No-tillage lessens soil CO₂ emissions the most under arid and sandy soil conditions: results from a meta-analysis

Khabat Abdalla a,b, Pauline Chivenge a,c, Philippe Ciais d and Vincent Chaplot a,e

a School of Agricultural, Earth & Environmental Sciences, CWRR, Rabie Saunders Building, University of KwaZulu-Natal, Scottsville, 3209, South Africa
b Environment and Natural Recourses and Desertification Research Institute, National Centre for Research, P.O. Box 6096, Khartoum, Sudan.
c ICRISAT, Matopos Research Station, P.O. Box 776, Bulawayo, Zimbabwe.
d IPSL – LSCE, CEA CNRS UVSQ, Centre d'Etudes Orme des Merisiers, 91191 Gif-sur-Yvette, France
e Institut de Recherche pour le Développement (IRD), Laboratoire d’Océanographie et du Climat (LOCEAN), UMR 6159 CNRS/IRD/UPMC/MNHN, 4, place Jussieu 75252 Paris Cedex 05, France.
Abstract

The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon redistributions within soils and changes in soil CO₂ emissions. Yet, discrepancies exist on the impact of tillage on soil CO₂ emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications totaling 174 paired observations comparing CO₂ emissions over entire seasons or years from tilled and untilled soils across different climates, crop types and soil conditions with the objective of quantifying tillage impact on CO₂ emissions and assessing the main controls. On average, tilled soils emitted 21% more CO₂ than untilled soils, which corresponded to a significant difference at P<0.05. The difference increased to 29% in sandy soils from arid climates with low soil organic carbon content (SOC<1%) and low soil moisture, but tillage had no impact on CO₂ fluxes in clayey soils with high background SOC (>3%). Finally, nitrogen fertilization and crop residue management had little effect on the CO₂ responses of soils to no-tillage. These results suggest no-tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.

Keywords: land management, tillage; no-tillage; soil CO₂ emissions.
1. Introduction

The evidence for climate change is irrefutable and the necessity of mitigating climate change is now accepted. Yet, there are still large uncertainties on the effectiveness of the measures that could be taken to reduce GHG emissions by land-use management (Smith et al., 2008; Ciais et al., 2011).

There are several reasons for these uncertainties. While inventories can be made of the different carbon pools (Bellamy et al., 2005), carbon pool changes are small and difficult to detect; they require sampling programs with periodic revisits over many years. Thus, the magnitude and variability of CO₂ fluxes, both sinks and sources, between the soil and the atmosphere are difficult to quantify and they may not have been accurately assessed. This is particularly the case for CO₂ fluxes associated with land use and land management, such as deforestation and changes in agricultural practice (Al-Kaisi and Yin, 2005; Alluvione et al., 2009; Dilling and Failey, 2012).

Soils are the largest terrestrial pool of carbon (C), storing 2344 Pg C (1 Pg = 1 billion tonnes) of soil organic carbon (SOC) in the top three meters (Jobbágy and Jackson, 2000). Tilling the soil before planting for seedbed preparation and weeding has been a common practice in agriculture since Neolithic times (McKyes, 1985). This technique is energy intensive and also affects SOC stocks. Tilling changes the balance between organic carbon inputs into the soil by plants and rendered available for soil micro-organisms, and carbon output as greenhouse gases (GHGs) due to organic matter decomposition (Rastogi et al., 2002). Soil tillage may also lead to the vertical and lateral export of particulate and dissolved organic carbon by leaching and erosion (Jacinthe et al., 2002; Mchunu et al., 2011).
Soil tillage is estimated to have decreased SOC stocks by two-thirds from pre-deforestation levels (Lal, 2003). But this estimate is highly uncertain, due to the lack of detailed site-level meta-analysis for different climates, soil types and management intensities.

Six et al. (2000, 2004) reported that tillage induces soil disturbance and disruption of soil aggregates, exposing the protected SOC to microbial decomposition and thus causing carbon loss from soils through CO₂ emissions and leaching. Tillage is also responsible for soil compaction, soil erosion and loss of soil biodiversity (Wilson et al., 2004). In some instances, tillage is thought to have caused a net sink of atmospheric CO₂, for instance by displacing SOC to deeper soil horizons or accumulation areas where it decomposes more slowly (Baker et al., 2007; Van Oost et al., 2007). Soil tillage also modifies the mineralization rates of nutrients, which feeds back on soil carbon input, implying that the effect of tillage on the balance of SOC needs to be considered at ecosystem level (Barré et al., 2010).

Nowadays, tillage is being increasingly abandoned as the use of mechanised direct planters becomes widespread and weed control is performed with herbicides or in a more ecologically friendly way by using cover crops and longer crop rotations.

The consequences of this change in practice on soil properties and soil functioning are numerous. Importantly, it also raises the unsolved question: what is the impact of tillage abandonment on GHG emissions and climate change? Common wisdom is that no-tillage (or zero-tillage) agriculture enhances soil carbon stocks (Peterson et al., 1998; Six et al., 2002; West and Post, 2002; Varvel and Wilhelm, 2008) by reducing soil carbon loss as CO₂ emission (Paustian et al., 1997; West and Post, 2002; Dawson and Smith, 2007). For instance, Paustian et al. (1997) reviewed 39 paired comparisons and reported that abandonment of tillage increased SOC stocks in the 0-0.3 m layer by an average of 258 g C m⁻² (i.e., 8%). Ussiri and Lal (2009) observed a two-fold increase of SOC stocks in the top 0.03 m of soil (800 versus 453 g C m⁻²) after 43 years of continuous Zea mays (maize) under no-tillage compared to
tillage. Virto et al. (2012) in a meta-analysis based on 92 paired comparisons reported that SOC stocks were 6.7% greater under no-tillage than tillage.

While consensus seems to exist on the potential of no-tillage for carbon sequestration and climate change mitigation, several voices alerted the scientific and policy communities to some possible flaws in early reports (Royal Society 2001; VandenBygaart and Angers, 2006; Baker et al., 2007; Luo et al., 2010; Dimassi et al. 2014; Powlson et al., 2014). VandenBygaart and Angers (2006) indicated that the entire plow depth had to be considered for not overstating zero-tillage impact on SOC storage. To our knowledge, Baker et al. (2007) were the first to point out that the studies concluding on carbon sequestration under no-tillage management had only considered the top-soil (to a maximum of 0.3 m), while plants allocate SOC to much greater depths. False conclusions may be drawn if only carbon in the top-soil is measured. Using meta-analysis based on 69 paired-experiments worldwide where soil sampling depth extended to 1.0 m, Luo et al. (2010) found that conversion from tillage to no-tillage resulted in significant top-soil SOC enrichment, but did not increase the total SOC stock in the whole soil profile. Dimassi et al. (2014) even reported SOC losses over the long term.

Evidence for greater CO₂ emissions from land under tillage than a no-tillage regime has been widely reported (e.g., Reicosky, 1997; Al-Kaisi and Yin, 2005; Bauer et al., 2006; Sainju et al., 2008; Ussiri and Lal, 2009). For instance, in a study performed in the US over an entire year, Ussiri and Lal (2009) found that, tillage emits 11.3% (6.2 versus 5.5 Mg of CO₂-carbon per hectare per year, CO₂-C ha⁻¹ yr⁻¹) more CO₂ than no-tillage. Similarly, all the field surveys by Alluvione et al. (2009) reported that land under tillage had 14% higher CO₂ emissions than land with no-tillage. Al-Kaisi and Yin (2005) found this difference to be as much as 58%. A few in situ studies, however, found CO₂ emissions from no-tillage soils were similar to those from tilled soils (Aslam et al., 2000;
Oorts et al., 2007; Li et al., 2010). However, Hendrix et al. (1988) and Oorts et al. (2007) found greater CO₂ emissions from untilled compared to tilled soils, with Oorts et al. (2007) reporting that no-tillage increased CO₂ emissions by 13% compared to tillage. In a further example, Cheng-Fang et al. (2012) showed that in central China, no-tillage increased soil CO₂ emissions by 22-40% compared with tillage. Oorts et al. (2007) attributed the larger CO₂ emissions from no-tillage soil compared to tilled soil to increased decomposition of the weathered crop residues lying on the soil surface. Crop residue management has been shown to greatly impact CO₂ emissions from soils under both tillage and no-tillage (Oorts et al., 2007; Dendooven et al., 2012). Jacinthe et al. (2002) reported annual CO₂ emissions to be 43% higher with tillage compared to no-tillage with no mulch, but found a 26% difference for no-tillage with mulch. Some other authors associated the changes in CO₂ emissions following tillage abandonment to shifts in nitrogen fertilization application and in crop rotations (Al-Kaisi and Yin, 2005; Álvaro-Fuentes et al., 2008; Cheng-Fang et al., 2012). Sainju et al., (2008) working in North Dakota pointed to CO₂ flux differences between tilled and untilled soils only for fertilized fields, while other studies pointed to the absence of nitrogen impact (Drury et al., 2006; Cheng-Fang et al., 2012). Crop type and crop rotation may also constitute important controls on the CO₂ efflux differences between tillage and no-tillage, mainly through differences in root biomass and its respiration, and nitrogen availability (Amos et al., 2005; Álvaro-Fuentes et al., 2008). Omonode et al. (2007) found a 16% difference in CO₂ outputs between tillage and no-tillage under continuous maize, while Sainju et al. (2010b) found no difference between continuous barley and barley-pea rotations.

Micro-climatic parameters such as soil temperature and precipitation are other likely controls of the response of soil CO₂ emissions to tillage (Angers et al., 1996; Flanagan and Johnson, 2005; Lee et al., 2006; Oorts et al., 2007). These controls also need further appraisal.
The existence of research studies from different soil and environmental conditions worldwide opens the way for a more systematic assessment of tillage impact on soil CO₂ emissions and their controls. Meta-analysis is commonly used for combining research findings from independent studies and offers a quantitative synthesis of the findings (Rosenberg et al., 2000; Borenstein et al., 2011). This method has been used here in order to assess the effects of background climate (arid to humid), soil texture (clayey to sandy), crop types (maize, wheat, barley, paddy rice, rapeseed, fallow and grass), experiment duration, nitrogen fertilization, crop residue management and crop rotations on the CO₂ emission responses of soils following tillage abandonment. CO₂ emissions from soil with tillage and no-tillage were compared for 174 paired observations across the world.
2. Materials and Methods

2.1. Database generation

A literature search identified papers considering \textit{in situ} soil CO\textsubscript{2} emissions and top-soil (0-0.03 m depth) SOC changes under tillage and no-tillage management regimes. Google, Google scholar, Science Direct, Springerlink and SciFinder were used. In order to make the search process as efficient as possible, a list of topic-related keywords was used such as “soil carbon losses under tillage compared to no-tillage”, “soil CO\textsubscript{2} emissions under tillage and no-tillage”, “land management practices and greenhouse gases emissions”, “land management effects on CO\textsubscript{2} emissions”, “effects of tillage versus no-tillage on soil CO\textsubscript{2} emissions” and “SOC”. Many studies reported soil CO\textsubscript{2} emissions and SOC for cropland systems, but only those that reported CO\textsubscript{2} emissions measured in the field for both tillage and no-tillage from the same crop and during the same period were used. In addition, we selected only studies that consistently reported total soil respiration (heterotrophic + belowground autotrophic respiration). The crops considered in this study were maize, wheat, barley, oats, soybean, paddy rice and fallow. The practices considered as tillage in this review are those that involve physical disturbance of the top-soil layers for seedbed preparation, weed control, or fertilizer application. Consequently, conventional tillage, reduced tillage, standard tillage, minimum tillage and conservation tillage were all considered as tillage. However, only direct seeding and drilling were considered as no-tillage, among different practices reported in the reviewed literature. The studies used in the meta-analysis covered 13 countries (USA, Spain, Brazil, Canada, China, Denmark, France, Finland, New Zealand, Lithuania, Mexico, Argentina and Kenya). A total of 46 peer-reviewed papers with 175 comparisons for soil CO\textsubscript{2} emissions and 162 for SOC content (SOC\textsubscript{C}) were identified. Table 1 summarizes information on site location, climatic conditions, crop rotation systems, and average CO\textsubscript{2} emissions under tilled and untilled soils. Most of the data (37%) came from USA
followed by Canada, China and Spain (11% each), and Brazil (9%). There was only one study from Africa, conducted in Kenya by Baggs et al. (2006).

Several soil variables were considered, as follows: SOC_C (%), soil bulk density (ρ_b, g cm$^{-3}$), and soil texture (Clay, Silt, and Sand, %) in the 0-0.03 m layer. In addition, mean annual temperature (MAT, °C) and mean annual precipitation (MAP, mm), crop types, crop rotations, nitrogen fertilization rate, experiment duration and crop residue management were also considered.

Data for soil CO$_2$ emissions ($n = 46$) were obtained for all studies by using open chambers and reported on an area basis. Soil CO$_2$ emissions were directly extracted from the papers and were standardized to g CO$_2$-C m2 yr$^{-1}$. Thirty eight studies gave SOC_C for both tillage and no-tillage. Four studies (Hovda et al., 2003; Álvaro-Fuentes et al., 2008; Lee et al., 2009; Dendooven et al., 2012) gave SOC_C, in term of the mass of carbon in the 0-0.03 m layer and per unit area (kg C m$^{-2}$). Finally, for the four remaining studies, SOC_C was extracted from other publications describing measurements at the same site. SOC_C was estimated from soil organic carbon stocks (SOC_S kg C m$^{-2}$) and bulk density following Eq. (1) by Batjes (1996).

$$\text{SOC}_S = \text{SOC}_C \times \rho_b \times T \times (1 - \frac{PF}{100})^b$$

(1)

where SOC_S is the soil organic C stock (kg C m$^{-2}$); SOC_C is soil organic C content in the ≤2mm soil material (g C kg$^{-1}$ soil); ρ_b is the bulk density of the soil (kg m$^{-3}$); T is the thickness of the soil layer (m); PF is the proportion of fragments of >2mm in percent; and b is a constant equal to 0.001.

Information on MAP and MAT was extracted from the papers, but were estimated in nine studies where such information was not provided, based on the geographic coordinates of the study site and using the WORLDCLIM climatology (Hijmans et al., 2005).
with a spatial resolution of 30 seconds. In eight studies where soil texture was only given as textural class, particle size distribution was estimated using the adapted soil texture triangle (Saxton et al., 1986).

Table 2 shows the variables used in categorizing the experimental conditions. The climatic regions were extracted directly from the papers and categorized into arid and humid climate (Köppen, 1936). SOC\textsubscript{C} were categorized into three categories following Lal (1994): low (SOC\textsubscript{C} < 10 g C kg-1), medium (10-30 g C kg-1) and high (>30 g C kg-1). Soil texture was categorized based on the soil textural triangle (Shirazi and Boersma, 1984) into three classes (clay, loam and sand). Fertilization rate for this meta-analysis was classified into the categories defined by Cerrato and Blackmer (1990): low when below 100 kg N ha-1 and high when above 100 kg N ha-1.

In addition, no-tillage treatment was classified as short duration when < 10 years, or long duration when exceeding 10 years. Crops residues were either left on the soil surface or removed after harvest with no distinction between removal proportions. Crops rotations were divided into two categories: a series of different types of crop in the same area classed as “rotation”, or continuous monoculture, classed as “no rotation”.

1

2

3

4

5

6

7

8

9

10

11

12

13
2.2. Meta-analysis

The response ratio (R) of CO$_2$ emissions to SOC under tillage (T) and no-tillage (NT) was calculated using Eq. (2) and (3). As common practice, natural log of the R (lnR) has been calculated as an effect size of observation (Hedges et al., 1999)

\[
\ln R = \ln\left(\frac{CO_{2T}}{CO_{2NT}}\right)
\]

(2)

\[
\ln R = \ln\left(\frac{SOC_T}{SOC_{NT}}\right)
\]

(3)

The MetaWin 2.1 software (Rosenberg et al., 2000) was used for analyzing the data and generating a bootstrapped (4,999 iterations) to calculate 95% confidence intervals. The means of effect size were considered to be significantly different from each other if their 95% confidence intervals were not overlapping and were significantly different from zero if the 95% level did not overlap zero (Gurevitch and Hedges, 2001).
3. Results

3.1. General statistics of soil CO$_2$ emissions from tilled and untillled soils

Overall, average soil CO$_2$ emissions computed from the 174 paired observations was 1152 g CO$_2$-C m$^{-2}$ yr$^{-1}$ from tilled soils compared to 916 g C-CO$_2$ m$^{-2}$ yr$^{-1}$ from under no-tillage (Table 3), which corresponds to a 21% average difference, significant at P<0.05. The greatest soil CO$_2$ emission amongst the considered sites was 9125 g C-CO$_2$ m$^{-2}$ yr$^{-1}$ observed under tilled soils with barley in an arid area at Nesson Valley in western North Dakota, USA (Sainju et al., 2008). The lowest soil CO$_2$ emission was 11 g CO$_2$-C m$^{-2}$ yr$^{-1}$ observed under no-tillage wheat in the humid climate of Lithuania (Feiziene et al., 2011).

3.2. Controls on the response of soil CO$_2$ emissions to tillage

Climate

Tillage emitted 27% more CO$_2$ than no-tillage in arid climates; while for pairs in humid climates, tillage emitted 16% more CO$_2$ than no-tillage. However, the differences in CO$_2$ emissions between tillage and no-tillage were not statistically significant (at 0.05 confidence interval) between arid and humid climates (Fig. 1a). When compared across all studies, mean SOC$_C$ under tillage was 10% lower than under no-tillage (Fig. 1b). In arid climates, SOC$_C$ in tillage was 11% lower than no-tillage, whereas in humid climates SOC$_C$ under tillage was only 8% less than for no-tillage. However, the differences in SOC$_C$ between the two climatic zones were found to be non-significant.
Soil organic carbon content

On average, soil CO$_2$ emissions from tilled soils were 25% greater compared to untilled for soils with SOC$_C$ lower than 10 g kg$^{-1}$ (Fig. 2). For SOC$_C$ between 10 and 30 g kg$^{-1}$, tilled soils emitted an average 17% more CO$_2$ than untilled ones. In the case of carbon-rich soils with SOC$_C$ higher than 30 g kg$^{-1}$, there were no significant differences between tillage and no-tillage CO$_2$ emissions. Thus, the difference between tillage and no-tillage decreased with increasing background SOC$_C$. Overall, soil CO$_2$ emissions under no-tillage were about five times greater for low compared to high SOC$_C$.

Soil texture

Differences in CO$_2$ emissions between tilled and untilled soils were largest in sandy soils where tilled soils emitted 29% more CO$_2$ than untilled soils (Fig. 3a). In clayey soils, the differences between tillage and no-tillage were much smaller with tilled soils emitting 12% more CO$_2$ than untilled soils. On the other hand, SOC$_C$ under tillage was significantly lower than under no-tillage: by 17% under sandy soils and 9% in clayey soils (Fig. 3b). However, there were no differences between clayey and loamy soils.

Crop type

Soil CO$_2$ emissions were significantly greater in tilled compared to untilled soils for all crop types with the exception of paddy rice where there were no significant differences between tilled and untilled soils (Fig. 4a). The greatest CO$_2$ emission difference between tillage and no-tillage was found in fallow, with a value of 34%.
Grouping all crop types together, SOC under tillage was significantly lower than under no-tillage. Among the different crops (rice, maize, soybean, wheat and barley) a significant SOCc difference between tilled and untilled soil was only observed for maize (15%) at one site and for rice (7.5%). SOCc under no-tillage was slightly greater than under tillage for soils under fallow, but the difference was not significant (Fig. 4b). Highest SOCc differences between tilled and untilled soils were observed for maize where SOCc was on average 15% lower under tillage compared to no-tillage.

Duration of no-tillage

The duration of no-tillage (i.e., time since tillage was abandoned) had no statistical association with soil CO$_2$ emissions. However, there was a tendency for the differences between tillage and no-tillage to increase with increasing duration of the no-tillage regime with an average 18% difference for experiments of less than 10 years, and 23% for those longer than 10 years (Fig. 5a). SOCc under tillage was 14% lower compared to no-tillage for experiments lasting longer than 10 years, whereas there were no differences in SOCc between tillage and no-tillage for shorter durations (Fig. 5b).

Nitrogen fertilization

Nitrogen fertilization did not produce statistically significant differences between soil CO$_2$ emissions and SOCc differences from tilled and untilled soil (Fig. 6). Compared to tillage, no-tillage decreased soil CO$_2$ emissions by an average of 19% when 100 kg N ha$^{-1}$ or more was applied, while at lower fertilization rates, soil CO$_2$ emissions decreased by 23%, but owing to the small sample size this difference was not statistically significant.
Crop residue management and crop rotation

On average, when crop residues were not exported, no-tillage decreased soil CO$_2$ emissions by 23% compared to tillage, which corresponded to a significant difference at $P < 0.05$. On the other hand, crop residue removal resulted in a smaller difference of only 18% (Fig.7a). SOC$_C$ was 12% lower under tillage than no-tillage in the absence of crop residues, and only 5% lower when crop residues were left on the soil (Fig.7a). On the other hand, soils under a crop rotation regime exhibited much sharper decrease (i.e. 26%) of CO$_2$ emission following tillage abandonment than the soils under continuous monoculture for which changes of CO$_2$ emission were not significant at $P<0.05$.

Multiple correlations between soil CO$_2$ emissions and selected soil variable and environmental factors

Figure 9 shows the interaction between the changes in CO$_2$ emissions following tillage abandonment on one hand and the selected soil and environmental variables on the other. The first two axes of the PCA explained 66% of the entire data variability. The first PCA axis (Axis 1), which described 35% of the total data variance, was highly correlated to latitude (LAT), mean annual temperature (MAT), SOC$_C$, and soil clay content (CLAY). LAT and ρ_b showed positive coordinates on Axis 1, while the other variables showed negative ones. Axis 1 could, therefore, be regarded as an axis setting clayey organic and warm soils against compacted, sandy soils from a cold climate. The second PCA axis, which explained 21% of the data variance, correlated the most with silt content. The differences in CO$_2$ fluxes between tillage and no-tillage (ΔCO$_2$ T-NT) showed positive coordinates on Axis 1,
which revealed greater CO$_2$ emissions under tillage compared to no-tillage under cool sandy and dense soils compared to warm clayey and organically rich soil from a warm and humid climate.
4. Discussion

4.1. Overall influence of tillage on SOC and soil CO$_2$ emissions

Our meta-analysis shows that tillage has a significant impact on decreasing top-soil (0-0.03 m) organic carbon content (SOC$_C$) and increasing CO$_2$ emissions, with 10% lower SOC$_C$ and 21% greater CO$_2$ emission in tilled than untilled soils. Lower SOC$_C$ and greater CO$_2$ emissions under tillage reflect faster organic matter decomposition as a result of greater soil aeration and incorporation of crop residues to the soil, and breakdown of soil aggregates, which all render the organic material more accessible to decomposers (Reicosky, 1997; Six et al., 2002, 2004). However, results from the literature do not always agree with this. In case of soil carbon, for example, Cheng-Fang et al. (2012) found 7-48% greater SOC$_C$ under tilled rice in China, when Ahmad et al. (2009) observed no significant differences. In case of soil CO$_2$ emissions, while for instance Ussiri and Lal (2009) for a 43 years maize monoculture in USA observed 31% greater CO$_2$ emissions from tilled than from no-tilled soils, Curtin et al. (2000) and Li et al. (2010) found no significant difference in CO$_2$ emissions between these treatments while Oorts et al. (2007) reported greater soil CO$_2$ emission under no-tillage (4064 kg CO$_2$-C ha$^{-1}$) compared to tillage (3160 kg CO$_2$-C ha$^{-1}$), which they attributed to greater soil moisture content and amount of crop residue on the soil surface.

4.2. Influence of climate

Although there was no significant difference between arid and humid climates, CO$_2$ emissions and SOC$_C$ changes between untilled and tilled soils tended to be greater in arid than in humid climates (Fig. 1a). In support, Álvaro-Fuentes et al. (2008), who investigated tillage impact on CO$_2$ emissions from soils in a semiarid climate, attributed the observed large difference between

15
tillage and no-tillage to differences in soil water availability. At humid sites high soil moisture favor high decomposition rates resulting in small differences between tilled and untilled soils, while large differences develop in arid climates with much lower soil water content (Fortin et al., 1996; Feiziene et al., 2011). This supports the idea that the soil response to tillage is affected by climate thresholds (Franzluebbers and Arshad, 1996).

4.3 Influence of soil properties

4.3.1. Soil organic carbon content

The decrease of CO₂ emission differences between tillage and no-tillage with increasing SOC_C is most likely due to diminishing inter-aggregate protection sites as SOCc level increases. Several studies have shown that carbon inputs into carbon-rich soils show little or no increase in soil carbon content with most of the added carbon being released to the atmosphere, while carbon inputs in carbon-depleted soils translate to greater carbon stocks because of processes that stabilize organic matter (Paustian et al., 1997; Solberg et al., 1997; Six et al., 2002). Another reason, which doesn’t involved stabilization, is the fact that soils that have been depleted in carbon tend to recover and accumulate SOC until equilibrium is reached (Carvalhais et al. 2007). Therefore, abandoning tillage in soils with low SOC_C tends to offer greater protection of SOC than in soils with inherently high SOC_C levels. In support, Lal (1997) reported low SOC_C and aggregation correlations under high SOC_C soils, which suggests that substantial proportions of the SOC were not involved in aggregation. Hence, the greater difference of CO₂ emissions between tilled and untilled soils for carbon-depleted soils compared to carbon-rich soils may be due to much greater stabilization of extra SOC delivered to the carbon-depleted soil by protection in soil aggregates within the top-soil layers (0.0-0.05 m). Tillage of carbon-depleted soils is likely to lead
to the breakdown of more soil aggregates, thus leading to greater decomposition of the residues added under no-tillage, as hypothesized by Madari et al. (2005) and Powlson et al. (2014).

4.3.2. Soil texture

Soils under zero tillage emitted less CO\(_2\) than tilled soils, and the CO\(_2\) emission difference was the greatest in sandy soils (Fig. 3). Further, in sandy soils, as indicated by Fig 3, the largest CO\(_2\) emission difference is mirrored by the largest SOC\(_C\) difference.

Greater SOC\(_C\) and then CO\(_2\) differences under sandy soils might be due to the lower resistance of soil aggregates to disaggregation, with tillage accelerating aggregate breakdown and decreasing organic matter protection, which causes a fast loss of soil carbon.

Differences in CO\(_2\) emissions between treatments were greater in sandy than in clayey soils (Fig. 3). This might be due to the fact that sandy soils have higher porosity, allowing changes in soil management to translate into large variations in the gas fluxes to the atmosphere (Rastogi et al., 2002; Bauer et al., 2006). These suggestions contrast, however, with the results of for instance Chivenge et al. (2007) working in Zimbabwe and where little impact of tillage on carbon sequestration was found under sandy soils as compared to clayey ones.

4.4. Influence of the duration since tillage abandonment

The differences in SOC\(_C\) between tilled and untilled soils increased with the time since abandonment of tillage (Fig. 5b). When abandonment of tillage took place less than 10 years old there were no differences in SOC\(_C\) between tillage and no-tillage, but for longer durations tilled soils had 14\% less SOC\(_C\) than untilled soils. This can be explained by the progressive increase of soil carbon
accumulation with time as a result of the retention of a fraction of the crop residue under no-tillage. This explanation is consistent with the results of Paustian et al. (1997) and Ussiri and Lal (2009). Six et al. (2004) reported that the potential of no-tillage to mitigate global warming is only noticeable a long time after (>10 years) a no-tillage regime has been adopted. This would suggest that shifts in CO₂ emission differences between tillage and no-tillage will occur over time; this could not be observed in our analysis (Fig. 5a) because the majority of experiments in this study were less than 10 years in length. Further, in some cases no-tillage leads to carbon loss in the top-soil layer (0-0.3 m) during the first years of adoption (Halvorson et al., 2002; Six et al., 2004), a response which can be attributed to slower incorporation of surface residues into the soils by soil fauna. However, different studies give contrasting results; for instance, the long-term no-till experiments in northern France by Dimassi et al. (2014) showed that SOC increased in the top-soil (0-0.1 m) during 24 years after tillage abandonment, then did not increase, whereas SOC continuously decreased below 0.1 m. A loss of SOC following tillage abandonment was also suggested by Luo et al. (2010) and Baker et al. (2007).

4.5. Crop types, residues management and crop rotation

The no-tillage minus tillage variations of CO₂ emission and SOC between crop types are correlated with the quantity and quality of crop residue (Fig. 4a-b). Both quantity and quality of crop residues are important factors for soil carbon sequestration and CO₂ emissions, and are highly dependent on crop type. Reicosky et al. (1995), reported that corn returned nearly twice as much residue than soybean, and that soybean residues decomposed faster because of their lower C:N ratio. Thus, maize residues result in higher soil organic matter than soybean. Al-Kaisi and Yin (2005) also reported reduced soil CO₂ emissions and improved soil carbon
sequestration in maize-soybean rotations due to better residue retention. Reicosky (1997) summarized that maximizing residue retention results in carbon sequestration with subsequent decrease in CO₂ emissions. However, several recent studies pointed to the lack of impact of residue management on soil carbon, with Lemke et al. (2010) showing that crop residue removal in a 50 years experiment did not significantly (P > 0.05) reduce soil carbon, and Ren et al. (2014) showing that inputs from wheat straw and manure up to 22 ton ha⁻¹ yr⁻¹ could not increase soil carbon over 4 years. De Luca et al., (2010) explained the lack of crop residue impact on soil carbon by the very low amount of carbon in residues compared to the bulk soil in their study, while Russell et al (2009) having investigated several systems pointed out to a concomitant increase of organic matter decomposition with carbon input rates.

Wilson and Al Kazi (2008) indicated that continuous corn cropping systems had higher soil CO₂ emissions than corn-soybean rotations because of a greater residue amount. Van Eerd et al. (2014) concluded from winter wheat - legumes rotations to higher carbon input during wheat cultivation, due to a greater belowground allocation. The present analysis suggests that tilled soils have significantly greater CO₂ emissions than no-tilled soils irrespective of the crop rotation system (Fig. 8). This is likely because crop rotation increases SOC, and microbial activity and diversity. For instance, Lupwayi et al. (1998, 1999) found greater soil microbial biomass under tillage legume-based crop rotations than under no-tillage with tillage increasing the richness and diversity of active soil bacteria by increasing the rate of diffusion of O₂ and the availability of energy sources (Pastorelli et al., 2013). This study showed that continuous monoculture did not result in significantly different CO₂ between tilled and untilled soils (Fig. 8a). Rice is one crop often produced under a continuous monoculture practice, however, in this meta-analysis, paddy rice did not show...
significant difference of CO₂ emissions between tillage and no-tillage. Li et al. (2010) and Pandey et al. (2012) attributed the lack of difference to anaerobic soil conditions occurring under both practices.

4.6. Nitrogen fertilization

The differences of CO₂ between tillage and no-tillage did not differ with nitrogen fertilizer level (Fig. 6a), confirming observations by Alluvione et al. (2009) and Almaraz et al. (2009b). This result could be due to the fact that nitrogen fertilization increases productivity and carbon inputs to the soil under both tilled and untilled systems, which may override nitrogen effects on decomposition such as shown by Russell et al. (2009). Increasing SOC as a response to nitrogen fertilization was found under no-tillage during a period of 4 years (Morell et al., 2010), and during the 50 yr experiment of Lemke, et al. (2010). Yet Sainju et al. (2008) reported the opposite: a 14% increase of soil CO₂ flux with nitrogen fertilizer, because fertilizer application stimulated biological activity, thereby producing more CO₂, and causing SOC_C decline (Khan et al., 2007; Mulvaney et al., 2009). In contrast, Wilson and Al Kazi (2008) showed that increasing N fertilization generally decreased soil CO₂ emissions, with a maximum decrease of 23% from 0-135 kg N ha⁻¹ to 270 kg N ha⁻¹ occurring during the growing season, which might be explained by a series of mechanisms, including the inhibition of soil enzymes and fungus and the reduction of root activity.

Overall, these results pointed to little benefit in not tilling clayey soils with high SOC_C, with the highest no-tillage benefits occurring under sandy soils with low SOC_C. This can be explained by differences in soil aggregate stability. Indeed, since the stability of soil aggregates shows a positive correlation with clay and organic matter content, clayey and organic soils produce stable aggregates which are likely to be more disaggregated by tillage compared to sandy aggregates of low carbon content. The SOC protected within
soil aggregates under no-tillage becomes exposed under tillage because of aggregate dispersion; which explains the greater reduction in CO$_2$ emission with no-tillage under sandy soils. Rather, emission is likely to be reduced under zero tillage as a result of improved soil aggregate stability and the associated protection of decomposed and stable organic matter. Crop management such as fertilization and crop type, or climate are shown to have little effect on aggregation. Our analysis did not include time since cessation of tillage as a specific predictor and classified instead the experiments into two simple categories (short versus long term).

5. Conclusion

The aim of this study was to provide a comprehensive quantitative synthesis of the impact of tillage on CO$_2$ emissions using meta-analysis. Three main conclusions can be drawn. Firstly, tillage systems had 21% greater CO$_2$ emissions than no-tillage, worldwide. Secondly, the reduction in CO$_2$ emissions following tillage abandonment was greater in sandy soils with low SOC$_C$ compared to clayey soils with high SOC$_C$. Thirdly, crop rotation significantly reduced the CO$_2$ emissions from untilled soil, by 26% compared to tilled soil, while continuous monocultural practice had no significant effect. This is most probably due to the fact that crop rotation can increase SOC$_C$ and more microbial activity under a tilled compared to an untilled treatment. These results emphasize the importance of including soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.

Long-term process studies of the entire soil profile are needed to better quantify the changes in SOC following tillage abandonment and to clarify the changes in the dynamics of carbon inputs and outputs in relation to changes in microbial activity, soil structure and microclimate. In addition, more research is needed to identify the underlying reasons why, over a long period of time, the
abandonment of tillage results in a decrease in integrated CO$_2$ emissions, that appears to be much higher than the observed increase in SOC$_S$. The goal remains to design agricultural practices that are effective at sequestering carbon in soils.

Finally, one future application of these data could be to use them to calibrate soil carbon models. The models could be run with prescribed inputs (from observation sites) used to simulate decomposition and the mass balance of SOC over time for different climates, soil texture and initial SOC content with respect to the theoretical value assuming equilibrium of decomposition and input (Kirk and Bellamy, 2010). Most soil carbon models developed for generic applications (e.g., RothC, DNDC, and CENTURY) would be suitable tools for exploitation of the data presented here (Adams et al., 2011).
References

1 Hendrix, P., Han, C.R., Groffman, P., 1988. Soil respiration in conventional and no-tillage agroecosystems under different winter
cover crop rotations. Soil and Tillage Research 12, 135-148.
2 Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global
3 Hobbs, P.R., 2007. Conservation agriculture: what is it and why is it important for future sustainable food production? Journal of
Agricultural Science-Cambridge 145, 127.
grain corn under conventional and no tillage. The Canadian society for engenerring in agriculutre, food and biological
systems. Written for presentation at the CSAE/SCGR 2003 Meeting Montréal, Québec (July 6-9, 2003).
inventories. Institute for Global Environmental Strategies, Hayama, Japan.
6 Jabro, J., Sainju, U., Stevens, W., Evans, R., 2008. Carbon dioxide flux as affected by tillage and irrigation in soil converted from
structure to tillage events and implications for soil quality. Geoderma 114, 305-317.
Ecological Applications 10, 423-436.
Environmental Quality 36, 1821-1832.

La Scala Jr, N., Bolonhezi, D., Pereira, G., 2006. Short-term soil CO$_2$ emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil and Tillage Research 91, 244-248.

Lal, R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics. The Ohio state university, Columbus, Ohio.

Li, C., Zhang, Z., Guo, L., Cai, M., Cao, C., 2013. Emissions of CH$_4$ and CO$_2$ from double rice cropping systems under varying tillage and seeding methods. Atmospheric Environment 80, 438-444.

Sainju, U.M., StevensA, W.B., Caesar-TonThat, T., Jabro, J.D., 2010b. Carbon input and soil carbon dioxide emission affected by land use and management practices. 19th World Congress of Soil Science. 1 – 6 August 2010, Brisbane, Australia. Published on DVD.

Table 1 References included in database with locations, mean annual precipitation (MAP), mean annual temperature (MAT), climate, land use, no-tillage comparisons and average tillage (T) and no-tillage (NT) CO₂ emissions

<table>
<thead>
<tr>
<th>SN.</th>
<th>Author(s)</th>
<th>Country</th>
<th>Comparisons</th>
<th>MAP mm</th>
<th>MAT °C</th>
<th>Climate</th>
<th>Land use</th>
<th>No-tillage vs.</th>
<th>CO₂ emissions gCO₂-C m⁻² yr⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ahmad, S. et al (2009)</td>
<td>China</td>
<td>2</td>
<td>2721</td>
<td>17</td>
<td>Humid</td>
<td>Rice-rape</td>
<td>CT</td>
<td>857 888</td>
</tr>
<tr>
<td>2</td>
<td>Al-Kaisi & Yin (2005)</td>
<td>USA</td>
<td>4</td>
<td>889</td>
<td>10</td>
<td>Humid</td>
<td>Maize-soybean</td>
<td>ST&DT&CP&MP</td>
<td>292 206</td>
</tr>
<tr>
<td>3</td>
<td>Alluvione et al (2009)</td>
<td>USA</td>
<td>2</td>
<td>383</td>
<td>11</td>
<td>Arid</td>
<td>Maize</td>
<td>CT</td>
<td>490 599</td>
</tr>
<tr>
<td>4</td>
<td>Almaraz et al (2009a)</td>
<td>Canada</td>
<td>2</td>
<td>979</td>
<td>6</td>
<td>Humid</td>
<td>Soybean</td>
<td>CT</td>
<td>747 523</td>
</tr>
<tr>
<td>5</td>
<td>Almaraz et al (2009b)</td>
<td>Canada</td>
<td>4</td>
<td>979</td>
<td>6</td>
<td>Humid</td>
<td>Maize</td>
<td>CT</td>
<td>1269 1374</td>
</tr>
<tr>
<td>6</td>
<td>Alvarez et al. (2001)</td>
<td>Argentina</td>
<td>1</td>
<td>1020</td>
<td>17</td>
<td>Humid</td>
<td>Wheat-soybean</td>
<td>CT</td>
<td>2154 1533</td>
</tr>
<tr>
<td>10</td>
<td>Brye et al (2006)</td>
<td>USA</td>
<td>4</td>
<td>1282</td>
<td>16</td>
<td>Humid</td>
<td>Wheat-soybean</td>
<td>CT</td>
<td>3264 2604</td>
</tr>
<tr>
<td>12</td>
<td>Chatskikh &Olesen 2007</td>
<td>Denmark</td>
<td>2</td>
<td>704</td>
<td>7</td>
<td>Humid</td>
<td>Barley</td>
<td>CT&RT</td>
<td>117 102</td>
</tr>
<tr>
<td>14</td>
<td>Chevaz et al 2009</td>
<td>Brazil</td>
<td>1</td>
<td>1755</td>
<td>19</td>
<td>Humid</td>
<td>Oots-soybean-wheat-maize</td>
<td>CT</td>
<td>464 573</td>
</tr>
<tr>
<td>15</td>
<td>Datta et al. (2013)</td>
<td>USA</td>
<td>1</td>
<td>1016</td>
<td>11</td>
<td>Humid</td>
<td>Maize</td>
<td>CT</td>
<td>438 634</td>
</tr>
<tr>
<td>16</td>
<td>Dendooven et al. (2012)</td>
<td>Mexico</td>
<td>2</td>
<td>600</td>
<td>14</td>
<td>Arid</td>
<td>Maize-wheat</td>
<td>CT</td>
<td>100 100</td>
</tr>
<tr>
<td>17</td>
<td>Drury et al (2006)</td>
<td>USA</td>
<td>3</td>
<td>876</td>
<td>9</td>
<td>Humid</td>
<td>Wheat-maize-soybean</td>
<td>CT</td>
<td>575 559</td>
</tr>
<tr>
<td>18</td>
<td>Elder and Lal (2008)</td>
<td>USA</td>
<td>1</td>
<td>1037</td>
<td>11</td>
<td>Humid</td>
<td>Maize-wheat</td>
<td>MT</td>
<td>225 189</td>
</tr>
<tr>
<td>19</td>
<td>Ellert and Janzen (1999)</td>
<td>Canada</td>
<td>5</td>
<td>400</td>
<td>5</td>
<td>Arid</td>
<td>Wheat-fallow</td>
<td>CT&RT</td>
<td>406 186</td>
</tr>
<tr>
<td>Study Reference</td>
<td>Location</td>
<td>Year</td>
<td>N</td>
<td>Plant 1</td>
<td>Plant 2</td>
<td>Climate 1</td>
<td>Climate 2</td>
<td>Water Management</td>
<td>Total Runoff</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------</td>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Jabro et al (2008)</td>
<td>USA</td>
<td>1</td>
<td>373</td>
<td>Humid</td>
<td>Sugarcane</td>
<td>CT</td>
<td></td>
<td></td>
<td>3424</td>
</tr>
<tr>
<td>Le et al (2009)</td>
<td>USA</td>
<td>3</td>
<td>564</td>
<td>Arid</td>
<td>Maize-sunflowers-pea</td>
<td>ST</td>
<td></td>
<td></td>
<td>933</td>
</tr>
<tr>
<td>Li et al (2010)</td>
<td>China</td>
<td>4</td>
<td>1361</td>
<td>Humid</td>
<td>Rice-rape</td>
<td>CT</td>
<td></td>
<td></td>
<td>284</td>
</tr>
<tr>
<td>Li et al (2013)</td>
<td>China</td>
<td>2</td>
<td>1361</td>
<td>Humid</td>
<td>Rice</td>
<td>CT</td>
<td></td>
<td></td>
<td>2196</td>
</tr>
<tr>
<td>Morell et al (2010)</td>
<td>Spain</td>
<td>8</td>
<td>430</td>
<td>Arid</td>
<td>Barley</td>
<td>CT & MP</td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Mosier et al (2006)</td>
<td>USA</td>
<td>9</td>
<td>382</td>
<td>Arid</td>
<td>Maize</td>
<td>CT</td>
<td></td>
<td></td>
<td>387</td>
</tr>
<tr>
<td>Omonode et al (2007)</td>
<td>USA</td>
<td>4</td>
<td>588</td>
<td>Humid</td>
<td>Maize</td>
<td>MP&CP</td>
<td></td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>Oorts et al. (2007)</td>
<td>France</td>
<td>2</td>
<td>650</td>
<td>Humid</td>
<td>Maize-wheat</td>
<td>CT</td>
<td></td>
<td></td>
<td>475</td>
</tr>
<tr>
<td>Pes et al. (2011)</td>
<td>Brazil</td>
<td>2</td>
<td>1721</td>
<td>Humid</td>
<td>wheat-soybean</td>
<td>CT</td>
<td></td>
<td></td>
<td>1387</td>
</tr>
<tr>
<td>Regina and Alakukku (2010)</td>
<td>Finland</td>
<td>6</td>
<td>585</td>
<td>Humid</td>
<td>Barley-wheat-oats</td>
<td>CT</td>
<td></td>
<td></td>
<td>1856</td>
</tr>
<tr>
<td>Reicosky and archer (2007)</td>
<td>USA</td>
<td>1</td>
<td>301</td>
<td>Humid</td>
<td>Maize-soybean</td>
<td>MP</td>
<td></td>
<td></td>
<td>5807</td>
</tr>
<tr>
<td>Ruan and Robertson (2013)</td>
<td>USA</td>
<td>1</td>
<td>890</td>
<td>Humid</td>
<td>Soybean</td>
<td>CT</td>
<td></td>
<td></td>
<td>1825</td>
</tr>
<tr>
<td>Sainju et al (2008)</td>
<td>USA</td>
<td>4</td>
<td>368</td>
<td>Arid</td>
<td>Barley-pea</td>
<td>CT</td>
<td></td>
<td></td>
<td>6726</td>
</tr>
<tr>
<td>Sainju et al (2010a)</td>
<td>USA</td>
<td>6</td>
<td>350</td>
<td>Arid</td>
<td>Barley-pea</td>
<td>CT</td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Scala et al (2001)</td>
<td>Brazil</td>
<td>4</td>
<td>1380</td>
<td>Humid</td>
<td>Maize</td>
<td>ROT&CP&DO&HO</td>
<td></td>
<td></td>
<td>1264</td>
</tr>
<tr>
<td>Scala et al (2005)</td>
<td>Brazil</td>
<td>4</td>
<td>1380</td>
<td>Humid</td>
<td>Maize</td>
<td>CT</td>
<td></td>
<td></td>
<td>758</td>
</tr>
<tr>
<td>Smith, D. et al (2011)</td>
<td>USA</td>
<td>1</td>
<td>796</td>
<td>Humid</td>
<td>Maize-soybean</td>
<td>CT</td>
<td></td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>Smith, K. et al (2012)</td>
<td>USA</td>
<td>4</td>
<td>1370</td>
<td>Humid</td>
<td>Maize-soybean</td>
<td>CT</td>
<td></td>
<td></td>
<td>970</td>
</tr>
<tr>
<td>Ussiri and Lal (2009)</td>
<td>USA</td>
<td>2</td>
<td>1037</td>
<td>Humid</td>
<td>Maize-soybean</td>
<td>CT&MT</td>
<td></td>
<td></td>
<td>721</td>
</tr>
<tr>
<td>Categorical variable</td>
<td>Level 1</td>
<td>Level 2</td>
<td>Level 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC<sub>c</sub></td>
<td>Low (<10 g kg<sup>-1</sup>)</td>
<td>Medium (10-30 g kg<sup>-1</sup>)</td>
<td>High (>30 g kg<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td>Arid</td>
<td>Humid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil texture</td>
<td>Clay (>32% clay)</td>
<td>Loam (20-32 clay)</td>
<td>Sand (<20% clay)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment duration</td>
<td><10 years</td>
<td>≥10 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen fertilizer</td>
<td>Low (<100 kg N ha<sup>-1</sup>)</td>
<td>high (≥100 kg N ha<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop residues</td>
<td>Removed</td>
<td>Returned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop rotation</td>
<td>No rotation</td>
<td>Rotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 summary statistics of mean annual precipitation (MAP), mean annual temperature (MAT), clay, soil bulk density (ρ_b), soil organic carbon content (SOC_C), soil organic carbon stocks (SOC_S) and CO$_2$ emissions (g CO$_2$-C m$^{-2}$ yr$^{-1}$ and g CO$_2$-C gC$^{-1}$ yr$^{-1}$) under tilled (T) and untilled (NT) soils

<table>
<thead>
<tr>
<th></th>
<th>MAP (mm)</th>
<th>MAT ($^\circ$)</th>
<th>CLAY (%)</th>
<th>ρ_b (g cm$^{-3}$)</th>
<th>SOC_C (kg m$^{-2}$)</th>
<th>SOC_S (g CO$_2$-C m$^{-2}$ yr$^{-1}$)</th>
<th>CO$_2$ emissions (g CO$_2$-C gC$^{-1}$ yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>301</td>
<td>-1</td>
<td>3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.7</td>
<td>11</td>
</tr>
<tr>
<td>Maximum</td>
<td>2721</td>
<td>25</td>
<td>60</td>
<td>1.9</td>
<td>8.0</td>
<td>9.6</td>
<td>9125</td>
</tr>
<tr>
<td>Mean</td>
<td>904</td>
<td>15</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>2.9</td>
<td>1152</td>
</tr>
<tr>
<td>Median</td>
<td>704</td>
<td>16</td>
<td>1.3</td>
<td>1.1</td>
<td>1.1</td>
<td>2.5</td>
<td>587</td>
</tr>
<tr>
<td>SD</td>
<td>570</td>
<td>6</td>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
<td>1.5</td>
<td>1482</td>
</tr>
<tr>
<td>Skewness</td>
<td>1</td>
<td>0</td>
<td>-0.7</td>
<td>0.6</td>
<td>4.0</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Quartile1</td>
<td>415</td>
<td>11</td>
<td>1.3</td>
<td>0.7</td>
<td>2.2</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>Quartile3</td>
<td>1321</td>
<td>18</td>
<td>1.4</td>
<td>1.3</td>
<td>3.3</td>
<td>1414</td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td>2</td>
<td>0</td>
<td>9.9</td>
<td>3.4</td>
<td>23.3</td>
<td>9.8</td>
<td>12.48</td>
</tr>
<tr>
<td>CV</td>
<td>63</td>
<td>41</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>1.29</td>
<td>1.214</td>
</tr>
<tr>
<td>SE</td>
<td>48</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
<td>0.12</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Fig. 1. Percent change in (A) soil CO$_2$ emissions and (B) SOCc in tillage (T) soil compared to no-tillage (NT) as a function of climate (arid and humid). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.
Fig. 2. Percent change in CO$_2$ emissions in tillage (T) compared to no tillage (NT) as a function of SOC (low, <10 g kg$^{-1}$, medium 10-30 g kg$^{-1}$, high >30 g kg$^{-1}$). The numbers in the parentheses indicate the direct comparisons of meta-analysis. Error bars are 95% confidence intervals.
Fig. 3. Percent change in (A) soil CO$_2$ emissions and (B) SOCc in tillage (T) soil compared to no-tillage (NT) as a function of soil particle distribution (clay, loam and sand). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.
Fig. 4. Percent change in (A) soil CO$_2$ emissions and (B) SOCc in tillage (T) soil compared to no-tillage (NT) as a function of crop type. The numbers in the parentheses indicate the direct comparisons of meta-analysis. Error bars are 95% confidence intervals.
Fig. 5. Percent change in (A) soil CO$_2$ emissions and (B) SOCc in tillage (T) soil compared to no-tillage (NT) as a function of experiment duration (<10 years and \geq 10 years). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.
Fig. 6. Percent change in (A) soil CO$_2$ emissions (B) and SOCe in tillage (T) soil compared to no-tillage (NT) as a function of nitrogen fertilization (low $<$100 kg N ha$^{-1}$ and high \geq100 kg N ha$^{-1}$). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.
Fig. 7. Percent change in (A) soil CO₂ emissions and (B) SOCc in tillage (T) soil compared to no-tillage (NT) as a function of crop residues (returned and removed). The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.
Fig. 8. Percent change in (A) soil CO$_2$ emissions and (B) SOCc in tillage (T) soil compared to no-tillage (NT) as a function of crop rotation. The numbers in the parentheses indicate the direct comparisons of the meta-analysis. Error bars are 95% confidence intervals.
Fig. 9. Principal components analysis (PCA) using the different environmental factors as active variables and soil CO$_2$ emission difference between T and NT (CO$_{2F}$ T-NT) as the supplementary variable.