

1 **No-tillage lessens soil CO<sub>2</sub> emissions the most under arid and sandy soil conditions: results from a meta-analysis**

2 **Khatab Abdalla<sup>a,b</sup>, Pauline Chivenge<sup>a,c</sup>, Philippe Ciais<sup>d</sup> and Vincent Chaplot<sup>a,e</sup>**

3 <sup>a</sup>School of Agricultural, Earth & Environmental Sciences, CWRR, Rabie Saunders Building, University of KwaZulu-Natal,

4 Scottsville, 3209, South Africa

5 <sup>b</sup>Environment and Natural Recourses and Desertification Research Institute, National Centre for Research, P.O. Box 6096,

6 Khartoum, Sudan.

7 <sup>c</sup>ICRISAT, Matopos Research Station, P.O. Box 776, Bulawayo, Zimbabwe.

8 <sup>d</sup> IPSL – LSCE, CEA CNRS UVSQ, Centre d'Etudes Orme des Merisiers, 91191 Gif-sur-Yvette, France

9 <sup>e</sup>Institut de Recherche pour le Développement (IRD), Laboratoire d'Océanographie et du Climat (LOCEAN), UMR 6159

10 CNRS/IRD/UPMC/MNHN, 4, place Jussieu 75252 Paris Cedex 05, France.

11

1    **Abstract**

2    The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon  
3    redistributions within soils and changes in soil CO<sub>2</sub> emissions. Yet, discrepancies exist on the impact of tillage on soil CO<sub>2</sub>  
4    emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications  
5    totaling 174 paired observations comparing CO<sub>2</sub> emissions over entire seasons or years from tilled and untilled soils across different  
6    climates, crop types and soil conditions with the objective of quantifying tillage impact on CO<sub>2</sub> emissions and assessing the main  
7    controls. On average, tilled soils emitted 21% more CO<sub>2</sub> than untilled soils, which corresponded to a significant difference at  
8    P<0.05. The difference increased to 29% in sandy soils from arid climates with low soil organic carbon content (SOC<sub>C</sub><1%) and low  
9    soil moisture, but tillage had no impact on CO<sub>2</sub> fluxes in clayey soils with high background SOC<sub>C</sub> (>3%). Finally, nitrogen  
10    fertilization and crop residue management had little effect on the CO<sub>2</sub> responses of soils to no-tillage. These results suggest no-  
11    tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including  
12    information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.

13    **Keywords:** land management, tillage; no-tillage; soil CO<sub>2</sub> emissions.

14

1    **1. Introduction**

2    The evidence for climate change is irrefutable and the necessity of mitigating climate change is now accepted. Yet, there are still  
3    large uncertainties on the effectiveness of the measures that could be taken to reduce GHG emissions by land-use management  
4    (Smith et al., 2008; Ciais et al., 2011).

5    There are several reasons for these uncertainties. While inventories can be made of the different carbon pools (Bellamy et al., 2005),  
6    carbon pool changes are small and difficult to detect; they require sampling programs with periodic revisits over many years. Thus,  
7    the magnitude and variability of CO<sub>2</sub> fluxes, both sinks and sources, between the soil and the atmosphere are difficult to quantify  
8    and they may not have been accurately assessed. This is particularly the case for CO<sub>2</sub> fluxes associated with land use and land  
9    management, such as deforestation and changes in agricultural practice (Al-Kaisi and Yin, 2005; Alluvione et al., 2009; Dilling and  
10   Failey, 2012).

11   Soils are the largest terrestrial pool of carbon (C), storing 2344 Pg C (1 Pg = 1 billion tonnes) of soil organic carbon (SOC) in the  
12   top three meters (Jobbágy and Jackson, 2000). Tilling the soil before planting for seedbed preparation and weeding has been a  
13   common practice in agriculture since Neolithic times (McKyes, 1985). This technique is energy intensive and also affects SOC  
14   stocks. Tilling changes the balance between organic carbon inputs into the soil by plants and rendered available for soil micro-  
15   organisms, and carbon output as greenhouse gases (GHGs) due to organic matter decomposition (Rastogi et al., 2002). Soil tillage  
16   may also lead to the vertical and lateral export of particulate and dissolved organic carbon by leaching and erosion (Jacinthe et al.,  
17   2002; Mchunu et al., 2011).

1 Soil tillage is estimated to have decreased SOC stocks by two-thirds from pre-deforestation levels (Lal, 2003). But this estimate is  
2 highly uncertain, due to the lack of detailed site-level meta-analysis for different climates, soil types and management intensities.  
3 Six et al. (2000, 2004) reported that tillage induces soil disturbance and disruption of soil aggregates, exposing the protected SOC to  
4 microbial decomposition and thus causing carbon loss from soils through CO<sub>2</sub> emissions and leaching. Tillage is also responsible for  
5 soil compaction, soil erosion and loss of soil biodiversity (Wilson et al., 2004). In some instances, tillage is thought to have caused a  
6 net sink of atmospheric CO<sub>2</sub>, for instance by displacing SOC to deeper soil horizons or accumulation areas where it decomposes  
7 more slowly (Baker et al., 2007; Van Oost et al., 2007). Soil tillage also modifies the mineralization rates of nutrients, which feeds  
8 back on soil carbon input, implying that the effect of tillage on the balance of SOC needs to be considered at ecosystem level (Barré  
9 et al., 2010).

10 Nowadays, tillage is being increasingly abandoned as the use of mechanised direct planters becomes widespread and weed control is  
11 performed with herbicides or in a more ecologically friendly way by using cover crops and longer crop rotations.

12 The consequences of this change in practice on soil properties and soil functioning are numerous. Importantly, it also raises the  
13 unsolved question: what is the impact of tillage abandonment on GHG emissions and climate change? Common wisdom is that no-  
14 tillage (or zero-tillage) agriculture enhances soil carbon stocks (Peterson et al., 1998; Six et al., 2002; West and Post, 2002; Varvel  
15 and Wilhelm, 2008) by reducing soil carbon loss as CO<sub>2</sub> emission (Paustian et al., 1997; West and Post, 2002; Dawson and Smith,  
16 2007). For instance, Paustian et al. (1997) reviewed 39 paired comparisons and reported that abandonment of tillage increased SOC  
17 stocks in the 0-0.3 m layer by an average of 258 g C m<sup>-2</sup> (i.e., 8%). Ussiri and Lal (2009) observed a two-fold increase of SOC  
18 stocks in the top 0.03 m of soil (800 versus 453 g C m<sup>-2</sup>) after 43 years of continuous *Zea mays* (maize) under no-tillage compared to

1 tillage. Virto et al. (2012) in a meta-analysis based on 92 paired comparisons reported that SOC stocks were 6.7% greater under no-  
2 tillage than tillage.

3 While consensus seems to exist on the potential of no-tillage for carbon sequestration and climate change mitigation, several voices  
4 alerted the scientific and policy communities to some possible flaws in early reports (Royal Society 2001; VandenBygaart and  
5 Angers, 2006; Baker et al., 2007; Luo et al., 2010; Dimassi et al. 2014; Powlson et al., 2014). VandenBygaart and Angers (2006)  
6 indicated that the entire plow depth had to be considered for not overstating zero-tillage impact on SOC storage. To our knowledge,  
7 Baker et al. (2007) were the first to point out that the studies concluding on carbon sequestration under no-tillage management had  
8 only considered the top-soil (to a maximum of 0.3 m), while plants allocate SOC to much greater depths. False conclusions may be  
9 drawn if only carbon in the top-soil is measured. Using meta-analysis based on 69 paired-experiments worldwide where soil  
10 sampling depth extended to 1.0 m, Luo et al. (2010) found that conversion from tillage to no-tillage resulted in significant top-soil  
11 SOC enrichment, but did not increase the total SOC stock in the whole soil profile. Dimassi et al. (2014) even reported SOC losses  
12 over the long term.

13 Evidence for greater CO<sub>2</sub> emissions from land under tillage than a no-tillage regime has been widely reported (e.g., Reicosky, 1997;  
14 Al-Kaisi and Yin, 2005; Bauer et al., 2006; Sainju et al., 2008; Ussiri and Lal, 2009). For instance, in a study performed in the US  
15 over an entire year, Ussiri and Lal (2009) found that, tillage emits 11.3% (6.2 versus 5.5 Mg of CO<sub>2</sub>-carbon per hectare per year,  
16 CO<sub>2</sub>-C ha<sup>-1</sup> yr<sup>-1</sup>) more CO<sub>2</sub> than no-tillage. Similarly, all the field surveys by Alluvione et al. (2009) reported that land under tillage  
17 had 14% higher CO<sub>2</sub> emissions than land with no-tillage. Al-Kaisi and Yin (2005) found this difference to be as much as 58%. A  
18 few *in situ* studies, however, found CO<sub>2</sub> emissions from no-tillage soils were similar to those from tilled soils (Aslam et al., 2000;

1 Oorts et al., 2007; Li et al., 2010). However, Hendrix et al. (1988) and Oorts et al. (2007) found greater CO<sub>2</sub> emissions from untilled  
2 compared to tilled soils, with Oorts et al. (2007) reporting that no-tillage increased CO<sub>2</sub> emissions by 13% compared to tillage. In a  
3 further example, Cheng-Fang et al. (2012) showed that in central China, no-tillage increased soil CO<sub>2</sub> emissions by 22-40%  
4 compared with tillage. Oorts et al. (2007) attributed the larger CO<sub>2</sub> emissions from no-tillage soil compared to tilled soil to increased  
5 decomposition of the weathered crop residues lying on the soil surface. Crop residue management has been shown to greatly impact  
6 CO<sub>2</sub> emissions from soils under both tillage and no-tillage (Oorts et al., 2007; Dendooven et al., 2012). Jacinthe et al. (2002)  
7 reported annual CO<sub>2</sub> emissions to be 43% higher with tillage compared to no-tillage with no mulch, but found a 26% difference for  
8 no-tillage with mulch. Some other authors associated the changes in CO<sub>2</sub> emissions following tillage abandonment to shifts in  
9 nitrogen fertilization application and in crop rotations (Al-Kaisi and Yin, 2005; Álvaro-Fuentes et al., 2008; Cheng-Fang et al.,  
10 2012). Sainju et al., (2008) working in North Dakota pointed to CO<sub>2</sub> flux differences between tilled and untilled soils only for  
11 fertilized fields, while other studies pointed to the absence of nitrogen impact (Drury et al., 2006; Cheng-Fang et al., 2012). Crop  
12 type and crop rotation may also constitute important controls on the CO<sub>2</sub> efflux differences between tillage and no-tillage, mainly  
13 through differences in root biomass and its respiration, and nitrogen availability (Amos et al., 2005; Álvaro-Fuentes et al., 2008).  
14 Omonode et al. (2007) found a 16% difference in CO<sub>2</sub> outputs between tillage and no-tillage under continuous maize, while Sainju  
15 et al. (2010b) found no difference between continuous barley and barley-pea rotations.  
16 Micro-climatic parameters such as soil temperature and precipitation are other likely controls of the response of soil CO<sub>2</sub> emissions  
17 to tillage (Angers et al., 1996; Flanagan and Johnson, 2005; Lee et al., 2006; Oorts et al., 2007). These controls also need further  
18 appraisal.

1 The existence of research studies from different soil and environmental conditions worldwide opens the way for a more systematic  
2 assessment of tillage impact on soil CO<sub>2</sub> emissions and their controls. Meta-analysis is commonly used for combining research  
3 findings from independent studies and offers a quantitative synthesis of the findings (Rosenberg et al., 2000; Borenstein et al.,  
4 2011). This method has been used here in order to assess the effects of background climate (arid to humid), soil texture (clayey to  
5 sandy), crop types (maize, wheat, barley, paddy rice, rapeseed, fallow and grass), experiment duration, nitrogen fertilization, crop  
6 residue management and crop rotations on the CO<sub>2</sub> emission responses of soils following tillage abandonment. CO<sub>2</sub> emissions from  
7 soil with tillage and no-tillage were compared for 174 paired observations across the world.

8

1    **2. Materials and Methods**

2    *2.1. Database generation*

3    A literature search identified papers considering *in situ* soil CO<sub>2</sub> emissions and top-soil (0-0.03 m depth) SOC changes under tillage  
4    and no-tillage management regimes. Google, Google scholar, Science Direct, Springerlink and SciFinder were used. In order to  
5    make the search process as efficient as possible, a list of topic-related keywords was used such as “soil carbon losses under tillage  
6    compared to no-tillage”, “soil CO<sub>2</sub> emissions under tillage and no-tillage”, “land management practices and greenhouse gases  
7    emissions”, “land management effects on CO<sub>2</sub> emissions”, “effects of tillage versus no-tillage on soil CO<sub>2</sub> emissions” and “SOC”.  
8    Many studies reported soil CO<sub>2</sub> emissions and SOC for cropland systems, but only those that reported CO<sub>2</sub> emissions measured in  
9    the field for both tillage and no-tillage from the same crop and during the same period were used. In addition, we selected only  
10   studies that consistently reported total soil respiration (heterotrophic + belowground autotrophic respiration). The crops considered  
11   in this study were maize, wheat, barley, oats, soybean, paddy rice and fallow. The practices considered as tillage in this review are  
12   those that involve physical disturbance of the top-soil layers for seedbed preparation, weed control, or fertilizer application.  
13   Consequently, conventional tillage, reduced tillage, standard tillage, minimum tillage and conservation tillage were all considered as  
14   tillage. However, only direct seeding and drilling were considered as no-tillage, among different practices reported in the reviewed  
15   literature. The studies used in the meta-analysis covered 13 countries (USA, Spain, Brazil, Canada, China, Denmark, France,  
16   Finland, New Zealand, Lithuania, Mexico, Argentina and Kenya). A total of 46 peer-reviewed papers with 175 comparisons for soil  
17   CO<sub>2</sub> emissions and 162 for SOC content (SOC<sub>C</sub>) were identified. Table 1 summarizes information on site location, climatic  
18   conditions, crop rotation systems, and average CO<sub>2</sub> emissions under tilled and untilled soils. Most of the data (37%) came from USA

1 followed by Canada, China and Spain (11% each), and Brazil (9%). There was only one study from Africa, conducted in Kenya by  
2 Baggs et al. (2006).

3 Several soil variables were considered, as follows: SOC<sub>C</sub> (%), soil bulk density ( $\rho_b$ , g cm<sup>-3</sup>), and soil texture (Clay, Silt, and Sand,  
4 %) in the 0-0.03 m layer. In addition, mean annual temperature (MAT, °C) and mean annual precipitation (MAP, mm), crop types,  
5 crop rotations, nitrogen fertilization rate, experiment duration and crop residue management were also considered.

6 Data for soil CO<sub>2</sub> emissions (n = 46) were obtained for all studies by using open chambers and reported on an area basis. Soil CO<sub>2</sub>  
7 emissions were directly extracted from the papers and were standardized to g CO<sub>2</sub>-C m<sup>-2</sup> yr<sup>-1</sup>. Thirty eight studies gave SOC<sub>C</sub> for  
8 both tillage and no-tillage. Four studies (Hovda et al., 2003; Álvaro-Fuentes et al., 2008; Lee et al., 2009; Dendooven et al., 2012)  
9 gave SOC<sub>C</sub>, in term of the mass of carbon in the 0-0.03 m layer and per unit area (kg C m<sup>-2</sup>). Finally, for the four remaining studies,  
10 SOC<sub>C</sub> was extracted from other publications describing measurements at the same site. SOC<sub>C</sub> was estimated from soil organic  
11 carbon stocks (SOC<sub>S</sub> kg C m<sup>-2</sup>) and bulk density following Eq. (1) by Batjes (1996).

$$12 SOC_S = SOC_C \times \rho_b \times T \left(1 - \frac{PF}{100}\right) b \quad (1)$$

13 where SOC<sub>S</sub> is the soil organic C stock (kg C m<sup>-2</sup>); SOC<sub>C</sub> is soil organic C content in the  $\leq 2$  mm soil material (g C kg<sup>-1</sup> soil);  $\rho_b$  is the  
14 bulk density of the soil (kg m<sup>-3</sup>); T is the thickness of the soil layer (m); PF is the proportion of fragments of  $> 2$  mm in percent; and b  
15 is a constant equal to 0.001.

16 Information on MAP and MAT was extracted from the papers, but were estimated in nine studies where such information was not  
17 provided, based on the geographic coordinates of the study site and using the WORLDCLIM climatology (Hijmans et al., 2005)

1 with a spatial resolution of 30 seconds. In eight studies where soil texture was only given as textural class, particle size distribution  
2 was estimated using the adapted soil texture triangle (Saxton *et al.*, 1986).

3 Table 2 shows the variables used in categorizing the experimental conditions. The climatic regions were extracted directly from the  
4 papers and categorized into arid and humid climate (Köppen, 1936). SOC<sub>C</sub> were categorized into three categories following Lal  
5 (1994): low (SOC<sub>C</sub> <10 g C kg<sup>-1</sup>), medium (10-30 g C kg<sup>-1</sup>) and high (>30 g C kg<sup>-1</sup>). Soil texture was categorized based on the soil  
6 textural triangle (Shirazi and Boersma, 1984) into three classes (clay, loam and sand). Fertilization rate for this meta-analysis was  
7 classified into the categories defined by Cerrato and Blackmer (1990): low when below 100 kg N ha<sup>-1</sup> and high when above 100 kg  
8 N ha<sup>-1</sup>.

9 In addition, no-tillage treatment was classified as short duration when <10 years, or long duration when exceeding 10 years. Crops  
10 residues were either left on the soil surface or removed after harvest with no distinction between removal proportions. Crops  
11 rotations were divided into two categories: a series of different types of crop in the same area classed as “rotation”, or continuous  
12 monoculture, classed as “no rotation”.

13

## 1 2.2. *Meta-analysis*

2 The response ratio (R) of  $\text{CO}_2$  emissions to SOC under tillage (T) and no-tillage (NT) was calculated using Eq. (2) and (3). As  
 3 common practice, natural log of the R ( $\ln R$ ) has been calculated as an effect size of observation (Hedges et al., 1999)

$$4 \quad InR = In(CO_{2T} / CO_{2NT}) \quad (2)$$

$$5 \quad InR = In(SOC_T / SOC_{NT}) \quad (3)$$

6 The MetaWin 2.1 software (Rosenberg et al., 2000) was used for analyzing the data and generating a bootstrapped (4,999 iterations)  
7 to calculate 95% confidence intervals. The means of effect size were considered to be significantly different from each other if their  
8 95% confidence intervals were not overlapping and were significantly different from zero if the 95% level did not overlap zero  
9 (Gurevitch and Hedges, 2001).

10

1    **3. Results**

2    *3.1. General statistics of soil CO<sub>2</sub> emissions from tilled and untilled soils*

3    Overall, average soil CO<sub>2</sub> emissions computed from the 174 paired observations was 1152 g CO<sub>2</sub>-C m<sup>-2</sup> yr<sup>-1</sup> from tilled soils  
4    compared to 916 g C-CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup> from under no-tillage (Table 3), which corresponds to a 21% average difference, significant at  
5    P<0.05. The greatest soil CO<sub>2</sub> emission amongst the considered sites was 9125 g C-CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup> observed under tilled soils with  
6    barley in an arid area at Nesson Valley in western North Dakota, USA (Sainju et al., 2008). The lowest soil CO<sub>2</sub> emission was 11 g  
7    CO<sub>2</sub>-C m<sup>-2</sup> yr<sup>-1</sup> observed under no-tillage wheat in the humid climate of Lithuania (Feiziene et al., 2011).

8

9    *3.2. Controls on the response of soil CO<sub>2</sub> emissions to tillage*

10    *Climate*

11    Tillage emitted 27% more CO<sub>2</sub> than no-tillage in arid climates; while for pairs in humid climates, tillage emitted 16% more CO<sub>2</sub> than  
12    no-tillage. However, the differences in CO<sub>2</sub> emissions between tillage and no-tillage were not statistically significant (at 0.05  
13    confidence interval) between arid and humid climates (Fig. 1a). When compared across all studies, mean SOC<sub>C</sub> under tillage was  
14    10% lower than under no-tillage (Fig. 1b). In arid climates, SOC<sub>C</sub> in tillage was 11% lower than no-tillage, whereas in humid  
15    climates SOC<sub>C</sub> under tillage was only 8% less than for no-tillage. However, the differences in SOCC between the two climatic zones  
16    were found to be non-significant.

17

1

2     *Soil organic carbon content*

3     On average, soil CO<sub>2</sub> emissions from tilled soils were 25% greater compared to untilled for soils with SOC<sub>C</sub> lower than 10 g kg<sup>-1</sup>  
4     (Fig. 2). For SOC<sub>C</sub> between 10 and 30 g kg<sup>-1</sup>, tilled soils emitted an average 17% more CO<sub>2</sub> than untilled ones. In the case of carbon-  
5     rich soils with SOC<sub>C</sub> higher than 30 g kg<sup>-1</sup>, there were no significant differences between tillage and no-tillage CO<sub>2</sub> emissions. Thus,  
6     the difference between tillage and no-tillage decreased with increasing background SOC<sub>C</sub>. Overall, soil CO<sub>2</sub> emissions under no-  
7     tillage were about five times greater for low compared to high SOC<sub>C</sub>.

8

9     *Soil texture*

10    Differences in CO<sub>2</sub> emissions between tilled and untilled soils were largest in sandy soils where tilled soils emitted 29% more CO<sub>2</sub>  
11    than untilled soils (Fig. 3a). In clayey soils, the differences between tillage and no-tillage were much smaller with tilled soils  
12    emitting 12% more CO<sub>2</sub> than untilled soils. On the other hand, SOC<sub>C</sub> under tillage was significantly lower than under no-tillage: by  
13    17% under sandy soils and 9% in clayey soils (Fig. 3b). However, there were no differences between clayey and loamy soils.

14

15    *Crop type*

16    Soil CO<sub>2</sub> emissions were significantly greater in tilled compared to untilled soils for all crop types with the exception of paddy rice  
17    where there were no significant differences between tilled and untilled soils (Fig. 4a). The greatest CO<sub>2</sub> emission difference between  
18    tillage and no-tillage was found in fallow, with a value of 34%.

1 Grouping all crop types together, SOC<sub>C</sub> under tillage was significantly lower than under no-tillage. Among the different crops (rice,  
2 maize, soybean, wheat and barley) a significant SOCc difference between tilled and untilled soil was only observed for maize (15%)  
3 at one site and for rice (7.5%). SOC<sub>C</sub> under no-tillage was slightly greater than under tillage for soils under fallow, but the difference  
4 was not significant (Fig. 4b). Highest SOC<sub>C</sub> differences between tilled and untilled soils were observed for maize where SOC<sub>C</sub> was  
5 on average 15% lower under tillage compared to no-tillage.

6

7 *Duration of no-tillage*

8 The duration of no-tillage (i.e., time since tillage was abandoned) had no statistical association with soil CO<sub>2</sub> emissions. However,  
9 there was a tendency for the differences between tillage and no-tillage to increase with increasing duration of the no-tillage regime  
10 with an average 18% difference for experiments of less than 10 years, and 23% for those longer than 10 years (Fig. 5a). SOC<sub>C</sub> under  
11 tillage was 14% lower compared to no-tillage for experiments lasting longer than 10 years, whereas there were no differences in  
12 SOC<sub>C</sub> between tillage and no-tillage for shorter durations (Fig. 5b).

13

14 *Nitrogen fertilization*

15 Nitrogen fertilization did not produce statistically significant differences between soil CO<sub>2</sub> emissions and SOC<sub>C</sub> differences from  
16 tilled and untilled soil (Fig. 6). Compared to tillage, no-tillage decreased soil CO<sub>2</sub> emissions by an average of 19% when 100 kg N  
17 ha<sup>-1</sup> or more was applied, while at lower fertilization rates, soil CO<sub>2</sub> emissions decreased by 23%, but owing to the small sample size  
18 this difference was not statistically significant.

1

2 *Crop residue management and crop rotation*

3 On average, when crop residues were not exported, no-tillage decreased soil CO<sub>2</sub> emissions by 23% compared to tillage, which  
4 corresponded to a significant difference at  $P < 0.05$ . On the other hand, crop residue removal resulted in a smaller difference of only  
5 18% (Fig.7a). SOC<sub>C</sub> was 12% lower under tillage than no-tillage in the absence of crop residues, and only 5% lower when crop  
6 residues were left on the soil (Fig.7a). On the other hand, soils under a crop rotation regime exhibited much sharper decrease (i.e.  
7 26%) of CO<sub>2</sub> emission following tillage abandonment than the soils under continuous monoculture for which changes of CO<sub>2</sub>  
8 emission were not significant at  $P < 0.05$ .

9

10 *Multiple correlations between soil CO<sub>2</sub> emissions and selected soil variable and environmental factors*

11 Figure 9 shows the interaction between the changes in CO<sub>2</sub> emissions following tillage abandonment on one hand and the selected  
12 soil and environmental variables on the other. The first two axes of the PCA explained 66% of the entire data variability. The first  
13 PCA axis (Axis 1), which described 35% of the total data variance, was highly correlated to latitude (LAT), mean annual  
14 temperature (MAT), SOC<sub>C</sub>, and soil clay content (CLAY). LAT and pb showed positive coordinates on Axis 1, while the other  
15 variables showed negative ones. Axis 1 could, therefore, be regarded as an axis setting clayey organic and warm soils against  
16 compacted, sandy soils from a cold climate. The second PCA axis, which explained 21% of the data variance, correlated the most  
17 with silt content. The differences in CO<sub>2</sub> fluxes between tillage and no-tillage ( $\Delta\text{CO}_2_{\text{T-NT}}$ ) showed positive coordinates on Axis 1,

1 which revealed greater CO<sub>2</sub> emissions under tillage compared to no-tillage under cool sandy and dense soils compared to warm  
2 clayey and organically rich soil from a warm and humid climate.

3

1    **4. Discussion**

2    4.1. Overall influence of tillage on SOC<sub>C</sub> and soil CO<sub>2</sub> emissions

3    Our meta-analysis shows that tillage has a significant impact on decreasing top-soil (0-0.03 m) organic carbon content (SOC<sub>C</sub>) and  
4    increasing CO<sub>2</sub> emissions, with 10% lower SOC<sub>C</sub> and 21% greater CO<sub>2</sub> emission in tilled than untilled soils. Lower SOC<sub>C</sub> and  
5    greater CO<sub>2</sub> emissions under tillage reflect faster organic matter decomposition as a result of greater soil aeration and incorporation  
6    of crop residues to the soil, and breakdown of soil aggregates, which all render the organic material more accessible to decomposers  
7    (Reicosky, 1997; Six et al., 2002, 2004). However, results from the literature do not always agree with this. In case of soil carbon,  
8    for example, Cheng-Fang et al. (2012) found 7-48% greater SOC<sub>C</sub> under tilled rice in China, when Ahmad et al. (2009) observed no  
9    significant differences. In case of soil CO<sub>2</sub> emissions, while for instance Ussiri and Lal (2009) for a 43 years maize monoculture in  
10   USA observed 31% greater CO<sub>2</sub> emissions from tilled than from no-tilled soils, Curtin et al. (2000) and Li et al. (2010) found no  
11   significant difference in CO<sub>2</sub> emissions between these treatments while Oorts et al. (2007) reported greater soil CO<sub>2</sub> emission under  
12   no-tillage (4064 kg CO<sub>2</sub>-C ha<sup>-1</sup>) compared to tillage (3160 kg CO<sub>2</sub>-C ha<sup>-1</sup>), which they attributed to greater soil moisture content and  
13   amount of crop residue on the soil surface.

14

15    4.2. Influence of climate

16    Although there was no significant difference between arid and humid climates, CO<sub>2</sub> emissions and SOC<sub>C</sub> changes between untilled  
17   and tilled soils tended to be greater in arid than in humid climates (Fig. 1a). In support, Álvaro-Fuentes et al. (2008), who  
18   investigated tillage impact on CO<sub>2</sub> emissions from soils in a semiarid climate, attributed the observed large difference between

1 tillage and no-tillage to differences in soil water availability. At humid sites high soil moisture favor high decomposition rates  
2 resulting in small differences between tilled and untilled soils, while large differences develop in arid climates with much lower soil  
3 water content (Fortin et al., 1996; Feiziene et al., 2011). This supports the idea that the soil response to tillage is affected by climate  
4 thresholds (Franzluebbers and Arshad, 1996).

5

6 4.3 Influence of soil properties

7 *4.3.1. Soil organic carbon content*

8 The decrease of CO<sub>2</sub> emission differences between tillage and no-tillage with increasing SOC<sub>C</sub> is most likely due to diminishing  
9 inter-aggregate protection sites as SOC<sub>C</sub> level increases. Several studies have shown that carbon inputs into carbon-rich soils show  
10 little or no increase in soil carbon content with most of the added carbon being released to the atmosphere, while carbon inputs in  
11 carbon-depleted soils translate to greater carbon stocks because of processes that stabilize organic matter (Paustian et al., 1997;  
12 Solberg et al., 1997; Six et al., 2002). Another reason, which doesn't involve stabilization, is the fact that soils that have been  
13 depleted in carbon tend to recover and accumulate SOC until equilibrium is reached (Carvalhais et al. 2007). Therefore, abandoning  
14 tillage in soils with low SOC<sub>C</sub> tends to offer greater protection of SOC than in soils with inherently high SOC<sub>C</sub> levels. In support,  
15 Lal (1997) reported low SOC<sub>C</sub> and aggregation correlations under high SOC<sub>C</sub> soils, which suggests that substantial proportions of  
16 the SOC were not involved in aggregation. Hence, the greater difference of CO<sub>2</sub> emissions between tilled and untilled soils for  
17 carbon-depleted soils compared to carbon-rich soils may be due to much greater stabilization of extra SOC delivered to the carbon-  
18 depleted soil by protection in soil aggregates within the top-soil layers (0.0-0.05 m). Tillage of carbon-depleted soils is likely to lead

1 to the breakdown of more soil aggregates, thus leading to greater decomposition of the residues added under no-tillage, as  
2 hypothesized by Madari *et al.* (2005) and Powlson et al. (2014).

3

4 *4.3.2. Soil texture*

5 Soils under zero tillage emitted less CO<sub>2</sub> than tilled soils, and the CO<sub>2</sub> emission difference was the greatest in sandy soils (Fig. 3).  
6 Further, in sandy soils, as indicated by Fig 3, the largest CO<sub>2</sub> emission difference is mirrored by the largest SOC<sub>C</sub> difference.  
7 Greater SOC<sub>C</sub> and then CO<sub>2</sub> differences under sandy soils might be due to the lower resistance of soil aggregates to disaggregation,  
8 with tillage accelerating aggregate breakdown and decreasing organic matter protection, which causes a fast loss of soil carbon.  
9 Differences in CO<sub>2</sub> emissions between treatments were greater in sandy than in clayey soils (Fig. 3). This might be due to the fact  
10 that sandy soils have higher porosity, allowing changes in soil management to translate into large variations in the gas fluxes to the  
11 atmosphere (Rastogi et al., 2002; Bauer et al., 2006). These suggestions contrast, however, with the results of for instance Chivenge  
12 et al. (2007) working in Zimbabwe and where little impact of tillage on carbon sequestration was found under sandy soils as  
13 compared to clayey ones.

14

15 *4.4. Influence of the duration since tillage abandonment*

16 The differences in SOC<sub>C</sub> between tilled and untilled soils increased with the time since abandonment of tillage (Fig. 5b). When  
17 abandonment of tillage took place less than 10 years old there were no differences in SOC<sub>C</sub> between tillage and no-tillage, but for  
18 longer durations tilled soils had 14% less SOC<sub>C</sub> than untilled soils. This can be explained by the progressive increase of soil carbon

1 accumulation with time as a result of the retention of a fraction of the crop residue under no-tillage. This explanation is consistent  
2 with the results of Paustian et al. (1997) and Ussiri and Lal (2009). Six et al. (2004) reported that the potential of no-tillage to  
3 mitigate global warming is only noticeable a long time after (>10 years) a no-tillage regime has been adopted. This would suggest  
4 that shifts in CO<sub>2</sub> emission differences between tillage and no-tillage will occur over time; this could not be observed in our analysis  
5 (Fig. 5a) because the majority of experiments in this study were less than 10 years in length. Further, in some cases no-tillage leads  
6 to carbon loss in the top-soil layer (0-0.3 m) during the first years of adoption (Halvorson et al., 2002; Six et al., 2004), a response  
7 which can be attributed to slower incorporation of surface residues into the soils by soil fauna. However, different studies give  
8 contrasting results; for instance, the long-term no-till experiments in northern France by Dimassi et al. (2014) showed that SOC  
9 increased in the top-soil (0-0.1 m) during 24 years after tillage abandonment, then did not increase, whereas SOC continuously  
10 decreased below 0.1 m. A loss of SOC following tillage abandonment was also suggested by Luo et al. (2010) and Baker et al.  
11 (2007).

12

#### 13 4.5. Crop types, residues management and crop rotation

14 The no-tillage minus tillage variations of CO<sub>2</sub> emission and SOC<sub>C</sub> between crop types are correlated with the quantity and quality of  
15 crop residue (Fig. 4a-b). Both quantity and quality of crop residues are important factors for soil carbon sequestration and CO<sub>2</sub>  
16 emissions, and are highly dependent on crop type. Reicosky et al. (1995), reported that corn returned nearly twice as much residue  
17 than soybean, and that soybean residues decomposed faster because of their lower C:N ratio. Thus, maize residues result in higher  
18 soil organic matter than soybean. Al-Kaisi and Yin (2005) also reported reduced soil CO<sub>2</sub> emissions and improved soil carbon

1 sequestration in maize-soybean rotations due to better residue retention. Reicosky (1997) summarized that maximizing residue  
2 retention results in carbon sequestration with subsequent decrease in CO<sub>2</sub> emissions. However, several recent studies pointed to the  
3 lack of impact of residue management on soil carbon, with Lemke et al. (2010) showing that crop residue removal in a 50 years  
4 experiment did not significantly (P > 0.05) reduce soil carbon, and Ren et al. (2014) showing that inputs from wheat straw and  
5 manure up to 22 ton ha<sup>-1</sup> yr<sup>-1</sup> could not increase soil carbon over 4 years. De Luca et al., (2010) explained the lack of crop residue  
6 impact on soil carbon by the very low amount of carbon in residues compared to the bulk soil in their study, while Russell et al  
7 (2009) having investigated several systems pointed out to a concomitant increase of organic matter decomposition with carbon input  
8 rates.

9 Wilson and Al Kazi (2008) indicated that continuous corn cropping systems had higher soil CO<sub>2</sub> emissions than corn-soybean  
10 rotations because of a greater residue amount. Van Eerd et al. (2014) concluded from winter wheat - legumes rotations to higher  
11 carbon input during wheat cultivation, due to a greater belowground allocation. The present analysis suggests that tilled soils have  
12 significantly greater CO<sub>2</sub> emissions than no-tilled soils irrespective of the crop rotation system (Fig. 8). This is likely because crop  
13 rotation increases SOC<sub>C</sub>, and microbial activity and diversity. For instance, Lupwayi et al. (1998, 1999) found greater soil microbial  
14 biomass under tillage legume-based crop rotations than under no-tillage with tillage increasing the richness and diversity of active  
15 soil bacteria by increasing the rate of diffusion of O<sub>2</sub> and the availability of energy sources (Pastorelli et al., 2013). This study  
16 showed that continuous monoculture did not result in significantly different CO<sub>2</sub> between tilled and untilled soils (Fig. 8a). Rice is  
17 one crop often produced under a continuous monoculture practice, however, in this meta-analysis, paddy rice did not show

1 significant difference of CO<sub>2</sub> emissions between tillage and no-tillage. Li et al. (2010) and Pandey et al. (2012) attributed the lack of  
2 difference to anaerobic soil conditions occurring under both practices.

3

4 4.6. Nitrogen fertilization

5 The differences of CO<sub>2</sub> between tillage and no-tillage did not differ with nitrogen fertilizer level (Fig. 6a), confirming observations  
6 by Alluvione et al. (2009) and Almaraz et al. (2009b). This result could be due to the fact that nitrogen fertilization increases  
7 productivity and carbon inputs to the soil under both tilled and untilled systems, which may override nitrogen effects on  
8 decomposition such as shown by Russell et al. (2009). Increasing SOC as a response to nitrogen fertilization was found under no-  
9 tillage during a period of 4 years (Morell et al., 2010), and during the 50 yr experiment of Lemke, et al. (2010). Yet Sainju et al.  
10 (2008) reported the opposite: a 14% increase of soil CO<sub>2</sub> flux with nitrogen fertilizer, because fertilizer application stimulated  
11 biological activity, thereby producing more CO<sub>2</sub>, and causing SOC<sub>C</sub> decline (Khan et al., 2007; Mulvaney et al., 2009). In contrast,  
12 Wilson and Al Kazi (2008) showed that increasing N fertilization generally decreased soil CO<sub>2</sub> emissions, with a maximum decrease  
13 of 23% from 0-135 kg N ha<sup>-1</sup> to 270 kg N ha<sup>-1</sup> occurring during the growing season, which might be explained by a series of  
14 mechanisms, including the inhibition of soil enzymes and fungus and the reduction of root activity.

15 Overall, these results pointed to little benefit in not tilling clayey soils with high SOC<sub>C</sub>, with the highest no-tillage benefits occurring  
16 under sandy soils with low SOC<sub>C</sub>. This can be explained by differences in soil aggregate stability. Indeed, since the stability of soil  
17 aggregates shows a positive correlation with clay and organic matter content, clayey and organic soils produce stable aggregates  
18 which are likely to be more disaggregated by tillage compared to sandy aggregates of low carbon content. The SOC protected within

1 soil aggregates under no-tillage becomes exposed under tillage because of aggregate dispersion; which explains the greater reduction  
2 in CO<sub>2</sub> emission with no-tillage under sandy soils. Rather, emission is likely to be reduced under zero tillage as a result of improved  
3 soil aggregate stability and the associated protection of decomposed and stable organic matter. Crop management such as  
4 fertilization and crop type, or climate are shown to have little effect on aggregation. Our analysis did not include time since  
5 cessation of tillage as a specific predictor and classified instead the experiments into two simple categories (short versus long term).

6

## 7 **5. Conclusion**

8 The aim of this study was to provide a comprehensive quantitative synthesis of the impact of tillage on CO<sub>2</sub> emissions using meta-  
9 analysis. Three main conclusions can be drawn. Firstly, tillage systems had 21% greater CO<sub>2</sub> emissions than no-tillage, worldwide.  
10 Secondly, the reduction in CO<sub>2</sub> emissions following tillage abandonment was greater in sandy soils with low SOC<sub>C</sub> compared to  
11 clayey soils with high SOC<sub>C</sub>. Thirdly, crop rotation significantly reduced the CO<sub>2</sub> emissions from untilled soil, by 26% compared to  
12 tilled soil, while continuous monocultural practice had no significant effect. This is most probably due to the fact that crop rotation  
13 can increase SOC<sub>C</sub> and more microbial activity under a tilled compared to an untilled treatment. These results emphasize the  
14 importance of including soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon  
15 cycle.

16 Long-term process studies of the entire soil profile are needed to better quantify the changes in SOC following tillage abandonment  
17 and to clarify the changes in the dynamics of carbon inputs and outputs in relation to changes in microbial activity, soil structure and  
18 microclimate. In addition, more research is needed to identify the underlying reasons why, over a long period of time, the

1 abandonment of tillage results in a decrease in integrated CO<sub>2</sub> emissions, that appears to be much higher than the observed increase  
2 in SOC<sub>s</sub>. The goal remains to design agricultural practices that are effective at sequestering carbon in soils.  
3 Finally, one future application of these data could be to use them to calibrate soil carbon models. The models could be run with  
4 prescribed inputs (from observation sites) used to simulate decomposition and the mass balance of SOC over time for different  
5 climates, soil texture and initial SOC content with respect to the theoretical value assuming equilibrium of decomposition and input  
6 (Kirk and Bellamy, 2010). Most soil carbon models developed for generic applications (e.g., RothC, DNDC, and CENTURY) would  
7 be suitable tools for exploitation of the data presented here (Adams et al., 2011).

8

1 References

2 Adams, M., Crawford, J., Field, D., Henakaarchchi, N., Jenkins, M., McBratney, A., de Remy de Courcelles, V., Singh, K.,  
3 Stockmann, U., Wheeler, J., 2011. "Managing the soil-plant system to mitigate atmospheric CO<sub>2</sub>." Discussion paper for the  
4 Soil Carbon Sequestration Summit, 31 January–2 February 2011. The United States Studies Centre at the University of  
5 Sydney.

6 Ahmad, S., Li, C., Dai, G., Zhan, M., Wang, J., Pan, S., Cao, C., 2009. Greenhouse gas emission from direct seeding paddy field  
7 under different rice tillage systems in central China. *Soil and Tillage Research* 106, 54-61.

8 Al-Kaisi, M.M., Yin, X., 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean  
9 rotations. *Journal of Environmental Quality* 34, 437-445.

10 Alluvione, F., Halvorson, A.D., Del Grosso, S.J., 2009. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane  
11 fluxes from irrigated cropping systems. *Journal of Environmental Quality* 38, 2023-2033.

12 Almaraz, J.J., Mabood, F., Zhou, X., Madramootoo, C., Rochette, P., Ma, B.L., Smith, D.L., 2009a. Carbon dioxide and nitrous  
13 oxide fluxes in corn grown under two tillage systems in southwestern Quebec. *Soil Science Society of America Journal* 73,  
14 113-119.

15 Almaraz, J.J., Zhou, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B-L., Smith, D.L., 2009b. Greenhouse gas fluxes  
16 associated with soybean production under two tillage systems in southwestern Quebec. *Soil and Tillage Research* 104, 134-  
17 139.

18 Alvarez, R., Alvarez, C.R., Lorenzo, G., 2001. Carbon dioxide fluxes following tillage from a mollisol in the Argentine Rolling  
19 Pampa. *European Journal of Soil Biology* 37, 161-166.

20 Álvaro-Fuentes, J., López, M., Arrué, J., Cantero-Martínez, C., 2008. Management effects on soil carbon dioxide fluxes under  
21 semiarid Mediterranean conditions. *Soil Science Society of America Journal* 72, 194-200.

1 Amos, B., Arkebauer, T.J., Doran, J.W., 2005. Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem.  
2 Soil Science Society of America Journal 69, 387-395.

3 Aslam, T., Choudhary, M., Saggar, S., 2000. Influence of land-use management on CO<sub>2</sub> emissions from a silt loam soil in New  
4 Zealand. Agriculture, Ecosystems & Environment 77, 257-262.

5 Baggs, E., Chebii, J., Ndufa, J., 2006. A short-term investigation of trace gas emissions following tillage and no-tillage of  
6 agroforestry residues in western Kenya. Soil and Tillage Research 90, 69-76.

7 Baker, J.M., Ochsner, T.E., Venterea, R.T., and Griffis, T.J., 2007. Tillage and soil carbon sequestration—What do we really know?  
8 Agriculture, Ecosystems & Environment 118, 1-5.

9 Balesdent, J., Chenu, C., Balabane, M., 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil  
10 and Tillage Research 53, 215-230.

11 Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S., Kätterer, T., Van Oort, F., Peylin, P., Poulton, P., Romanenkov, V.,  
12 2010. Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments. Biogeosciences 7, 3839-  
13 3850.

14 Barreto, R.C., Madari, B.E., Maddock, J.E.L., Machado, P.L.O.A., Torres, E., Franchini, J., Costa, A.R., 2009. The impact of soil  
15 management on aggregation, carbon stabilization and carbon loss as CO<sub>2</sub> in the surface layer of a Rhodic Ferralsol in Southern  
16 Brazil. Agriculture, Ecosystems & Environment 132, 243-251.

17 Batjes, N. H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47, 151-163.

18 Bauer, P.J., Frederick, J.R., Novak, J.M., Hunt, P.G., 2006. Soil CO<sub>2</sub> flux from a norfolk loamy sand after 25 years of conventional  
19 and conservation tillage. Soil and Tillage Research 90, 205-211.

20 Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., Kirk, G.J., 2005. Carbon losses from all soils across England and Wales  
21 1978–2003. Nature 437, 245-248.

22 Borenstein, M., Hedges, L.V., Higgins, J.P., Rothstein, H.R., 2011. Introduction to meta-analysis. John Wiley & Sons.

1 Brye, K.R., Longer, D.E., Gbur, E.E., 2006. Impact of tillage and residue burning on carbon dioxide flux in a wheat–soybean  
2 production system. *Soil Science Society of America Journal* 70, 1145-1154.

3 Carbonell-Bojollo, R., González-Sánchez, E.J., Veróz-González, O., Ordóñez-Fernández, R., 2011. Soil management systems and  
4 short term CO<sub>2</sub> emissions in a clayey soil in southern Spain. *Science of The Total Environment* 409, 2929-2935.

5 Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G. J., Pereira, J. S., Berbigier, P., Carrara, A., Granier, A., Montagnani, L.,  
6 Papale, D., 2008. Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and  
7 inverse parameter retrieval. *Global Biogeochemical Cycles* 22.

8 Cerrato, M., Blackmer, A., 1990. Comparison of models for describing; corn yield response to nitrogen fertilizer. *Agronomy Journal*  
9 82, 138-143.

10 Chaplot, V., Mchunu, C., Manson, A., Lorentz, S., Jewitt, G., 2012. Water erosion-induced CO<sub>2</sub> emissions from tilled and no-tilled  
11 soils and sediments. *Agriculture, Ecosystems & Environment* 159, 62-69.

12 Chatskikh, D., Olesen, J.E., 2007. Soil tillage enhanced CO<sub>2</sub> and N<sub>2</sub>O emissions from loamy sand soil under spring barley. *Soil and  
13 Tillage Research* 97, 5-18.

14 Cheng-Fang, L., Dan-Na, Z., Zhi-Kui, K., Zhi-Sheng, Z., Jin-Ping, W., Ming-Li, C., Cou-Gui, C., 2012. Effects of tillage and  
15 nitrogen fertilizers on CH<sub>4</sub> and CO<sub>2</sub> emissions and soil organic carbon in paddy fields of central China. *PloS one* 7, e34642.

16 Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P., Ramonet, M., 2011. Atmospheric inversions for estimating  
17 CO<sub>2</sub> fluxes: methods and perspectives. *Climatic Change* 103, 69-92.

18 Curtin, D., Wang, H., Selles, F., McConkey, B., Campbell, C., 2000. Tillage effects on carbon fluxes in continuous wheat and  
19 fallow–wheat rotations. *Soil Science Society of America Journal* 64, 2080-2086.

20 Datta, A., Smith, P., Lal, R., 2013. Effects of long-term tillage and drainage treatments on greenhouse gas fluxes from a corn field  
21 during the fallow period. *Agriculture, Ecosystems & Environment* 171, 112-123.

22 Dawson, J.J.C., Smith, P., 2007. Carbon losses from soil and its consequences for land-use management. *Science of The Total  
23 Environment* 382, 165-190.

1 Dendooven, L., Gutiérrez-Oliva, V.F., Patiño-Zúñiga, L., Ramírez-Villanueva, D.A., Verhulst, N., Luna-Guido, M., Marsch, R.,  
2 Montes-Molina, J., Gutiérrez-Miceli, F.A., Vásquez-Murrieta, S., 2012. Greenhouse gas emissions under conservation  
3 agriculture compared to traditional cultivation of maize in the central highlands of Mexico. *Science of The Total Environment*  
4 431, 237-244.

5 Dilling, L., Failey, E., 2012. Managing carbon in a multiple use world: The implications of land-use decision context for carbon  
6 management. *Global Environmental Change*.

7 Dimassi, B., Cohan, J.-P., Labreuche, J., Mary, B., 2013. Changes in soil carbon and nitrogen following tillage conversion in a long-  
8 term experiment in Northern France. *Agriculture, Ecosystems & Environment* 169, 12-20.

9 Dimassi, B., Mary, B., Wylleman, R., Labreuche, J., Couture, D., Piraux, F., & Cohan, J. P., 2014. Long-term effect of contrasted  
10 tillage and crop management on soil carbon dynamics during 41 years. *Agriculture, Ecosystems & Environment*, 188, 134-  
11 146.

12 Dlamini, P., Orchard, C., Jewitt, G., Lorentz, S., Titshall, L., Chaplot, V., 2011. Controlling factors of sheet erosion under degraded  
13 grasslands in the sloping lands of KwaZulu-Natal, South Africa. *Agricultural Water Management* 98, 1711-1718.

14 Don, A., Schumacher, J., Freibauer, A., 2011. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis.  
15 *Global Change Biology* 17, 1658-1670.

16 Drury, C., Reynolds, W., Tan, C., Welacky, T., Calder, W., McLaughlin, N., 2006. Emissions of Nitrous Oxide and Carbon Dioxide.  
17 *Soil Science Society of America Journal* 70, 570-581.

18 Elder, J.W., Lal, R., 2008. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. *Soil*  
19 and *Tillage Research* 98, 45-55.

20 Ellert, B., Janzen, H., 1999. Short-term influence of tillage on CO<sub>2</sub> fluxes from a semi-arid soil on the Canadian Prairies. *Soil and*  
21 *Tillage Research* 50, 21-32.

22 FAO., 2008. Investing in Sustainable Agricultural Intensification. The Role of Conservation Agriculture. A Framework for Action.  
23 Food and Agriculture Organization of the United Nations, Rome.

1 Feiziene, D., Feiza, V., Kadziene, G., Vaideliene, A., Povilaitis, V., Deveikyte, I., 2011. CO<sub>2</sub> fluxes and drivers as affected by soil  
2 type, tillage and fertilization. *Acta Agriculturae Scandinavica, Section B-Soil & Plant Science* 62, 311-328.

3 Feizienė, D., Feiza, V., Vaideliénė, A., Povilaitis, V., Antanaiitis, Š., 2010. Soil surface carbon dioxide exchange rate as affected by  
4 soil texture, different long-term tillage application and weather. *Agriculture* 97, 25-42.

5 Flanagan, L.B., Johnson, B.G., 2005. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem  
6 respiration in a northern temperate grassland. *Agricultural and Forest Meteorology* 130, 237-253.

7 Fortin, M.C., Rochette, P., Pattey, E., 1996. Soil carbon dioxide fluxes from conventional and no-tillage small-grain cropping  
8 systems. *Soil Science Society of America Journal* 60, 1541-1547.

9 Franzluebbers, A., Arshad, M., 1996. Soil organic matter pools with conventional and zero tillage in a cold, semiarid climate. *Soil  
10 and Tillage Research* 39, 1-11.

11 Giller, K.E., Witter, E., Corbeels, M., Tittonell, P., 2009. Conservation agriculture and smallholder farming in Africa: the heretics'  
12 view. *Field Crops Research* 114, 23-34.

13 Govaerts, B., Verhulst, N., Castellanos-Navarrete, A., Sayre, K., Dixon, J., Dendooven, L., 2009. Conservation agriculture and soil  
14 carbon sequestration: between myth and farmer reality. *Critical Reviews in Plant Science* 28, 97-122.

15 Grüneberg, E., Schöning, I., Hessenmöller, D., Schulze, E.D., Weisser, W., 2013. Organic layer and clay content control soil organic  
16 carbon stocks in density fractions of differently managed German beech forests. *Forest Ecology and Management* 303, 1-10.

17 Gurevitch, J., Hedges, L., 2001. Meta-analysis; combining the results of independent studies in experimental. In; *Design and  
18 Analysis of ecological experiments*. 2nd edn (eds Sceiner SM, Gurevitch J). Oxford University Press, UK 347-369.

19 Halvorson, A.D., Wienhold, B.J., Black, A.L., 2002. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. *Soil  
20 Science Society of America Journal* 66, 906-912.

21 Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. *Ecology* 80, 1150-  
22 1156.

1 Hendrix, P., Han, C.R., Groffman, P., 1988. Soil respiration in conventional and no-tillage agroecosystems under different winter  
2 cover crop rotations. *Soil and Tillage Research* 12, 135-148.

3 Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global  
4 land areas. *International Journal of Climatology* 25, 1965-1978.

5 Hobbs, P.R., 2007. Conservation agriculture: what is it and why is it important for future sustainable food production? *Journal of*  
6 *Agricultural Science-Cambridge* 145, 127.

7 Hovda, J., Mehdi, B.B., Madramootoo, C.A., Smith, D.L., 2003. Soil carbon dioxide fluxes from one season measured in silage and  
8 grain corn under conventional and no tillage. The Canadian socitey for engenering in agriculutre, food and biological  
9 systems. Written for presentation at the CSAE/SCGR 2003 Meeting Montréal, Québec (July 6 - 9, 2003).

10 IPCC., 2006. In: Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., 2006. IPCC guidelines for national greenhouse gas  
11 inventories. Institute for Global Environmental Strategies, Hayama, Japan.

12 Jabro, J., Sainju, U., Stevens, W., Evans, R., 2008. Carbon dioxide flux as affected by tillage and irrigation in soil converted from  
13 perennial forages to annual crops. *Journal of Environmental Management* 88, 1478-1484.

14 Jacinthe, P.A., Lal, R., Kimble, J., 2002. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as  
15 influenced by wheat residue amendment. *Soil and Tillage Research* 67, 147-157.

16 Jackson, L., Calderon, F., Steenwerth, K., Scow, K., Rolston, D., 2003. Responses of soil microbial processes and community  
17 structure to tillage events and implications for soil quality. *Geoderma* 114, 305-317.

18 Jobbág, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation.  
19 *Ecological Applications* 10, 423-436.

20 Khan, S., Mulvaney, R., Ellsworth, T., Boast, C., 2007. The myth of nitrogen fertilization for soil carbon sequestration. *Journal of*  
21 *Environmental Quality* 36, 1821-1832.

22 Köppen, W., 1936. Das geographische system der klimate, in: *Handbuch der Klimatologie*, Vol I, Part C, Köppen and Geiger (Eds.),  
23 Gebrüder Borntraeger, Berlin, 44pp.

1 La Scala Jr, N., Lopes, A., Panosso, A., Camara, F., Pereira, G., 2005. Soil CO<sub>2</sub> efflux following rotary tillage of a tropical soil. *Soil and Tillage Research* 84, 222-225.

2

3 La Scala Jr, N., Bolonhezi, D., Pereira, G., 2006. Short-term soil CO<sub>2</sub> emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. *Soil and Tillage Research* 91, 244-248.

4

5 La Scala Jr, N., Lopes, A., Marques, J., Pereira, G., 2001. Carbon dioxide emissions after application of tillage systems for a dark red latosol in southern Brazil. *Soil and Tillage Research* 62, 163-166.

6

7 Lal, R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics. The Ohio state university, Columbus, Ohio.

8

9 Lal, R., 1997. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO<sub>2</sub> enrichment. *Soil and Tillage Research* 43, 81-107.

10

11 Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. *Science* 304, 1623-1627.

12 Lee, J., Hopmans, J.W., van Kessel, C., King, A.P., Evatt, K.J., Louie, D., Rolston, D.E., Six, J., 2009. Tillage and seasonal emissions of CO<sub>2</sub>, N<sub>2</sub>O and NO across a seed bed and at the field scale in a Mediterranean climate. *Agriculture, Ecosystems & Environment* 129, 378-390.

13

14

15 Lee, J., Six, J., King, A.P., Van Kessel, C., Rolston, D.E., 2006. Tillage and field scale controls on greenhouse gas emissions. *Journal of Environmental Quality* 35, 714-725.

16

17 Li, C., Kou, Z., Yang, J., Cai, M., Wang, J., Cao, C., 2010. Soil CO<sub>2</sub> fluxes from direct seeding rice fields under two tillage practices in central China. *Atmospheric Environment* 44, 2696-2704.

18

19 Li, C., Zhang, Z., Guo, L., Cai, M., Cao, C., 2013. Emissions of CH<sub>4</sub> and CO<sub>2</sub> from double rice cropping systems under varying tillage and seeding methods. *Atmospheric Environment* 80, 438-444.

20

21 Liu, X., Mosier, A., Halvorson, A., Zhang, F., 2006. The impact of nitrogen placement and tillage on NO, N<sub>2</sub>O, CH<sub>4</sub> and CO<sub>2</sub> fluxes from a clay loam soil. *Plant and Soil* 280, 177-188.

22

1 López-Garrido, R., Díaz-Espejo, A., Madejón, E., Murillo, J., Moreno, F., 2009. Carbon losses by tillage under semi-arid  
2 Mediterranean rainfed agriculture (SW Spain). *Spanish Journal of Agricultural Research* 7, 706-716.

3 López-Garrido, R., Madejón, E., Moreno, F., Murillo, J., 2014. Conservation tillage influence on carbon dynamics under  
4 Mediterranean conditions. *Pedosphere* 24, 65-75.

5 De Luca E.F., C. Feller, , C. C. Cerri, B. Barthès, V. Chaplot, Correa, D., Manechini, C. 2008. Carbon, chemical and aggregate  
6 stability changes in soils after burning to green-trash sugarcane management. *Revista Brasileira de Ciencia do Solo*. 32:789-  
7 800.

8 Lemke, R.L., VandenBygaart, A.J., Campbell, C.A., Lafond, G.P., and Grant, B.B. 2010. Crop residue removal and fertilizer N:  
9 Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. *Agriculture, Ecosystems and*  
10 *environment* 135, 42-51.

11 Luo, Z., Wang, E., Sun, O. J., 2010. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired  
12 experiments. *Agriculture, Ecosystems and Environment* 139, 224-231.

13 Lupwayi, N., Rice, W., Clayton, G., 1999. Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and  
14 crop rotation. *Canadian Journal of Soil Science* 79, 273-280.

15 Madari, B., Machado, P.L., Torres, E., de Andrade, A.s.G., Valencia, L.I., 2005. No tillage and crop rotation effects on soil  
16 aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. *Soil and Tillage Research* 80, 185-200.

17 Mathews, B., and Hopkins, K. (1999). Superiority of S-shaped (sigmoidal) yield curves for explaining low-level nitrogen and  
18 phosphorus fertilization responses in the humid tropics. *Journal of Hawaiian and Pacific Agriculture* 10, 33-46.

19 McKyes, E., 1985. Soil cutting and tillage. *Developments in agricultural engineering*. Elsevier Science publisher, Amsterdam.

20 Menéndez, S., Lopez-Bellido, R., Benítez-Vega, J., Gonzalez-Murua, C., Lopez-Bellido, L., Estavillo, J., 2008. Long-term effect of  
21 tillage, crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions. *European*  
22 *Journal of Agronomy* 28, 559-569.

1 Morell, F., Álvaro-Fuentes, J., Lampurlanés, J., Cantero-Martínez, C., 2010. Soil CO<sub>2</sub> fluxes following tillage and rainfall events in a  
2 semiarid Mediterranean agroecosystem: Effects of tillage systems and nitrogen fertilization. *Agriculture, Ecosystems &*  
3 *Environment* 139, 167-173.

4 Mosier, A. R., Halvorson, A. D., Reule, C. A., Liu, X. J., 2006. Net global warming potential and greenhouse gas intensity in  
5 irrigated cropping systems in northeastern Colorado. *Journal of Environmental Quality* 35, 1584-1598.

6 Mosier, A., Halvorson, A., Peterson, G., Robertson, G., Sherrod, L., 2005. Measurement of net global warming potential in three  
7 agroecosystems. *Nutrient Cycling in Agroecosystems* 72, 67-76.

8 Mulvaney, R., Khan, S., Ellsworth, T., 2009. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable  
9 cereal production. *Journal of Environmental Quality* 38, 2295-2314.

10 Omonode, R.A., Vyn, T.J., Smith, D.R., Hegymegi, P., Gál, A., 2007. Soil carbon dioxide and methane fluxes from long-term tillage  
11 systems in continuous corn and corn-soybean rotations. *Soil and Tillage Research* 95, 182-195.

12 Oorts, K., Merckx, R., Gréhan, E., Labreuche, J., Nicolardot, B., 2007. Determinants of annual fluxes of CO<sub>2</sub> and N<sub>2</sub>O in long-term  
13 no-tillage and conventional tillage systems in northern France. *Soil and Tillage Research* 95, 133-148.

14 Pan, G., Li, L., Wu, L., Zhang, X., 2004. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. *Global  
15 Change Biology* 10, 79-92.

16 Pandey, D., Agrawal, M., Bohra, J.S., 2012. Greenhouse gas emissions from rice crop with different tillage permutations in rice-  
17 wheat system. *Agriculture, Ecosystems & Environment* 159, 133-144.

18 Paustian, K., Andrén, O., Janzen, H.H., Lal, R., Smith, P., Tian, G., Tiessen, H., Noordwijk, M.V., Woomer, P.L., 1997.  
19 Agricultural soils as a sink to mitigate CO<sub>2</sub> emissions. *Soil Use and Management* 13, 230-244.

20 Pes, L.Z., Amado, T.J., La Scala Jr, N., Bayer, C., Fiorin, J.E., 2011. The primary sources of carbon loss during the crop-  
21 establishment period in a subtropical Oxisol under contrasting tillage systems. *Soil and Tillage Research* 117, 163-171.

22 Peterson, G., Halvorson, A., Havlin, J., Jones, O., Lyon, D., Tanaka, D., 1998. Reduced tillage and increasing cropping intensity in  
23 the Great Plains conserves soil C. *Soil and Tillage Research* 47, 207-218.

1 Powlson, D.S., Stirling, C.M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G. 2014. Limited potential of no-till  
2 agriculture for climate change mitigation. *Nature Climate Change*, 4, 678-683 doi:10.1038/nclimate2292.

3 Rastogi, M., Singh, S., Pathak, H., 2002. Emission of carbon dioxide from soil. *Current Science* 82, 510-517.

4 Regina, K., Alakukku, L., 2010. Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices. *Soil and*  
5 *Tillage Research* 109, 144-152.

6 Reicosky, D., 1997. Tillage-induced CO<sub>2</sub> emission from soil. *Nutrient Cycling in Agroecosystems* 49, 273-285.

7 Reicosky, D., Archer, D., 2007. Moldboard plow tillage depth and short-term carbon dioxide release. *Soil and Tillage Research* 94,  
8 109-121.

9 Ren, T., Wang, J., Chen, Q., Zhang, F., Lu, S. 2014. The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic  
10 Carbon and Nitrogen in a High-Input Cropping System. *PLoS ONE* 9(5): e97732. doi:10.1371/journal.pone.0097732.

11 Rice, C.W., 2006. Introduction to special section on greenhouse gases and carbon sequestration in agriculture and forestry. *Journal*  
12 *of Environmental Quality* 35, 1338-1340.

13 Rosenberg, M.S., Adams, D.C., Gurevitch, J. 2000. *MetaWin: statistical software for meta-analysis*. Sinauer Associates Sunderland,  
14 Massachusetts, USA.

15 Royal Society. 2001. *The role of land carbon sinks in mitigating global climate change*. Royal Society, London UK.

16 Ruan, L., Robertson, G., 2013. Initial nitrous oxide, carbon dioxide, and methane costs of converting conservation reserve program  
17 grassland to row crops under no-till vs. conventional tillage. *Global Change Biology* 19, 2478-2489.

18 Russell, A.E., Cambardella, C.A., Laird, D.A., Jaynes, D.B., Meek, D.W. 2009. Nitrogen fertilizer effects on soil carbon balances in  
19 Midwestern U.S. agricultural systems. *Ecological Applications* 19, 1102-1113.

20 Sainju, U.M., Jabro, J.D., Stevens, W.B., 2008. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage,  
21 cropping system, and nitrogen fertilization. *Journal of Environmental Quality* 37, 98-106.

1 Sainju, U.M., Stevens, W.B., Caesar-TonThat, T., Jabro, J.D., 2010a. Land use and management practices impact on plant biomass  
2 carbon and soil carbon dioxide emission. *Soil Science Society of America Journal* 74, 1613-1622.

3 Sainju, U.M., StevensA, W.B., Caesar-TonThat, T., Jabro, J.D., 2010b. Carbon input and soil carbon dioxide emission affected by  
4 land use and management practices. 19th World Congress of Soil Science. 1 – 6 August 2010, Brisbane, Australia. Published  
5 on DVD.

6 Saxton, K., Rawls, W.J., Romberger, J., Papendick, R., 1986. Estimating generalized soil-water characteristics from texture. *Soil*  
7 *Science Society of America Journal* 50, 1031-1036.

8 Shirazi, M.A., Boersma, L., 1984. A unifying quantitative analysis of soil texture. *Soil Science Society of America Journal* 48, 142-  
9 147.

10 Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil  
11 organic matter dynamics. *Soil and Tillage Research* 79, 7-31.

12 Six, J., Conant, R., Paul, E., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of  
13 soils. *Plant and Soil* 241, 155-176.

14 Smith, D., Hernandez-Ramirez, G., Armstrong, S., Bucholtz, D., Stott, D., 2011. Fertilizer and tillage management impacts on non-  
15 carbon-dioxide greenhouse gas emissions. *Soil Science Society of America Journal* 75, 1070-1082.

16 Smith, K., WattS, D., Way, T., Torbert, H., Prior, S., 2012. Impact of tillage and fertilizer application method on gas emissions in a  
17 corn cropping system. *Soil Science Society of China* 22, 604--615.

18 Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., 2008. Greenhouse gas  
19 mitigation in agriculture. *Philosophical Transactions of the Royal Society B: Biological Sciences* 363, 789-813.

20 Tumusiime, E., Wade Brorsen, B., Mosali, J., Johnson, J., Locke, J., Biermacher, J.T., 2011. Determining optimal levels of nitrogen  
21 fertilizer using random parameter models. *Journal of Agricultural and Applied Economics* 43, 541.

22 UNEP, 1997. United Nations Environment Programme. *World Atlas of Desertification*. 2<sup>nd</sup> edition. N. J. Middleton and D. S. G.  
23 Thomas, Arnold, Editors, London, 182 pp

1 Ussiri, D.A.N., Lal, R., 2009. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn  
2 cropping system from an alfisol in Ohio. *Soil and Tillage Research* 104, 39-47.

3 VandenBygaart, A.J., Angers, D.A. 2006. Towards accurate measurements of soil organic carbon stock change in agroecosystems.  
4 *Canadian Journal of Soil Science* 86, 465-471.

5 Van Eerd, L. L., Congreves, K. A., Hayes, A., Verhallen, A. et Hooker, D. C. 2014. Incidence à long terme du travail du sol et de  
6 l'assolement sur la qualité du sol, sur sa teneur en carbone organique et sur la concentration totale d'azote. *Can. J. Soil Sci.* 94,  
7 303-315.

8 Van Oost, K., Quine, T., Govers, G., De Gryze, S., Six, J., Harden, J., Ritchie, J., McCarty, G., Heckrath, G., Kosmas, C., 2007. The  
9 impact of agricultural soil erosion on the global carbon cycle. *Science* 318, 626-629.

10 Varvel, G.E., Wilhelm, W., 2008. Soil carbon levels in irrigated western Corn Belt rotations. *Agronomy Journal* 100, 1180-1184.

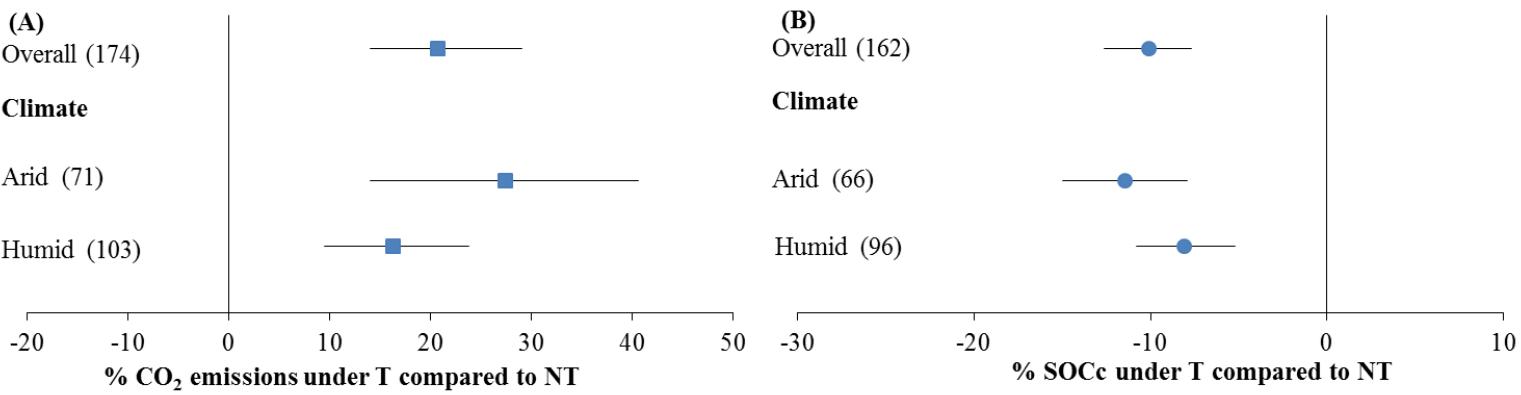
11 West, T.O., Post, W.M., 2002. Soil organic carbon sequestration rates by tillage and crop rotation. *Soil Science Society of America*  
12 *Journal* 66, 1930-1946.

13 Wilson, G., Dabney, S., McGregor, K., Barkoll, B., 2004. Tillage and residue effects on runoff and erosion dynamics. *Transactions*  
14 *of the ASAE* 47, 119-128.

15 Wilson, H.M., Al-Kaisi, M.M., 2008. Crop rotation and nitrogen fertilization effect on soil CO<sub>2</sub> emissions in central Iowa. *applied*  
16 *soil ecology* 39, 264-270.

Table 1 References included in database with locations, mean annual precipitation (MAP), mean annual temperature (MAT), climate, land use, no-tillage comparisons and average tillage (T) and no-tillage (NT) CO<sub>2</sub> emissions

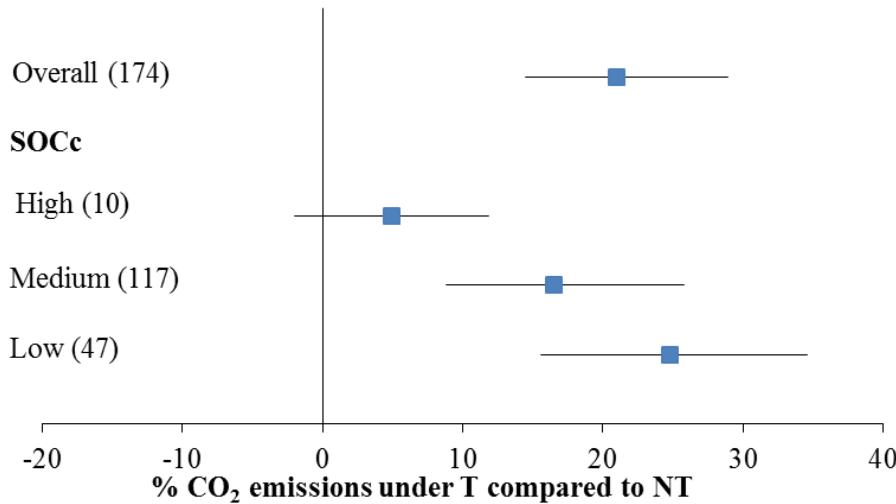
| SN. | Author (s)                     | Country     | Comparisons | MAP<br>mm | MAT<br>°C | Climate | Land use                 | No-tillage vs. | CO <sub>2</sub> emissions                            |      |
|-----|--------------------------------|-------------|-------------|-----------|-----------|---------|--------------------------|----------------|------------------------------------------------------|------|
|     |                                |             |             |           |           |         |                          |                | gCO <sub>2</sub> -C m <sup>-2</sup> yr <sup>-1</sup> |      |
|     |                                |             |             |           |           |         |                          |                | T                                                    | NT   |
| 1   | Ahmad, S. et al (2009)         | China       | 2           | 2721      | 17        | Humid   | Rice-rape                | CT             | 857                                                  | 888  |
| 2   | Al-Kaisi & Yin (2005)          | USA         | 4           | 889       | 10        | Humid   | Maize-soybean            | ST&DT&CP&MP    | 292                                                  | 206  |
| 3   | Alluvione et al (2009)         | USA         | 2           | 383       | 11        | Arid    | Maize                    | CT             | 490                                                  | 599  |
| 4   | Almaraz et al (2009a)          | Canada      | 2           | 979       | 6         | Humid   | Soybean                  | CT             | 747                                                  | 523  |
| 5   | Almaraz et al (2009b)          | Canada      | 4           | 979       | 6         | Humid   | Maize                    | CT             | 1269                                                 | 1374 |
| 6   | Alvarez et al. (2001)          | Argentina   | 1           | 1020      | 17        | Humid   | Wheat-soybean            | CT             | 2154                                                 | 1533 |
| 7   | Álvaro-Fuentes et al (2008)    | Spain       | 24          | 415       | 15        | Arid    | Wheat-barley-fallow-rape | CT&RT          | 2311                                                 | 1891 |
| 8   | Aslam et al (2000)             | New Zealand | 1           | 963       | 13        | Humid   | Maize                    | MP             | 2306                                                 | 2281 |
| 9   | Baggs et al. (2006)            | Kenya       | 2           | 1800      | 24        | Humid   | Maize-fallow             | CT             | 171                                                  | 215  |
| 10  | Brye et al (2006)              | USA         | 4           | 1282      | 16        | Humid   | Wheat-soybean            | CT             | 3264                                                 | 2604 |
| 11  | Carbonell-Bojollo et al (2011) | Spain       | 3           | 475       | 25        | Arid    | Wheat-pea-sunflower      | CT             | 298                                                  | 100  |
| 12  | Chatskikh & Olesen 2007        | Denmark     | 2           | 704       | 7         | Humid   | Barley                   | CT&RT          | 117                                                  | 102  |
| 13  | Cheng-fang et al (2012)        | China       | 4           | 1361      | 17        | Humid   | Rice-rape                | CT             | 636                                                  | 699  |
| 14  | Chevaz et al 2009              | Brazil      | 1           | 1755      | 19        | Humid   | Oots-soybean-wheat-maize | CT             | 464                                                  | 573  |
| 15  | Datta et al, (2013)            | USA         | 1           | 1016      | 11        | Humid   | Maize                    | CT             | 438                                                  | 634  |
| 16  | Dendooven et al, (2012)        | Mexico      | 2           | 600       | 14        | Arid    | Maize-wheat              | CT             | 100                                                  | 100  |
| 17  | Drury et al (2006)             | USA         | 3           | 876       | 9         | Humid   | Wheat-maize-soybean      | CT             | 575                                                  | 559  |
| 18  | Elder and Lal (2008)           | USA         | 1           | 1037      | 11        | Humid   | Maize- wheat             | MT             | 225                                                  | 189  |
| 19  | Ellert and Janzen (1999)       | Canada      | 5           | 400       | 5         | Arid    | Wheat-fallow             | CT&RT          | 406                                                  | 186  |
| 20  | Feizine et al (2010)           | Lithuania   | 24          | 500       | 18        | Humid   | Wheat-rape-barley-pea    | CT&RT          | 302                                                  | 296  |
| 21  | Hovda, et al (2003)            | Canada      | 2           | 979       | 6         | Humid   | Maize                    | CT             | 1342                                                 | 1277 |


|    |                            |         |   |      |    |       |                      |              |      |      |
|----|----------------------------|---------|---|------|----|-------|----------------------|--------------|------|------|
| 22 | Jabro et al (2008)         | USA     | 1 | 373  | 14 | Humid | Sugarcane            | CT           | 3424 | 2247 |
| 23 | Le et al (2009)            | USA     | 3 | 564  | 16 | Arid  | Maize-sunflowers-pea | ST           | 933  | 917  |
| 24 | Li et al (2010)            | China   | 4 | 1361 | 17 | Humid | Rice-rape            | CT           | 284  | 328  |
| 25 | Li et al (2013)            | China   | 2 | 1361 | 18 | Humid | Rice                 | CT           | 2196 | 1534 |
| 26 | Liu et al (2011)           | China   | 4 | 550  | 13 | Humid | Maize                | RT &PT       | 1340 | 1194 |
| 27 | López-Garrido et al (2009) | Spain   | 1 | 484  | 17 | Arid  | Wheat-sunflower -Pea | CT           | 1080 | 943  |
| 28 | López-Garrido et al (2014) | Spain   | 3 | 484  | 17 | Humid | Wheat-pea-red clover | CT           | 1075 | 887  |
| 29 | Lupwayi et al (1998)       | Canada  | 1 | 336  | -1 | Arid  | Wheat-pea-red clover | CT           | 621  | 464  |
| 30 | Morell et al (2010)        | Spain   | 8 | 430  | 14 | Arid  | Barley               | CT&MP        | 300  | 229  |
| 31 | Mosier et al (2006)        | USA     | 9 | 382  | 11 | Arid  | Maize                | CT           | 387  | 351  |
| 32 | Mènendez et al (2007)      | Spain   | 2 | 350  | 16 | Arid  | Wheat-sunflower      | CT           | 183  | 214  |
| 33 | Omonode et al (2007)       | USA     | 4 | 588  | 19 | Humid | Maize                | MP&CP        | 273  | 268  |
| 34 | Oorts et al. (2007)        | France  | 2 | 650  | 11 | Humid | Maize-wheat          | CT           | 475  | 620  |
| 35 | Pes et al. (2011)          | Brazil  | 2 | 1721 | 19 | Humid | wheat - soybean      | CT           | 1387 | 1004 |
| 36 | Regina and Alakukku (2010) | Finland | 6 | 585  | 4  | Humid | Barley-wheat-oats    | CT           | 1856 | 2009 |
| 37 | Reicosky and archer (2007) | USA     | 1 | 301  | 5  | Humid | Maize-soybean        | MP           | 5807 | 1545 |
| 38 | Ruan and Robertson (2013)  | USA     | 1 | 890  | 10 | Humid | Soybean              | CT           | 1825 | 1533 |
| 39 | Sainju et al (2008)        | USA     | 4 | 368  | 14 | Arid  | Barley-pea           | CT           | 6726 | 4217 |
| 40 | Sainju et al (2010a)       | USA     | 6 | 350  | 16 | Humid | Barley-pea           | CT           | 240  | 208  |
| 41 | Scala et al (2001)         | Brazil  | 4 | 1380 | 21 | Humid | Maize                | ROT&CP&DO&HO | 1264 | 657  |
| 42 | Scala et al (2005)         | Brazil  | 4 | 1380 | 21 | Humid | Maize                | CT           | 758  | 518  |
| 43 | Scala et al (2006)         | Brazil  | 2 | 1380 | 21 | Humid | Sugarcane            | RT&CT        | 5435 | 2604 |
| 44 | Smith, D. et al (2011)     | USA     | 1 | 796  | 17 | Humid | Maize-soybean        | CT           | 141  | 152  |
| 45 | Smith, K. et al (2012)     | USA     | 4 | 1370 | 17 | Humid | Maize-soybean        | CT           | 970  | 935  |
| 46 | Ussiri and Lal (2009)      | USA     | 2 | 1037 | 11 | Humid | Maize-soybean        | CT&MT        | 721  | 500  |

**Table 2** Categories used in describing the experimental conditions

| Categorical variable | Level 1                              | Level 2                               | Level 3                           |
|----------------------|--------------------------------------|---------------------------------------|-----------------------------------|
| SOC <sub>C</sub>     | Low<br>(<10 g kg <sup>-1</sup> )     | Medium<br>(10-30 g kg <sup>-1</sup> ) | High<br>(>30 g kg <sup>-1</sup> ) |
| Climate              | Arid                                 | Humid                                 |                                   |
| Soil texture         | Clay<br>(>32% clay)                  | Loam<br>(20-32 clay)                  | Sand<br>(<20% clay)               |
| Experiment duration  | <10 years                            | ≥10 years                             |                                   |
| Nitrogen fertilizer  | Low<br>(<100 kg N ha <sup>-1</sup> ) | high<br>(≥100 kg N ha <sup>-1</sup> ) |                                   |
| Crop residues        | Removed                              | Returned                              |                                   |
| Crop rotation        | No rotation                          | Rotation                              |                                   |

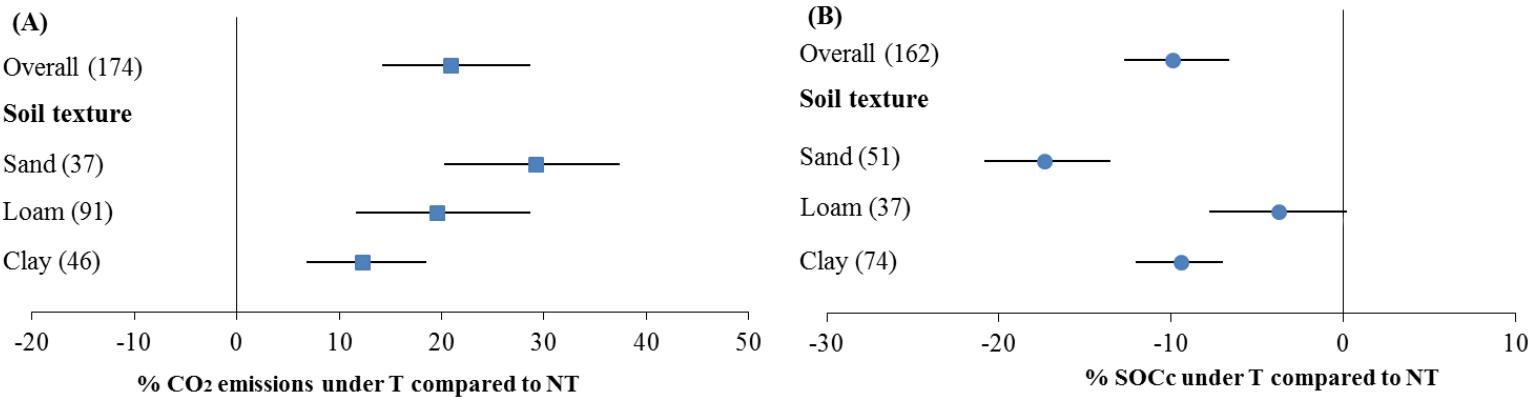
Table 3 summary statistics of mean annual precipitation (MAP), mean annual temperature (MAT), clay, soil bulk density ( $\rho_b$ ), soil organic carbon content ( $SOC_C$ ), soil organic carbon stocks ( $SOC_S$ ) and  $CO_2$  emissions ( $g\ CO_2\text{-C}\ m^{-2}\ yr^{-1}$  and  $g\ CO_2\text{-C}\ gC^{-1}\ yr^{-1}$ ) under tilled (T) and untilled (NT) soils


|           | MAP  | MAT | CLAY | $\rho_b$ |      | $SOC_C$ |      | $SOC_S$ |      | $CO_2$ emissions |      |       |       |
|-----------|------|-----|------|----------|------|---------|------|---------|------|------------------|------|-------|-------|
|           |      |     |      | T        | NT   | T       | NT   | T       | NT   | T                | NT   | T     | NT    |
|           |      |     |      |          |      |         |      |         |      |                  |      |       |       |
| Minimum   | 301  | -1  | 3    | 0.5      | 0.8  | 0.3     | 0.6  | 0.7     | 1.1  | 33               | 11   | 0.006 | 0.001 |
| Maximum   | 2721 | 25  | 60   | 1.9      | 1.9  | 8.0     | 7.8  | 9.6     | 10.4 | 9125             | 5986 | 0.823 | 0.118 |
| Mean      | 904  | 15  | 1.3  | 1.3      | 1.3  | 1.3     | 2.9  | 2.9     | 3.1  | 1152             | 916  | 0.109 | 0.016 |
| Median    | 704  | 16  | 1.3  | 1.3      | 1.3  | 1.1     | 2.5  | 2.5     | 2.7  | 587              | 533  | 0.071 | 0.012 |
| SD        | 570  | 6   | 0.2  | 0.1      | 0.1  | 1.0     | 1.0  | 1.5     | 1.5  | 1482             | 1054 | 0.132 | 0.017 |
| Skewness  | 1    | 0   | -0.7 | 0.6      | 0.6  | 4.0     | 3.2  | 2.0     | 2.8  | 2.8              | 2.4  | 3.127 | 3.599 |
| Quartile1 | 415  | 11  | 1.3  | 1.3      | 1.3  | 0.7     | 0.7  | 2.2     | 2.4  | 287              | 283  | 0.037 | 0.008 |
| Quartile3 | 1321 | 18  | 1.4  | 1.4      | 1.4  | 1.3     | 1.7  | 3.3     | 3.3  | 1414             | 1210 | 0.107 | 0.020 |
| Kurtosis  | 2    | 0   | 9.9  | 3.4      | 3.4  | 23.3    | 14.3 | 6.3     | 10.7 | 9.8              | 6.69 | 12.48 | 17.81 |
| CV        | 63   | 41  | 0.1  | 0.1      | 0.1  | 0.8     | 0.4  | 0.5     | 0.5  | 1.29             | 1.15 | 1.214 | 1.018 |
| SE        | 48   | 0   | 0.01 | 0.01     | 0.01 | 0.08    | 0.09 | 0.12    | 0.13 | 112              | 80   | 0.011 | 0.001 |



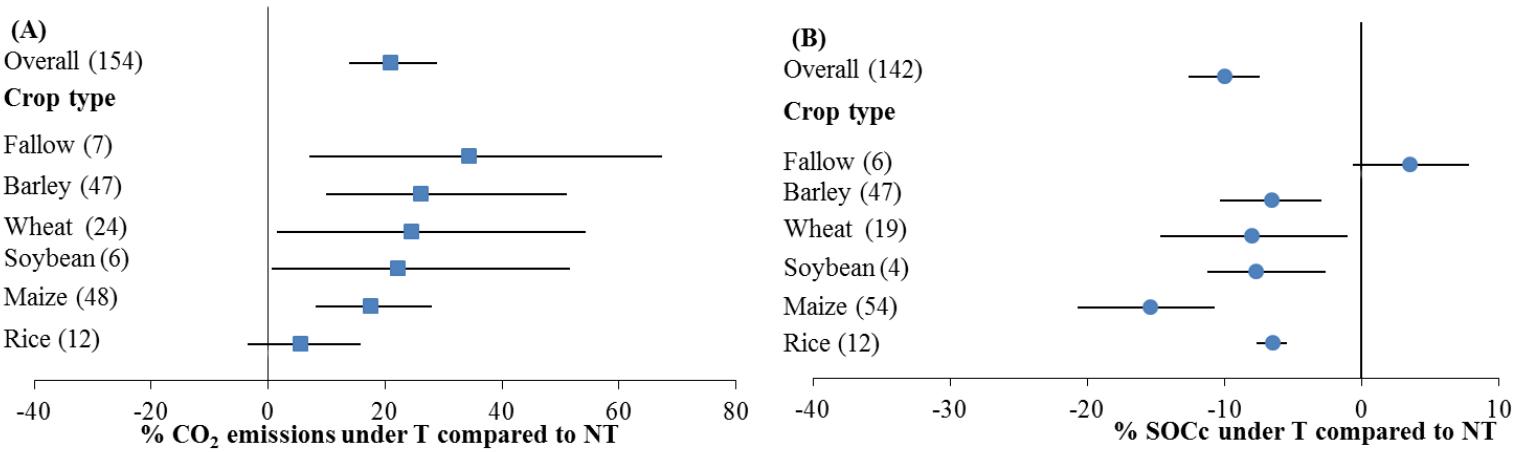
2 Fig. 1. Percent change in (A) soil CO<sub>2</sub> emissions and (B) SOC<sub>c</sub> in tillage (T) soil compared to no-  
 3 tillage (NT) as a function of climate (arid and humid). The numbers in the parentheses indicate the  
 4 direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.

5


6

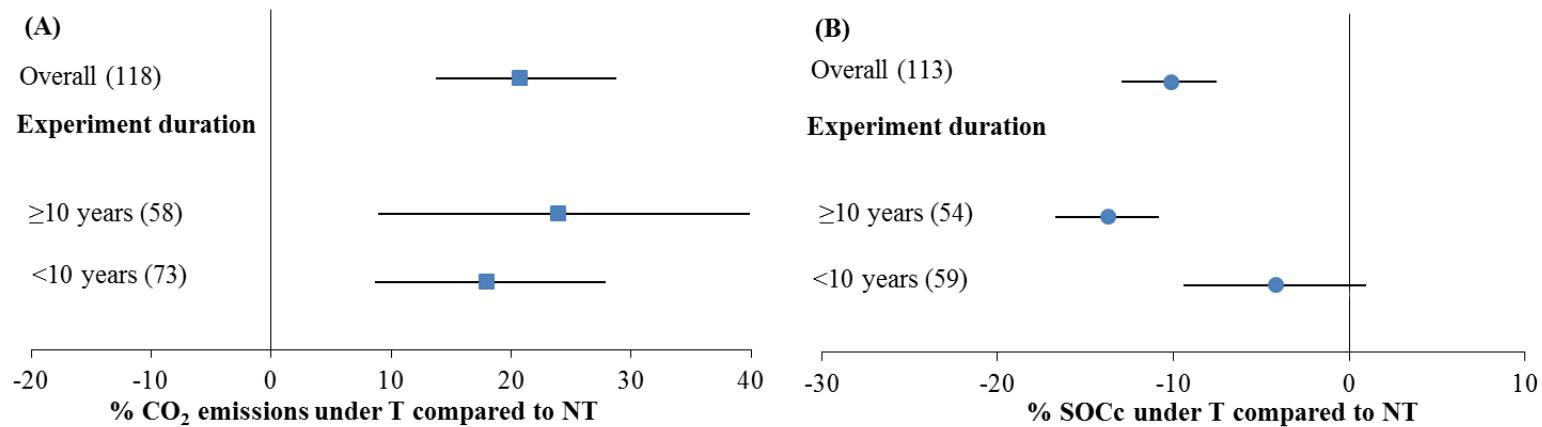


7


8 Fig. 2. Percent change in CO<sub>2</sub> emissions in tillage (T) compared to no tillage (NT) as a function of  
 9 SOC<sub>C</sub> (low, <10 g kg<sup>-1</sup>, medium 10-30 g kg<sup>-1</sup>, high >30 g kg<sup>-1</sup>). The numbers in the parentheses  
 10 indicate the direct comparisons of meta-analysis. Error bars are 95% confidence intervals.

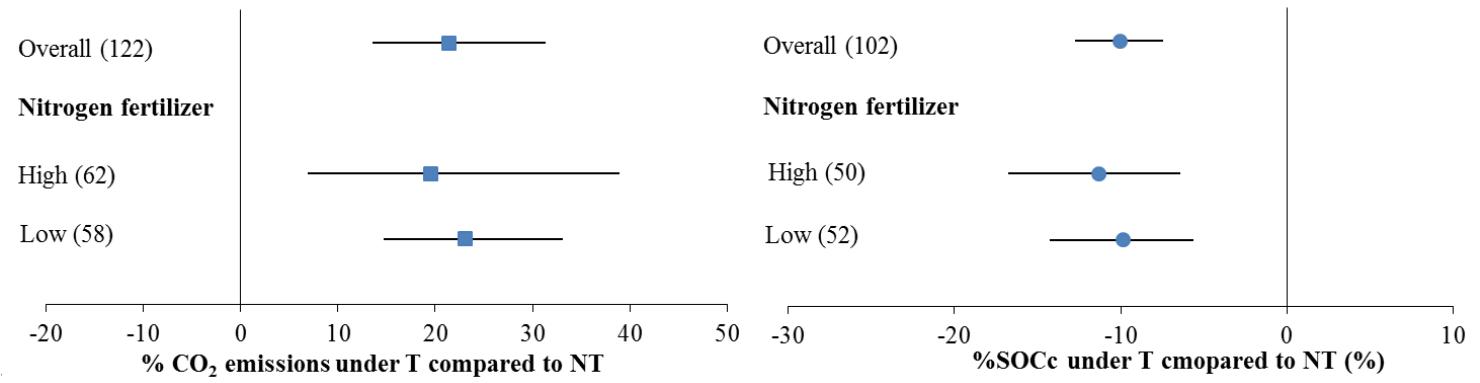
11




13 Fig. 3. Percent change in (A) soil CO<sub>2</sub> emissions and (B) SOC<sub>c</sub> in tillage (T) soil compared to no-  
 14 tillage (NT) as a function of soil particle distribution (clay, loam and sand). The numbers in the  
 15 parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence  
 16 intervals.

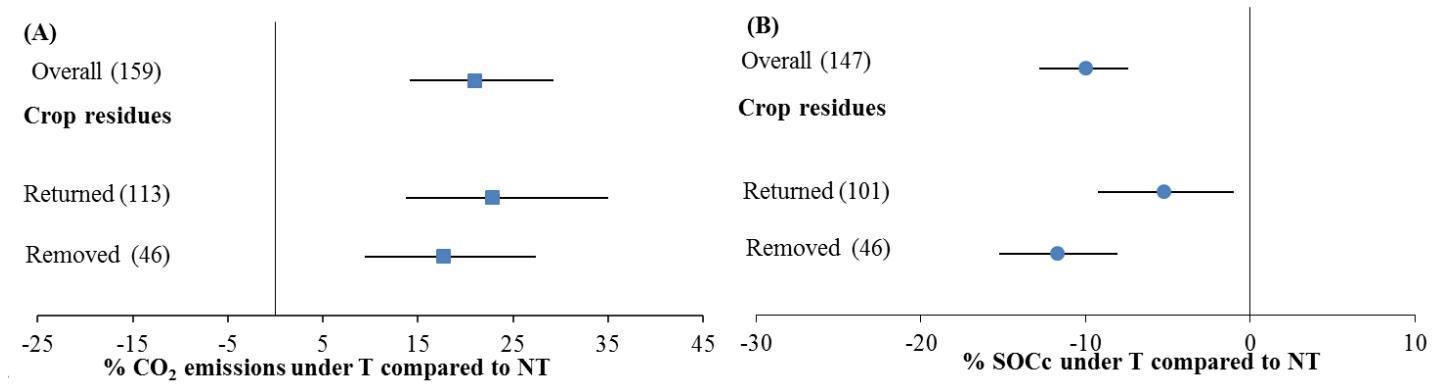
17




19 Fig. 4. Percent change in (A) soil CO<sub>2</sub> emissions and (B) SOCc in tillage (T) soil compared to no-  
 20 tillage (NT) as a function of crop type. The numbers in the parentheses indicate the direct  
 21 comparisons of meta-analysis. Error bars are 95% confidence intervals.

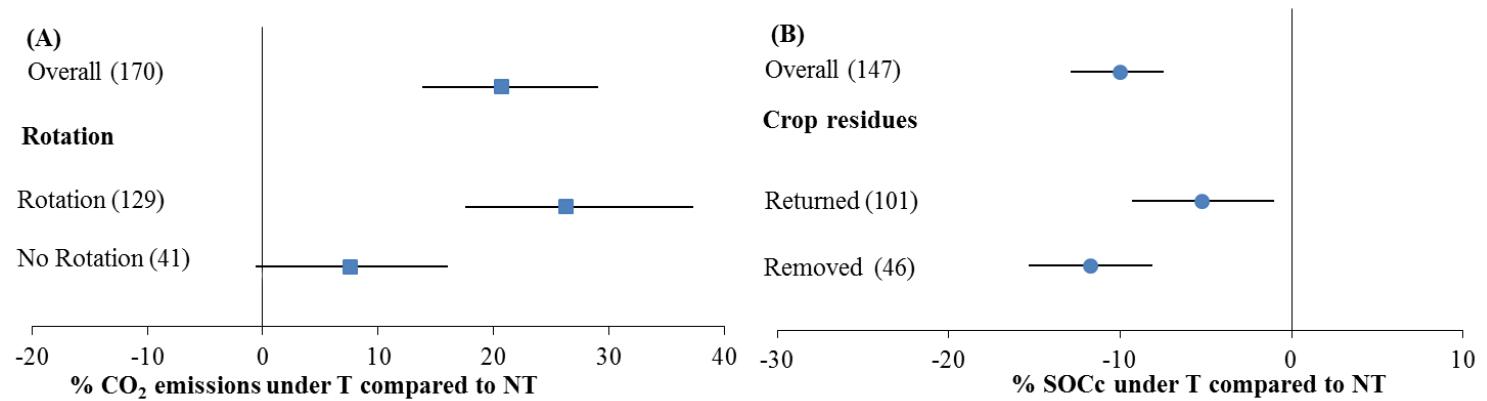
22




24 Fig. 5. Percent change in (A) soil CO<sub>2</sub> emissions and (B) SOC<sub>c</sub> in tillage (T) soil compared to no-  
 25 tillage (NT) as a function of experiment duration (<10 years and ≥ 10 years). The numbers in the  
 26 parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence  
 27 intervals.

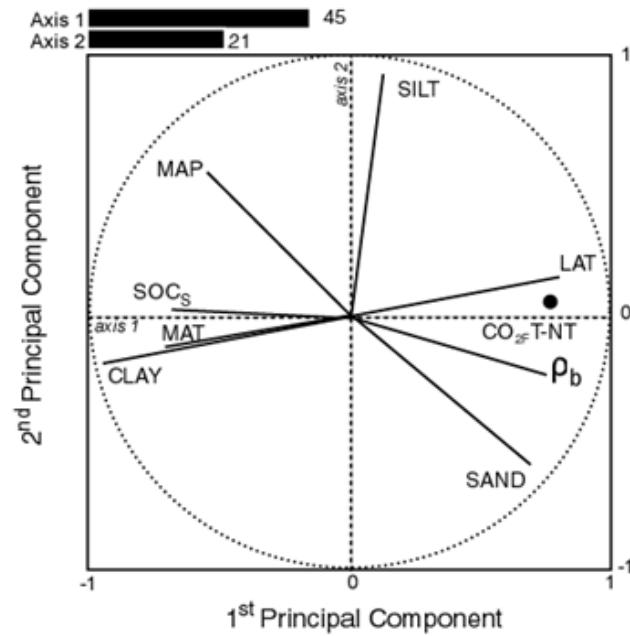
28




30 Fig. 6. Percent change in (A) soil CO<sub>2</sub> emissions (B) and SOC<sub>c</sub> in tillage (T) soil compared to no-  
 31 tillage (NT) as a function of nitrogen fertilization (low <100 kg N ha<sup>-1</sup> and high ≥100 kg N ha<sup>-1</sup>).  
 32 The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are  
 33 95% confidence intervals.

34




36 Fig. 7. Percent change in (A) soil CO<sub>2</sub> emissions and (B) SOCc in tillage (T) soil compared to no-  
 37 tillage (NT) as a function of crop residues (returned and removed). The numbers in the parentheses  
 38 indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.

39



41 Fig. 8. Percent change in (A) soil CO<sub>2</sub> emissions and (B) SOC<sub>c</sub> in tillage (T) soil compared to no-  
 42 tillage (NT) as a function of crop rotation. The numbers in the parentheses indicate the direct  
 43 comparisons of the meta-analysis. Error bars are 95% confidence intervals.

44

