁻¹ and 0.5-4.7 mmol m⁻² d⁻¹, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m⁻² d⁻¹ ¹, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates, i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decreaseline of sulfate, the usage of competitive substrates was confirmed by the
detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m).
Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C/N
ratio) and organic carbon degradation (DIC production), both of which support the supply of
methanogenic substrates. A negative correlation betweenof methanogenesis rates andwith dissolved
oxygen in the bottom-near water was not obvious, however, anoxic conditions within the OMZ might
be advantageous for methanogenic organisms at the sediment-water interface.

Our results revealed a high relevance of surface methanogenesis on the shelf, where the ratio between surface to deep (below sulfate penetration) methanogenic activity ranged between 0.13 and 10⁵. In addition, methane concentration profiles indicate<u>d</u> a partial release of surface methane into the water column as well as <u>a partial</u> consumption of methane by anaerobic methane oxidation (AOM) in the surface sediment. The present study suggests that surface methanogenesis might play a greater role in benthic methane budgeting than previously thought, especially for fueling AOM above the sulfatemethane transition zone.

- 244
- 245

246 *Keywords: Oxygen minimum zone, organic matter, competition, anaerobic oxidation of methane,*247 *emission*

248

250 1. Introduction

251	Microbial methanogenesis represents the terminal step of organic matter degradation in marine
252	sediments (Jørgensen, 2006). The process is entirely restricted to a small group of prokaryotes within
253	the domain of the Archaea (Thauer, 1998). Methanogens produce methane from a narrow spectrum of
254	substrates, primarily carbon dioxide (CO ₂) and hydrogen (H ₂) (hydrogenotrophic pathway), as well as
255	acetate (acetoclastic pathway) (Zinder, 1993). In addition, methanol or methylated compounds such as
256	methylamine <u>can beare</u> utilized (methylotrophic pathway) (Oremland & Polcin, 1982; Buckley et al.,
257	2008; Zinder, 1993; King et al., 1983). Substrates for methanogenesis are produced during
258	depolymerization and fermentation of organic macromolecules (e.g., sugars, vitamins, amino acids) to
259	smaller monomeric products (Jørgensen, 2006; Schink & Zeikus, 1982; Neill et al., 1978; Donnelly &
260	Dagley, 1980).
261	Acetoclastic and hydrogenotrophic methanogenesis are predominantly found in deeper sediment zones
262	below sulfate penetration, owing to the more effective utilization of competition with sulfate reducers
263	that outcompete methanogens for H_2 and acetate by sulfate reducers due to their higher substrate
264	affinity (Oremland & Polcin 1982; Jørgensen 2006). Furthermore, CO2/H2-and acetate are the more
265	abundant substrates in deeper sediments as degradability of organic matter, and with it the substrate
266	variety and availability, decreases with increasing sediment depth (Jørgensen, 2006).
267	Methanogens <u>can</u> avoid competition with sulfate reducers by the utilization of non-competitive
268	substrates, such as methanol or methylamines (Oremland & Polcin, 1982; King et al., 1983).
269	Facilitated by the usage of such non-competitive substrates, sulfate reduction and methanogenesis
270	were found to co-occur in sulfate-containing salt marsh sediments (Oremland et al., 1982; Buckley et
271	al., 2008; Senior et al., 1982). Concurrent activity of sulfate reduction and methanogenesis in the
272	marine environment has mostly been postulated for organic-rich sediments (Mitterer, 2010; Jørgensen
273	& Parkes, 2010; Treude et al., 2009, 2005a; Hines & Buck, 1982; Crill & Martens, 1986); however,
274	details research on the magnitude and environmental controls of surface methanogenesis are is still
275	poorly understood sparse (Holmer & Kristensen, 1994; Ferdelman et al., 1997).
276	In a study from Eckernförde Bay, southwestern Baltic Sea, considerable in vitro methanogenic activity

277 was observed in samples taken from 5 to 40 cm sediment depth (Treude et al. 2005). Although in vitro

Formatiert: Abstand Nach: 0 Pt.

278	activity was measured in sulfate-free setups, methanogenic activity coincided with zones of in-situ
279	sulfate reduction. The authors concluded a coexistence of the two types of organisms, which could be
280	enabled through either the usage of non-competitive substrates, dormancy of methanogens until phases
281	of sulfate depletion, and/or temporal or spatial heterogeneity in the sediments. Eckernförde Bay
282	sediments feature a high input of organic matter due to a shallow water depth (~30 m) and pronounced
283	phytoplankton blooms in spring, summer, and fall (Smetacek, 1985). Furthermore, seasonal hypoxia
284	(O ₂ < 90 μ M) or even anoxia (O ₂ =0 μ M) occur in the deep layers of the water column caused by
285	stratification and degradation of organic matter (Bange et al. 2011). Oxygen-depleted conditions in
286	the bottom water together with frequent input of fresh organic matter possibly favors methanogenesis
287	in surface sediment by offering reduced conditions and non-competitive substrates. As non-
288	competitive substrates can be derived from organic osmolytes such as betaine or
289	dimethylsulfoniopropionate (DMSP), a high load of organic matter (e.g. through sedimentation of
290	phytoplankton blooms) can increase the availability of non-competitive substrates (Zinder, 1993; Van
291	Der Maarel & Hansen, 1997). In accordance, methanogenesis activity was observed within the sulfate-
292	reducing zone of organic-rich sediments and seasonally hypoxic sediments from the seasonally
293	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).
293 294	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).
293 294 295	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977). The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the
293 294 295 296	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977). The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column,
293 294 295 296 297	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977). The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).
293 294 295 296 297 298	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977). I The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009). I Methane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form I
293 294 295 296 297 298 299	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).Methane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form of gas bubbles (Whiticar, 1978; Wever & Fiedler, 1995; Judd et al., 1997; Dimitrov, 2002). The
293 294 295 296 297 298 299 300	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).Methane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form of gas bubbles (Whiticar, 1978; Wever & Fiedler, 1995; Judd et al., 1997; Dimitrov, 2002). The fraction How much of the released methane released to the water column that reaches the atmosphere
293 294 295 296 297 298 299 300 301	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).IThe environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).IMethane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form of gas bubbles (Whiticar, 1978; Wever & Fiedler, 1995; Judd et al., 1997; Dimitrov, 2002). The fraction How much of the released methane released to the water column that reaches the atmosphere mainly depends on water depth, as methane is <u>also</u> consumed within the water column through <u>aerobic</u> I
293 294 295 296 297 298 299 300 301 302	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).Methane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form of gas bubbles (Whiticar, 1978; Wever & Fiedler, 1995; Judd et al., 1997; Dimitrov, 2002). The fraction How much of the released methane released to the water column that reaches the atmosphere mainly depends on water depth, as methane is <u>also</u> consumed within the water column through <u>aerobic</u> microbial oxidation (Reeburgh, 2007; Valentine et al., 2001). Thus, <u>shallow</u> coastal areas have higher
293 294 295 296 297 298 299 300 301 302 303	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).Methane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form of gas bubbles (Whiticar, 1978; Wever & Fiedler, 1995; Judd et al., 1997; Dimitrov, 2002). The fraction How much of the released methane released to the water column that reaches the atmosphere mainly depends on water depth, as methane is also consumed within the water column through aerobic microbial oxidation (Reeburgh, 2007; Valentine et al., 2001). Thus, shallow coastal areas have higher methane emission potentials than the open ocean (Bange et al., 1994) and a greater potential to
293 294 295 296 297 298 299 300 301 302 303 304	hypoxic_Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).Methane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form of gas bubbles (Whiticar, 1978; Wever & Fiedler, 1995; Judd et al., 1997; Dimitrov, 2002). The fraction How much of the released methane released to the water column that reaches the atmosphere mainly depends on water depth, as methane is also consumed within the water column through aerobic microbial oxidation (Reeburgh, 2007; Valentine et al., 2001). Thus, shallow_coastal areas have higher methane emission potentials than the open ocean (Bange et al., 1994) and a greater potential to contribute to methane-dependent. Once in the atmosphereic warning, methane acts as avery potent
293 294 295 296 297 298 299 300 301 302 303 304 305	hypoxic Limfjorden sound, Northern Denmark (Jørgensen & Parkes, 2010; Jørgensen, 1977).The environmental relevance of surface methanogenesis is hitherto unknown. Its closeness to the sediment-water interface makes it a potential source for methane emissions into the water column, unless the methane is microbially consumed before escaping the sediment (Knittel & Boetius, 2009).Methane escapes the sediment either by diffusion or, when methane saturation is exceeded, in the form of gas bubbles (Whiticar, 1978; Wever & Fiedler, 1995; Judd et al., 1997; Dimitrov, 2002). The fraction How much of the released methane released to the water column that reaches the atmosphere imainly depends on water depth, as methane is also consumed within the water column through aerobic methane emission potentials than the open ocean (Bange et al., 1994) and a greater potential to contribute to methane-dependent-Once in the atmosphereic warming- methane acts as a very potent greenhouse gas (IPCC, 2014).

Formatiert: Hervorheben

300	
307	In the present study we focused on the upwelling region off the Peruvian coast, which is another
308	excellent example of an environment, where both factors that potentially favor surface methanogenesis
309	convene, i.e., a high export of organic carbon and low dissolved oxygen concentrations in the bottom
310	water. This upwelling region represents one of the most productive systems in the world oceans,
311	creating one of the most intense oxygen minimum zones (OMZ, Kamykowski & Zentara 1990;
312	Pennington et al. 2006). Oxygen concentrations in waters impinging on the seafloor are below 20 μ M
313	or even reach anoxia. Research on surface sediment methanogenesis in upwelling regions is-rare
314	scarce and its potential role in the carbon cycling of the Peruvian OMZ is completely unknown. In a
315	study from the central Chilean upwelling area (87 m water depth, 0.5-6 cm sediment depth), lowsmall
316	methane production rates of methane was were detected despite high sulfate reduction activity, when
317	offering the non-competitive substrate trimethylamine was offered (Ferdelman et al., 1997). The
318	authors concluded that the prevailing methanogens were competing with sulfate reducers for H ₂ and
319	with acetogens for methylamines, explaining the overall low methanogenesis activity observed
320	(Ferdelman et al., 1997).
321	Even though the Chilean and Peruvian OMZs are connected, commonly known as OMZ in the
322	Eeastern South Pacific Ocean (ESP) (Fuenzalida et al., 2009), the core of the ESP-OMZ is centered
323	off Peru with an upper boundary at < 100 m and a vertical distribution to > 600 m versus a thinner
324	OMZ band off Chile constrained between 100-400 m water depth (Fuenzalida et al., 2009). The
325	aAnoxic conditions in the water column of the OMZ core (and therewith a lack of bioirrigating
326	macrofauna introducing oxygen into the sediments (Kristensen, 2000)) together with the high export
327	rates of labile organic carbon to the seafloor (Reimers & Suess, 1983; Dale et al., 2015) provide
328	favorable conditions for methanogenesis activity in surface sediments, thus increasing the potential for
329	benthic methane emissions.
330	Here, we provide first insights into surface methanogenesis in sediment cores (< 30 cmbsf =
331	centimeters be <u>lowfore</u> seafloor) taken along the Peruvian shelf and margin. We hypothesize that
332	methanogenesis coexists with sulfate reduction through the utilization of non-competitive substrates.

333 In addition, we postulate that surface methanogenesis depends on the quantity and quality (=

Formatiert: Hervorheben

freshness) of organic carbon, and the concentrations of dissolved oxygen in the bottom water. We
therefore expect spatial variability of surface methanogenesis along the continental shelf and margin.
The observed methanogenic activity will be compared to methane concentrations in the bottom-near
water to discuss the potential relevance of surface methanogenesis for methane emissions into the
pelagic zone.

339

340 2. Material and Methods

341 **2.1 Study site and sediment sampling**

342 Samples were taken during the R.V. Meteor cruise M92 between 5. Jan and 3. Feb 2013 along a depth

- 343 transect off the Peruvian coast from the shelf (~70 m) to the continental marginslope (~1000 m). The
- transect was located in the central part of the ESP-OMZ (Fuenzalida et al., 2009) at 12°S. Further

hydrographic details on the study area can be found elsewhere (Dale et al., 2015).

- 346 Sediment cores for the determination of near-surface methanogenesis were collected at six stations
- along the depth transect at 70, 145, 253, 407, 776 and 1024 m water depth (Fig.1), using a multiple
- 348 corer with a mounted camera (TV-MUC). The MUC held seven cores (length: 60 cm, inner diameter:
- 349 10 cm) and covered an area of ~1 m². If necessary, a second MUC was deployed at the same station,
- 350 thus sediment cores could originate from different MUC casts. Station numbers were assigned in
- accordance with Dale et al., (2015). After retrieval, sediment cores were transferred to a ~ 9°C cold
- 352 room and processed at the same day.
- In addition to the MUC, a gravity corer was deployed at two stations (78 and 407 m) for determining
- deep methanogenesis. The total core length was 400 cm and 206 cm, respectively. The gravity corer
- was equipped with a 260 kg weight and a 5 m stegel barrel (diameter: 14 cm). The replaceable core
- liner (PVC, diameter: 12.5 cm) was housed within the barrel and fixed with a core catcher. After
- 357 retrieval, sediment cores from the gravity corer were sliced into 1-m sections, capped on both sides,
- and brought to the cold room $(4^{\circ}C)$ for further processing. Relevant station details for MUC and
- 359 gravity cores are summarized in Table 1.
- 360
- 361 2.2 Water column sampling

362	CTD/Rosette water column casts were conducted at the same station as sediment coring (for details
363	see Table 1). Temperature and oxygen data wereare taken from Dale et al. 2015.
364	For the analysis of methane concentrations in the bottom-near water, water was sampled ca. 1.5 m
365	above the seafloor from 10 L Niskin bottles mounted on the a CTD/R rosette water sampler. The
366	collected water was filled bubble-free into 60 ml vials (triplicates), each vial containing 3 pellets of
367	sodium hydroxide (NaOH ,~ 0.3 M per vial) to stop microbial activity and force dissolved gas into the
368	headspace. After closing the vials with a butyl rubber stopper and a crimp seal, 10 ml of water was
369	removed with a N_2 -flushed 10 ml syringe and replaced with N_2 gas from a second syringe to create a
370	headspace in the sampling vials. Samples were stored and transported at room temperature until
371	further processing.
372	In the home laboratory, 100 µl of the headsnace volume was injected into a Shimadzu GC-2014 gas
272	shrometeograph equipped with a flame ionization detector and a HaySan T 100/120 solumn (Length 2
575	chromatograph equipped with a name ionization detector and a Haysep-1 100/120 column (Length 5
374	m, diameter: 2 mm). Gases were separated isothermally at 75°C with helium carrier gas. Methane
375	concentrations were calibrated against methane standards (Scotty gases). The detection limit was 0.1
376	ppm with a precision of 2 %.
377	
378	2.3 Porewater geochemistry
379	Porewater sampling for MUC cores has been previously described by Dale et al., (2015). In short, one
380	MUC core per station was subsampled in an argon-filled glove bag, to preserve redox sensitive
381	constituents.
382	The gravity cores at St. 1 (78 m) and St. 8 (407 m) were subsampled at 10-12 different sediment
383	depths (depending on core length) resulting in depth intervals of 20-33 cm. Before sampling, the
384	plastic core liner was cut open with an electric saw at the specific depths. Porewater was extracted by
385	using anoxic (flushed with argon), wetted rhizons (Rhizosphere Research Products, Seeberg-Elverfeldt
386	et al., 2005).
387	Sulfate concentrations were determined by ion chromatography (Methrom 761) as described
388	previously by Dale et al., (2015).

389	For DIC analysis, 1.8 ml of porewater was transferred into a 2 ml glass vial, fixed with 10 µl saturated	
390	mercury chloride solution and crimp sealed. Samples were stored at 4°C until further processing in the	
391	home laboratory. DIC concentration was determined as CO_2 with a multi N/C 2100 analyzer (Analytik	
392	Jena) following the manufacturer's instructions. Therefore the sample was acidified with phosphoric	
393	acid and the outgassing CO_2 was measured. The detection limit was 20 μM with a precision of 2-3%.	
394		
395	2.4 Sediment porosity and particulate organic carbon/nitrogen	
396	Methodology and data for porosity, particulate organic carbon (POC) and particulate organic nitrogen	
397	(PON) have been previously described by Dale et al., (2015).	
398	In short, wet sediment samples were taken from the porewater MUC core and the gravity cores for	
399	determination of porosity from the weight difference of wet and freeze-dried sediment. POC and PON	
400	were analyzed with a Carlo-Erba element analyzer (NA 1500). Ratios of POC:PON were calculated by	
401	division.	
402		
403	2.5 Sediment methane	
403 404	2.5 Sediment methaneFor sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20	
403 404 405	2.5 Sediment methaneFor sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity	
403 404 405 406	2.5 Sediment methane For sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity cores were subsampled according to the above scheme (see 2.3). From each sampled sediment layer, 2	
403 404 405 406 407	2.5 Sediment methane For sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity cores were subsampled according to the above scheme (see 2.3). From each sampled sediment layer, 2 cm ⁻³ sediment were transferred into a 15 ml serum glass vial containing 5 ml of NaOH (2.5% w/w).	
403 404 405 406 407 408	2.5 Sediment methane For sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity cores were subsampled according to the above scheme (see 2.3). From each sampled sediment layer, 2 cm ⁻³ sediment were transferred into a 15 ml serum glass vial containing 5 ml of NaOH (2.5% w/w). The vial was closed with a butyl stopper, crimp sealed and shaken thoroughly to stop microbial	
403 404 405 406 407 408 409	2.5 Sediment methane For sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity cores were subsampled according to the above scheme (see 2.3). From each sampled sediment layer, 2 cm ⁻³ sediment were transferred into a 15 ml serum glass vial containing 5 ml of NaOH (2.5% w/w). The vial was closed with a butyl stopper, crimp sealed and shaken thoroughly to stop microbial activity and to force all methane into the headspace. Vials were stored upside down at room	
403 404 405 406 407 408 409 410	2.5 Sediment methane For sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity cores were subsampled according to the above scheme (see 2.3). From each sampled sediment layer, 2 cm ⁻³ sediment were transferred into a 15 ml serum glass vial containing 5 ml of NaOH (2.5% w/w). The vial was closed with a butyl stopper, crimp sealed and shaken thoroughly to stop microbial activity and to force all methane into the headspace. Vials were stored upside down at room temperature until measurement in the home laboratory.	
403 404 405 406 407 408 409 410 411	2.5 Sediment methane For sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity cores were subsampled according to the above scheme (see 2.3). From each sampled sediment layer, 2 cm ⁻³ sediment were transferred into a 15 ml serum glass vial containing 5 ml of NaOH (2.5% w/w). The vial was closed with a butyl stopper, crimp sealed and shaken thoroughly to stop microbial activity and to force all methane into the headspace. Vials were stored upside down at room temperature until measurement in the home laboratory. Sediment methane concentration was determined by injecting 0.1 ml of headspace volume into a	
403 404 405 406 407 408 409 410 411 412	2.5 Sediment methane For sediment methane concentration, one MUC core per station was sliced in 2 cm intervals until 20 cm depth, followed by 5 cm intervals until the end of the core (maximum depth = 48 cm). Gravity cores were subsampled according to the above scheme (see 2.3). From each sampled sediment layer, 2 cm ⁻³ sediment were transferred into a 15 ml serum glass vial containing 5 ml of NaOH (2.5% w/w). The vial was closed with a butyl stopper, crimp sealed and shaken thoroughly to stop microbial activity and to force all methane into the headspace. Vials were stored upside down at room temperature until measurement in the home laboratory. Sediment methane concentration was determined by injecting 0.1 ml of headspace volume into a Shimadzu GC-2014 gas chromatograph as described under section 2.2.	

414 2.6 Net methanogenesis activity in MUC cores

total methane production and consumption, including all available methanogenic substrates in the
sediment. Net methanogenesis was determined by measuring the linear increase of methane
concentration in the headspace of closed incubation vials over time. Therefore, one MUC core per
station was sliced into 5 cm intervals, transferring 10 cm ⁻³ of sediment in triplicates into a N ₂ -flushed
60 ml serum glass vial <u>s</u> . The sediment core lengths ranged <u>frombetween</u> 25 <u>up to</u> -48 cm, resulting in
maximum 10 depth intervals. Ten ml of anoxic deep water overlying each MUC core was added to the
vial and the slurry was mixed under a constant N_2 stream (Hungate, 1950) before <u>being</u> sealed with a
butyl rubber stopper and crimped. The sediment slurry was repeatedly flushed with N_2 through the
stopper to ensureguarantee fully anoxic conditions. The vials were incubated in the dark and at 9°C,
which reflected the average in situ temperature along the depth transect (see Table 1). The first gas
chromatographic measurement was done directly after preparation of the vials, by injecting 100 μl of
headspace sample into the gas chromatograph. The on-board Hewlett Packard-5890 gas
chromatograph was equipped with a flame ionization detector and a HaySep-T 100/120 column
(Length 3m, diameter: 2mm). Gases were separated isothermally at 75°C with helium carrier gas.
Methane concentrations were calibrated against methane standards. The detection limit was 1 ppm
with a precision of $< 5\%$. Measurements were done in 2-4 day-intervals over a total incubation time of
~2 weeks.
2.7 Potential non-competitive and competitive methanogenesis in sediment slurries from MUC
cores
Sediment slurry experiments were conducted with sediment from St. 1 (70 m) to examine the
interaction between sulfate reduction and methanogenesis, as this station revealed highest microbial
activity of sulfate reduction and methanogenesis. On board, the sediment core was sliced in 5 cm
intervals. Sediment from the 0-5 cm interval and the 20-25 cm interval was transferred completely into
250 ml glass bottles, which were then closed without headspace (filled to top) with a butyl rubber
stopper and screw cap. Until further treatment, sediment was stored at 4°C on board and later in a 1°C
cold room on shore.

443	Approximately 6 months after the cruise, sediment slurries from both depth intervals were prepared by
444	mixing 5 ml sediment in a 1:1 ratio with artificial, fully marine seawater (Widdel & Bak, 1992) before
445	further manipulations.
446	In total, three different treatments, each in triplicates, were prepared per depth: 1) sulfate-rich (28
447	mM), serving as a control 2) sulfate-rich plus molybeydate (22 mM) from now on referred to as
448	molybdate-treatment, and 3) sulfate-rich plus methanol (10 mM) from now on referred to as methanol-
449	treatment.
450	Molybdate was used as an enzymatic inhibitor for sulfate reduction (Oremland & Capone, 1988).
451	Methanol is a known non-competitive substrate used by methanogens, but not by sulfate reducers
452	(Oremland & Polcin, 1982), which makes it suitable to examine non-competitive methanogenesis.
453	The sediment slurries were incubated at 9°C in the dark for 23 days and headspace concentration of
454	methane was measured repeatedly over time on a gas chromatograph. Therefore, 100 μ l of headspace
455	was removed from the gas vials and injected into a Shimadzu gas chromatograph (GC-2014) equipped
456	with a methanizer (inactive), a packed Haysep-D column and a flame ionization detector. The column
457	temperature was 80°C and the helium flow was set to 12 ml min ⁻¹ . Methane concentrations were
458	measured against methane standards. The detection limit was 0.1 ppm with a precision of <5%. Rates
459	were determined from the linear increase of methane concentration over time. Due to differences in
460	the linear increase between the three treatments, rates were determined at two different time points: the
461	first period of incubation includes the starting point (day 0) until day 5, the second period includes day
462	8 to day 23 (Supplement information, Fig. S1).
463	Student's t-test (independent, two-tailed, $\alpha = 0.05$) was applied to detect significant differences
464	between the three different treatments.
465	
466	2.8 Gross hydrogenotrophic methanogenesis activity in gravity cores
467	For the determination of surface to deep methanogenesis activity in gravity cores the radiotracer
468	technique using ¹⁴ C-bicarbonate was applied (Jørgensen, 1978). With this method only
469	hydrogenotrophic methanogenesis from CO ₂ /H ₂ can be determined, which is the expected main

...

470 pathway in deeper sediment layers.

. .

471 Sampled sediment depths were according to the sampling above scheme described under section 2.3. 472 (see 2.3). Circa 5 cm⁻³ of sediment was sampled in triplicates into glass tubes equipped with syringe 473 plungers syringes and then sealed headspace-free with butyl rubber stoppers. Then, ¹⁴C-bicarbnoate-474 tracer (dissolved in water, pH = 8-9, injection volume 6 µl, activity 222 kBq, specific activity 1.85-475 2.22 GBq/mmol) was injected through the stopper. The vials were incubated for 48 hours at 9°C 476 before the reaction was stopped by transferring the sediment into 50 ml glass vials filled with 20 ml 477 NaOH (2.5%), closed with butyl rubber stoppers and shaken thoroughly. Five controls were produced 478 from various sediment depths by injecting the radiotracer directly into the NaOH with sediment. 479 In the home laboratory, ¹⁴C- methane production was determined with the slightly modified method by 480 Treude et al., (2005a) used for the determination of anaerobic oxidation of methane. The method was 481 identical, except that no unlabeled methane was determined by gas chromatography. Instead, DIC 482 values were used to calculate hydrogenotrophic methane production (= CO₂ reduction):

$$MG \ rate = \frac{{}^{14}\text{CH}_4 * [\text{DIC}]}{({}^{14}\text{CH}_4 + {}^{14}C\text{-}DIC) * \text{t}}$$

484 485

The methanogenesis rate (*MG rate*) is expressed in nmol CH₄ cm⁻³ sediment d⁻¹, ¹⁴CH₄ is the activity of produced ¹⁴CH₄, ¹⁴C-DIC is the activity of residual radioactive dissolved organic carbon (DIC= CO₂ + HCO₃⁻⁺ + CO₃²⁻), [DIC] is the concentration of dissolved organic carbon in nmol cm⁻³ sediment, and t is the incubation time in days.

490

491 2.9 Sulfate reduction in MUC cores

One MUC core per station was used for the determination of sulfate reduction. First, two replicate
push cores (length 30 cm, inner diameter 2.6 cm) were subsampled from one MUC core. The actual
core length varied from 23-25 cmbsf total length. Then, 6 µl (~150 kBq) of carrier-free ³⁵SO4²⁻
radiotracer (dissolved in water, specific activity 37 TBq mmol⁻¹) was injected into the replicate
pushcores in 1 cm intervals according to the whole-core injection method <u>of</u> Jørgensen, (1978). Push

497	cores were incubated for ca. 12 h at 9°C. After incubation, bacterial activity was stopped by slicing the
498	push core into 1-cm intervals and transferring each sediment layer into 50 ml plastic centrifuge tubes
499	filled with 20 ml zinc acetate (20% w/w). Controls were done in triplicates from different depths.
500	Here, the sediment was first fixed with zinc acetate before adding the tracer. Rates for sulfate
501	reduction were determined using the cold chromium distillation procedure according to Kallmeyer et
502	al., (2004).
503	The yielded sulfate reduction rates have to be treated with caution, due to long (up to 3 half-life times
504	of ³⁵ S) and unfrozen storage. Storage of sulfate reduction samples without freezing has recently been
505	shown to result in the re-oxidation of ³⁵ S-sulfides, which results in an underestimation of sulfate
506	reduction rates (Røy et al., 2014). During this reaction, zinck sulfide (Zn ³⁵ S) and iron sulfide (Fe ³⁵ S)
507	are re-oxidized to sulfate by reactive Fe(III), which originates from the reaction of Fe^{2+} with oxygen.
508	Fe ²⁺ is released during the gradual conversion of FeS to ZnS, which has the lower solubility product.
509	Still, we do trust the relative distribution of activity along depth profiles and consider a potential
510	underestimation of absolute rates.

512 3. Results

513 3.1 Water column oxygen and methane concentration

- 514 Dissolved oxygen in the bottom water was below detection limit from St.1 (70 m) to St. 8 (407 m),
- subsequently increasing with water depth to $53 \,\mu$ M at the deepest site (see Table 1 and Dale et al.,
- 516 2015). At the shallowest St. 1 (70 m) the water was turbid and smelled of sulfide.
- 517 Dissolved methane concentrations in the bottom water were high on the shelf (St.1-6, 70-253 m) and
- 518 10 fold lower at the deeper sites (St. 8-10, 407-1024 m; Table 1). The highest measured methane
- concentration was detected at St. 6 (253 m, ~80 nM) and lowest concentrations were detected at St. 10
 (1024 m, ~4 nM).

521 3.2 Sediment core description

- 522 A detailed sediment description for the porewater geochemistry cores has been already published in
- detail by Dale et al., (2015). In short, sediments revealed a grey color with a black surface layer at

(770-1024 m). Sediment texture was soft and fluffy at St. 1-6 (70-253 m), and was less soft at the
deeper sites. St. 8 (407 m) revealed a fluffy surface layer followed by a dense clay layer > 2 cmbsf
sediment depth. In addition, phosphorite nodules were found at the sediment surface (0-2 cmbsf) of St.
8 (407 m).
Mats of the sulfur oxidizing bacteria *Thioploca spp*. (Gallardo, 1977) were visible at the sediment
surface at St.1-6 (70-253 m), with the densest mat at St. 1 (70 m) continuously decreasing with

St. 1 (70 m), a dark olive green color at St. 4-8 (145-407 m), and a green-brown color at St. 9 and 10

- increasing water depth. Sheaths of *Thioploca* were visible until 20-30 cmbsf at St. 1, 4 and 6 (70-253m).
- 533 Foraminifera could be observed at the sediment surface of St. 8 (407 m), St. 9 (770 m) and St. 10
- 534 (1024 m). St. 8 (407 m) showed a thick layer of foraminifera ooze on the sediment surface (0-3 cmbsf)
- while St. 9 (770 m) and St. 10 (1024 m) showed only scattered foraminifera at the sediment surface (05 cmbsf).
- 537 Macrofauna (large polycheates, oligocheates, ophiuroids) were restricted to the sites below the OMZ
- 538 at St. 9 (770 m) and St. 10 (1024 m), where deep waters were oxygenated. However, small snails (~1
- 539 cm) were observed at St. 8 (407 m).
- 540

524

541 3.3 Geochemical parameters in MUC cores

- 542 Porewater and solid phase geochemistry of sediments retrieved by the MUC cores are shown in Fig. 2.
- 543 Surface sediment (0-0.5 cmbsf) POC content increased along the continental shelf from 1.6 wt % at
- 544 the shallow St. 1 (70 m) to a maximum of 15 wt % at St. 8 (253 m). Surface POC content decreased
- s45 again with increasing water depth showing the lowest POC content at St. 10 (1024 m, 2 wt %). While
- 546 POC content showed more or less stable profiles throughout the sediment core at St. 1 (70 m, around 3
- 547 wt %), St. 9 (770 m, around 4 wt %), and St. 10 (1024 m, around 3 wt %), POC content was stable
- 548 only in the upper ~ 10 cmbsf at St. 4 (150 m, around 10 wt %) and St. 6 (253 m, around 15 wt %),
- 549 followed by a decrease until the deepest sampled depth (2 wt % and 9 wt %, respectively). At St. 8
- 550 (407 m), POC content increased with sediment depth below 3 cmbsf (from 4 wt % to 9 wt %), which

- consisted of dense clay (see above). In the upper 3 cmbsf, POC decreased from ~ 7 wt % to ~ 4 wt %,
 which was the sediment layer with a more fluffy appearance.
- 553 The sediment surface C/N ratio was lowest at St. 1 (70 m, 6.2) and increased along the continental
- shelf showing the highest surface C/N ratio at St. 10 (1024 m, 11). St. 8 (407 m) was exceptional, as it
- showed slightly lower surface C/N ratio (8) as at St. 6 (253 m, 9). St. 8 (407 m) was also the only site
- showing an increase of 4 units in the upper 0-5 cmbsf, followed by stable ratios around 12 throughout
- 557 the rest of the core. St. 1 and 4 (70 and 145 m) showed shallower increases in C/N ratio in the upper \sim
- 558 2 cmbsf and upper 1 cmbsf, respectively, followed by stable ratios around 10 until the bottom of the
- core. At St. 9 and 10 (770 and 1024 m), C/N ratios ranged around 11 and 12, respectively.
- 560 The highest increase in methane concentration was observed at St. 1 (70 m). Here, methane increased
- 561 linearly from the surface (1 μ M) to the bottom of the core (100 μ M). All other stations showed either
- 562 no clear trend (St. 4= 145 m) or only slight methane increases with depth. At St. 9 (770 m), even a
- 563 decrease in methane concentration was observed from the surface to the bottom of core.
- Besides St. 1 (70 m), which showed a strong decrease in sulfate (SO_4^{2-}) concentration with depth from
- 565 about 28 mM at the top to about 9 mM at the bottom of the core (43 cmbsf), all other stations showed
- SO_4^{2-} concentrations > 25 mM throughout the cores. At St. 4, 6 and 9 (145, 253, 770 m), SO_4^{2-} showed
- very slight decrease with depth from about 28 mM at the top to about 25 mM at the bottom of the core.
- 569 and 1024 m).
- 570 Dissolved inorganic carbon (DIC) concentration increased with depth at St. 1-6 (70-253 m). St. 1 (70
- 571 m) showed the steepest increase with depth, showing the lowest DIC concentration at the top (2.3
- 572 mM) and the highest at the deepest sampled depth (21.6 mM). At St. 4 (153 m), maximum
- 573 concentration was reached at ~ 23 cmbsf with 4 mM. St. 6 (253 m) showed maximum concentration at
- 574 the deepest sampled depth with 9 mM. St. 8 and 9 (407 and 770 m) showed stable DIC concentrations
- around 2.3 mM throughout the core. No DIC data was available for St. 10 (1024 m).
- 576
- 577 3.4 Net methanogenesis and gross sulfate reduction in MUC cores

578	Maximum net methanogenesis rates (Fig. 2) were detected at St. 1 (70 m, 1.1 \pm 0.5 nmol cm ⁻³ d ⁻¹ , 20-
579	25 cmbsf) and St. 6 (253 m, 1.3 \pm 0.65 nmol cm ⁻³ d ⁻¹ , 25-30 cmbsf). At all other stations,
580	methanogenesis was mostly below 0.5 nmol cm $^{-3}$ d $^{-1}$ throughout the cores. St. 8 (407 m) showed
581	methanogenesis activity only in the top 10 cmbsf with the maximum at 5-10 cmbsf (0.2 ± 0.5 nmol cm $^{-}$
582	3 d ⁻¹). At St. 9 and 10 (770 and 1024 m), maximum methanogenesis activity was found in the surface
583	layer (0-5 cmbsf) with 0.3 ± 0.4 nmol cm $^{-3}$ d $^{-1}$ and 0.4 ± 0.6 nmol cm $^{-3}$ d $^{-1}$, respectively. St. 10 (1024 m)
584	also showed high average methanogenesis at 10-15 cmbsf (1.5 \pm 2.5 nmol cm ⁻³ d ⁻¹), which was caused
585	by a single high replicate (4.3 nmol $cm^{-3} d^{-1}$). In the following, e.g., integration of rates, we will
586	exclude this single high replicate, which will be further elaborated in the discussion.
587	At all stations beside St. 9 (770 m), sulfate reduction activity was highest in the 0-1 cmbsf horizon,
588	followed by a sharp decrease in activity of 20-90% in the subsequent 1-2 cmbsf horizon. Highest
589	measured rates at 0-1 cmbsf were observed at St. 4 (145 m, 290 nmol cm $^{-3}$ d $^{-1}$), followed by St. 1 (70
590	m, 270 nmol cm $^{-3}$ d $^{-1}$). Surface (0-1 cmbsf) sulfate reduction activity decreased from St. 4 (145 m) to
591	St. 8 (407 m) with concomitant increase in water depth. St. 9 (770 m) was the only site without a
592	surface sulfate reduction maximum. Here, highest rates were found at 7 cmbsf (11.2 nmol cm ⁻³ d ⁻¹).
593	St. 6, 8 and 9 (253, 407, and 770 m) showed a second but smaller maximum of sulfate reduction
594	activity. At St. 6 (253 m), this second maximum was situated at 20.5 cmbsf (6.2 nmol cm ⁻³ d ⁻¹). St. 8
595	and 9 (407 and 770 m) showed additional maxima at 4.5 cmbsf (3.1 nmol cm $^{-3}$ d $^{-1}$) and 2.5 cmbsf (1.5
596	nmol cm ⁻³ d ⁻¹), respectively. At St. 9 (770 m), sulfate reduction activity was not detectable at most
597	depth > 10 cmbsf. At St.10 (1024 m), no sulfate reduction activity was detectable throughout the entire
598	core. At St. 9 and 10 (770 and 1024 m) we cannot exclude that sulfate reduction was present but
599	undetectable due to long, unfrozen storage of the samples (see 2.7).
600	Figure- 32 shows an overview of integrated methanogenesis and sulfate reduction rates (over the upper
601	0-25 cm) along the depth transect on the Peruvian margin. Highest integrated surface methanogenesis
602	activity was detected on the shelf (70, 145 and 253 m) with 0.1 ± 0.03 mmol m^{-2} d $^{-1},$ 0.06 ± 0.02 mmol
603	$m^{\text{-}2}d^{\text{-}1}\!,$ and 0.07 ±0.01 mmol $m^{\text{-}2}d^{\text{-}1}\!,$ respectively. St. 8 (407 m) revealed the lowest integrated
604	methanogenesis rate of all sites (0.02 ± 0.00 mmol $m^{\text{-2}}d^{\text{-1}}$). St. 9 (770 m) and St. 10 (1024 m) showed
605	integrated methanogenesis activity around 0.03 \pm 0.02 mmol m ⁻² d ⁻¹ , respectively.

606	Integrated sulfate reduction activity decreased along the continental margin with increasing water
607	depth, revealing the highest activity at the St. 1 (70 m, 4.7 mmol $m^{-2} d^{-1}$) and the lowest activity at St.
608	9 (770 m, 0.2 mmol $m^{-2} d^{-1}$). Please note again, that integrated sulfate reduction rates are probably
609	underestimated due to long, unfrozen storage of the samples (see 2.7).
610	
611	3.5 Potential competitive and non-competitive methanogenesis in sediment slurries from MUC
612	cores
613	Results from the sediment slurry experiments, in which we added either the sulfate reduction inhibitor
614	molybdate, the non-competitive substrate methanol, or no additives (control), are shown in Fig. <u>4</u> 3.
615	During the first phase of incubation, all three treatments showed rates within the same order of
616	magnitude. Nevertheless, potential methanogenesis rates were significantly higher (p < 0.05) in all
617	treatments in the shallow sediment horizon (0-5 cmbsf) compared to the deep horizon (20-25 cmbsf).
618	In addition, potential methanogenesis was always significantly higher in the molybdate and methanol
619	treatment compared to the control.
620	During the second phase of the incubation (day 8-23), potential methanogenesis showed a different
621	pattern. Rates in the methanol treatment were 350 and 4 times higher compared to the control and
622	molybdate treatment in the 0-5 cm horizon and the 20-25 cm horizon, respectively (p< 0.05). Control
623	and molybdate treatments showed no significant difference (p>0.05) in the shallow and deep horizon.
624	
625	3.6 Geochemical parameters and gross hydrogenotrophic methanogenesis activity in gravity
626	cores
627	At the shallow St. 1 (78 m), POC concentration slightly decreased with depth, from ~4 wt % at the
628	surface to about 2-3 wt % at the bottom of the core (385 cmbsf, Fig. 5). At St. 8 (407 m), POC
629	concentrations were slightly higher with values ranging around 8-9 wt % in the upper 120 cmbsf. and
630	then decreasing with denth. The C/N ratio at St $1 (78 \text{ m})$ remained around 10 throughout the core

631 while it showed slightly higher values around 12 throughout the core at St. 8 (407 m).

632	At St. 1 (78 m), the methane concentration increased with depth from 0.1 mM at the surface to the
633	highest measured concentration at 165 cmbsf (~5 mM), followed by a decrease to ~ 2 mM at 198
634	cmbsf. Methane concentration stayed around 2 mM until the deepest measured depth (385 cmbsf).
635	Methane concentrations at St. 8 (407 m) ranged from 14 to 17 μ M in the upper 120 cmbsf, then
636	increased to a maximum of 36 μM at 180 cmbsf, followed by a decrease to 28 μM at the deepest
637	sampled depth (195 cmbsf).
638	SO_4^{2-} concentration at St. 1 (78 m) decreased with depth with the highest concentration (10 mM) at the
639	shallowest measured sediment depth (33 cmbsf) and the lowest concentration at 350 cmbsf (0.16 mM).
640	At St. 8 (407 m), SO_4^{2-} concentration decreased slightly from ~28 mM at the shallowest measured
641	sediment depth (20 cmbsf) to \sim 24 mM at 145 cmbsf, followed by stable concentrations around 25 mM
642	until the bottom of the core.
643	DIC concentrations were 5-8 times higher at St. 1 (78 m) compared to St. 8 (407 m) and increased
644	with sediment depth from ~21 mM at 33 cmbsf to ~39 mM at 385 cmbsf. DIC concentrations at St. 8
645	(407 m) could only be measured at distinct sediment depths due to limited amounts of porewater but
646	still revealed a slight increase with sediment depth (from ~ 3 mM to ~ 5 mM).
647	Hydrogenotrophic methanogenesis at St. 1 (78 m) was present but low below 66 cmbsf until it reached
648	a peak between 300 and 400 cmbsf (0.7 nmol cm $^{-3}$ d $^{-1}$). In contrast, no hydrogenotrophic
649	methanogenesis activity was detected at St. 8 (407 m).
650	
651	4. Discussion
652	4.1 Concurrent activity of methanogenesis and sulfate reduction in surface sediments
653	Before we discuss the distribution of methanogenesis in the collected sediment cores, it has to be
654	pointed out that the top soft sediment layer (ca. 0-20 cm) of gravity cores is often disturbed or even
655	lost during the coring procedure. Hence, surface parameters in the gravity cores should not be directly
656	compared to the respective depth layers in MUC cores. According to this likely offset, we will use the
657	term "surface methanogenesis/sediments" when referring to MUC cores and "deep

658 methanogenesis/sediments" when referring to gravity cores.

659	We would further like the reader to keep in mind that we will compare two different types of rate
660	determinations: radiotracer incubations of undisturbed sediments (deep hydrogenotrophic
661	methanogenesis, surface sulfate reduction) and sediment slurry incubations (surface total
662	methanogenesis). While the first method preserves the natural heterogeneity of the sediment, the latter
663	homogenizes and dilutes sediment ingredients and organisms, which could have both negative and
664	positive effects on the natural activity. As we are mainly interested in the vertical distribution of these
665	processes within the sediment, these comparisons are justifiable.
666	In the present study, methanogenesis and sulfate reduction co <u>noc</u> curred in surface sediments along
667	the entire depth transect (70-1024 m) on the Peruvian margin (12°S). Methanogenesis activity was
668	detected in sediment layers that revealed high porewater sulfate concentrations and sulfate reduction
669	activity (besides St. 10, where sulfate reduction was undetectable). Even though absolute sulfate
670	reduction rates were most likely underestimated, we trust relative distribution pattern in the sediment
671	and along the continental margin.
672	As the competition between methanogens and sulfate reducers for H_2 and acetate was probably never
673	relieved, the detected surface methanogenesis was most likely based on non-competitive substrates
674	such as methanol or methylated compounds including methylated amines or methylated sulfides
675	(Oremland & Polcin, 1982; Oremland & Taylor, 1978; Kiene et al., 1986). Likewise, in a study off
676	Chile (0-6 cm sediment depth, 87 m water depth), surface methanogenesis was found to be coupled to
677	the non-competitive substrate trimethylamine, and not to CO_2/H_2 or acetate, in sediments where sulfate
678	and sulfate reduction was abundant (Ferdelman et al., 1997).
679	Non-competitive substrate utilization by methanogens in the present study was further confirmed by a
680	significant increase of potential methanogenesis after the addition of methanol to sediment slurries
681	from St. 1 (70 m) (Fig. 4 B). The delayed response of methanogenesis after methanol addition
682	(Supplement, Fig. S1), however, suggests that the present microbial methanogenic community was not
683	primarily feeding on methanol. Potentially, other non-competitive substrates like dimethyl sulfides
684	were utilized predominantly. While most methylotrophic methanogens are able to use both methanol
685	and methylated amines, growth on dimethyl sulfide appears to be restricted to only a few
686	methylotrophic species (Oremland et al., 1989). Dimethyl sulfides could have accumulated build up
1	

687	during the long storage time (~ 6 months) before experimentation. Even though methylated sulfur
688	compounds (e.g., dimethyl sulfide or methanthiol) are mainly produced by organisms in the marine
689	photic zone (e.g., Andreae & Raemdonck 1983), it was recently postulated that these compounds may
690	also be generated through nucleophilic attack by sulfide on methyl groups in the sedimentary organic
691	matter (Mitterer, 2010). As sulfate reduction was a predominant process in the sediment, it could have
692	delivered sufficient sulfide to produce methylated sulfur compounds. Consequently, results from the
693	sediment slurry experiments might not reflect the activity of the in situ methanogenic community as
694	we cannot exclude community shifts as a response to the availability of alternative substrates that were
695	produced during the long storage.
696	The utilization of the competitive substrates H_2 and acetate by the methanogens occurs probably only
697	occurs when sulfate reducers are inhibited. Accordingly, potential methanogenesis rates in the
698	molybdate treatment of the sediment slurry experiment were significantly higher in the two studied
699	horizons (0-5 and 20-25 cmbsf) compared to the controls during the first phase of the incubation (day
700	0-5), indicating the usage of competitive substrate facilitated by the inhibition of sulfate reduction.
701	However, in the second phase (day 8-23) of the incubation, rates were much lower in both the control
702	and molybdate treatment and did not show significant differences in both horizons (p>0.05). In this
703	second phase, methane production might have slowed down due to depletion of electron donors.
704	Hydrogenotrophic methanogenesis in the gravity core from St. 1 (78 m) showed no activity at depths
705	where porewater sulfate concentrations were >0.7 mM. Instead activity peaked where porewater
706	sulfate was lowest (0.16 mM at 350 cmbsf), supporting the above conclusions regarding competition
707	within the sulfate zone. The observation that sulfate was never completely depleted in the porewater
708	until the bottom of the gravity core, in combination with an increase of iron (II) in the porewater at
709	depths > 200 cmbsf (data not shown), hint to the presence of a cryptic sulfur cycle that is responsible
710	for deep formation of sulfate (Holmkvist et al., 2011; Treude et al., 2014) .
711	In comparison, surface net methanogenesis activity along the Peruvian margin was similar to
712	activities found off Chile at 87 m water depth (0-0.6 nmol cm ⁻³ d ⁻¹) (Ferdelman et al., 1997). The
713	slightly higher rates determined in our study (St.1=70 m; 0.4-1.7 nmol cm ⁻³ d ⁻¹) could be related to

714 different approaches, as our rates represent the sum of net methanogenesis from all available

715	substrates in the sediment, while rates off Chile where based only on CO_2 , acetate, and trimethylamine
716	utilization. Hence, total methanogenesis could have been easily underestimated, if methanogenesis
717	was supplied by other substrates, which is not unlikely, as methylotrophic methanogens, which are
718	able to use methanol or methylated amines, were the dominant type of methanogens in these sediments
719	(Ferdelman et al., 1997). Interestingly, the authors detected a high number of acetogens,
720	implyingicating that acetogenesis competed for methylamines or other methylated compounds
721	(Ferdelman et al., 1997). A competition with acetogens for methylated substrates is conceivable for
722	our study, but would require further corroborationstudies.
723	
724	4.2 Surface vs deep methanogenesis
725	Maximum single net surface methanogenesis activities detected in our study $(0.3-4.3 \text{ nmol cm}^{-3} \text{ d}^{-1})$

726 were found to be at the very low end-of or even one order of magnitude lower than organic-rich, 727 sulfate-depleted sediments (9.8-37 nmol cm⁻³ d⁻¹, 0-40 cmbsf, Treude et al., 2005a, 10-17 nmol cm⁻³ d⁻¹, 0-30 cmbsf, Schmaljohann 1996, 100-300 nmol cm⁻³ d⁻¹, 0-30 cmbsf, Crill & Martens, 1983, 1986, 728 100-400 nmol cm⁻³ d⁻¹,0-3 cmbsf, Alperin et al. 1992). To estimate the overall relevance of surface 729 methanogenesis within the sulfate zone compared to deep methane production, we estimated the deep 730 731 methane production in our study and compiled an overview of published deep methane production 732 data from the sulfate-free zone of organic-rich sediments (Table 2). For this comparison, the deep 733 methane production was assumed to equal the flux of methane into the sulfate-methane-transition zone 734 (SMTZ), where it is consumed by anaerobic oxidation of methane (AOM). Within the SMTZ, both 735 sulfate and methane are depleted steeply as a result of AOM, thus dividing the sulfate-reducing zone above from the methanogenic zone below. The SMTZ is the main niche for AOM in marine 736 737 sediments, acting as an important filter for upwards migrating methane (Knittel & Boetius, 2009). The 738 SMTZ can be found at decimeters to tens of meters below the seafloor, depending on the burial rate of 739 reactive organic matter, the depth of the methane production zone, and the transport velocity flux of 740 methane and sulfate as well as their consumption rates (Knittel & Boetius, 2009). 741 In the present study, a SMTZ was only detected in the gravity core taken at St. 1 (78 m; Fig. 5), where

742 it was located between 66 and 99 cmbsf, i.e., below the penetration depth of the MUC cores. We

743	estimated a methane flux (= deep methane production) into the SMTZ (from 99 to 66 cmbsf)
744	according to Iversen & Jørgensen, (1993) using a seawater methane-diffusion coefficient from Schulz,
745	(2006) which was corrected for porosity resulting in a sediment-diffusion coefficient for methane of
746	$D_{s=}1.325 \underline{\times}^{\pm} 10^{-5} \text{ cm}^{-2} \text{ s}^{-1} \text{ at } 15 \text{ °C}. \text{ The resulting deep methane production } (0.8 \text{ mmol m}^{-2} \text{ d}^{-1}) \text{ was}$
747	slightly higher (ratio of 0.13, surface vs. deep) but still in the same magnitude as the integrated surface
748	methanogenesis at St. 1 (70 m; 0.1 mmol m ⁻² d ⁻¹). Compared to a different study from the Peruvian
749	OMZ, the ratio between shallow (0.07 to 0.1 mmol $m^{-2} d^{-1}$, this study) vs. deep ($8.9 \leq 10^{-8}$ to 2.2×10^{-7}
750	mmol m ⁻² d ⁻¹ ; Arning et al., 2012) methanogenesis on the shelf (150-250 m) was 3.2×10^5 to
751	1.1≚±10 ⁶ . Both examples highlight the significance of surface methanogenesis, especially on the
752	Peruvian shelf. On the lower Peruvian slope (~3800 m water depth), deep methanogenesis increased
753	(up to 0.017 mmol $m^{-2} d^{-1}$; Arning et al., 2012). In contrast, surface methanogenesis at the deeper St.
754	10 (1024 m) was lower (0.02 mmol $m^{\text{-}2}d^{\text{-}1}$) compared to the shelf indicating a decreasing relevance of
755	surface methanogenesis along the margin with increasing relevance of deep methanogenesis. The
756	decrease of surface methanogenesis with increasing water depth might be correlated to the decreasing
757	organic carbon content and freshness in the sediment (Fig. 6), as which will be further discussed in
758	section 4.4.
759	In comparison with other organic-rich sediments (Table 2), surface methanogenesis off Peru was in
760	the same order of magnitude as most reported deep methanogenesis (e.g., off Namibia, off Chile,
761	Limfjorden). The only excemption was Eckernförde Bay (Baltic Sea), where surface methanogenesis
762	off Peru was less than 15% of deep methanogenesis. Eckernförde Bay has a water depth of only \sim 30 m
763	with high carbon export, featuring extremely high methanogenesis activity below the SMTZ, causing
764	supersaturation and methane gas ebullition (Whiticar, 2002; Treude et al., 2005a).
765	4.3 Potential consumption and emission of surface methane

766 Due to its closeness to the sediment-water interface, surface methanogenesis along the Peruvian

767 margin could lead to methane emissions from the sediment into the water column. A short diffusion

768 distance, especially in the top most sediment layers, might facilitate a partial escape of methane from

consumption by microbes. As surface methanogenesis decreased with water depth (Fig. 3), the

770	methane emission potential appears to be highest on the shelf. Sediment methane concentrations in the
771	0-2 sediment horizon of all sites along the margin were always higher than bottom-near water methane
772	concentrations (~1.5 m above seafloor; Table 1, Fig. 2), hinting towards an efflux of methane from the
773	sediment. However, more precise profiling of methane at the sediment-water interface would be
774	necessary to confirm this hypothesis. Still, most of the sediment methane profiles suggest methane
775	consumption close to the seafloor to some extent, which would reduce the amount of emitted methane
776	(Fig. 2). AOM might act as an important methane filter at the sediment surface of the shelf stations,
777	where anoxic conditions dominated, while aerobic oxidation might prevail at the deeper stations below
778	the OMZ (St. 9 and 10). The presence of methane oxidation above the SMTZ of organic-rich
779	sediments has been reported earlier (Treude et al., 2005a, 2005b), and could indeed be fueled by
780	surface methanogenesis. An immediate oxidation of the produced methane would explain why
781	sediment methane profiles did not necessarily correlate with peaks in surface methanogenesis (see,
782	e.g., St 6, 253 m). The importance of AOM for the reduction of methane emissions from surface
783	methanogenesis remains speculative, as explicit data is missing. On the basis of our findings, however,
784	we suggest to consider surface methanogenesis as a possible driver for AOM above the SMTZ in
785	earlier and future studies.
786	
787	4.4 Factors controlling methanogenesis along the Peruvian margin
788	For this discussion, we excluded the high integrated methane production observed in one of the
789	replicates at station 10 (1024 m), as we do not think that the detected activity (0.23 mmol m ⁻² d ⁻¹) is
790	representative for this deep site, especially as sediment POC content was lowest at station 10
791	compared to the other stations (<4%, Fig. 2). The outlier might have been caused by additional carbon
792	sources in the sediment, e.g., from fecal pellets or organic carbon released from dead infauna, thus
793	stimulating below-surface microbial activities during our incubations (Ziervogel et al., 2014; Bertics et
794	al., 2013).
795	

796 4.4.1 Oxygen

797	Oxygen is an important controlling factor, as methanogenesis is an oxygen- and redox-sensitive
798	process (Oremland, 1988). Some methanogens can tolerate oxygen exposure for several hours before
799	they die, <u>althoughhowever</u> , no methane <u>is will be</u> produced in the presence of oxygen (Zinder, 1993).
800	Comparing integrated surface methanogenesis (over 0-25 cmbsf) from the shallowest to the deepest
801	station (Fig. 3), highest rates (> 0.05 mmol $m^{-2} d^{-1}$) were detected on the shelf (St. 1, 4 and 6=70, 145,
802	253 m), where oxygen concentrations were below detection (Fig.6), providing advantageous
803	conditions for methanogenesis, particularly at the very sediment surface, where normally aerobic
804	respiration dominates (Jørgensen, 2006). Below the OMZ, integrated methanogenesis decreased.
805	Bioturbating macrofauna and megafauna (e.g., mussels, polycheates, oligocheates) were observed at
806	these sites (St. 9 and 10, 770 and 1024 m) (Mosch et al. 2012), which could have transported oxygen
807	into deeper sediment layer (Orsi et al., 1996), thus leading to less reduced conditions (> -200 mV)
808	unsuitable for methanogens (Oremland, 1988). However, integrated methanogenesis was lowest at St.
809	8 (407 m), which still revealed anoxic bottom water. Thus, oxygen might just be advantageous but not
810	the driving factor for surface methanogenesis.
811	

812 4.4.2 Organic matter

813 The probably most important factor controlling benthic methanogenesis activity is probably the POC 814 content of the sediment, as it determines the substrate availability and variety, and can thus relieve the 815 competitive situation between methanogens and sulfate reducers (Holmer & Kristensen, 1994; Treude et al., 2009). Consequently, Hence, we would expect high methanogenesis rates may be expected 816 817 along the Peruvian margin at sites with high organic carbon load. along the Peruvian margin. However 818 Conversely, integrated methanogenesis rates didare not correlateing with sediment POC content (Fig. 819 6). While POC content was increasing from St. 1 (70 m) to St. 6 (253 m), followed by a decrease until 820 St. 10 (1024 m), integrated methanogenesis showed rather a decreasing trend with increasing water 821 depth. This deviation from expectations might be caused by another factor, such as not only the 822 quantity of organic matter is important for microbial degradation but also its quality, i.e., freshness. 823 Numerous studies have shown that the quality of the organic matter is important for the rate and

- 824 magnitude of microbial organic matter degradation (Westrich & Berner, 1984; Canfield, 1994; Amon
- 825 et al., 2001; Middelburg, 1989).
- 826 Integrated methanogenesis and C/N ratios (indicating the freshness of organic matter) were negatively
- 827 correlated along the Peruvian margin (Fig. 6), suggesting that fresh, labile organic matter is
- 828 advantageous for surface methanogenesis. As methanogens consume mostly short, monomeric
- substrates, they depend on other microbial groups to break down large organic macromolecules
- 830 (Zinder, 1993). Hence, labile organic matter offers an important supply of methanogenic substrates.
- 831 In agreement with this hypothesis, highest integrated methanogenesis rates were observed at St. 1 (70
- 832 m), which revealed the freshest organic matter (lowest C/N, Fig. 6) and the highest POC
- 833 remineralization rates along the Peruvian margin (Dale et al., 2015). The degradation of organic matter
- 834 within the water column was probably limited at St. 1 (70 m) due to anoxic conditions and high
- 835 sedimentation rates (Dale et al., 2015); hence, labile organic matter accumulated at the seafloor,
- 836 thereby increasing the benthic POC degradation and resulting in high substrate availability and variety
- 837 for the methanogenic community.

838 Nevertheless, lowest methanogenesis rates wereas measured at St. 8 (407 m), which was neither the 839 site of the highest C/N ratio, lowest POC content (Fig. 6), or the lowest POC mineralization (Dale et 840 al., 2015). In this particular case, methanogenesis was most likely controlled by the sediment 841 properties. Methanogenesis activity was undetectable below 10 cmbsf, which coincided with a very 842 dense and sticky clay layer. The POC profile at St. 8 (407 m) revealed lower concentrations in the 843 upper 5 cmbsf, followed by an increase with depth, suggesting that either the organic matter at this 844 station was resistant to microbial attack (indicated by the increase in C/N) or that microbes were not as 845 frequent/active in the dense clay layer as at the surface. Similarly, sulfate reduction and microbial 846 nitrogen fixation (Gier et al., 2015)(Gier et al., submitted) showed very low activity at this site (Fig. 847 2).

848

849 5. Conclusion

850	The present study demonstrated that methanogenesis coincides with sulfate reduction in surface
851	sediments (< 30 cmbsf) along the Peruvian margin. The competition with sulfate reducers was
852	partially relieved due to the high load of organic carbon allowing both groups to show concurrent
853	activity through the utilization of non-competitive substrates by the methanogens.
854	The significance of surface methanogenesis was high on the shelf, where ratios between surface and
855	deep methanogenesis wereas around 0.13 (this study) or even as high as ~ 10^5 (compared to Arning et
856	al. 2012), and decreased with increasing water depth. Accordingly, we assume that potential methane
857	emissions into the water column, indicated by a higher methane concentration at the sediment surface
858	compared to the bottom water, should be highest on the shelf, where surface methane production rates
859	were highest. Our results further hint towards a partial consumption of methane before reaching the
860	sediment-water interface, probably by anaerobic oxidation of methane (AOM). In this case, surface
861	methanogenesis might act as important supplier of methane for AOM above the SMTZ, which has
862	been largely over <u>looked previouslyseen before</u> .
863	We postulate that the dominant factor controlling surface methanogenesis is the availability of
864	(primarily labile) organic matter. The high load of organic carbon and resulting high organic carbon
865	mineralization rates secure the supply offer methanogenic substrates, especially on the shelf, which
866	mitigates the competition between sulfate reducers and methanogens. Anoxic conditions in the
867	overlying water might be advantageous for the oxygen-sensitive process of methanogenesis, but does
868	not appear to primarily control benthic rates, as they change within the anoxic zones.
869	Interestingly, organic matter made available by bioturbating infauna (e.g., fecal pellets or dead
870	organisms) could be an important additional factor facilitating methanogenesis in surface sediments.
871	As shown in this study, methanogenesis rates vary strongly in bioturbated sediments below the OMZ,
872	sometimes exceeding all other observed methanogenic rates.
873	Future studies should seek to (1) identify methanogens and their metabolic capabilities in surface
874	sediments, (2) determine the direct interaction between surface methanogenesis and AOM, and (3)
875	evaluate the effect of organic matter hot spots on total benthic surface methanogenesis in organic-rich
876	sediments.

878 Acknowledgements

879 We thank the captain and crew of R.V. Meteor for field assistance. We thank A. Petersen, S. Kriwanek and S. Cherednichenko and the shipboard scientific party for field and laboratory assistance. For the 880 881 geochemical analysis we want to thank B. Domeyer, A. Bleyer, U. Lomnitz, R. Suhrberg, S. Trinkler and V. Thoenissen. Additional thanks goes to G. Schuessler, P. Wefers, and S. Krause of the Treude 882 883 working group for their laboratory assistance. We further thank the authorities of Peru for the 884 permission to work in their territorial waters. This study is a contribution of the 885 Sonderforschungsbereich 754 "Climate - Biogeochemistry Interactions in the Tropical Ocean" 886 (www.sfb754.de), which is supported by the German Research Foundation. Further support came from

the Cluster of Excellence "The Future Ocean" funded by the by the German Research Foundation.

888

889 Author contribution

- 890 J.M. and T.T. designed the experiments. J.M. carried out all methanogenesis experiments, T.T.
- 891 conducted sulfate reduction measurements. Porewater measurements of MUC cores were coordinated
- by A.D. and S.S. J.M. prepared the manuscript with contributions of all co-authors.

893

894 References

- Alperin, M.J., Blair, N.E., Albert, D.B., Hoehler, T.M. & Martens, C.S. (1992). Factors that control
 the stable isotopic composition of methane produced in an anoxic marine sediment. *Global Biogeochemical Cycles*. 6 (3). pp. 271–291.
- Amon, R.M.W., Fitznar, H.-P. & Benner, R. (2001). Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. *Limnology and Oceanography*. 46 (2). pp. 287–297.
- Andreae, M.O. & Raemdonck, H. (1983). Dimethyl sulfide in the surface ocean and the marine
 atmosphere: a global view. *Science (New York, N.Y.)*. 221 (4612). pp. 744–747.
- Arning, E.T., Van Berk, W. & Schulz, H.M. (2012). Quantitative geochemical modeling along a
 transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and
 storage. *Global Biogeochemical Cycles*. 26 (4). pp. 1–18.

907	North Seas and a reassessment of the marine emissions of methane. <i>Global Biogeochemical</i>
908	<i>Cycles</i> . 8 (4). pp. 465–480.
909	Bange, H.W., Hansen, H.P., Malien, F., Laß, K., Karstensen, J., Petereit, C., Friedrichs, G. & Dale, A.
910	(2011). Boknis Eck Time Series Station (SW Baltic Sea): Measurements from 1957 to 2010.
911	LOICZ-Affiliated Activities. Inprint 20. pp. 16–22.
912	Bertics VI Löscher CR Salonen I Dale AW Gier I Schmitz RA & Treude T (2013)
913	Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally
914	hypoxic Eckernförde Bay, Baltic Sea. <i>Biogeosciences</i> . 10 (3). pp. 1243–1258.
915 916 917	Buckley, D.H., Baumgartner, L.K. & Visscher, P.T. (2008). Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. <i>Environmental</i> <i>microbiology</i> . 10 (4). pp. 967–77.

Bange, H.W., Bartell, U.H., Rapsomanikis, S. & Andreae, M.O. (1994). Methane in the Baltic and

- Canfield, D.E. (1994). Factors influencing organic carbon preservation in marine sediments. *Chemical geology*. 114 (93). pp. 315–329.
- 920 Crill, P. & Martens, C. (1983). Spatial and temporal fluctuations of methane production in anoxic
 921 coastal marine sediments. *Limnology and Oceanography*. 28. pp. 1117–1130.
- 922 Crill, P.M. & Martens, C.S. (1986). Methane production from bicarbonate and acetate in an anoxic
 923 marine sediment. *Geochimica et Cosmochimica Acta*. 50. pp. 2089–2097.
- Dale, A.W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C.,
 Dengler, M., Stolpovsky, K., Bryant, L.D. & Wallmann, K. (2015). Organic carbon production,
 mineralisation and preservation on the Peruvian margin. *Biogeosciences*. 12. pp. 1537–1559.
- Dimitrov, L. (2002). Mud volcanoes the most important pathways for degassing deeply buried
 sediments. *Earth Science Review*. 59. pp. 49–76.
- Donnelly, M.I. & Dagley, S. (1980). Production of Methanol from Aromatic Acids by Pseudomonas
 putida. *Journal of bacteriology*. 142 (3). pp. 916–924.
- Ferdelman, T.G., Lee, C., Pantoja, S., Harder, J., Bebout, B.M. & Fossing, H. (1997). Sulfate
 reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile.
 Geochimica et Cosmochimica Acta. 61 (15). pp. 3065–3079.
- Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L. & Lange, C. (2009). Vertical and
 horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. *Deep-Sea Research Part II: Topical Studies in Oceanography*. 56. pp. 992–1003.
- Gallardo, V.A. (1977). Large benthic microbial communities in sulphide biota under Peru-Chile
 subsurface countercurrent. *Nature*. 268. pp. 331–332.
- Gier, J., Sommer, S., Löscher, C.R., Dale, A.W., Schmitz, R.A. & Treude, T. (2015). Nitrogen fixation
 in sediments along a depth transect through the Peruvian oxygen minimum zone. *Biogeosciences Discussions*. 12 (17). pp. 14401–14440.
- Hines, M.E. & Buck, J.D. (1982). Distribution of methanogenic and sulfate-reducing bacteria in near shore marine sediments. *Applied and environmental microbiology*. 43 (2). pp. 447–453.

- Holmer, M. & Kristensen, E. (1994). Coexistence of sulfate reduction and methane production in an
 organic-rich sediment. *Marine Ecology Progress Series*. 107. pp. 177–184.
- Holmkvist, L., Ferdelman, T.G. & Jørgensen, B.B. (2011). A cryptic sulfur cycle driven by iron in the
 methane zone of marine sediment (Aarhus Bay, Denmark). *Geochimica et Cosmochimica Acta*.
 75 (12), pp. 3581–3599.
- 949 IPCC (2014). Climate Change 2014: Synthesis Report.Contribution of Working Groups I, II and III to
 950 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. core writing
 951 Team, R. K. Pachauri, & L. A. Meyer (eds.). Geneva, Switzerland.
- Iversen, N. & Jørgensen, B.B. (1993). Diffusion coefficients of sulfate and methane in marine
 sediments: Influence of porosity. *Geochimica et Cosmochimica Acta*. 57 (3). pp. 571–578.
- Jørgensen, B.B. (1978). A comparison of methods for the quantification of bacterial sulfate reduction
 in coastal marine sediments: I. Measurements with radiotracer techniques. *Geomicrobiology Journal*. 1. pp. 11–27.
- Jørgensen, B.B. (2006). Bacteria and marine Biogeochemistry. In: H. D. Schulz & M. Zabel (eds.).
 Marine Geochemistry. Berlin/Heidelberg: Springer-Verlag, pp. 173–207.
- Jørgensen, B.B. (1977). The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark).
 Limnology and Oceanography. 22 (5). pp. 814–832.
- Jørgensen, B.B. & Parkes, R.J. (2010). Role of sulfate reduction and methane production by organic
 carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). *Limnology and Oceanography*. 55 (3). pp. 1338–1352.
- Judd, A., Davies, G., Wilson, J., Holmes, R., Baron, G. & Bryden, I. (1997). Contributions to
 atmospheric methane by natural seepages on the UK continental shelf. *Marine Geology*. 137 (1 2). pp. 165–189.
- Kallmeyer, J., Ferdelman, T.G., Weber, A., Fossing, H. & Jørgensen, B.B. (2004). Evaluation of a
 cold chromium distillation procedure for recovering very small amounts of radiolabeled sulfide
 related to sulfate reduction measurements. *Limnology and Oceanography: Methods*. 2. pp. 171–
 180.
- Kamykowski, D. & Zentara, S. (1990). Hypoxia in the world ocean as recorded in the historical data
 set. *Deep-Sea Research*. 37 (12). pp. 1861–1874.
- Kiene, R.P., Oremland, R.S., Catena, a, Miller, L.G. & Capone, D.G. (1986). Metabolism of reduced
 methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine
 methanogen. *Applied and environmental microbiology*. 52 (5). pp. 1037–1045.
- King, G.M., Klug, M.J. & Lovley, D.R. (1983). Metabolism of acetate, methanol, and methylated
 amines in intertidal sediments of lowes cove, maine. *Applied and environmental microbiology*.
 45 (6). pp. 1848–1853.
- Knittel, K. & Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process.
 Annual review of microbiology. 63. pp. 311–34.
- 981 Kristensen, E. (2000). Organic matter diagenesis at the oxic/anoxic interface in coastal marine
 982 sediments, with emphasis on the role of burrowing animals. *Hydrobiologia*. 426 (1). pp. 1–24.

- Van Der Maarel, M.J.E.C. & Hansen, T. a. (1997). Dimethylsulfoniopropionate in anoxic intertidal
 sediments: A precursor of methanogenesis via dimethyl sulfide, methanethiol, and
 methiolpropionate. *Marine Geology*. 137 (1-2). pp. 5–12.
- Middelburg, J.J. (1989). A simple rate model for organic matter decomposition in marine sediments.
 Geochimica et Cosmochimica Acta. 53 (7). pp. 1577–1581.
- Mitterer, R.M. (2010). Methanogenesis and sulfate reduction in marine sediments: A new model.
 Earth and Planetary Science Letters. 295 (3-4). pp. 358–366.
- Neill, a R., Grime, D.W. & Dawson, R.M. (1978). Conversion of choline methyl groups through
 trimethylamine into methane in the rumen. *The Biochemical journal*. 170 (3). pp. 529–535.
- 992 Niewöhner, C., Hensen, C., Kasten, S., Zabel, M. & Schulz, H.D. (1998). Deep sulfate reduction
 993 completely mediated by anaerobic oxidation in sediments of the upwelling area off Namibia.
 994 *Geochimica et Cosmochimica Acta*. 62 (3). pp. 455–464.
- 995 Oremland, R.S. (1988). Biogeochemistry of methanogenic bacteria. In: A. J. B. Zehnder (ed.). *Biology* 996 of Anaerobic Microorganisms. New York: J. Wiley & Sons, pp. 641–705.
- 997 Oremland, R.S. & Capone, D.G. (1988). Use of specific inhibitors in biogeochemistry and microbial
 998 ecology. In: K. C. Marshall (ed.). Advances in Microbial Ecology. Advances in Microbial
 999 Ecology. Boston, MA: Springer US, pp. 285–383.
- Oremland, R.S., Kiene, R.P., Mathrani, I., Whiticar, M.J. & Boone, D.R. (1989). Description of an
 estuarine methylotrophic methanogen which grows on dimethyl sulfide. *Applied and environmental microbiology*. 55 (4). pp. 994–1002.
- Oremland, R.S., Marsh, L. & Desmarais, D.J. (1982). Methanogenesis in Big Soda Lake , Nevada : an
 Alkaline , Moderately Hypersaline Desert Lake. *Applied and environmental microbiology*. 43
 (2). pp. 462–468.
- Oremland, R.S. & Polcin, S. (1982). Methanogenesis and Sulfate Reduction : Competitive and Noncompetitive Substrates in Estuarine Sediments. *Applied and Environmental Microbiology*. 44
 (6). pp. 1270–1276.
- Oremland, R.S. & Taylor, B.F. (1978). Sulfate reduction and methanogenesis in marine sediments.
 Geochimica Cosmochimica Acta. 42. pp. 209–214.
- 1011 Orsi, T.H., Werner, F., Milkert, D., Anderson, a. L. & Bryant, W.R. (1996). Environmental overview
 1012 of Eckernförde Bay, northern Germany. *Geo-Marine Letters*. 16 (3). pp. 140–147.
- Pennington, J.T., Mahoney, K.L., Kuwahara, V.S., Kolber, D.D., Calienes, R. & Chavez, F.P. (2006).
 Primary production in the eastern tropical Pacific: A review. *Progress in Oceanography*. 69 (24). pp. 285–317.
- 1016 Reeburgh, W. (2007). Oceanic methane biogeochemistry. Chemical Reviews. 107. pp. 486–513.
- Reimers, C.E. & Suess, E. (1983). The partitioning of organic carbon fluxes and sedimentary organic
 matter decomposition rates in the ocean. *Marine Chemistry*. 13. pp. 141–168.
- Røy, H., Weber, H.S., Tarpgaard, I.H., Ferdelman, T.G. & Jørgensen, B.B. (2014). Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive 35S tracer. *Limnology* and Oceanography: Methods. 12. pp. 196–211.

1023 Sediments and in defined laboratory cultures of species prevalent in the lake sediment. The turnover. Journal of General Microbiology. 128 (393-404). pp. 393-404. 1024 1025 Schmaljohann, R. (1996). Methane dynamics in the sediment and water column of Kiel Harbour 1026 (Baltic Sea). Marine Chemistry. 131. pp. 263-273. Schulz, H.D. (2006). Quantification of early diagenesis: dissolved constituents in marine pore water. 1027 1028 In: H. D. Schulz & M. Zabel (eds.). Marine Geochemistry. Berlin, Heidelberg: Springer Berlin 1029 Heidelberg, pp. 75-124. 1030 Seeberg-Elverfeldt, J., Schluter, M., Feseker, T. & Kolling, M. (2005). Rhizon sampling of porewaters 1031 near the sediment-water interface of aquatic systems. Limnology and Oceanography-Methods. 3. 1032 pp. 361-371. 1033 Senior, E., Lindström, E.B., Banat, I.M. & Nedwell, D.B. (1982). Sulfate reduction and 1034 methanogenesis in the sediment of a saltmarsh on the East coast of the United kingdom. Applied and environmental microbiology. 43 (5). pp. 987-996. 1035 1036 Smetacek, V. (1985). The Annual Cycle of Kiel Bight Plankton: A Long-Term Analysis. Estuaries. 8 (June). pp. 145-157. 1037 1038 Thauer, R.K. (1998). Biochemistry of methanogenesis : a tribute to Marjory Stephenson. 1039 Microbiology. 144. pp. 2377-2406. 1040 Treude, T., Krause, S., Maltby, J., Dale, A.W., Coffin, R. & Hamdan, L.J. (2014). Sulfate reduction 1041 and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort 1042 Sea continental margin sediments: Implications for deep sulfur cycling. Geochimica et Cosmochimica Acta. 144. pp. 217-237. 1043 1044 Treude, T., Krüger, M., Boetius, A. & Jørgensen, B.B. (2005a). Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnology 1045 1046 and Oceanography. 50 (6). pp. 1771-1786. Treude, T., Niggemann, J., Kallmeyer, J., Wintersteller, P., Schubert, C.J., Boetius, A. & Jørgensen, 1047 1048 B.B. (2005b). Anaerobic oxidation of methane and sulfate reduction along the Chilean 1049 continental margin. Geochimica et Cosmochimica Acta. 69 (11). pp. 2767-2779. 1050 Treude, T., Smith, C.R., Wenzhöfer, F., Carney, E., Bernardino, A.F., Hannides, A.K., Krgüer, M. & 1051 Boetius, A. (2009). Biogeochemistry of a deep-sea whale fall: Sulfate reduction, sulfide efflux and methanogenesis. Marine Ecology Progress Series. 382. pp. 1-21. 1052 1053 Valentine, D.L., Blanton, D.C., Reeburgh, W.S. & Kastner, M. (2001). Water column methane 1054 oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochimica et 1055 Cosmochimica Acta. 65 (16). pp. 2633-2640.

Schink, B. & Zeikus, J.G. (1982). Microbial Ecology of Pectin Decomposition in Anoxic Lake

- Westrich, J.T. & Berner, R. a. (1984). The role of sedimentary organic matter in bacterial sulfate
 reduction: The G model tested. *Limnology and Oceanography*. 29 (2). pp. 236–249.
- Wever, T.F. & Fiedler, H.M. (1995). Variability of acoustic turbidity in Eckernförde Bay (southwest
 Baltic Sea) related to the annual temperature cycle. *Marine Geology*. 125. pp. 21–27.
- Whiticar, M.J. (2002). Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity,
 pockmarks and freshwater seepages in Eckernförde Bay. *Marine Geology*. 182. pp. 29–53.

1063	marine sediments.
1064 1065 1066	Widdel, F. & Bak, F. (1992). Gram-Negative Mesophilic Sulfate-Reducing Bacteria. In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, & KH. Schleifer (eds.). <i>The Prokaryotes</i> . New York, NY: Springer New York, pp. 3352–3378.
1067 1068 1069	Ziervogel, K., Joye, S.B. & Arnosti, C. (2014). Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> . pp. 1–8.
1070 1071	Zinder, S.H. (1993). Physiological ecology of methanogens. In: J. G. Ferry (ed.). <i>Methanogenesis</i> . New York, NY: Chapman & Hall, pp. 128–206.
1072	
1073	
1074	
1075	
1076	
1077	
1078	

Whiticar, M.J. (1978). Relationships of interstitial gases and fluids during early diagenesis in some

1080	Figure Captions
1081	
1082	Figure 1: Location of sampling sites off Peru along the depth transect at 12° S. Source: Schlitzer, R.,
1083	Ocean Data View, http://odv.awi.de, 2014
1084	Figure 2: Profiles of particulate organic carbon (POC), C/N ratio, methane (CH ₄), sulfate (SO ₄ ²⁻), DIC
1085	(dissolved inorganic carbon), net methanogenesis (MG) rates and sulfate reduction (SR) rates in the
1086	MUC cores along the depth transect. For MG, triplicates (symbols) and mean (solid line) are shown.
1087	For SR, duplicates are shown. Data points from the overlaying water in the MUC core (OLW) are set
1088	to 0 cm. Note deviant scale dimension for MG at St. 6 and for SR at St. 1 and 2.
1089	
1090	Figure 3: Integrated methanogenesis and sulfate reduction rates (0-25 cm) along the depth transect.
1091	For methanogenesis rates (black bars), average values are shown with standard deviation. Note for St.
1092	10 a mean from two replicates is shown without standard deviation (pattern-filled bar) and the outlier
1093	is shown separately (cross). For sulfate reduction rates (blue bars), means from two replicates are
1094	shown without standard deviation.
1095	Figure 4: Potential methanogenesis rates in sediment slurry experiments from the two sediment
1096	intervals (0-5 cm and 20-25 cm) at St. 1 (70 m). The first phase of the incubation shows rates
1097	calculated from day 0 to 5 (A), while the second phase of the incubation summarizes the rates from
1098	day 8-23 (B). "Control" is the treatment with sulfate-rich (28 mM) artificial seawater medium, "plus
1099	Mb" is the treatment with sulfate-rich artificial seawater medium plus molybbydate (Mb, 22mM), and
1100	"plus Meth" is defined as the treatment with sulfate-rich artificial seawater medium plus methanol
1101	(Meth, 10 mM). Per treatment, average values are shown with standard deviation. Please note the
1102	split-up in the diagram in part B and the different x-axis for methanogenesis
1103	
1104	Figure 5: Profiles of particulate organic carbon (POC), C/N ratio, methane (CH ₄), sulfate (SO ₄ ²⁻),

1105 dissolved inorganic carbon (DIC), and hydrogenotrophic methanogenesis (MG) rates in the gravity

1106	cores at two stations within the depth transect. For MG, triplicates (symbols) and mean (solid line) are
1107	shown.
1108	
1109	Figure 6: Bottom-near water methane (CH ₄) and oxygen (O ₂) concentrations along the depth transect
1110	(above). Surface sediment particulate organic carbon (POC) content and C/N ratio together with
1111	integrated methanogenesis (MG) rates (0-25 cmbsf) along the depth transect (below). For MG rates,
1112	averages are shown with standard deviation beside St. 10, where a mean from two replicates is shown

1113 (see text). Please note the secondary y-axis.

1116

1117 Tables

1118 Table 1: Stations, instruments, chemical/physical parameters in the bottom-near water, a	and analyses
---	--------------

1119 applied to samples along the depth transect on the Peruvian margin (12°S). For abbreviations see

1120 footnote

Station	Instrumen	Latitude	Longitude	Water	O ₂	Temp.	CH_4	Type of
No	t	(S)	(W)	depth (m)	(μM)	(°C)	(nM)	analysis
1	MUC 13	12°13.492	77°10.511	70				All
	MUC 38	12°13.517	77°10.084	70				SE
	GC 8	12°14.500	77°9.611	78				GC-All
	CTD 9	12°13.535	77°10.522	73	bdl	14	38.6	WC
4	MUC 10	12°18.704	77°17.790	145				All
	CTD 14	12°18.697	77°18.004	145	bdl	13.4	24.4	WC
6	MUC 5	12°23.321	77°24.176	253				Gas+PW
	MUC 6	12°23.322	77°24.181	253				nMG
	CTD 6	12°24.904	77°26.314	305	bdl	12	79.6	WC
8	MUC 23	12°27.198	77°29.497	407				Gas+ PW
	MUC 24	12°27.197	77°29.497	407				nMG
	GC 3	12°27.192	77°29.491	407				GC-All
	CTD 37	12°29.502	77°29.502	407	bdl	10.6	7.3	WC
9	MUC 17	12°31.374	77°35.183	770				Gas+ PW
	MUC 18	12°31.373	77°35.184	770				nMG
	CTD 27	12°31.327	77°35.265	770	19	5.5	8.4	WC
10	MUC 28	12°35.377	77°40.975	1024				Gas+ PW
	MUC 29	12°35.377	77°40.976	1024				nMG
	CTD 11	12°34.863	77°38.954	1010	53	4.4	3.9	WC

MUC = multicorer, GC = gravity corer, CTD = CTD/Rosette, $bdl = below detection limit (5 \mu M)$, All = methane

1121 1122 1123 1124

gas analysis, porewater analysis, net methanogenesis analysis, SE = slurry experiment, GC-All= analysis for gravity cores including methane gas analysis, porewater analysis, hydrogenotrophic methanogenesis analysis, WC= Water column analyses, Gas = methane gas analysis, PW= porewater analysis, nMG= net methanogenesis analysis,

Table 2: Comparison of deep methanogenesis in organic-rich sediments from different regions with surface methanogenesis $(0.02-0.1 \text{ mmol m}^{-2} \text{ d}^{-1})$ determined in the present study. The ratio range was achieved by dividing the lowest surface by the highest deep and the highest surface by the lowest deep methanogenic activity, respectively.

	Water	Depth	Methane flux into the	Ratio between surface	Reference
	Depth	of SMTZ	SMTZ = integrated	methanogenesis	
	(m)	(mbsf)	deep methanogenesis	(present study) and	
			(mmol m ⁻² d ⁻¹)	deep methanogenesis	
Namibia	1312-2060	3-10	0.07-0.15	0.13-1.43	Niewöhner et
(SE Atlantic)					al., (1998)
Eckernförde Bay	25-28	0.5-1.5	0.66-1.88	0.01-0.15	Treude et al.,
(SW Baltic Sea)					(2005a)
Chile	797-2746	3-4	0.068-0.13	0.15-1.47	Treude et al.,
(SE Pacific)					(2005b)
Limfjorden	7-10	1-1.5	0.076	0.03-1.32	Jørgensen &
(North Sea)					Parkes, (2010)
Peru	150-3819	2-50	2.2 <u>×</u> *10 ⁻⁷ -0.017	1.18-4.55 <u>×</u> ≛10⁵	Arning et al.,
(SE Pacific)					(2012)
Peru (SE Pacific)	70-1024	0.7-1	0.8	0.03-0.13	present study

1132 Figures

1133 Figure 1

1148 Figure 2

1173 Figure 4

1191 Figure 5

