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 20	

Abstract 21	

Old-growth forests are subject to substantial changes in structure and species composition due 22	

to the intensification of human activities, gradual climate change and extreme weather events. 23	

Trees store ca. 90% of the total aboveground biomass (AGB) in tropical forests and precise 24	

tree biomass estimation models are crucial for management and conservation. In the Central 25	

Amazon, predicting AGB at large spatial-scales is a challenging task due to the heterogeneity 26	

of successional stages, high tree species diversity and inherent variations in tree allometry and 27	

architecture. We parameterized generic AGB estimation models applicable across species and 28	
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a wide range of structural and compositional variation related to species sorting into height 29	

layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height ≥ 30	

5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, 31	

Brazil. Sampling from this dataset we assembled six scenarios designed to span existing 32	

gradients in floristic composition and size distribution in order to select models that best 33	

predict AGB at the landscape-level across successional gradients. We found that good 34	

individual tree model fits do not necessarily translate into reliable predictions of AGB at the 35	

landscape level. When predicting AGB (dry mass) over scenarios using our different models 36	

and an available pantropical model, we observed systematic biases ranging from -31% 37	

(pantropical) to +39%, with RMSE root-mean-square error values of up to 130 Mg ha-1 38	

(pantropical). Our first and second best models had both low mean biases (0.8 and 3.9%, 39	

respectively) and RMSE (9.4 and 18.6 Mg ha-1) when applied over scenarios. Predicting 40	

biomass correctly at the landscape-level in hyperdiverse and structurally complex tropical 41	

forests, especially allowing good performance at the margins of data availability for model 42	

construction/calibration, requires the inclusion of predictors that express inherent variations in 43	

species architecture. The model of interest should comprise the floristic composition and size-44	

distribution variability of the target forest, implying that even generic global or pantropical 45	

biomass estimation models can lead to strong biases. Reliable biomass assessments for the 46	

Amazon basin (i.e. secondary forests) still depend on the collection of allometric data at the 47	

local/regional scale and forest inventories including species-specific attributes, which are 48	

often unavailable or estimated imprecisely in most regions. 49	

 50	

1 Introduction 51	

Allometries describe how relationships between different dimensions (e.g. length, surface 52	

area and weight) of organisms change non-proportionally as they grow (Huxley and Teissier, 53	

1936). The lack of proportionality arises from the fact that organisms change their shape 54	

while they grow (i.e. the dimensions differ in their relative growth rates). As one important 55	

application, allometric relationships can be used to relate simple dimensions of trees (e.g. 56	

diameter at breast height [DBH] or tree total height [H]) to dimensions more relevant for 57	

forest managers and basic ecological research, such as wood volume or whole tree biomass 58	

(Brown et al., 1989; Higuchi et al., 1998; Saldarriaga et al., 1998). 59	
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Allometric relationships and biomass estimation models can differ substantially between 60	

different tree species, especially in species-rich regions with a high variation in tree sizes and 61	

architectures such as in the tropical rainforests (Banin et al., 2012; Nelson et al., 1999; Poorter 62	

et al., 2003). This variation reflects differences in growth strategy and life history, such as tree 63	

species occupying different strata when mature (e.g. understory, canopy, or emergent 64	

species), successional groups (e.g. pioneer or light demanding species [e.g. Cecropia spp. and 65	

Pourouma spp.] in contrast to late-successional or shade tolerant [e.g. Cariniana spp. and 66	

Dipteryx spp.]) or environmental microsites (Clark and Clark, 1992; King, 1996; Swaine and 67	

Whitmore, 1988). 68	

Important and highly variable architectural attributes of tropical tree species include stem 69	

shape (e.g. slender to stout form), branch form and branching intensity (e.g. plagiotropic, 70	

orthotropic and unbranched), crown contour (e.g. round, elongated and irregular), crown 71	

position (e.g. understory, canopy and emergent), maximum DBH and H (Hallé, 1974; Hallé et 72	

al., 1978). In addition, there is large variation in growth rate (the speed at which a certain 73	

space is filled) and consequently in wood anatomy among species (Bowman et al., 2013; 74	

Silva et al., 2002; Worbes et al., 2003). Wood density (WD), which is particularly important 75	

for biomass estimation, varies significantly across regions (Muller-Landau, 2004) and can 76	

differ between species by more than one order of magnitude (Chave et al., 2006). Given these 77	

sources of variation, it is not surprising that different allometries were reported when 78	

comparing species (Nelson et al., 1999), successional stages (Ribeiro et al., 2014), ontogenies 79	

(Sterck and Bongers, 1998), and regions (Lima et al., 2012). Unfortunately, transferring such 80	

species-, size-, ontogeny- and site-specific biomass estimation models to other contexts - 81	

other species, other size ranges, other life-stages, other sites or successional stages - typically 82	

leads to predictions that deviate strongly from observations, especially when the sampling 83	

design does not allow the selection of relevant data for proper estimation of the parameters of 84	

interest (Gregoire et al., 2016) or when predictor ranges are limited or neglected (Clark and 85	

Kellner, 2012; Sileshi, 2014) .  86	

In temperate and boreal forests, the size-, ontogeny-, site-variation has been captured by the 87	

development of generic species-specific biomass estimation models (Wirth et al., 2004; 88	

Wutzler et al., 2008) based on data from hundreds of individuals from a single species. 89	

However, this approach is prohibitive in the tropics where thousands of tree species coexist 90	

(Slik et al., 2015; ter Steege et al., 2013). Instead, the challenge is to develop generic local or 91	
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regional formulations that generalize also across species (Higuchi et al., 1998; Lima et al., 92	

2012; Nelson et al., 1999; Saldarriaga et al., 1998). Ideally, they contain predictor variables 93	

that (1) jointly capture a large fraction of the variation induced by the underlying 94	

morphological and anatomical gradients and are (2) still easy enough to obtain or measure.  95	

The development and application of such generic models valid across species, tree sizes and 96	

sites poses a number of challenges. Finding the appropriate model structure and estimating 97	

the model parameters requires a dataset with a large number of individual measurements 98	

containing the variable of interest (here AGB) and the predictor variables (i.e. DBH, H, 99	

species’ successional group [SG] and WD). Importantly, the dataset should ideally cover all 100	

possible real-world combinations of predictor values in order to avoid error-prone 101	

extrapolations and unreliable predictions. However, in multiple regression models, this 102	

precondition is rarely met, not even by large design matrices. 103	

The ultimate prediction is typically at the landscape-level, which requires summing up 104	

individual predictions for several thousands of trees varying in size and species assignment. 105	

The larger the variation of predictor values within a stand, the higher is the likelihood that 106	

extrapolation errors occur. This calls for a validation at the landscape-level which, however, 107	

requires a plot-based harvest method. For obvious reasons, this has rarely been attempted 108	

(Carvalho Jr et al., 1995; Chambers et al., 2001; Higuchi et al., 1998; Lima et al., 2012). 109	

Notable effort has already been made to parameterize global/pantropical AGB estimation 110	

models (Brown et al., 1989; Chave et al., 2005, 2014). Commonly, these models are derived 111	

using several different datasets, each of which is comprised of relatively few trees and 112	

species. Although few opportunities exist to evaluate theses models at the landscape-level, 113	

they are used worldwide in different contexts, sites and across successional stages. For 114	

instance, the pantropical model from Chave et al. (2005) (DBH + WD as predictors) 115	

overestimated biomass when tested against trees in Gabon (Ngomanda et al., 2014), Peru 116	

(Goodman et al., 2014), Colombia (Alvarez et al., 2012) and Brazil (Lima et al., 2012), but 117	

also underestimated the AGB in mixed-species Atlantic Forest stands, Brazil (Nogueira 118	

Junior et al., 2014). 119	

The availability of such generic AGB estimation models applicable to many species and 120	

contexts is particularly important for management, ecological and biogeochemical research in 121	

tropical forest landscapes that encompass a particularly wide spectrum of floristic and 122	

structural variation. For example, in the Central Amazon terra firme forests, one hectare of 123	
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old-growth forest can hold more than 280 tree species (DBH ≥10 cm) (de Oliveira and Mori, 124	

1999) with a wide range of architectures and anatomies (Braga, 1979; Muller-Landau, 2004; 125	

Ribeiro et al., 1999). At the landscape scale, this region encompasses a mosaic of 126	

successional stages promoted by windthrows (Asner, 2013; Chambers et al., 2013; Negrón-127	

Juárez et al., 2010; Nelson et al., 1994). Disturbed areas include a diverse set of species 128	

representing the range from new regrowth to adult survivors, and thereby including different 129	

successional groups (pioneers, mid- and late successional species), tree sizes and with a 130	

broader range of architectures than old-growth forests (Chambers et al., 2009; Marra et al., 131	

2014). Once floristic composition changes and structural gradients increase to this extent, 132	

allometry becomes more complex and reliable landscape-level biomass estimates rely on well 133	

designed and well tested generic biomass models. 134	

We report here a novel dataset of 727 trees harvested in a contiguous terra firme forest near 135	

Manaus, Brazil. This dataset includes biomass measurements from 101 genera and at least 136	

135 tree species that vary in architecture and are from different successional groups (pioneers, 137	

mid- and late-successional).  These trees span a wide range of DBH (from 5 to 85 cm), H 138	

(from 3.9 to 34.5 m) and WD (from 0.348 to 1.000 g cm-3).  We used this dataset to 139	

parameterize generic AGB estimation models for Central Amazon terra firme forests 140	

applicable across species and a wide range of structural and compositional variation (i.e. 141	

secondary forests), using various subsets of the available predictors; i.e. size (DBH and H), 142	

SG (ranging from pioneer to late-successional species) and WD.  143	

We next evaluated our models, as well as the pantropical model from Chave et al. (2014) at 144	

the landscape-level using a virtual approach. We created scenarios of simulated 100 1-ha 145	

forest plots by assembling subsets of the 727 known-biomass trees in our dataset. These 146	

scenarios were designed to span gradients in (1) floristic composition by assembling stands 147	

with specific proportions of pioneer, mid- and late-succession species, and (2) size 148	

distributions of trees. We compared the known biomass of these forest assemblage scenarios 149	

to predictions based on the generic models, with the goal of answering the following 150	

questions: (1) Which variance modeling approach and combinations of predictors produced 151	

the best individual tree biomass estimation model? (2) Which model most reliably predicted 152	

AGB at landscape-level, i.e. across successional gradients? We expected that the best model, 153	

the one reducing both mean deviation and error of single and landscape-level biomass 154	

prediction, would require species-specific variables as well as an additional parameter 155	
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allowing the modeling of heteroscedastic variance. Our approach and the independence of our 156	

dataset allowed us to evaluate whether is still important to build local/regional models or 157	

whether available pantropical/global models are suitable for landscape biomass assessments - 158	

under the assumption that they predict biomass satisfactory over all sorts of tropical forest 159	

types and successional stages. 160	

 161	

2 Material and methods 162	

2.1 Study site 163	

Our study site is located at the Estação Experimental de Silvicultura Tropical (EEST), a 164	

21.000 ha research reserve (Fig. 1) managed by the Laboratório de Manejo Florestal (LMF) of 165	

the Brazilian Institute for Amazon Research (INPA), Manaus, Amazonas, Brazil (2°56’S, 166	

60°26’W). Averaged annual temperature in Manaus was 26.7 °C for the 1910-1983 period 167	

(Chambers et al., 2004). Averaged annual precipitation ca. 50 km east of our study site was 168	

2610 mm for the 1980-2000 period (Silva et al., 2003) with annual peaks of up to 3450 mm 169	

(Silva et al., 2002). From July to September there is a distinct dry season with usually less 170	

than 100 mm of rain per month. Topography is undulating with altitude ranging from 40–180 171	

m a.s.l. Soils on upland plateaus and the upper portions of slopes have high clay content 172	

(Oxisols), while soils on slope bottoms and valleys have high sand content (Spodosols) and 173	

are subject to seasonal flooding (Telles et al., 2003). In contrast to floodplains (i.e. igapó and 174	

várzea) associated with large Amazon rivers (e.g. Rio Negro and Rio Amazonas), valleys 175	

associated with streams and low-order rivers can be affected by local rain events and thus 176	

have a polymodal and not predictable flood-pulse pattern with many short and sporadic 177	

inundations (Junk et al., 2011). 178	

The EEST is mainly covered by a contiguous closed canopy old-growth terra firme forest 179	

with high tree species diversity and dense understory (Braga, 1979; Marra et al., 2014). The 180	

terra firme forests are among the predominant forest types in the Brazilian Amazon (Braga, 181	

1979; Higuchi et al., 2004) and ca. 93% of the total plant biomass is stored in trees with DBH 182	

≥ 5 cm (Lima et al., 2012; Silva, 2007). The tree density (DBH ≥ 10 cm) in the EEST is 593 ± 183	

28 trees ha-1 (mean ± 99% Confidence Interval) (Marra et al., 2014). Trees larger than 100 cm 184	

in DBH are rare (< 1 individual ha-1) and those with DBH > 60 cm accounted for only 16.7% 185	

of the AGB (Vieira et al., 2004). In the study region, tree mortality rates can be influenced by 186	
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variations in topography (Marra et al., 2014; Toledo et al., 2012). Floristic composition and 187	

species demography can also vary with the vertical distance from drainage (Schietti et al., 188	

2013). 189	

2.2 Allometric data 190	

We used data from 727 trees harvested in this region (Santos, 1996; Silva, 2007), each with 191	

measured biomass and predictor variables. This dataset comprised 101 genera and at least 135 192	

species with DBH ≥ 5.0 cm (Table 1; all data are given in Table S1). The trees were harvested 193	

through the plot-based harvest method in an old-growth forest and in two contiguous 194	

secondary forests (14 year-old regrowth following slash and burn and 23 year-old regrowth 195	

following a clear cut) (Fig. 1). Rather than an individual selection, our plot-based method 196	

relies on the harvesting of all trees found in selected plots. This method allows for a 197	

valid/faithful representation of the DBH-distribution of the target forests and a landscape 198	

validation of the fitted models (Higuchi et al., 1998; Lima et al., 2012). 199	

Before selecting plots, we surveyed both the old-growth and secondary forests to assure that 200	

no strong differences in structure and floristic composition existed; also that the selected 201	

patches were representative of our different successional stages. In the old-growth forest the 202	

trees were harvested in eight plateau and three valley plots (10 m x 10 m) randomly selected 203	

within an area of 3.6 ha (Silva, 2007). In each of the secondary forests the trees were harvest 204	

in five plots (20 m x 20 m) randomly selected within a 1 ha plateau area, each (Santos, 1996; 205	

Silva, 2007). By including trees from secondary forests we were able to increase the variation 206	

in floristic composition and consequently the range of species-related variation in architecture 207	

and allometry (Tab. 1 and Tab. S1). Since our secondary forests were inserted in the 208	

contiguous matrix from which old-growth plots were sampled, we also controlled for the 209	

effects of important drivers of tree allometry and architecture, such as variations in 210	

environmental conditions (e.g. soil, precipitation rates and distribution), forest structure and 211	

wood density (Banin et al., 2012); the last, intrinsically related to variation ins floristic 212	

composition. 213	

Trees were harvested at ground level. For each tree, the DBH (cm), H (m) and fresh mass (kg) 214	

were recorded in the field by using a diameter tape, a meter tape and a mechanical metal scale 215	

(300 kg x 200 g), respectively. The DBH was measured before, while H was measured after 216	

harvesting. For trees with buttresses or irregular trunk shape, the diameter was measured 217	

above these parts. Each tree component (i.e. stem, branches and leaves) was weighted 218	
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separately. For large trees, stems were cut into smaller sections before weighing. The mass of 219	

sawdust was collected and weighted together with its respective stem section. Leaves and 220	

reproductive material, when available, were collected to allow species identification 221	

accordingly to the APGIII system (Stevens, 2012). Botanical samples were incorporated in 222	

the EEST collection. The water content for each tree was determined from three discs (2-5 cm 223	

in thickness) collected from the top, middle and bottom of the bole, and samples (ca. 2 kg) of 224	

small branches and leaves. The samples were oven-dried at 65 ºC to constant dry mass. The 225	

dry mass data was calculated by using the corresponding water content of each component 226	

(Lima et al., 2012; Silva, 2007).  Dry mass for each tree was used for subsequent model fits 227	

and comparisons. 228	

2.3 Species’ architecture attributes 229	

Each of our tree species or genera was assigned to one of three successional groups known to 230	

vary in their architecture, namely pioneer, mid- and late-successional groups. To make this 231	

assignment, we considered several attributes related to species’ architecture (i.e. shape and 232	

life history), growth position (i.e. stratum), morphology, wood density and ecology (Tab. S1 233	

and Tab. S2). We validated this approach by checking our assignments against those of 234	

classic studies (Clark and Clark, 1992; Denslow, 1980; Saldarriaga et al., 1998; Shugart and 235	

West, 1980; Swaine and Whitmore, 1988), local/regional studies conducted in the Amazon 236	

(Amaral et al., 2009; Chambers et al., 2009; Kammesheidt, 2000; Marra et al., 2014) and 237	

species description available in the Missouri Botanical Garden (http://www.tropicos.org), 238	

speciesLink (http://www.splink.cria.org.br) and Lista de Espécies da Flora do Brasil 239	

(http://www.floradobrasil.jbrj.gov.br/). More importantly, we considered empirical field 240	

observations, architectural information from our dataset, and data for species 241	

presence/absence from a network of permanent plots representing a wide range of 242	

successional stages in Central Amazon (Tab. S2). This network includes plots in old-growth 243	

(LMF unpublished data [census from 1996 to 2012]; Silva et al., 2002), secondary forests 244	

(Carvalho Jr et al., 1995; Santos, 1996), small and large canopy gaps (≥ ca. 2000 m2) created 245	

by windthrows with four, seven, 14, 17, 24 and 27 year-old (LMF unpublished data; Marra et 246	

al., 2014). 247	

Since reported WD values for the same species or genera can vary strongly among different 248	

studies (Chave et al., 2006) and sites (Muller-Landau, 2004), we compiled WD values mainly 249	

from studies carried out in the Brazilian Amazon (Chave et al., 2009; Fearnside, 1997; 250	



	 9	

Laurance et al., 2006; Nogueira et al., 2005, 2007). For species where WD data were not 251	

available for the Brazilian Amazon, we considered studies from other Amazonian regions 252	

(Chave et al., 2009). For species where no published WD was available, or where the 253	

identification was carried out to the genus level (63 in total), we used the mean value for all 254	

species from the same genus occurring in Central Amazon. For trees identified only to the 255	

family level (7 in total), we used the mean value of genera from that family excluding those 256	

not reported in the study region (Tab. S1). 257	

2.4 Statistical analyses 258	

2.4.1 Individual tree biomass estimation model fits 259	

The AGB estimation models we applied varied in the number and combination of our 260	

predictor variables (eight combinations/series) as well as the strategy of modeling the 261	

variance (three model types – see below), yielding a set of 24 candidate models (Tab. 2). We 262	

used DBH (cm), WD (g cm-3) and H (m) as predictors. Furthermore, we used the species’ 263	

successional group (SG) assignment as a ‘categorical predictor’ (factor: 1 = pioneer, 2 = mid- 264	

and 3 = late-successional species), thereby representing functional diversity along a main axis 265	

of tree successional strategies, functional and architectural variation. Depending on the 266	

model-type parameters, the continuous variables were allowed to vary for capturing the 267	

successional aspects of functional diversity. We consider the SG grouping factor as integral 268	

part of the model. Fitting all SG’s in one model in an Markov chain Monte Carlo (MCMC) 269	

context is different from fitting separate models because the joint model also absorbs the 270	

covariance structure of the parameters across groups, especially in models were not all 271	

parameters are allowed to vary between SGs. 272	

We tested variables for collinearity by calculating the variance inflation factor (VIF). A 273	

conservative VIF > 2.0 indicates significant collinearity among variables (Graham, 2003; 274	

Petraitis et al., 1996). Model series 1-4 had VIF < 1.5 (Tab. 2), which indicated no significant 275	

collinearity among predictors. For model series 5-8, we found VIF > 2.0 for DBH and H, 276	

which indicates significant collinearity between these two variables. This pattern was 277	

previously reported for other datasets from Amazon and other tropical regions (Lima et al., 278	

2012; Ribeiro et al., 2014; Sileshi, 2014). 279	

We fit models representing the eight different predictor combinations to our entire dataset of 280	

727 trees using three variance modeling approaches: non-linear least square (NLS), ordinary 281	

least square with log-linear regression (OLS) and a non-linear approach in which we modeled 282	
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the heteroscedastic variance of the dataset (MOV). In the MOV approach we modeled the 283	

variance as a function of DBH with a normally distributed residual error: 284	

ε! = N y!,σ!  (1),  285	

where i is the subscript for individuals (i = 1, …, n) and 𝜎! is modeled with a heteroscedastic 286	

variance according to: 287	

σ! =  c! ∗  DBH!
!! (2). 288	

Model series 1 (M11, M12 and M13) used DBH as the sole predictor (Tab 2). For model 289	

series 2 (M21, M22 and M23), we allowed the b regression parameters and c heteroscedastic 290	

variance to vary according to the SG assignment (1, 2 or 3). This approach allowed us to 291	

account for differences among the groups without splitting the dataset into three different 292	

groups. This method has increased analytical power and allowed us to assess the relationships 293	

between tree allometry and architecture. 294	

For model series 3 (M31, M32 and M33), we ignored the SG assignment but introduced WD 295	

(which did not correlate strongly with SG). For model series 4 (M41, M42 and M43) we 296	

allowed each SG to have its own wood density effect. For model series 5 and 6, we replaced 297	

the WD by H. In model series 5 (M51, M52 and M53), we restricted the SG-variation of b 298	

and c, while in series 6 (M61, M62 and M63) we allowed these parameters to vary according 299	

to SG. For model series 7 (M71, M72 and M73), we combined DBH, H and WD but 300	

restricted the SG-variation of b and c. Finally, for model series 8 (M81, M82 and M83), we 301	

combined DBH, H and WD, and allowed b and c to vary with SG (Tab. 2).  302	

In contrast to prior approaches, we did not test models based on compound (e.g. log[AGB] ~ 303	

log[b1] + b2[logDBH2HWD]) or quadratic/cubic derivatives (e.g. log[AGB] ~ log[b1] + 304	

b2[logDBH] + b3[logDBH2] + b4[logDBH3]) (Brown et al., 1989; Chave et al., 2005, 2014; 305	

Ngomanda et al., 2014). These structures would have limited our ability to include biological 306	

variation by defining SG-specific parameters for DBH, H and WD, separately. 307	

We fit the AGB estimation models with non-informative uniform priors using WinBUGS 308	

1.4.1 (Lunn et al., 2000; Spiegelhalter et al., 2002). For each model, three chains were run in 309	

parallel, and convergence of the posterior distribution for each parameter was assessed by 310	

convergence to one of the ratio of pooled to mean within-chain central 80% intervals or by the 311	

stability of both intervals (Brooks and Gelman, 1998; Brooks and Roberts, 1998). 312	
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To select the best model we calculated the Deviance Information Criterion (DIC). The DIC is 313	

a generalization of Akaike's Information Criterion (AIC) and consists of a cross-validatory 314	

term that expresses both the goodness of the fit and the models’ complexity. The lower the 315	

value the higher the predictive ability and parsimony (Spiegelhalter et al., 2002). We also 316	

checked whether the 95% credible intervals of the parameter’s posterior distributions 317	

excluded zero. However, we did not attempt to test the null hypothesis that a particular 318	

parameter is zero (Bolker et al., 2013; Bolker, B, 2008). Contrasts were evaluated by 319	

monitoring differences between parameters or predictions based on their posterior 320	

distribution. For communicating the results we consider two parameters significantly different 321	

if the 95% credible interval of the posterior distribution of their difference does not include 322	

zero. 323	

To allow for comparisons of different model structures and approaches with the available 324	

literature, we calculated the coefficient of determination (R2), the adjusted coefficient of 325	

determination (R2adj) and the relative standard error (Syx%). The Syx% was calculated as 326	

follows: 327	

S!"%  = ( !"
! !

) (3),  328	

where s, y and N are the standard deviation of the regression, the mean of the focal 329	

independent variable and the number of observations, respectively. As in all allometric 330	

datasets relating linear to volume-proportional data, there is indeed heteroscedascity in our 331	

data, which makes the Syx% an inappropriate measure for model selection. 332	

For the OLS approach including log-transformed variables, we calculated the Syx% using 333	

untransformed data. To correct for the bias introduced by the log-transformed data, a 334	

correction factor (CF) was calculated as follows: 335	

CF = exp !!"!

!
 (4),  336	

where SSE is the standard error of the estimate (Sprugel, 1983). 337	

2.4.2 Landscape-level biomass predictions across scenarios 338	

To evaluate the models outlined in Table 2, we predicted AGB at the landscape-level for six 339	

forest-scenarios assembled by a stratified random selection of individual trees from our 340	

dataset of 727 trees. Our scenarios were designed to span a successional gradient created by 341	

natural disturbances in which the interaction of tree mortality intensity and species 342	
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vulnerability and resilience produce complex communities varying in species composition 343	

and size-distribution of trees (Chambers et al., 2009, 2013; Marra et al., 2014). We assembled 344	

three scenarios to reflect variations in floristic composition and three scenarios to reflect 345	

variations in size-distribution. Each scenario was sampled 100 times resulting in 100 1-ha 346	

plots per scenario with different combination of trees randomly (with replacement) assembled 347	

according to the scenario-specific design principles. 348	

To address the effect of variations in floristic composition on estimated AGB, we created 349	

scenarios where we varied the proportion of pioneer, mid- and late-successional species. The 350	

early-succession scenario comprised 50 % from trees sampled randomly from the species 351	

classified as pioneer, 40 % of mid- and 10 % of late-successional species (as survivors of 352	

disturbances). The mid-succession scenario comprised 10 % from trees sampled randomly 353	

from the species classified as pioneer, 70 % of mid- and 20 % of late-successional species. 354	

The late-succession scenario comprised 10 % from trees sampled randomly from the species 355	

classified as pioneer, 40 % of mid- and 50 % of late-successional species (Fig. 2a and 2c). We 356	

constrained our floristic composition scenarios to a stem density of 1255 trees ha-1 (DBH ≥ 5 357	

cm) typical for the old-growth terra firme forests at the EEST (Lima et al., 2007; Marra et al., 358	

2014; Suwa et al., 2012). 359	

To address variations in size-distribution, we varied the proportion of small and big trees 360	

fixing a threshold value of 21 cm, which represents the mean DBH (trees with DBH ≥ 10 cm) 361	

of our studied forest (Marra et al., 2014). Our size-distribution scenarios included: a small-362	

sized stand, 90 % from small (DBH < 21 cm) and 10 % from big trees (DBH ≥ 21 cm);  a 363	

mid-sized stand with equal numbers of trees smaller and greater or equal to 21 cm in DBH; 364	

and a large-sized stand, with 10 % small and 90 % big trees (Fig. 2b and 2d). As for our 365	

floristic composition scenarios, in order to produce reliable size-distribution scenarios, we 366	

constrained our sampling effort to a basal area value of 30.3 m2 ha-1 also typical for our 367	

studied old growth forest (trees with DBH ≥ 5 cm) (Marra et al., 2014; Suwa et al., 2012). 368	

Both our floristic and size-distribution scenarios produced the J-inverse distribution pattern, 369	

typical of tropical forests (Clark and Clark, 1992; Denslow, 1980). 370	

AGB at the landscape-level was determined by adding up the measured AGB for ‘sampled’ 371	

trees in each scenario. To test how well our biomass estimation models predicted the AGB at 372	

the stand level, we related biases and root-mean-square error (RMSE). In order to assess the 373	

accuracy of different predictions in the context of models’ uncertainty, we additionally 374	
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reported the overall performance of the tested models along all forest-scenarios. When doing 375	

so, we present the bias and RMSE in the same unit (Mg), which allow for assessing the 376	

magnitudes of deviations in model predictions (Gregoire et al., 2016; McRoberts and 377	

Westfall, 2014). Because data on tree height is normally unavailable or estimated imprecisely 378	

in Amazon forest inventories, we focused on models including only DBH, WD and SG as 379	

predictors. In addition to the ‘internal evaluation’ of our models, we tested the pantropical 380	

model from Chave et al. (2014): 381	

logAGB ~− 1.803− 0.976E+ 0.976 logWD +  2.673 logDBH −  0.0299[logDBH]! (5), 382	

which was parameterized with data from 4004 trees (DBH ≥ 5 cm) harvested in 53 old-383	

growth and five secondary forests. This model has DBH, H (estimated from a DBH:H 384	

relationship), WD and a variable E (environmental stress) as predictors, and was suggested 385	

for estimating tree AGB in the absence of height measurements. 386	

We performed all analysis using the R 3.2.1 software platform (R Core Team, 2014). We use 387	

the R2WinBUGS (Sturtz et al., 2005) package for running WinBUGS  from R, and the 388	

ggplot2 package (Wickham, 2009) for producing figures, with the exception of Fig. 1, which 389	

was produced in the Environment for Visualizing Images software (ENVI, ITT Industries, 390	

Inc, Boulder CO, USA). All codes used in this study were written by ourselves. 391	

3 Results 392	

3.1 Individual tree biomass estimation model fits 393	

The models M33 (DBH and WD as predictors) and M43 (DBH, SG and WD) were the two 394	

best fitting models across all tree individuals (high R2 and R2adj, and low Syx% and DIC 395	

values compared to other models). These two models also produced more reliable landscape 396	

predictions (see section 3.2). The statistics for the goodness of fit for the 24 models are given 397	

in Table 3. Although the NLS approach produced models with overall higher values of R2 and 398	

R2adj, and lower values of Syx%, the DIC values indicated that the OLS and the MOV 399	

approaches produced the best models. For the models fit with OLS, which rely on log-400	

transformed variables, the addition of other predictors together with DBH systematically 401	

decreased the CF values. This pattern suggests a reduction in the biases resulting from back-402	

transformation. 403	

As expected, the addition of other predictors to a model containing only DBH systematically 404	

increased the models’ parsimony, as indicated by the lower DIC values (Tab. 3). The 405	
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inclusion of the SG assignment resulted in models with slightly lower R2adj and higher Syx% 406	

compared to the same model structure without SG.  407	

We observed differences with respect to the parameters b and c among pioneer, mid- and late-408	

successional species in most of the models that included the SG assignment (Tab. S3 and Fig. 409	

S1). The late-successional species tended to have higher intercepts and steeper slopes. Pioneer 410	

and mid-successional species had lower differences in intercepts but still strong differences in 411	

the slopes. 412	

An evaluation of AGB predictions for individual trees from our two best models (as described 413	

in the section 3.2), as well from the pantropical model (Chave et al., 2014) are presented in 414	

the Supplement of this study (Fig. S1). Our two best models had lower biases (overestimation 415	

of 0.6 and 3.5 %) than the tested pantropical model (underestimation of 30 %). 416	

3.2 Landscape-level biomass predictions across scenarios 417	

To search for the model that best predicts AGB at the landscape-level, we tested our models 418	

(excluding those with H as a predictor [Tab. 2]) across the 100 1-ha plots assembled for each 419	

of our six forest-scenarios (Figs. 3-5) as well as jointly for all of them (Fig. 6). 420	

The ‘true’ AGB (from the summed mass of trees used to assemble the forest-scenarios) varied 421	

from 198.1 to 314.3 (early- to late-succession scenarios) and 101.4 to 391.8 Mg ha-1 (small- to 422	

large-sized scenarios). The ability of the various biomass estimation models to predict the 423	

‘true’ virtual biomass values generally reflected the goodness of fit of the models for 424	

predicting individual tree data (Tab. 3 and Figs. 3-6). The same pattern was observed when 425	

evaluating the tested pantropical model, which underestimated both the AGB of individual 426	

trees (Fig. S1) and in all of our scenarios (Tab. S4 and Fig. S2).  427	

While some models produced accurate and satisfactory predictions across all scenarios, others 428	

systematically under- or overestimated the observed AGB (1-ha plots) (Fig. 3 and Fig. S2). 429	

The agreement between models and observations was not only influenced by the different 430	

combinations of predictors, but the different methods to model the variance. Interestingly, 431	

despite producing the best fits to the individual tree data, models fit with NLS produced the 432	

least reliable landscape-level predictions, with model M11 (only DBH as predictor) being the 433	

unique exception for the mid- and late-succession scenarios (Fig. 3).  434	

We observed systematic biases ranging from -14% (underestimation) to 38.8% 435	

(overestimation) in estimated landscape-level AGB (Fig. 4). The models fit with NLS tended 436	
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to overestimate landscape-level AGB, with biases ranging from -3.6 up to 38.8%, both 437	

extreme values from model series 1 (only DBH as predictor). Overall, the models fit with 438	

NLS tended to capture changes in floristic composition better than in tree size-distribution. 439	

The tested pantropical model systematically underestimated landscape-level biomass, with a 440	

mean bias of -29.7% (Tab. S4 and Fig. S2). 441	

The models fit with the OLS and particularly with the MOV approaches were clearly more 442	

efficient at capturing the variation in floristic composition and size-distribution of trees. 443	

Consequently, these models produced the most reliable landscape-level predictions within the 444	

scenarios (Fig.3). As also indicated by the individual tree model fits, the MOV approach 445	

produced more reliable AGB predictions, especially with model series 2 and 4. 446	

In general, the models fit with the OLS and MOV approaches did not show systematic trends 447	

in under- or overestimation. The models fit with the OLS approach had biases ranging from -448	

13.8 to 11.1%, with extreme values from model series 1 and 2, respectively. The models fit 449	

with the MOV approach had biases ranging from -14 to 10.5%, also with extreme values from 450	

model series 1 and 2, respectively (Fig. 4). 451	

The reported systematic biases led to strong differences between the predicted and the 452	

observed AGB (Fig. 5). The models fit with NLS resulted in RMSE values ranging from 16.8 453	

up to 125.8 Mg ha-1. For the models fit with OLS, the RMSE values ranged from 5.1 to 57.6 454	

Mg ha-1. The MOV models had RMSE ranging from 5.5 to 58.7 Mg ha-1. The pantropical 455	

model’s predictions had a mean RMSE of 102.6 Mg ha-1 (Tab. S4).  456	

By combining the bias and RMSE values, we could observe the overall models’ performance 457	

in predicting AGB across scenarios (Fig. 6). When challenged to predict biomass across all 458	

scenarios, the models fit with the MOV approach produced more reliable predictions (smaller 459	

range of biases and RMSE), except for model series 1 (only DBH as a predictor), for which 460	

the OLS approach performed better. Independently of applied predictors, the NLS approach 461	

had the highest mean and range of values for bias and RMSE. 462	

As we expected, the addition of SG and WD improved the quality of the joint prediction. This 463	

was evidenced by the systematic reduction of models’ bias and RMSE. Notably for the NLS 464	

approach, the inclusion of SG led to strong reduction of the bias and RMSE (Fig. 6). 465	

Interestingly, for this approach the addition of WD alone did not improve the estimations 466	

accuracy. 467	
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 468	

4 Discussion 469	

4.1 Individual tree biomass estimation model fits 470	

The best-performing allometry model structures for predicting the biomass of individual trees 471	

included species-specific predictors and either the OLS or MOV fitting approaches (Fig. 3, 472	

Fig. 6 and Tab. S3). As we hypothesized, including both the SG and WD as predictors greatly 473	

increased the models’ performance. When taken alone, adding either of these two predictors 474	

to the basic DBH model yielded a consistent model than adding H (Tab. S3). This pattern was 475	

true for all the three variance modeling approaches and supports that having the species’ 476	

identification (i.e. further assignment into successional groups) and/or coherent wood density 477	

values, is crucial when aiming for precise tree AGB predictions. Since old-growth forests 478	

comprise a mosaic of different successional stages, with trees of various architectures and 479	

sorted into different forest layers/strata, these variables are of great importance when aiming 480	

for reliable AGB predictions at the landscape-level (see section 4.2). 481	

Although the NLS approach fits our dataset better (higher R2adj and lower Syx%), the 482	

assumption of a constant-variance violates the natural heteroscedasticity of allometric 483	

datasets. With the log-transformation of the OLS approach, homoscedasticity is reached but 484	

in a way that does not exactly reflect how variance actually changes. As previously reported 485	

for terra firme forest in Amazon (Chambers et al., 2001; Lima et al., 2012), models fit with 486	

the OLS approach tend to overestimate the biomass of large-sized trees. 487	

Indeed, the best models are obtained using the MOV and OLS approaches, in which we 488	

explicitly modeled variance depending on the main predictor (DBH). This explains why the 489	

models fit with these approaches produced more reliable (i.e. smaller differences between 490	

predictions and observations) AGB estimates as compared to those fit with the NLS approach. 491	

We included the latter approach mainly for illustration purposes. The NLS approach is still 492	

frequently found in the literature (Sileshi, 2014), despite the fact that assuming constant 493	

variance is not an appropriated choice for allometric datasets.  494	

Despite the highly heterogeneous nature of our dataset (Tab. 1 and Tab. S1), DBH alone still 495	

captures a large fraction of the variation in AGB. This could be confirmed by lower Syx% 496	

values within model series 1 in comparison to the other model series (Tab. 2). This illustrates 497	

that ignoring selection criteria capturing a model’s capacity to make predictions for new 498	
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predictor combinations (e.g. different region or successional stage) such as the DIC or our 499	

landscape-level evaluation (see section 4.2), can lead to the wrong choice. The basic models 500	

containing only DBH had a higher DIC in comparison to other model series and consequently 501	

did poorly in predicting the AGB of our different landscape scenarios (Fig. 6). 502	

Our dataset contains a large number of species, which allowed for the maximum expression 503	

of architectural attributes. In comparison to species-specific biomass estimation models 504	

(Nelson et al., 1999) or models fit from data collected in undisturbed and homogenous forests 505	

(Higuchi et al., 1998; Lima et al., 2012), we expected the addition of predictors reflecting 506	

architectural and anatomical variation to improve model parsimony. This pattern was 507	

observed when adding both SG and WD (Fig. 6 and Tab. S3). 508	

The differences related to the parameters b and c we found among our successional groups 509	

highlighted the importance of using SG as a predictor of the architectural attributes that 510	

influence allometry, especially in disturbed or secondary forests where WD is not available 511	

(Tab. S3). In the models containing SG, the significant variation of the parameters b and c 512	

between pioneers, mid- and late-successional species, highlights the importance of 513	

architectural attributes on defining allometries (Nelson et al., 1999). Often, these differences 514	

were neglected in previous studies that dealt with heterogeneous datasets and aimed at 515	

parameterizing global/pantropical models biomass estimation models. 516	

 Interestingly, when compared to our two best models, the tested Chave et al. (2014)’s 517	

pantropical model produced the largest bias (overestimation) for individual tree biomass 518	

prediction (Fig. S1 and section 3.1). As previously mentioned, underestimation was also 519	

reported when applying the Chave et al. (2005)’s pantropical model in Atlantic Forest stands, 520	

Brazil (Nogueira Junior et al., 2014). For our study, we attribute part of this pattern to strong 521	

differences in forest structure and tree allometry/architecture between our Central Amazon 522	

dataset and that used to parameterize the pantropical model of Chave et al. (2014). Although 523	

the DBH and H range of the trees used in our study is well represented by the pantropical 524	

dataset, the two datasets vary strongly with respect to the DBH- and H-distribution of trees 525	

(Fig. S3). Our dataset clearly has a much higher density of small-sized and a much lower 526	

density of large-sized trees. The pantropical dataset comprises ca. 8% (n = 329) of trees with 527	

DBH ≥ 60 cm and mean H of 39.3 m (and even a tree with 212 cm DBH and another one with 528	

70.7 m H). Interestingly, none of these 329 large-sized trees were found in Central Amazon. 529	

Note that the largest tree in our dataset has 85 cm DBH and 33 m H (Tab. 1 and Tab. S1), and 530	
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as previously reported, trees with DBH ≥ 60 cm account for less than 17% of the total AGB in 531	

Central Amazon terra firme forests (Vieira et al., 2004).  Thus the structure and biomass of 532	

these Central Amazon forests is not well-predicted from the ‘improved’ pantropical equation 533	

(Chave et al., 2014). 534	

Observed differences on the relationship between predictor variables (DBH and WD) and 535	

AGB of trees from our dataset and that used in the pantropical model highlight part of the 536	

variation in tree allometry and architecture that was not represented in the pantropical dataset 537	

(Fig. S4). As for the differences in forest structure, these differences in tree allometry and 538	

architecture reflect typical differences in species composition among successional stages 539	

(Clark and Clark, 1992; Denslow, 1980; Marra et al., 2014). By including our two secondary 540	

forests, we added a greater proportion of allometric variation in our models compared to the 541	

Chave et al. (2014) dataset (Fig. S5). Our results indicate that neglecting variations in tree 542	

allometry and architecture related to floristic composition can lead to strong bias when 543	

predicting individual tree AGB, especially when complex old-growth and secondary forests 544	

(Asner, 2013; Chambers et al., 2013; Norden et al., 2015) are not accounted for the model 545	

parameterization. 546	

4.2 Landscape-level biomass predictions across scenarios 547	

The different combinations of floristic composition and structure (i.e. tree density and basal 548	

area) used in our virtual approach reflected forest changes along succession (Chambers et al., 549	

2009; Marra et al., 2014; Norden et al., 2015), including realistic variations in AGB reported 550	

for Central Amazon stands differing in successional stage (from early-succession to old-551	

growth) (Carvalho Jr et al., 1995; Higuchi et al., 2004; Lima et al., 2007). When taking into 552	

account the accuracy of landscape-level predictions across scenarios, the best models were 553	

those fit by using the MOV approach. From this approach, the models M33, M43 and M23 554	

were the first, second and third best models, respectively (Fig. 6). 555	

Modeling the variance properly as in the MOV approach is particularly important when both 556	

small and large trees – at the respective endpoints of the size predictors DBH and H – are to 557	

be estimated precisely. Assuming homoscedastic variance in allometric data gives a stronger 558	

weight to the information of large trees (which have large residuals) and reduces the 559	

‘strength’ of the small trees (with small residuals) on the estimation of the parameters. This 560	

almost invariably leads to models that overestimate the biomass of small trees (i.e. large trees 561	

pulling the ‘line’ upwards). This effect can be clearly seen in Fig. 4 where the NLS models 562	
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dramatically overestimated the biomass particularly in the small-sized and the early 563	

successional scenario. The OLS approach tends to produce the opposite effect. The log-564	

transformation shrinks the size of the residuals of the large-sized trees and inflates it for the 565	

small-sized trees. The influence of positive residuals or large-sized trees that often have a 566	

strong lever is reduced, and the lever of very small trees is increased. This may (although not 567	

as extremely as in the NLS case) lead to an underestimation of the biomass of big trees. A 568	

slight tendency of this effect is also visible in Fig 4 when the OLS and MOV models are 569	

compared in the model series 2 and 3. The model evaluation with our virtual forests thus 570	

clearly illustrates that a balanced modeling of the variance, i.e. giving the small and large 571	

trees equal weight, is very important when (1) the design matrices are very heterogeneous or 572	

unbalanced with respect to size and when (2) predictions are to made at landscape-level 573	

across stands that vary in the mean size/shape of trees. 574	

Models containing only size-predictors (such as DBH) are particularly sensitive to this 575	

problem. Including SG and WD as predictors captured part of the interspecific variation in 576	

architecture and anatomy and partly alleviated the above-mentioned problems of the NLS and 577	

OLS models. Thus, although a simple allometric model (e.g. AGB ~ b1DBHb2) can accurately 578	

describe the DBH:AGB relationship at the individual-level (Tab. 3 and Tab. S3), our results 579	

demonstrate that reliable estimates of biomass in heterogeneous landscapes (i.e. mixtures of 580	

successional stages and tree sizes) requires correct modeling of the size-related variance 581	

(Sileshi, 2014; Todeschini et al., 2004) and including suitable predictors of species-specific 582	

attributes reflecting ecological, architectural and anatomical variation.  583	

Our model evaluation using ‘virtual forests’ was used to test what level of model complexity 584	

and appropriateness of variance modeling is needed to avoid ‘distortions’ and make satisfying 585	

predictions at the fringes of our predictor space. This approach also allowed us to asses the 586	

magnitude of RMSE in model predictions in relation to the bias of these predictions. Our best 587	

performance models produced predictions with RMSE similar (i.e. M23 and M33) to the bias 588	

associated to these prediction, which indicates that model deviations can be attributed to 589	

ramdon variation and possibly be ignored (Gregoire et al., 2016; McRoberts and Westfall, 590	

2014). However, since we constructed the forest-scenarios with trees from our dataset, this is 591	

an ‘internal evaluation’ and not a test of model behavior in the face of new predictor 592	

combinations. Furthermore, we used DIC as parsimony-based model selection criterion, 593	

which was designed to exactly approximate this capacity and typically yields similar results 594	
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as cross-validation (Wirth et al. 2004). The DIC is therefore particularly important for judging 595	

the quality of the model, especially for application in other regions or for other species. 596	

Unlike the virtual forest approach, where the DBH + WD with modeled variance (M33) 597	

appeared as best model (lowest bias and RMSE at the same time) (Fig. 6), the DIC invariably 598	

requires the full model complexity irrespective of whether H is considered or not (Tab. 3). 599	

As reported in other studies (Alvarez et al., 2012; Lima et al., 2012; Ngomanda et al., 2014; 600	

Nogueira Junior et al., 2014), using Chave et al. (2014)’s pantropical biomass estimation 601	

model for landscape-level predictions led to strong biases in the case of our Central Amazon 602	

forest-scenarios. Thus, our recommendation is not to assume that their model is equally 603	

applicable across all tropical forests, especially for secondary or hyperdiverse tropical forests. 604	

In this context, we alert researches and managers about the importance of applying local or 605	

regional generic models when estimating biomass, and the importance of species composition 606	

information in plot studies. 607	

4.3 Suitability of the chosen predictors for practical application 608	

As we have seen, predicting biomass correctly at the landscape-level and in particular 609	

improving performance at the fringes or outside the predictor space, requires the inclusion of 610	

predictors related to species architecture (DBH in combination with H [when available], WD 611	

and/or SG). Knowledge of these last two variables depends on the identification of species, 612	

further assignment into successional groups and measurement or compilation of species-613	

specific WD values. For the purposes of our study, these variables were successfully 614	

addressed. 615	

However, we understand that reliable biomass estimation models also require variables that 616	

can be easily and confidently acquired or measured. As we discuss below, this is not the case 617	

for the species identification, H and, consequently, in many cases for WD and SG. 618	

The tree species diversity in the Amazon is high (de Oliveira and Mori, 1999; ter Steege et al., 619	

2013). Species identification requires extensive field work (i.e. collection of botanical 620	

samples) and joint effort of parabotanists, botanists and taxonomists. In many cases, this task 621	

might pose a major problem. 622	

For WD, values can vary widely not only between species (Chave et al., 2006) – which we 623	

exploit in our modeling approach – but also between different sites/regions (Muller-Landau, 624	

2004), within individuals of the same species or even in an individual tree (density varying 625	
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along the tree bole) (Higuchi et al., 1998; Nogueira et al., 2005). Ideally, WD measures 626	

should be carried out in situ following a method that allows for sampling both heart- and 627	

sapwood. Measuring WD from non-representative samples and applying measures from 628	

studies in which samples were oven-dried at different temperatures can produce complication. 629	

At temperatures below 100 °C, the wood bound water content can not be removed 630	

(Williamson and Wiemann, 2010). This requires improvement of available methods and tools 631	

(e.g. resistography, X-ray, ultrasonic tomography, near-infrared-spectroscopy, 632	

acoustic/ultrasonic wave propagation and high-frequency densiometry) (Isik and Li, 2003; 633	

Lin et al., 2008; Schinker et al., 2003) that in the future may allow the measurement of WD in 634	

live trees from hyperdiverse tropical forests (thousands of species). However, the acquisition 635	

of WD data is still expensive and is not easily conducted simultaneously with forest 636	

inventories.  637	

In the Amazon, information on WD is not available at the species-level for most regions, and 638	

the available WD data have been acquired using a wide range of methods. Thus, the 639	

compilation of WD data from different sources without filtering criteria may introduce an 640	

unpredictable source of error.  As a result,  researchers and managers need to establish robust 641	

criteria and test whether including WD information compiled from the available literature can 642	

really increase the quality of biomass predictions (as shown in our study). These limitations 643	

become critical when adjusting biomass estimation models both from small or even 644	

large/combined datasets collected without a plot-based harvest method that allows for a 645	

landscape-level evaluation of models derived using individual trees (Carvalho Jr et al., 1995; 646	

Higuchi et al., 1998; Lima et al., 2012; Silva, 2007). One important result of our study is that 647	

correct assignment of species into successional groups can satisfactorily replace the use of 648	

WD despite the fact WD and SG were not trivially correlated (Tab. 2).  649	

Most of the available biomass estimation models include H as a predictor. Indeed, we 650	

expected the inclusion of H to substantially improve our individual tree fits and landscape-651	

level predictions. Although H is a powerful predictor of AGB, because together with DBH it 652	

defines the slenderness of trees and also indicates the life-time light availability (suppressed 653	

trees with typically short crowns have a high H:DBH ratio), acquiring these data is still costly 654	

and difficult in tall and complex tropical forest canopies. As a consequence, H is often 655	

measured imprecisely or not at all in most existing forest inventories across the Amazon. H 656	

varies with plant ontogeny and can be affected by environmental and neighbor effects (Henry 657	
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and Aarssen, 1999; Sterck and Bongers, 1998). Consequently, the error of AGB estimates can 658	

increase when applying H values estimated from regional or global models (Feldpausch et al., 659	

2011, 2012; Hunter et al., 2013; Santos Jr et al., 2006). As observed in our (Tab. 2) and other 660	

datasets (Sileshi, 2014), the high collinearity between DBH and H can distort coefficient 661	

values, inflate standard errors and lead to unreliable estimates. The increased availability of 662	

new tools such as Lidar can improve the resolution of data on tree height and thus biomass 663	

(Marvin et al., 2014; Sawada et al., 2015), but currently the areas where such data are 664	

available are limited. The calibration of remote sensing based biomass models for diverse 665	

tropical forest still relies on the degree of uncertainty associated to plot-level AGB estimates 666	

(Chen et al., 2015). 667	

Despite uncertainties associated with global estimates of carbon stocks, tropical forests 668	

storage ca. 25% of the terrestrial carbon (Bonan, 2008; Saatchi et al., 2011) and provide 669	

resources (e.g. food, fuel, timber and water) essential for humankind (Trumbore et al., 2015). 670	

Nonetheless, old-growth tropical forests are under rapidly change and degradation due to the 671	

intensification of human activities, gradual climate change and extreme weather events (FAO, 672	

2010; IPCC, 2014). The Reducing Emissions from Deforestation and Forest Degradation 673	

(REDD+) program from the United Nations Framework Convention on Climate Change 674	

(UNFCCC) establishes rewarding for actions that mitigate carbon emission through 675	

prevention of forest loss and degradation. For countries with large forest cover (e.g. Brazil 676	

and other Amazon countries), such programs emerge as an economical alternative against 677	

historically more lucrative land uses resulting in forest degradation or suppression. However, 678	

we showed that reliable estimates of forest biomass are complex to be obtained and prone to 679	

large uncertainty. Reliable predictions of biomass/carbon stocks over large regions of 680	

structurally complex and hyperdiverse tropical forests such as the Amazon still depend on the 681	

collection of plot-based allometric data and forest inventories including information on 682	

species composition, tree height and wood density, which are often unavailable or estimated 683	

imprecisely in most regions. 684	

Natural and anthropogenic tropical secondary forests are widely distributed and account for 685	

ca. 50% of the global forest cover (FAO, 2010). Although highly productive and resilient 686	

(Poorter et al., 2016), Neotropical forests can take unpredictable successional trajectories 687	

(Norden et al., 2015). During forest succession, once floristic composition changes and 688	

structural gradients increase, allometry becomes more complex and reliable landscape-level 689	
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biomass estimates may require models that include predictors approximating species-specific 690	

architecture and anatomy. Extra care should be taken when using biomass estimation models 691	

to assess biomass dynamics (e.g. biomass recovery after disturbances). Earlier stages of 692	

recovery can have a higher proportion of small trees from pioneers species, which have lower 693	

wood density (Chambers et al., 2009; Marra et al., 2014; Saldarriaga et al., 1998) and a 694	

particular type of architecture (Hallé et al., 1978; Swaine and Whitmore, 1988). 695	

We recommend the use of the best models fit in this study when aiming for reliable landscape 696	

AGB estimations for Central Amazon terra firme forests, especially those under complex 697	

disturbance regimes and for which specific/local models are not available. If data on species 698	

composition and wood density are available or could be accurately compiled from the 699	

literature, we encourage the use of the model M33 or M23. In case these data are not 700	

available, or available in insufficient resolution, the model M13 could be applied and produce 701	

satisfactory results. 702	
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Table 1. Summary of the dataset applied in this study. Trees were harvested in the Estação 1055	

Experimental de Silvicultura Tropical, a contiguous terra firme forest reserve near Manaus, 1056	

Amazonas, Brazil. 1057	

Variables Old growth 
forest 

Secondary forest 
(23 year-old) 

Secondary forest 
(14 year-old) 

NT 131 346 250 
SR 82 63 51 
DBH 5.0-85.0 5.0-37.2 5.0-33.1 
H 5.9-34.5 3.9-27.0 9.0-15.5 
WD 0.348-0.940 0.389-1.000 0.395-1.000 
AGB 8.3-7509.1 5.4-1690.2 7.5-1562.8 

Variables: number of trees (NT); species richness (SR); diameter at breast height (DBH) 1058	

(cm); tree total height (H) (m); wood density (WD) (g cm-3); and aboveground biomass 1059	

(AGB) (dry mass in kg). 1060	
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Table 2. Tested equations for estimating tree aboveground biomass (AGB) in a terra firme forest near Manaus, Central Amazon, Brazil.  1061	

Series Model Equation Variance 
modeling 
approach 

VIF (range) 

1 M11 AGB ~ b1DBHb2 NLS 1 
 M12 log(AGB) ~ log(b1) + b2(logDBH) OLS 1 
 M13 AGB ~ b1DBHb2 MOV  
2 M21 AGB ~ b1[SG]DBHb2[SG] NLS 1.001 
 M22 log(AGB) ~ log(b1[SG]) + b2(logDBH[SG]) OLS 1.005 
 M23 AGB ~ b1[SG]DBHb2[SG] MOV  
3 M31 AGB ~ b1DBHb2WDb3 NLS 1.007 
 M32 log(AGB) ~ log(b1) + b2(logDBH) + b3(logWD) OLS 1.017 
 M33 AGB ~ b1DBHb2WDb3 MOV  
4 M41 AGB ~ b1[SG]DBHb2[SG]WDb3[SG] NLS 1.016 - 1.468 
 M42 log(AGB) ~ log(b1[SG]) + b2(logDBH[SG]) + b3(logWD[SG]) OLS 1.017 - 1.395    
 M43 AGB ~ b1[SG]DBHb2[SG]WDb3[SG] MOV  
5 M51 AGB ~ b1DBHb2Hb3 NLS 3.382 
 M52 log(AGB) ~ log(b1) + b2(logDBH) + b3(logH) OLS 3.342 
 M53 AGB ~ b1DBHb2Hb3 MOV  
6 M61 AGB ~ b1[SG]DBHb2[SG]Hb3[SG] NLS 1.019 - 3.439 
 M62 log(AGB) ~ log(b1[SG]) + b2(logDBH[SG]) + b3(logH[SG]) OLS 1.010 - 3.360 
 M63 AGB ~ b1[SG]DBHb2[SG]Hb3[SG] MOV  
7 M71 AGB ~ b1DBHb2Hb3WDb4 NLS 1.014 - 3.428 
 M72 log(AGB) ~ log(b1) + b2(logDBH) + b3(logH) + b4(logWD) OLS 1.038 - 3.469 
 M73 AGB ~ b1DBHb2Hb3WDb4 MOV  
8 M81 AGB ~ b1[SG]DBHb2[SG]Hb3[SG]WDb4[SG] NLS 1.523 - 3.624 
 M82 log(AGB) ~ log(b1[SG]) + b2(logDBH[SG]) + b3(logH[SG]) + b4(logWD[SG]) OLS 1.422 - 3.547 
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 M83 AGB ~ b1[SG]DBHb2[SG]Hb3[SG]WDb4[SG] MOV  

Predictors: diameter at breast height (DBH) (cm); species’ successional group (SG) (pioneers, mid- and late-successional); tree total height 1062	

(H) (m); and wood density (WD) (g cm-3). Variance modeling approach: non-linear least square (NLS); ordinary least square with log-linear 1063	

regression (OLS); and non-linear with modeled variance (MOV). Since NLS and MOV rely on the same equation, they have analogue 1064	

variation inflation factor values (VIF). 1065	

 1066	

Table 3. Statistics of aboveground biomass (AGB) estimation models fit in a terra firme forest near Manaus, Central Amazon, Brazil. See 1067	

Tab. 2 for predictors and applied variance modeling approaches, and Tab. A3 for the models’ parameters. 1068	

Series Model Dev pD DIC R2 R2adj Syx% CF 
1 M11 9694.5 2.919 9697.4 0.894 0.894 3.130 

  M12 6808.0 2.990 6811.3 0.865 0.865 3.542 1.066 

 M13 6821.0 3.856 6825.2 0.864 0.864 3.544 
 2 M21 9216.0 3.773 9219.9 0.946 0.945 2.259 
  M22 6751.0 6.943 6758.3 0.557 0.540 6.458 1.061 

 M23 6739.0 10.465 6749.5 0.558 0.554 6.381 
 3 M31 9291.0 4.052 9294.7 0.949 0.939 2.373 
  M32 6683.0 4.062 6687.0 0.885 0.884 3.280 1.056 

 M33 6698.0 4.918 6702.5 0.865 0.865 3.527 
 4 M41 9057.0 2.303 9059.8 0.957 0.956 2.030 
  M42 6657.0 10.006 6667.5 0.701 0.699 5.215 1.054 

 M43 6649.0 13.059 6661.6 0.701 0.699 5.239 
 5 M51 9479.0 0.023 9479.3 0.921 0.921 2.702 
  M52 6680.0 4.017 6684.3 0.899 0.898 3.060 1.055 

 M53 6720.0 4.674 6724.7 0.897 0.896 3.103 
 6 M61 9183.9 -71.746 9112.2 0.948 0.947 2.214 
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 M62 6614.0 10.078 6624.1 0.754 0.750 4.845 1.050 

 M63 6631.0 11.754 6642.9 0.740 0.737 4.896 
 7 M71 8998.0 0.951 8999.1 0.959 0.959 1.942 
  M72 6570.0 5.023 6574.9 0.934 0.933 2.480 1.047 

 M73 6610.0 5.697 6615.4 0.922 0.920 2.707 
 8 M81 8812.0 -42.073 8770.3 0.968 0.967 1.719 
  M82 6548.0 13.031 6561.3 0.811 0.804 4.200 1.046 

 M83 6566.0 13.778 6580.0 0.801 0.800 4.262 
 Parameters: models' deviance (Dev); effective number of parameters (pD); Deviance Information Criterion (DIC); coefficient of determination 1069	

(R2); adjusted coefficient of determination (R2adj); relative standard error (Syx%); and correction factor (CF) for models fit from ordinary least 1070	

square with log-linear regressions.  1071	
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Figures 1072	

 1073	

Figure 1. Study site of terra firme forest near Manaus, Central Amazon, Brazil. 1074	

 1075	

 1076	
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Figure 2. Sampling schemes applied to assemble the six forest-scenarios designed to reflect 1077	

changes in floristic composition and size-distribution of trees, typical of Central Amazon 1078	

terra firme forests. 1079	
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 1080	

Figure 3. Predicted vs. observed aboveground biomass (AGB) along six forest-scenarios composed of 100 1-ha plots. The line of equality (1:1 1081	

line) is shown as a red/straight line. Forest scenarios were designed to reflect landscape-level variations in floristic composition and size-1082	

distribution of trees, typical of Central Amazon terra firme forests. Floristic composition and size-distribution scenarios followed the sampling 1083	

scheme described in section 2.4.2 (Fig. 2) of this study. Models’ predictors: diameter at breast height (DBH) (cm), species’ successional group 1084	

(SG) (pioneers, mid- and late-successional) and wood density (WD) (g cm-3). See Tab. 2 for the variance modeling approach of different 1085	

equations. Note that models containing total tree height (H) as predictor were excluded here.  1086	
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 1087	

Figure 4. Profiles relating the bias of 12 tree aboveground biomass estimation models tested 1088	

along six forest scenarios composed of 100 1-ha plots. Forest scenarios were designed to 1089	

reflect landscape-level variations in floristic composition and size-distribution of trees, typical 1090	

of Central Amazon terra firme forests. Models’ predictors: diameter at breast height (DBH) 1091	

(cm), species’ successional group (SG) (pioneers, mid- and late-successional) and wood 1092	

density (WD) (g cm-3). Variance modeling approaches: non-linear least square (NLS), 1093	

ordinary least square with log-linear regression (OLS) and non-linear with modeled variance 1094	

(MOV). Note that models containing H tree height as predictor were excluded here. 1095	

 1096	
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 1097	

Figure 5. Profiles relating the RMSE root-mean-square error of 12 tree aboveground biomass 1098	

estimation models tested along six forest scenarios composed of 100 1-ha plots. Forest 1099	

scenarios were designed to reflect landscape-level variations in floristic composition and size-1100	

distribution of trees, typical of Central Amazon terra firme forests. Models’ predictors: 1101	

diameter at breast height (DBH) (cm), species’ successional group (SG) (pioneers, mid- and 1102	

late-successional) and wood density (WD) (g cm-3). Variance modeling approaches: non-1103	

linear least square (NLS), ordinary least square with log-linear regression (OLS) and non-1104	

linear with modeled variance (MOV). Note that models containing H tree height as predictor 1105	

were excluded here. 1106	

 1107	

 1108	

Figure 6. Overall performance of 12 tree aboveground estimation models along six forest-1109	

scenarios composed of 100 1-ha plots. Forest scenarios were designed to reflect landscape-1110	
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level variations in floristic composition and size-distribution of trees, typical of Central 1111	

Amazon terra firme forests. Models are rated by the absolute mean bias and root-mean-square 1112	

error (RMSE), both in Mg. Solid points and bars represent absolute mean and range values, 1113	

respectively. Models’ predictors: diameter at breast height (DBH) (cm), species’ successional 1114	

group (SG) (pioneers, mid- and late-successional) and wood density (WD) (g cm-3). Variance 1115	

modeling approaches: non-linear least square (NLS), ordinary least square with log-linear 1116	

regression (OLS) and non-linear with modeled variance (MOV). Note that models containing 1117	

H tree height as predictor were excluded here. 1118	
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