1	
2	The nature of organic carbon in density-fractionated sediments in the
3	Sacramento-San Joaquin River Delta (California)
4	
5	Stuart G. Wakeham ^{a,*} and Elizabeth A. Canuel ^b
6	
7 8	^a Skidaway Institute of Oceanography, The University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA
9 10 11 12 13 14	^b Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA
15 16 17 18 19	* Corresponding author; email stuart.wakeham@skio.uga,edu
20	
21	
22	

23 Abstract

24 Rivers are the primary means by which sediments and carbon are transported from the 25 terrestrial biosphere to the oceans but gaps remain in our understanding of carbon 26 associations from source to sink. Bed sediments from the Sacramento-San Joaquin River 27 Delta (CA) were fractionated according to density and analyzed for sediment mass 28 distribution, elemental (C and N) composition, mineral surface area, and stable carbon 29 and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate 30 the nature of organic carbon in river sediments. OC was unevenly distributed among 31 density fractions. Mass and TOC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm⁻³) fractions, comprising 84.0 \pm 1.3% of total sediment mass and 80.8 \pm 32 13.3% of total OC (TOC). Low density (<1.6 g cm⁻³) material, although rich in OC (34.0 33 34 \pm 2.0% OC) due to woody debris, constituted only 17.3 \pm 12.8% of TOC. High density (>2.5 g cm⁻³) organic-poor, mineral-rich material made-up $13.7 \pm 1.4\%$ of sediment mass 35 and $2.0 \pm 0.9\%$ of TOC. Stable carbon isotope compositions of sedimentary OC were 36 relatively uniform across bulk and density fractions ($\delta^{13}C - 27.4 \pm 0.5$ %). Radiocarbon 37 content varied from Δ^{14} C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ 38 39 (modern) indicating a mix of young and old OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain $n-C_{14} - n-C_{18}$ fatty acids of algal 40 origin were depleted in ¹³C (δ^{13} C –37.5 ‰ to –35.2 ‰) but were enriched in ¹⁴C (Δ^{14} C 41 >0) compared to long-chain $n-C_{24} - n-C_{28}$ acids of vascular plant origins with higher $\delta^{13}C$ 42 (-33.0 % to -31.0 %) but variable Δ^{14} C values (-180 \% and 61 \%). These data 43 44 demonstrate the potentially complex source and age distributions found within river 45 sediments and provide insights about sediment and organic matter supply to the Delta. 46

47 **1 Introduction**

48 Rivers are the major conduits of sediment and organic carbon (OC) carried from 49 upland erosional areas to lowland floodplains and estuaries and the coastal ocean 50 (Milliman and Farnsworth 2011). During transport, sediment grains are eroded, 51 remobilized, winnowed, and redeposited, resulting in the sorting or mixing of material 52 from different sources and with different reactivities and ages (Prahl, 1985; Hedges and 53 Keil, 1995; Bianchi et al., 2007). Hydrodynamic sorting by particle size, shape and 54 density influences transport of particles and associated materials in rivers, estuaries and 55 continental margins. Density, grain size, minerology, and organic carbon characteristics 56 of riverine sediment grains will determine whether they are eroded and transported as 57 suspended or bed load or deposited, and how particles cycle between phases (Jepson et 58 al., 1997; Hassanzadeh, 2012). 59 Interactions between minerals and OC influence the fate and distribution of

60 organic materials in soils and aquatic sediments (Hedges and Keil, 1995; Hedges and 61 Oades, 1997; Baldock and Skjemstad, 2000; Trumbore, 2006; Rühlmann and Berhe, 62 2014; Keil and Mayer, 2014). Evidence on organic matter-mineral associations from 63 soils and marine sediments shows relationships between OC concentrations and 64 compositions, mineral surface area, physical distributions of OC on minerals, and OC 65 preservation (Keil et al., 1994a, b; Mayer, 1994a; Ransom et al., 1998; Mayer et al., 66 2004; Trumbore, 2006; Keil and Mayer, 2014). Particle size and density are also important characteristics when considering OM composition, reactivity and the fate of 67 68 soil and sediment OC. In aquatic environments, OC associated with mineral grains 69 strongly affects flocculation of suspended aquatic particles and the cohesion of bottom

sediments. OC that is intimately associated with the clay fraction is most extensively altered diagenetically, whereas larger size or higher density mineral fractions are less altered (e.g., Keil et al., 1994a; Bergamaschi et al., 1997; Wakeham et al., 2009). Trends across size and density classes and between different depositional environments show that a small fraction of the OC is present as distinct organic debris, but associations of OC with mineral surfaces are consistent with selective partitioning of OC to mineral surfaces (Keil et al., 1998; Keil and Mayer, 2014).

77 Chemical analysis of size-sorted sediments has been extensively used to show that 78 compositional differences between grain sizes are related to source, diagenesis and 79 mineralogy (e.g., Keil et al., 1998; Bergamaschi et al., 1997; Dickens et al., 2006). 80 Density fractionation, although much less widely utilized, takes advantage of density differences between organic matter (~1 g cm⁻³) and mineral grains (>2.5 g cm⁻³) (Mayer 81 82 et al., 2004; Rühlmann et al., 2006) and by isolating organic-mineral aggregates having 83 different organic matter loadings offers a different view of relationships between OC and 84 particle grains. Densities of soils and sediments depend on the compositions and 85 proportions of both organic and mineral components. Mineral-rich/organic-poor soils and sediments typically have densities the range of $\sim 2.4-2.9$ g cm⁻³; mineral-86 87 poor/organic-rich soils and sediments have densities between ~ 1.0 and 1.5 g cm⁻³ 88 (Adams, 1973; Rühlmann et al., 2006). 89 Density fractionation has been widely used on soils to elucidate mechanisms of 90 how organic matter is physically and chemically associated with minerals and to estimate 91 stability, residence and turnover times of organic matter in soils (e.g., Golchin et al., 92 1994; Hedges and Oades, 1997; Baldock and Skjemstad, 2000; Baisden et al., 2002a;

93	Sollins et al., 2006; Rühlmann et al., 2006; Crow et al., 2007; Castanha et al., 2008;
94	Trumbore, 2009; Cerli et al., 2012; Kaiser and Berhe, 2014). The chemistry, stable and
95	radiocarbon isotopic compositions, and turnover times for isolated fractions is
96	particularly dependent on methodology. Protocols for dispersing soil aggregates as a
97	function of density for purposes of characterizing organic matter/mineral interactions and
98	ecological function differ considerably, from shaking to ultrasonication at varying energy
99	levels and with or without acid/base hydrolysis of the high density fraction(s). Overall,
100	soils tend to be compositionally (physically, chemically, and biologically) more complex
101	than sediments (Keil and Mayer, 2014).
102	Density fractionation has been applied less often to aquatic sediments. In the few
103	continental margin sediments that have been studied by density fractionation, most of the
104	mass and most of the OC is found in a so-called "mesodensity" fraction, roughly defined
105	operationally as between 1.6 and 2.5 g cm ⁻³ (Bock and Mayer, 2000; Arnarson et al.,
106	2001, 2007; Dickens et al., 2006; Wakeham et al., 2009) that is rich in organic-mineral
107	aggregates. Lower density material is largely mineral-free organic detritus, whereas
108	higher density material is mostly organic-poor mineral grains. Chemical compositions
109	further distinguish these fractions (reviewed by Keil and Mayer, 2014). Amino acids that
110	are typically enriched in fine-grained and meso-density fractions point to preferential
111	association of nitrogenous material with clays and extensive alteration of organic matter.
112	Enrichment of carbohydrates in fine-grained fractions suggests that they help to hold
113	aggregates together. Lignin is typically associated with larger grains or low-density
114	material consistent with higher-plant origins.

115	River sediments, which are largely sourced from soils, are poorly represented
116	among aquatic environments that have been investigated. Here we used density
117	fractionation in a pilot study to examine relationships between organic matter and mineral
118	grains in several river sediments. In particular, we wished to better understand whether
119	and to what extent redistributions of OC, potentially via hydrodynamic sorting, occur
120	between rivers and the ocean, at the river-ocean interface. We determined mass,
121	elemental (C and N), and surface area distributions among density sorted fractions from
122	five bed sediments within the Sacramento-San Joaquin River delta (hereafter termed the
123	Delta). Stable carbon and radiocarbon isotopic compositions of bulk sediments, density
124	fractions and isolated fatty acids were used to characterize the provenance and age of the
125	OC in these sediments.

127 **2 Methods**

128 **2.1 Study area and samples**

129 The Sacramento-San Joaquin Delta is part of San Francisco Bay system. The Delta is a 130 complex network of natural and man-made channels and islands, making it one of the 60 largest river deltas in the world, at $1.7 \times 10^5 \text{ km}^2$ and accounting for ~40% of California's 131 132 land area (Herbold and Moyle, 1989; Jassby and Cloern, 2000; Schoellhamer et al., 133 2012). As such, it is one of the most highly modified and managed systems in the world 134 (Jassby and Cloern, 2000) and is unique ecologically in North America (Herbold and 135 Moyle, 1989). Precipitation (rainfall and snowmelt) in the Sierra Nevada Mountains 136 contributes most of the freshwater delivered to the Delta, with the Coast Range dividing 137 the water flow between the Sacramento River draining into the northern half of the

138 Central Valley and the San Joaquin River draining into the southern half. The 139 Sacramento and San Joaquin Rivers join in the Delta and flow into northern San 140 Francisco Bay. The Sacramento River contributes 80% of the freshwater delivered to 141 San Francisco Bay and the San Joaquin River adds an additional 15% (Conomos et al., 142 1985). The Sacramento River presently delivers approximately seven times the sediment 143 load of the San Joaquin River, mostly as suspended sediment, but sediment loads are 144 highly episodic and significant transport of bed load occurs during floods. Sedimentation 145 in reservoirs behind the many dams has reduced overall sediment transport since the 146 1950's (Wright and Schoellhamer, 2004, 2005). The narrow mouth of the Delta enhances 147 deposition of sediments within the Delta, along the Sacramento River and in Suisun Bay, 148 rather than in the open waters of upper San Francisco Bay 149 In this study we investigate relationships between OC and density fractions in 150 river bed sediments at five sites in the Sacramento-San Joaquin Delta (Fig. 1) system 151 during a low freshwater discharge period in Summer 2005. Average freshwater discharge on the Sacramento River at Freeport ranged from 546.5 to 600.3 m³s⁻¹ during 152 153 the sampling period and discharge on the San Joaquin River at Vernalis was 155.7 to 171.3 m³s⁻¹ (US Geological Survey). The sites were chosen to represent different sub-154 155 habitats within the Delta (e.g., upper and lower Sacramento River (Elk Slough and 156 Horseshoe Bend, respectively), San Joaquin River (Potato Slough and Venice Cut) and 157 Suisun Marsh (Nurse Slough). Surface sediments (0-5 cm) were obtained by grab 158 sampling. Elk Slough, Venice Cut and Horseshoe Bend have contemporary sedimentation rates of 1.1, 3.5 and 3.5 cm y⁻¹, respectively (Canuel et al., 2009). Nurse 159 Slough is a tidal slough in Suisun Marsh. Suisun Marsh consists of 240 km² of tidal and 160

161 managed brackish water wetlands and 120 km² of bays and sloughs and is the largest

162 contiguous estuarine marsh remaining on the west coast of the U.S., constituting more

163 than 10% of California's remaining natural wetlands.

164

165 **2.2 Density fractionation**

166 Sodium metatungstate solutions (Arnarson and Keil, 2001; Wakeham et al., 2009) with densities of 1.6, 2.0, and 2.5 g cm⁻³ were used sequentially to yield four density fractions: 167 $<1.6 \text{ g cm}^{-3}$, 1.6 to 2.0 g cm⁻³, 2.0 to 2.5 g cm⁻³ and $>2.5 \text{ g cm}^{-3}$. These fractions have 168 169 been used previously (Bock and Mayer, 2000; Arnarson and Keil, 2001, 2007) for studies of sediments. The fraction with density <1.6 g cm⁻³ is primarily organic-rich biogenic 170 material, the >2.5 g cm⁻³ fraction is unaggregated mineral grains, and the middle density 171 172 fractions are aggregates of organic matter and mineral grains. Roughly 20 g of wet sediment were dispersed in the 1.6 g cm⁻³ solution in 85 mL centrifuge tubes by gentle 173 174 shaking on a shaker table for 30 min. Gentle shaking rather than sonication was used to 175 minimize disaggregation of aggregates (note differences with investigations of soils as 176 described below). Following shaking, solutions were centrifuged for 20 min at 20,000 177 relative centrifugal force. Particles at the surface of the solution were carefully removed 178 by pipet, deposited on a 0.5 µm PTFE membrane filter and washed with distilled water. This process was repeated until no additional low density ($<1.6 \text{ g cm}^{-3}$) particles could be 179 recovered (approximately 10 repetitions). The next solution, 2.0 g cm⁻³, was then added 180 181 and the process repeated. Following each step, the collected particles were rinsed from the PTFE filter into 85 mL centrifuge tubes and washed repeatedly with distilled water to 182

remove any remaining sodium metatungstate. Fractionated sediments were freeze-driedfor further analyses.

185 Most protocols employed to fractionate soils involve some degree of dispersion, 186 usually ultrasonication, and generally yields a floating (light) fraction the contains mainly 187 plant debris, an intermediate fraction of fine organic particles that has been released by 188 disruption (e.g., ultrasonication with or without hydrolysis) of aggregates, and a heavy 189 residual fraction of OC strongly bound to minerals (e.g. Golchin et al., 1994; Cerli et al., 190 2012; Kaiser and Berhe, 2014). The fractionation scheme we and others have used for 191 sediments is less energetic or disruptive (at least in the latter stages) than commonly used 192 for soils and these methodological contrasts need to be considered when comparing 193 results.

194 Metatungstate solutions can solubilize organic matter from the soil/sediment 195 grains (Shang and Tiessen, 2001; Crow et al., 2007; Castanha et al., 2008). OC 196 solubilization apparently increases with the density of the metatungstate solution used 197 and may range between 10 and 28% of bulk OC regardless of whether the treatment 198 involved shaking with gravimetric settling or sonication and centrifugation. A slight 199 yellowing of the solutions used here attests to dissolution of OC to some extent, but we 200 did not specifically conduct mass balance measurements to quantify the extent of OC 201 solubilization.

202

203 2.3 Elemental analysis

Organic carbon (% OC) and total nitrogen (% TN) were measured using a Fisons CHN
analyzer (Model EA 1108) (Waterson and Canuel, 2008). Freeze-dried sediments were

206 ground and acidified in pre-combusted silver capsules with 10% high purity HCl to207 remove inorganic carbon.

208

209 **2.4 Specific surface area analysis**

210 Specific surface area (SA) of the mineral component of each sediment fraction was

211 measured by nitrogen adsorption using a five-point (Brunauer-Emmett-Teller (BET))

212 method in a Micromeritics Gemini V surface area analyzer (Waterson and Canuel, 2008).

213 Freeze-dried but unground sediments were heated at 350 °C for 12 h to remove organic

214 matter and then degassed for >2 h on a Micromeritics Flow Prep 060 degas station at

215 250 °C to remove water. SA (m² g⁻¹) and carbon:surface area ratios (OC:SA; mg OC m⁻

216 ²) were obtained.

217

218 **2.5 Carbon isotope analysis**

219 Stable carbon (δ^{13} C) and radiocarbon (Δ^{14} C) analyses were conducted at the National

220 Ocean Sciences Accelerator Mass Spectrometer (NOSAMS) facility at Woods Hole

221 Oceanographic Institution. Ground and acidified sediment samples were combusted to

222 CO₂ at 850°C for 5 hours in Vycor tubes. A split of the purified and quantified CO₂ was

analyzed for δ^{13} C on a VG Micromass Optima isotope ratio mass spectrometer. The

remaining CO₂ was reduced to filamentous carbon (graphite) over either Fe or Co powder

and then analyzed for radiocarbon using standard NOSAMS procedures (McNichol et al.,

226 1994; von Reden et al., 1998).

Fatty acids (FA) were isolated from three of the bulk sediments and analyzed for and ¹⁴C isotope values. Lipid extracts obtained by accelerated solvent extraction

229	(ASE) using dichloromethane:methanol (9:1) were saponified, and the recovered FA
230	were methylated with BF ₃ -MeOH. Two fatty acid methyl ester (FAME) composites were
231	obtained by preparative capillary gas chromatography (Eglinton et al., 1997; Wakeham et
232	al., 2006): short-chain FAME $(n-C_{14} - n-C_{18})$ and long-chain FAME $(n-C_{24} - n-C_{28})$.
233	Compositions, purity and amounts of FAME isolates were checked by gas
234	chromatography and analyzed subsequently for ¹³ C and ¹⁴ C. Corrections for the addition
235	of carbon from the methyl group during methylation were made by mass balance.
236	
237	3 Results
238	3.1 Density Fractionation
239	Particles in the 2.0 to 2.5 g cm ⁻³ density range dominated four of the studied sediments
240	(Potato Slough, Elk Slough, Venice Cut, and Nurse Slough), constituting ~75-80% of
241	total dry mass (Fig. 2a), with a mean of $73.1 \pm 6.6\%$. Considering all five sediments, the
242	2.0 to 2.5 g cm ⁻³ material accounted for between 26.5 and 80.1% of dry mass or a mean
243	of $63.8 \pm 21.5\%$ (Fig. 3a). The Horseshoe Bend sediment contained the greatest
244	proportion (~66%) of mass in the high density fraction, >2.5 g cm ⁻³ , whereas only ~30%
245	of total mass was in the 2.0 to 2.5 g cm ^{-3} fraction. The lowest density fraction of these
246	sediments, <1.6 g cm ⁻³ material, made-up the smallest proportion of total mass, never
247	more than a few percent (1.6 \pm 1.9%). The 1.6 to 2.0 g cm ⁻³ fractions varied between 4
248	and 17% of mass (11.6 \pm 6.1%), and the heaviest material (>2.5 g cm ⁻³) was generally
249	less than ~15% (13.7 \pm 1.4%).
250	

3.2 Elemental Compositions

252	Organic carbon (% OC) of all five bulk, unfractionated sediments ranged from 0.7% at
253	Horseshoe Bend to 2.9% at Venice Cut (Fig. 2b); mean $2.0 \pm 0.86\%$ (Fig. 3b). Total
254	nitrogen (% TN) ranged from 0.07 to 0.20% in bulk sediments (mean 0.15 \pm 0.05%). %
255	OC and % TN were well correlated with one another ($r^2=0.93$). Atomic C:N(a) ratios
256	ranged between 16.9 in Venice Cut to 11.9 in Elk Slough (Fig. 2c; mean 14.6 \pm 2.1%,
257	Fig. 3c). Low density fractions had the highest OC and TN concentrations; highest
258	density fractions had the lowest % OC and % TN. Low density <1.6 g cm ⁻³ material
259	contained between 32 and 37 % OC (34.0 \pm 2.1%) and from 1.5 to 2.7% TN (1.9 \pm 0.6%;
260	data not shown). The 1.6 to 2.0 g cm $^{-3}$ material contained 9-15 % OC (12.4 \pm 2.2%) and
261	0.7-1.1 % TN (0.8 \pm 0.2%); the 2.0 to 2.5 g cm $^{-3}$ and >2.5 g cm $^{-3}$ fractions both contained
262	<1% OC (0.8 \pm 2.2% and 0.2 \pm 0.1%, respectively) and <0.1% TN (0.2 \pm 0.04% and 0.09
263	\pm 0.06%, respectively). C:N_{(a)} ratios thus generally decreased with increasing particle
264	density (Fig. 2c, 3c): 24 for <1.6 g cm ⁻³ , 17 for 2.0 to 2.5 g cm ⁻³ , 6.7 for 2.0 to 2.5 g to
265	3.1 for >2.5 g cm ⁻³ fractions. Low C:N _(a) ratios for the >2.5 g cm ⁻³ fractions may be
266	artifacts arising from sorption of excess inorganic nitrogen onto these particles or blanks
267	associated with measuring low levels of nitrogen in these organic matter-poor samples.
268	

269 3.3 Specific Surface Area (SA) and OC:SA ratios

270 Specific surface areas (SA) of mineral grains in bulk Delta sediments ranged from ~14

271 $m^2 g^{-1}$ (Horseshoe Bend) to ~34 $m^2 g^{-1}$ (Potato Slough) (Fig. 4a). SA was measured on

- three density fractions for each sediment, but not on the <1.6 g cm⁻³ fractions because
- they contained incompletely charred plant fragments which could confound
- interpretations. SA decreased with increasing particle density. The 1.6 to 2.0 g cm⁻³

material had the highest SA of the measured fractions and SA ranged from ~65 m² g⁻¹at Horseshoe Bend to ~30 m² g⁻¹in Elk Slough. Thus in four out of five cases SA of 1.6 to 2.0 g cm⁻³ fractions was \geq 50 m² g⁻¹. SA's in the 2.0 to 2.5 g cm⁻³ fractions were ~25-30 m² g⁻¹, and in the 2.5 g cm⁻³ fractions were ~5-10 m² g⁻¹.

Measuring SA allows calculation of an organic carbon:surface area ratio (OC:SA) widely used to express the loading of sedimentary OC onto mineral grains. OC:SA ratios of bulk sediments ranged from 0.68-0.84 mg OC m⁻² (mean 0.72 \pm 0.13 mg OC m⁻²; Fig. 4b). The 1.6-2.0 g cm⁻³ fractions consistently had the highest OC:SA ratios (1.6-5.1 mg OC m⁻², Fig. 4b; mean 2.8 \pm 1.4 mg OC m⁻²). OC:SA ratios decreased with density so that for the >2.5 g cm⁻³ fractions OC:SA ranged from 0.21-0.32 mg OC m⁻² (0.26 \pm 0.04 mg OC m⁻²).

286

287 **3.4 Stable Carbon and Radiocarbon Isotopes**

Stable carbon isotope (δ^{13} C) values for bulk OC were relatively uniform and ranged 288 between -27.5 and -26.5 % (-27.0 ± 0.5 %; Table 1; Fig. 5a). δ^{13} C values for OC in the 289 290 density fractions of the three fractionated sediments (Elk Slough, Venice Cut, and Nurse Slough) were somewhat more variable, but δ^{13} C values among density fractions were 291 always within ± 1.5 % (Fig. 5a, Table 1). δ^{13} C values for density fractions from Elk 292 293 Slough were lower than those from Venice Cut and Nurse Slough. Low density material tended to have lower δ^{13} C values (~1 to 1.5 % lower) than higher density fractions. 294 295 Radiocarbon compositions were quite variable, reflecting a wide range of carbon ages (Fig. 5b; Table 1). Δ^{14} C is defined by Stuiver and Pollach (1977) and Stuiver (1980) 296 where Δ^{14} C values ≥ 0 are completely modern OC and reported as "modern"; Δ^{14} C values 297

298 < 0 indicate the presence varying proportions of old carbon. "Modern" is conventionally 299 defined as 95% of the ¹⁴C activity of an oxalic acid standard for AD 1950 (Karlen et al., 300 1964). The fraction of carbon in a sample that is modern, f_m , ranges from f_m values > 1 (if 301 ¹⁴C from atmospheric nuclear bomb testing is present) to 0 (containing no measurable 302 ¹⁴C). Ages are calculated using 5568 years as the half-life of radiocarbon. Bulk OC from Elk Slough was modern in age (Δ^{14} C +3.4 ‰). Mesodensity (1.6 to 2.0 g cm⁻³ and 2.0 to 303 2.5 g cm⁻³) fractions from Elk Slough were enriched in ¹⁴C (Δ^{14} C +94 ‰ and +89 ‰, 304 respectively) relative to bulk sediment OC, whereas the >2.5 g cm⁻³ material was depleted 305 306 in ${}^{14}C$ (-25 ‰) relative to both OC and mesodensity material. In contrast, bulk OC from 307 Venice Cut and Nurse Slough was depleted in ${}^{14}C$ ($\Delta^{14}C$ –151 and –161 ‰, respectively), as were the density fractions. In both Venice Cut and Nurse Slough, >2.5 g cm⁻³ fractions 308 were highly depleted in ${}^{14}C$ ($\Delta^{14}C$ –339 ‰ and –382 ‰ for Venice Cut and Nurse 309 310 Slough, respectively), whereas the remaining density fractions and bulk sediment were 311 remarkably uniform (average Δ^{14} C of -156 ± 39 ‰). 312

Fatty acids (FA) were isolated from bulk (unfractionated) sediments and analyzed 313 for stable carbon and radiocarbon content to help constrain the provenance and age of OC 314 in the sediments. As constituents of many energy storage and structural membrane lipids 315 in organisms, FA feature structural differences between compounds biosynthesized by 316 algae, bacteria and higher plants that make them biomarkers for elucidating the origins 317 and diagenetic fate of organic matter in sediments (Volkman, 2006; Wakeham et al., 1997). FA distributions in the Delta river sediments were bimodal: short-chain $n-C_{14} - n$ -318 C_{18} compounds peaking at *n*- C_{16} and long-chain *n*- C_{24} – *n*- C_{28} FA peaking at C_{24} . Short-319 320 chain FA had lower δ^{13} C values (-37.5 % to -35.2 %; Fig. 5c) compared to long-chain

321	FA ($-33.0 \ \text{\%}$ to $-31.0 \ \text{\%}$). FA were significantly depleted in ¹³ C relative to total OC
322	reflecting contributions from other organic compounds to OC such as amino acids and
323	carbohydrates that are enriched in ¹³ C compared to lipids. Short-chain FA in all three
324	fractionated sediments were modern (Δ^{14} C >0; Fig. 5d). While the radiocarbon age for
325	long-chain FA in Elk Slough was also modern (61 ‰), Δ^{14} C values in Venice Cut and
326	Nurse Slough were lower indicating that FA at these locations were older in age ($-180 $ %)
327	and -80 ‰, respectively).

329 **4 Discussion**

330 **4.1 Particle morphology**

331 Previous studies have shown scanning electron microscopy (SEM) to be valuable 332 for examining particle morphology of density-fractionated sediments (photomicrographs 333 of density fractions are shown in Bock and Mayer, 2000; Arnarson and Keil, 2001, 2007; 334 Wakeham et al., 2009). We do not have SEM images of the density fractions in this study but observations from the previous studies are relevant here. Low density <1.6 g 335 336 cm⁻³ fractions typically contain readily identifiable filaments and particles resembling 337 terrestrial wood fragments or aggregates containing plant debris. Aggregates of up to a 338 millimeter in size are common, as well as smaller-sized particles. The abundance of plant 339 material in low density material is borne out by the high OC concentrations and, when 340 measured, high lignin concentrations (Sampere et al., 2008; Wakeham et al., 2009; 341 Schreiner et al., 2013). Mesodensity (1.6 to 2.0 and 2.0 to 2.5 g cm⁻³) fractions contain 342 aggregates that survived the density fractionation process, but the size and abundance of aggregates decreases as density increases. The highest density (>2.5 g cm⁻³) fractions are 343

344 primarily unaggregated mineral grains, often only a few micrometers in size. Arnarson 345 and Keil (2001) also examined the mineral content of density fractions of a sediment 346 from the oxygen minimum zone off the west coast of Mexico by X-ray photoelectron 347 spectroscopy. Low density and OC-rich material was dominated by clay minerals 348 whereas the high density OC-poor fraction was dominated by quartz and feldspars. It is 349 impossible to rule out some alteration of particle morphology during the fractionation 350 treatment, but Arnarson and Keil (2001) suggest that the degree of sample handling used 351 here does not significantly disrupt the "organic glue" that holds aggregates together. 352 Indeed, Bock and Mayer (2000) had previously proposed that removal of this organic 353 binder, such as by the combustion step used in SA analysis, is required for organic-354 mineral particles to disaggregate.

355

356 **4.2 Organic carbon among density fractions**

357 In previous studies, bed sediments of the Lower Sacramento River were found to have a

mean OC content of 0.55% (range 0.14%-2.1%) and in the lower San Joaquin River a

359 mean OC of 0.68% (0.26-1.38%) (Reed, 2002; Nilsen and Delaney, 2005). The bulk

360 sediments in our study had somewhat higher TOC contents (mean $2.0 \pm 0.9\%$, range 0.7-

361 2.9%). TOC of the density fractions were lower than bulk sediments for high density

362 fractions (0.8 \pm 0.2% OC for 2.0-2.5 g cm⁻³ and 0.2 \pm 0.07% OC for >2.5 g cm⁻³

363 fractions, respectively) and higher for low density fractions ($34.0 \pm 2.1\%$ OC for <1.6 g

364 cm⁻³ and $12.4 \pm 2.1\%$ OC for 1.6-2.0 g cm⁻³ fractions). The 1.6 to 2.0 g cm⁻³ fractions

therefore made-up the greatest proportions of TOC (44-65%; mean 53.7 \pm 8.8% of TOC;

366 Figs. 2d and 3d), reflecting the high proportion this density fraction contributed to total

367	sediment mass despite low OC concentrations. The 2.0 to 2.5 cm ⁻³ fractions contained
368	13-37% of TOC (mean 27.1 \pm 10.3% of TOC). Collectively, mesodensity material (1.6
369	to 2.0 g cm ⁻³ plus 2.0 to 2.5 g cm ⁻³ fractions) constituted the highest proportions of TOC,
370	63-96% (mean 80.8 \pm 13.3% of TOC).
371	This dominance of mesodensity material, in terms of both mass and OC content,
372	is common among river (lower Mississippi River) and coastal sediments (Mississippi
373	Margin, Washington Margin, Mexico Margin) that have been investigated by density
374	fractionation (Bock and Mayer, 2000; Arnarson et al., 2001; Dickens et al., 2006;
375	Wakeham et al., 2009). The Sacramento-San Joaquin Delta sediments therefore were
376	generally consistent with previous studies in coastal regions. The Horseshoe Bend
377	sediment was somewhat different from the other four sediments studied here in that OC-
378	poor high density >2.5 g cm ⁻³ material (65 % of mass but only 4 % of TOC) was most
379	abundant, with only 30 % of mass and 37% of TOC in the mesodensity fractions. This
380	sediment is similar to sediments off the Eel River on the California Margin and in the
381	Colville River Delta in the Alaskan Beaufort Sea where erosive hydrodynamic
382	winnowing leaves behind greater proportions of denser, sandy material (Wakeham et al.,
383	2009; Schreiner et al., 2013). Horseshoe Bend flows along the eastern and southern
384	edges of Decker Island, and is the original Sacramento River channel. Higher density
385	sediments with low OC content at Horseshoe Bend are consistent with hydrodynamic
386	winnowing by Sacramento River flow and/or tidal currents from San Francisco Bay.
387	
388	4.3 Physical character of sediment particles

389 Sediment transport through the Delta, and deposition in the upper San Francisco Bay 390 estuary, has varied considerably over the past century. The high sediment loads from 391 hydraulic mining during the later 1800s and early 1900s (up to a 9-fold increase over the 392 pre-mining period) have dropped significantly due to water management projects such as 393 dams, levees and bypass channels (Schoellhamer et al., 2012) and adjustment to a regime 394 of decreasing sediment supply during the 20th century (Schoellhamer et al., 2013). Bed 395 sediments in channels of the lower Sacramento River are 8-50 % (mean 19%) fines (<63 396 μ m) and in the San Joaquin River are 15-79% (mean 48%) fines (Schoellhamer et al., 397 2012), and as noted above TOC contents are 0.14-2.1%. Larger floods and increased 398 winnowing of fine grains from the bed sediments in the Sacramento River are the 399 probable cause for differences between the two rivers. During large floods, the sand 400 content of bed sediments often approaches 100% in the Sacramento River, whereas 401 during intervals between floods, sediments become finer.

402

403 **4.4 Specific surface area OC loadings on sediment grains**

404 Sediment grain size, particle shape, density, mineralogy and organic carbon content

405 determine how particles behave in rivers and on coastal margins (Bridge and Bennett,

406 1992; Dade and Friend, 1998; Hassanzadeh, 2012) and their nutritional value to

407 organisms (Mayer et al., 1993). Specific mineral surface area (SA) of sediment particles

408 is often thought of as an approximate (inverse) proxy for grain size (Horowitz and Elrick,

409 1987; Keil et al., 1994a; Bergamaschi et al., 1997). In general, as grain size decreases,

410 SA and % OC increase. But this relationship is probably simplistic since surface

411 roughness of mineral particles may cause SA to be considerably higher than predicted by

412	grain size alone (Weiler and Mills, 1965; Mayer, 1994a,b), and SA measured after
413	combustion that may destroy larger organic particles or organic-mineral aggregates likely
414	under-represents the true size of the original aggregates. Inorganic coatings, notably Fe
415	and Mn oxides, also help to cement fine-grained particles into water-stable aggregates of
416	larger size (Horowitz and Elrick, 1987), decreasing effective SA. In the present study,
417	SA was measured on all five bulk sediments and three density fractions of each sediment
418	to evaluate the degree of OC loading (OC:SA) onto different density fractions, analogous
419	to the more common measurements of SA and OC:SA of sediment particles of different
420	grain sizes. SA decreased with increasing particle density (Fig. 4a), suggesting that
421	higher density fractions were characterized by larger particle grain sizes (the <1.6 g cm ⁻³
422	fractions being exceptions). Higher SA for the intermediate density fractions (e.g., 1-6 to
423	2.0 g cm ⁻³) are similar to previous observations (Arnarson and Keil, 2001, 2007;
424	Wakeham et al., 2009) and might result from rough three-dimensional structures of
425	aggregated clay grains (Hodson et al., 1998). In contrast, quartz and feldspar grains that
426	dominate the high-density fractions have low SA.
427	Organo-mineral associations affect OC reactivity and OC sorbed onto mineral
428	grains is protected from degradation (Mayer, 1999; Hedges and Keil, 1995; Keil and
429	Mayer, 2014). Lower OC:SA ratios in deltaic (~ 0.3 mg OC m^{-2}) and deep sea sediments
430	(~0.15 mg OC m ⁻²) indicate desorption or losses of OC from mineral grains due to
431	microbial decomposition whereas higher OC:SA ratios ($\geq 2 \text{ mg OC m}^{-2}$) occur typically in
432	anoxic, marsh, and estuarine sediments where OC is preserved because supply exceeds
433	decomposition (Keil et al., 1997). Among the river sediments discussed here, OC:SA
434	ratios of bulk sediments were relatively invariant, between 0.54 and 0.84 $$ mg OC m ⁻² ,

435 similar to OC loadings in the Amazon and Mississippi Rivers but lower than adjacent

- 436 marsh and estuary sediments and higher than adjacent continental shelf sediments (Keil et
- 437 al., 1997; Gordon and Goñi, 2004; Waterson and Canuel, 2008). Among density
- 438 fractions in this study, OC:SA ratios were higher for 1.6 to 2.0 g cm⁻³ fractions than for
- 439 bulk sediments (2.75 ± 1.4 vs. 0.72 ± 0.13 mg OC m⁻², respectively) indicating more OC
- 440 was associated with mineral material. In contrast, OC:SA were lower for the 2.0 to 2.5

441 and >2.5 g cm⁻³ fractions (0.31 ± 0.06 vs. 0.26 ± 0.04 mg OC m⁻², respectively) than bulk

- 442 sediment, where less OC was associated with mineral phases.
- 443

444 **4.5 Provenance of OC in the Sacramento-San Joaquin Delta**

445 Sources of OC to river sediments in the Delta are diverse (Canuel, 2001). Autochthonous

446 sources include phytoplankton (80% of annual TOC input), higher aquatic plants (18% of

447 TOC) and benthic macroalgae (<2%); seagrasses and seaweeds are absent (Jassby and

448 Cloern, 2000). Allochthonous contributions, much of which is soil-derived, from riparian

zones within the rivers' watersheds may come from tributaries (81% of TOC), agriculture

450 (11%), tidal marsh export (4%), and wastewater (4%) and urban discharges (1%).

451 Relative contributions of each depend on river flow, which itself is seasonally variable.

452 However, taken together, autochthonous inputs account for only about 15% of annual

- 453 TOC input to the Delta, whereas allochthonous sources dominate at 85%. The Jassby and
- 454 Cloern (2000) model further indicates that ~90% of TOC supply to Suisun Bay and
- 455 northern San Francisco Bay is delivered by the Delta rivers, in stark contrast to south San

456 Francisco Bay where ~90% of TOC is autochthonous.

457	$C:N_{(a)}$ ratios of bulk sediments confirm the importance of vascular plant OC and
458	minor input of algal material to the Delta river sediments. Among density fractions,
459	increasing $C:N_{(a)}$ ratios with decreasing density point to the importance of vascular plant
460	OC in lower density fractions. Results from a wide-ranging investigation of elemental
461	and isotope compositions of aquatic and terrestrial plants in the Delta system by Cloern et
462	al (2002) and studies of suspended POM (Canuel, 2001) support this conclusion.
463	There was considerable variability in ¹³ C isotopic composition among the plants
464	analyzed by Cloern et al. (2002) in the Delta, with differences reflecting carbon source
465	and carbon fixation pathway (Hayes, 2001; Pearson, 2010). Among plants fixing carbon
466	dioxide from the atmosphere, C ₄ marsh plants were relatively enriched in ^{13}C (~ –17 to –
467	12 ‰) whereas C ₃ salt marsh, floating vascular and terrestrial plants were, by
468	comparison, depleted in 13 C (~ -31 to -22 ‰). Aquatic filamentous algae, phytoplankton
469	and submerged vascular plants that utilize dissolved CO ₂ had highly variable $\delta^{13}C$ values
470	covering most of the range given above, usually depleted in ¹³ C compared to marine
471	phototrophs due to different isotope systematics between freshwater and marine systems
472	(Oana and Deevey, 1960). Isotope values for soils within the Delta reflect land use,
473	ranging from ~ -20 ‰ in a corn (C ₄) field to (~ -27 to -24 ‰) in an uncultivated
474	grassland (C ₃). Since the range of δ^{13} C values in the bulk Delta sediments we analyzed
475	was small (-27.4 ± 0.5 ‰) and seasonal and species variability is high (Cloern et al.,
476	2002), it is difficult to conclusively infer the dominant OC source, except perhaps to say
477	that inputs from C ₄ plants are minor. Nonetheless, the consistently lower values for $\delta^{13}C$
478	in the lower density fractions (Fig. 6a) suggest greater proportions of vascular plant OC
479	in those fractions.

480	Natural-abundance radiocarbon measurements ($\Delta^{14}C_{OC}$ or fraction modern f_m) add
481	the dimension of "age" to the character of organic matter and help define the residence
482	time and redistribution of OC in rivers and estuaries (Raymond and Bauer, 2001a, b;
483	Blair et al., 2003; Griffith et al., 2010; Lu et al., 2014; McIntosh et al., 2015). In our
484	study, radiocarbon ages of OC of bulk and most density fractions at Elk Slough are
485	modern [Δ^{14} C $\ge 0 \% (f_m \sim 1)$], whereas high density >2.5 g cm ⁻³ material is depleted in ¹⁴ C
486	reflecting a more aged character (Fig. 6a). OC in Venice Cut and Nurse Slough,
487	however, is considerably more depleted in 14 C. Bulk OC and <1.6, 1.6 to 2.0, and 2.0 to
488	2.5 g cm ⁻³ fractions are similar in radiocarbon isotope values (Δ^{14} C –247 to –114 ‰) but
489	high density >2.5 g cm ⁻³ fractions are highly ¹⁴ C depleted (Δ^{14} C –339 and –382 ‰, for
490	Venice Cut and Nurse Slough, respectively) and hence the oldest (3,300 and 3,800 yr BP,
491	respectively). Radiocarbon ages of sediments that are "too old" to reflect deposition of
492	recently-biosynthesized ("young") OC require contributions from old OC (often termed
493	"pre-aged" OC) from terrestrial soil or fossil (rock) OC (Drenzek et al., 2009; Griffith et
494	al., 2010; Blair and Aller, 2012; Douglas et al., 2014; Galy et al., 2015) and/or
495	anthropogenic (petrogenic or fossil fuel combustion) sources (Mitra et al., 2002;
496	Masiello, 2004). Rivers are an important mechanism for redistributing old terrestrial OC
497	(Raymond and Bauer, 2001b; Masiello and Druffel, 2001; Blair and Aller, 2012). In the
498	Rhine and Meuse Rivers, the Ems-Dollard estuary, and the southern North Sea, ¹³ C and
499	¹⁴ C compositions of size fractionated suspended particulate matter showed seasonal
500	variations in a mix of OC sources and that a greater proportion of old terrestrial material
501	was associated with coarse (>20 μ m) material (δ^{13} C ~ -26 ‰; Δ^{14} C ~ -500 ‰) than fine
502	fractions (δ^{13} C ~ -23 ‰; Δ^{14} C ~ -200 ‰) (Megens, et al. (2001, 2002)). In the present

503	study, the relatively unimpacted Elk Slough, which lies north of the city of Sacramento,
504	contains mostly recently-biosynthesized OC whereas Venice Cut and Nurse Slough
505	contained higher proportions of older OC. Interestingly, the Nurse Slough site in Suisan
506	Marsh that is little influenced by anthropogenic activities had Δ^{14} C values indicating
507	sources of aged carbon that could reflect erosion or scouring of deeper marsh sediments
508	or mixing with "older" sources from the surrounding watershed. Overall, there is a
509	progression from Δ^{14} C-enriched (young) but δ^{13} C-depleted OC (bulk and density
510	fractions) in Elk Slough to generally more Δ^{14} C-depleted (older) and δ^{13} C-enriched OC in
511	Venice Cut and Nurse Slough.
512	Biomarkers shed additional light on the sources and diagenetic state of river
513	sediment OC. Among the fatty acids analyzed here, short-chain $(n-C_{14} - n-C_{18})$ FA are
514	biosynthesized by all plants but they are major lipids in freshwater microalgae (Cranwell
515	et al., 1988, 1990; Volkman et al., 1998) and freshwater macroalgae (Dembitsky et al.,
516	1993; Rozentsvet et al., 1995; 2002). Long-chain $(n-C_{24} - n-C_{28})$ FA are components of
517	epicuticular waxes of terrestrial higher plants (Cranwell et al., 1987; Volkman, 2006) and
518	are abundant in soils. FA compound distributions in Delta sediments – a mix of short-
519	chain and long-chain compounds – confirm heterogeneous sources. Stable carbon
520	isotope values of FA in Delta sediments were lower than TOC, by ~8.1 to 10.4 ‰ for the
521	short-chain FA but by \sim 3.6 to 5.5 ‰ for the long-chain FA (Fig. 6b). All sites showed
522	the same ¹³ C trend: $\delta^{13}C_{\text{short FA}} > \delta^{13}C_{\text{long FA}} > \delta^{13}C_{\text{OC}}$. The offset of $\delta^{13}C_{\text{FA}}$ relative to
523	$\delta^{13}C_{OC}$ reflects the 4-8 ‰ isotope fractionation common during autotrophic biosynthesis
524	of acetogenic lipids (in this case FA) vs primary biomass (here represented by TOC)
525	(Hayes, 2001; Pearson, 2010), but the difference between $\delta^{13}C_{short FA}$ and $\delta^{13}C_{long FA}$

indicates a source distinction. A higher proportion of seston with low $\delta^{13}C$ values (Cloern
et al., 2002) may contribute to the ¹³ C-depletion of the short-chain FA pool. Radiocarbon
values of FA are more complex and $\Delta^{14}C_{short FA}$ indicate predominately modern OC while
$\Delta^{14}C_{long FA}$ in Venice Cut and Nurse Slough indicate substantial proportions of old OC
(Fig. 6b). Short-chain FA could originate from either aquatic or terrestrial plants; the
narrow range of $\delta^{13}C$ does not provide a distinction. Long-chain, vascular plant FA
likely reflect storage in soils for some time, but probably do not derive from fossil
sources since functionalized lipids like FA, though present at low levels, are mostly lost
during diagenesis (Rullkötter and Michaelis, 1990; de Leeuw and Largeau, 1993). Our
findings are consistent with isotope compositions of FA in bulk sediments from the Eel
Margin and in lower Mississippi River and Mississippi Margin sediments (Wakeham et
al., 2009) and in the Delaware Estuary (McIntosh et al., 2015). Long-chain FA in Eel
sediments had lower ^{13}C values compared to short-chain FA ($\delta^{13}C$ –32 ‰ and –25 ‰,
respectively). In sediments of the Mississippi River/Margin, the opposite was found:
long-chain FA had higher δ^{13} C values than short-chain FA (-31 ‰ vs -37 ‰,
respectively). However, like the Sacramento-San Joaquin Delta sediments, short-chain
FA in both the Eel and Mississippi River/Margin were modern in age ($\Delta^{14}C$ +49 ‰ and
+47 ‰, for Eel and Mississippi, respectively) whereas long-chain FA were older ($\Delta^{14}C$ –
109 and -91 ‰ for Eel and Mississippi, respectively). This trend is the reverse of that of
FA of particulate organic matter in the Delaware Estuary, where short-chain FA were
older than long-chain FA, indicating that the riverine algae that are the source of the
short-chain FA fix aged dissolved organic carbon (McIntosh et al., 2015). Long-chain
FA used to evaluate OC transport from the Himalayan Mountains and Tibetean Plateau

through the Ganges-Bramaputra river system were younger ($\Delta^{14}C$ –160 to –3 ‰) than bulk terrestrial biospheric OC ($\Delta^{14}C$ –878 to –63 ‰) (Galy et al., 2008; Galy and Eglinton, 2011).

552 Modern carbon in river sediments and sediments at river-ocean margin interfaces 553 must derive from recently biosynthesized aquatic or terrestrial plant biomass. Land plants that fix atmospheric CO₂ may have ¹⁴C values that are completely modern due to 554 555 inclusion of post-bomb carbon. The radiocarbon content of freshwater plants varies 556 depending on the reservoir effect of freshwater dissolved inorganic carbon, either CO_2 or 557 bicarbonate. If old, dissolved inorganic carbon (e.g., bicarbonate leached from carbonate 558 or evaporitic deposits) is present in freshwater systems, reservoir ages may be longer than 559 in marine systems (Broecker and Walton, 1959; Phillipsen, 2013; Lu et al., 2014; McIntosh et al., 2015) and aquatic plants may be 14 C-depleted relative to biomass that 560

561 fixed atmospheric CO₂.

Most old carbon in sediments originates from ¹⁴C-deficient OC remobilized from 562 563 terrestrial soils or fossil OC from ancient sediments, and much of this export is driven by erosion (e.g., Galy et al., 2015). Soil OC is highly variable in ¹⁴C age depending on soil 564 565 ecosystem and horizon depth, carbon cycling and residence time, land use, and the 566 proportions of modern and fossil carbon, with ages ranging from modern in litterfall and 567 upper horizons to thousands of years in deeper horizons (Richter et al., 1999; Ewing et 568 al., 2006; Trumbore, 2009). In the case of the Delta, surface alluvial soil horizons from grasslands of the Central Valley are modern ($\Delta^{14}C > 0$) whereas deeper horizons are 569 significantly older (Δ^{14} C –800 to –600 ‰) depending on whether or not they have been 570 571 cultivated (Baisden et al., 2002a,b; Ewing et al., 2006). Soil OC typically consists of a

572	rapidly cycling (5-20 yr) low density fraction of relatively unaltered vascular plant
573	material and a more abundant but slowly cycling mineral-associated component with a
574	mean residence time >200 yr (Trumbore et al., 1989; Baisden et al., 2002a,b; Ewing et
575	al., 2006; Castanha et al., 2008; Trumbore, 2009; Cerli et al., 2012). The lower region of
576	the Delta, at the confluence of the Sacramento and San Joaquin Rivers, also contains
577	large tracts of peat. Bulk densities of the peat range from 0.2-0.7 g cm ⁻³ and their
578	radiocarbon contents ranged from -560 to -225 ‰ (Ewing et al., 2006; Canuel et al.,
579	2009). Fossil carbon sources include OC remobilized from ancient rocks (kerogen) and
580	black carbon (BC). Kerogen is an amorphous network of degraded, polymerized and
581	crosslinked biomolecules generated during diagenesis (Derenne et al., 1997; de Leeuw
582	and Largeau, 1993; Stankiewicz et al., 2000); BC is a carbon-rich, highly aromatized and
583	heterogeneous material that derives from biomass or fossil fuel combustion and
584	sedimentary metamorphism (where alteration of OC has proceeded beyond the kerogen
585	stage) (Masiello, 2004; Dickens et al., 2004), and thus may have modern (biomass) or
586	fossil (ancient sediment) radiocarbon signatures. In lake and marine sediments (Dickens
587	et al., 2004; Veilleux et al., 2009), BC is concentrated in a <1.6 g cm ⁻³ density fraction.
588	Mitra et al. (2002) estimated that ~27% of the BC load, or up to 25% of OC, of the
589	Mississippi River is fossil fuel combustion-derived. Because both kerogen and BC are
590	highly refractory with respect to chemical or biological degradation they may cycle
591	between fluvial and sediment/soil environments during their transport through drainage
592	basins, especially in environments characterized by rapid channel migration and flooding
593	(Dunne et al., 1998; Aalto et al., 2003; Blair and Aller, 2012). Most particles in rivers are

594 thought to have spent time in soils, floodplain alluvial deposits or wetlands (Reneau and 595 Dietrich, 1991; Gomez et al., 2003; Leithold et al., 2006; Hoffmann et al., 2009). 596 The age of OC in rivers also varies with the nature of the river and its watershed, 597 and consequently with sediment load (e.g., Raymond and Bauer, 2001b; Leithold et al., 2006; Blair et al., 2003). Small rivers (<10,000 km² watersheds) draining high relief, 598 599 mountainous (1000 - 4000 m elevation) areas where thin soils/sedimentary rocks are 600 continuously eroded and there is minimal sediment storage capacity export substantial 601 amounts of old, refractory organic matter. Rivers with lower relief but watersheds that 602 include long-term carbon storage environments such as forests, grasslands, and wetlands 603 can also deliver significant amounts of old OC. In contrast, rivers that integrate large 604 watersheds with diverse geology and land cover/use and with extensive lowland sediment 605 storage areas and floodplains that are dominated by chemical weathering (e.g., the 606 Mississippi-Atchafalaya River System (Gordon and Goñi, 2003; Rosenheim et al., 2013) 607 carry generally younger and less degraded OC. Because the Sacramento and San Joaquin 608 Rivers begin as steep-gradient, high energy streams in the Sierra Nevada Mountains but 609 gradually become larger as numerous tributaries join the mainstems, including those from 610 the Coast Range, they become more quiescent as they flow through the Central Valley 611 and a range of OC sources contributes to the observed elemental and isotopic 612 compositions of river sediments in the Delta. 613

614 **5 Conclusions**

615 Bed sediments in the Sacramento-San Joaquin Rivers contain organic matter 616 unevenly distributed among density fractions, similar to other river and continental

617 margin sediments. In general, mass and TOC are concentrated in mesodensity fractions, 618 whereas both low density material that is rich in woody debris and high density material 619 that is OC-poor mineral grains are relatively unimportant. At the Elk Slough site, OC is 620 mostly derived from contemporary vegetation, but in both Venice Cut in the San Joaquin 621 River and Nurse Slough in Suisan Marsh substantial amounts of old carbon OC are 622 present, especially in the OC-poor, mineral-rich highest density material. Low river flow, 623 such as during our study period, allows bed sediments to accumulate all density fractions: 624 low density but coarse-grained material consisting of young discrete plant debris, older 625 mesodensity organic-mineral aggregates, and still older organic-poor high density 626 mineral material. But even under low flow/low turbulence conditions, some 627 hydrodynamic sorting may occur whereby the mesodensity fractions become 628 predominant. Overall, this work identifies differences in the source and age composition 629 of organic matter associated with different sediment density fractions in rivers and 630 reveals some of the complex interactions between organic matter and sediments that arise 631 from watershed, hydrology and hydrodynamic features. 632

633 Acknowledgements

534 Janet Thompson, Francis Parchaso and Byron Richards from the U.S. Geological Survey

635 (Menlo Park CA) assisted with site selection and sample collection. Beth Lerberg

636 (VIMS) provided lab and field assistance and Steve Kuehl and Linda Meneghini assisted

637 in the field. Two anonymous reviewers provided valuable suggestions on the manuscript.

638 This study was supported by the National Science Foundation, Division of Environmental

Biology, Ecosystems Program (DEB-0454736 and DEB-0454741) and the Ocean

- 640 Sciences Division (OCE-0962277). This paper is contribution 3523 of the Virginia
- 641 Institute of Marine Science, College of William and Mary.
- 642
- 643

References

646	Aalto, R., Maurice-Bourgoin, L., Dunne, T., Montgomery, D. R., Nittrouer, C. A., and
647	Guyot, JL.: Episodic sediment accumulation on Amazonian flood plains
648	influenced by El Niño/Southern Oscillation, Nature, 425, 493-497,
649	doi:10.1038/nature02002, 2003.
650	Adams, W. A.: The effect of organic matter on the bulk and true densities of some
651	uncultivated podzolic soils, J. Soil Sci., 24, 10-17, 1973,
652	Arnarson, T. S., and Keil, R. G.: Organic-mineral interactions in marine sediments
653	studied using density fractionation and X-ray photoelectron spectroscopy, Org.
654	Geochem., 32, 1401-1415, doi:org/10.1016/S0146-6380(01)00114-0, 2001.
655	Arnarson, T. S., and Keil, R. G.: Changes in organic matter-mineral interactions for
656	marine sediments with varying oxygen exposure times, Geochim. Cosmochim.
657	Ac, 71, 3545-3556, doi:10.1016/j.gca.2007.04.027, 2007.
658	Baisden, W. T., Amundson, R., Cook, A. C., and Brenner, D. L.: Turnover and storage of
659	C and N in five density fractions from California annual grassland surface soils,
660	Global Biogeochem. Cy., 16, 111 doi:10.1029/200, 2002a.
661	Baisden, W. T., Amundson, R., Brenner, D. L., Cook, A. C., Kendall, C., Harden, J. W.:
662	A multi-isotope C and N modeling analysis of soil organic matter turnover and
663	transport as a function of soil depth in a California annual grassland soil
664	chronosequence, Global Biogeochem. Cy., 16, 1135,
665	doi:10.1029/2001GB001823, 2002b.
666	Baldock, J.A., and Skjemstad, J.O.: Role of the soil matrix and minerals in protecting
667	natural organic materials against biological attack, Org. Geochem., 31,

668 697–710, doi:<u>org/10.1016/S0146-6380(00)00049-8</u>, 2000.

- 669 Bergamaschi, B. A., Tsamakis, E., Keil, R. G., and Hedges, J. I.: The effect of grain size
- and surface area on organic matter, lignin and carbohydrate concentration, and
- 671 molecular compositions in Peru Margin sediments, Geochim. Cosmochim. Ac,

672 61, 1247-1260, doi:org/10.1016/S0016-7037(96)00394-8, 1997.

- 673 Bianchi, T. A., Galler, J. J., Allison, M. A.: Hydrodynamic sorting and transport of
- 674 terrestrially derived organic carbon in sediments of the Mississippi and
- 675 Atchafalaya rivers, Est. Coast. Shelf Sci., 73, 211-222,
- 676 doi:10.1016/j.ecss.2007.01.004, 2007.
- 677 Blair, N. E., and Aller, R. C.: The fate of terrestrial organic carbon in the marine
- 678 environment, Annu. Rev. Mar. Sci., 4, 17.1-17.23, doi:10.1146/annurev-marine679 120709-142717, 2012.
- 680 Blair, N. E., Leithold, E. L., Ford, S. T., Peller, K. A., Holmes, J. C., and Perkey, D. W.:
- 681The persistence of memory: The fate of ancient sedimentary organic carbon in a
- modern sedimentary system, Geochim. Cosmochim. Ac, 67, 63-73,

683 doi:org/10.1016/S0016-7037(02)01043-8, 2003.

- Bock, M. J., and Mayer, L. M.: Mesodensity organo-clay associations in a nearshore
 sediment, Mar. Geol., 163, 65-75, doi:org/10.1016/S0025-3227(99)00105-X,
 2000.
- 687 Bridge, J. S., and Bennett, S. J.: A model for the entrainment and transport of sediment
- grains of mixed sizes, shapes, and densities, Water Resour. Res., 28, 337-363,
- 689 doi:org/10.1029/91WR02570, 1992.

690	Broecker, W. S., and Walton A.: The geochemistry of C^{14} in fresh-water systems.,
691	Geochim. Cosmochim. Ac, 16, 15-38, doi:org/10.1016/0016-7037(59)90044-4,
692	1959.
693	Canuel, E. A.: Relations between river flow, primary production and fatty acid
694	composition of particulate organic matter in San Francisco and Chesapeake Bays:
695	a multivariate approach, Org. Geochem., 32, 563-583, doi:org/10.1016/S0146-
696	<u>6380(00)00195-9</u> , 2001.
697	Canuel, E. A., Lerberg, E. J., Dickhut, R. M., Kuehl, S. S., Bianchi, T. S., and Wakeham,
698	S. G.: Changes in sediment and organic carbon accumulation in a highly-
699	disturbed ecosystem: The Sacramento-San Joaquin River Delta, (California,
700	U.S.A.), Mar. Pollut. Bull., 59, 154-163, doi:10.1016/j.marpolbul.2009.03.025,
701	2009.
702	Castanha, C., Trumbore, S., and Amundson, R.: Methods of separating soil carbon pools
703	affect the chemistry and turnover time of isolated fraction, Radiocarbon, 50, 83-
704	97, 2008.
705	Cerli, C., Celi, L., Kalbitz, K., Guggenberger, G., and Kaiser, K.: Separation of light and
706	heavy organic matter fractons in soil – Testing for proper density cut-off and
707	dispersion level, Geoderma, 170, 403-416, doi:10.1016/j.geoderma.2011.10.009,
708	2012.
709	Cloern J. E., Canuel, E. A., and Harris, D.: Stable carbon and nitrogen isotope
710	composition of aquatic and terrestrial plants of the San Francisco Bay estuarine
711	system, Limnol. Oceanogr., 47, 713-729, doi.org/10.4319/lo.2002.47.3.0713,
712	2002.

713	Conomos, T. J., Smith, R. E., and Gartner, J. W.: Environmental setting of San Francisco
714	Bay, in: Temporal Dynamics of an Estuary: San Francisco Bay, edited by: Cloern,
715	J. E. and Nichols, F. H., Hydrobiologica, 129, 1–12, doi:10.1007/BF00048684,
716	1985.
717	Cranwell, P. A., Eglinton, G., and Robinson, N.: Lipids of aquatic organisms as potential
718	contributors to lacustrine sediments-II, Org. Geochem., 11, 513-527,
719	doi:org/10.1016/0146-6380(87)90007-6, 1987.
720	Cranwell., P. A., Creighton, M. E., and Jaworski, G. H. M.: Lipids of four freshwater
721	chrysophytes, Phytochem., 27, 1053-1059. doi:org/10.1016/0031-9422(88)80272-
722	3, 1988.
723	Cranwell, P. A., Jaworski, G. H. M., and Bickley, H. M.: Hydrocarbons, sterols, esters,
724	and fatty acids in six freshwater chlorophytes, Phytochem., 29, 145-151,
725	doi:org/10.1016/0031-9422(90)89028-8, 1990.
726	Crow, S. E., Swanston, C. W., Lajtha, K., Brooks, J. R., and Keirstead, H.: Density
727	fractionation of forest soils: methodological questions and interpretation of
728	incubation results and turnover time in an ecosystem context, Biogeochem., 85,
729	69-90, doi: 10.1007/s10533-007-9100-8, 2007.
730	Dade, W. B., and Friend, P. F.: Grain size, sediment transport regime, and channel slope
731	in alluvial rivers, J. Geol., 106, 661-676, doi:org/10.1086/516052, 1998.
732	de Leeuw, J. W., and Largeau, C.: A review of macro- molecular organic compounds that
733	comprise living organisms and their role in kerogen, coal, and petroleum
734	formation, in: Organic Geochemistry, edited by: Engel, M. H. and Macko, S. A.,
735	Plenum Press, New York, 23–72, 1993.

736	Dembitsky, V. M., Rezanka, T., and Rozentsvet, O. A.: Lipid composition of three
737	macrophytes from the Caspian Sea, Phytochem., 33, 1015-1019,
738	doi:org/10.1016/0031-9422(93)85014-I, 1993.
739	Derenne, S., Largeau, C., Casadevall, E., Berkaloff, C., and Rousseau, B.: Chemical
740	evidence of kerogen formation in source rocks and oil shales via selective
741	preservation of thin resistant outer walls of microalgae: Origin of ultralaminae,
742	Geochim. Cosmochim. Ac, 55, 1041-1050, doi:org/10.1016/0016-
743	7037(91)90162-X, 1993.
744	Dickens, A. F., Gélinas, Y., Masiello, C. A., Wakeham, S. G., and Hedges, J. I.: Reburial
745	of fossil carbon in marine sediments, Nature, 427, 336-339,
746	doi:10.1038/nature02299, 2004.
747	Dickens, A. F., Baldock, J. A., Smernik, R. J., Wakeham, S. G., Arnarson, T. A.,
748	Gélinas, Y., and Hedges, J. I.: Solid state ¹³ C NMR analysis of size and density
749	fractions of marine sediments. Insights into carbon sources and preservation
750	mechanisms, Geochim. Cosmochim. Ac, 70, 666-686,
751	doi:10.1016/j.gca.2005.10.024, 2006.
752	Douglas, P. M. J., Pagani, M., Eglinton, T. I., Brenner, M., Hodell, D. A., Curtis, J. H.,
753	Ma, K.F., and Breckenridge, A.: Preaged plant waxes in tropical lake sediments
754	and their influence on the chronology of molecular paleoclimate records,
755	Geochim. Cosmochim. Ac, 141, 346-364, doi;org/10.1016/j.gca.2014.06.030,
756	2014.

757	Drenzek, N. J., Hughen, K. A., Montluçon, D. B., Southon, J. R., dos Santos, G. M.,
758	Druffel, E. R. M., Giosan, L., and Eglinton, T. I.: A new look at old carbon in
759	active margin sediments, Geol., 37, 239-242, doi: 10.1130/G25351A.1, 2009.
760	Dunne, T., Mertes, L. A. K., Meade, R. H., Richey, J. E., and Frosberg, B. R.:
761	Exchanges of sediment between the flood plain and channel of the Amazon River
762	in Brazil, Geol. Soc. Am. Bull., 110, 450-467, doi:org/10.1130/0016-
763	7606(1998)110%3C0450:EOSBTF%3E2.3.CO;2, 2003.
764	Eglinton, T. I., Benitez-Nelson, B. C., Pearson, A., McNichol, A., Bauer, J. E., and
765	Druffel, E. R. M.: Variability in radiocarbon ages of individual organic
766	compounds from marine sediments, Science, 277, 796–799, doi:
767	org/10.1126/science.277.5327.796, 1997.
768	Ewing S. A., Sanderman, J., Baisden, T. W., Wang, Y., and Amundson, R.: Role of large-
769	scale soil structure in organic carbon turnover; evidence from California grassland
770	soils, J. Geophys. Res., 111, nGO3012, doi:10.1029/2006JG000174, 2006.
771	Galy, V., and Eglinton, T.: Protracted storage of biospheric carbon in the Ganges-
772	Brahmaputra basin, Nature Geosci., 4, 843-847, doi: 10.1038/ngeo1293, 2011.
773	Galy, V., France-Lanord, C., and Lartiges B.: Loading and fate of particulate organic
774	carbon from the Himalaya to the Ganga-Bramaputra delta, Geochim.
775	Cosmochim. Ac, 72, 1767-1787, doi:10.1016/j.gca.2008.01.027, 2008.
776	Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export from the
777	terrestrial biosphere controlled by erosion, Nature, doi:10.1038/nature14400,
778	doi:10.1038/nature14400, 2015.

779	Golchin, A., Oades, J. M., Skjemstad, J. O., and Clarke, P.: Study of free and occluded
780	particulate organic-matter in soils by solid state ^{13}C Cp/MAS NMR pectroscopy
781	and scanning electron microscopy, Aust. Soil Res. 32, 285-309,
782	doi: <u>org/10.1071/SR9940285</u> , 1994.
783	Gomez, B., Brackley, H.L., Hicks, D. M., Neff, H., and Rogers, K. M.: Organic carbon in
784	floodplain alluvium: Signature of historic variations in erosion processes
785	associated with deforestation, Waipaoa River basin, New Zealand, J. Geophys.
786	Res., 109, F04011, doi:10.1029/2004JF000154, 2004.
787	Gordon, E. S., and Goñi, M. A.: Sources and distributions of terrigenous organic matter
788	delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico,
789	Geochim. Cosmochim. Ac, 67, 2359-2375, doi:10.1016/S0016-7037(02)01412-6,
790	2003.
791	Gordon, E. S., and Goñi, M. A.: Controls on the distribution and accumulation of
792	terrigenous organic matter in sediments from the Mississippi and Atchafalaya
793	River margin, Mar. Chem., 92, 331-352, doi:10.1016/j.marchem.2004.06.035,
794	2004.
795	Griffith, D. R., Martin, W. T., and Eglinton, T. I.: The radiocarbon age of organic carbon
796	in marine surface sediments, Geochim. Cosmochim. Ac, 74, 6788-6800,
797	doi:10.1016/j.gca.2010.09.001, 2010.
798	Hassanzadeh, Y.: Hydraulics of Sediment Transport, Hydrodynamics - Theory and
799	Model, edited by: Zheng, JH., ISBN: 978-953-51-0130-7, InTech, available at:
800	http://www.intechopen.com/books/hydrodynamics-theory-and-model/hydraulics-
801	of-sediment-transport, 2012.

- 802 Hayes, J. M.: Fractionation of the isotopes of carbon and hydrogen in biosynthetic
- 803 processes, in: Stable Isotope Geochemistry, edited by: Valley, J. W. and Cole, D.
- 804 R., Rev. Mineral. Geochem., 43, 225–278, doi:10.2138/gsrmg.43.1.225, 2001.
- 805 Hedges, J. I., and Keil, R. G.: Sedimentary organic matter preservation: an assessment
- and speculative synthesis, Mar. Chem., 49, 81-115, doi:org/10.1016/0304-
- 807 4203(95)00008-F, 1995.
- Hedges, J. I., and Oades, M.: A comparative study of marine and soil geochemistry, Org.
 Geochem., 27, 319-361, doi:org/10.1016/S0146-6380(97)00056-9, 1997.
- 810 Herbold, B., and Moyle, P. B.: The ecology of the: Sacramento-San Joaquin Delta: a
- 811 community profile, U.S. Fish Wildl. Serv. Biol. Rep., 85, 1989.
- Hodson, M. E., Langan, S. J., and Meriau, S.: Determination of mineral surface area in
 relation to the calculation of weathering rates, Geoderma, 83, 35-54,
- 814 doi:org/10.1016/S0016-7061(97)00136-5, 1998.
- 815 Hoffmann, T., Glatzel, S., and Dikau, R.: A carbon storage perspective on alluvial
- sediment storage in the Rhine catchment, Geomorphol., 108, 127-137,
- 817 doi:10.1016/j.geomorph.2007.11.015, 2009.
- 818 Horowitz A. J., and Elrick, K. A.: The relation of stream sediment surface area, grain size
- and composition to trace element chemistry, Appl. Geochem., 2, 437-451,
- doi:org/10.1016/0883-2927(87)90027-8, 1987.
- Jassby, A. D., and Cloern, J. E.: Organic matter sources and rehabilitation of the
- 822 Sacramento-San Joaquin Delta (California, USA), Aquat. Conserv., 10, 323-352,
- 823 doi:org/10.1002/1099-0755(200009/10)10:5%3C323::AID-
- 824 AQC417%3E3.0.CO;2-J, 2000.

- Jepson, R., Roberts, J., and Lick, W.: Effects of bulk density on sediment erosion rates,
 Water Air Soil Pollut., 99, 21-31, 1997.
- 827 Kaiser, M., and Berhe, A. A.: How does sonication affect the mineral and orgnic
- 828 constituents of soil aggregates? A review, J. Plant Nutr. Soil Sci., 177, 479-475,
 829 doi: 10.1002/jpln.201300339, 2014.
- 830 Karlen, I., Olsson, I. U., Kallburg, P. and Kilici, S.: Absolute determination of the
- 831 activity of two ¹⁴C dating standards, Arkiv Geofysik, 4, 465-471, 1964.
- Keil, R. G. and Mayer, L. M.: Mineral matrices and organic matter, in: Treatise on
- 833 Geochemistry, edited by Falkowski, P. G. and Freeman, K. H., Elsevier, 12, 337-
- 834 359, doi:org/10.1016/B978-0-08-095975-7.01024-X, 2014.
- Keil, R. G., Tsamakis, E., Fuh, C. B., Giddings, J. C., and Hedges, J. I.: Mineralogical
- and textural controls on the organic composition of coastal marine sediments:
- 837 hydrodynamic separation using SPLITT-fractionation, Geochim. Cosmochim. Ac,

838 54, 879-893, doi:org/10.1016/0016-7037(94)90512-6, 1994a.

- Keil, R. G., Montluçon, D. B., Prahl, F. G., and Hedges, J. I.: Sorptive preservation of
- labile organic matter in marine sediments, Nature, 370, 549-552,
- doi:org/10.1038/370549a0, 1994b.
- Keil, R. G., Mayer, L. M., Quay, P. D., Richey, J. E., and Hedges, J. I.: Loss of organic
- 843 matter from riverine particles in deltas, Geochim. Cosmochim. Ac, 61, 1507-
- 844 1511, doi:org/10.1016/S0016-7037(97)00044-6, 1997.
- Keil, R. G., Tsamakis, E., Giddings, and J. C., Hedges, J. I.: Biochemical distributions
 (amino acids, neutral sugars, and lignin phenols) among size-classes of modern

- 847 marine sediments from the Washington Margin, Geochim. Cosmochim. Ac, 62,
 848 1347-1364, doi:org/10.1016/S0016-7037(98)00080-5, 1998.
- 849 Leithold, E. L., Blair, N. E., and Perkey, D. W.: Geomorphologic controls on the age of
- 850 particulate organic carbon from small mountainous and upland rivers, Global

851 Biogeochem. Cy., 20, GB3022, doi:10.1029/2005GB00002677, 2006.

- Lu, Y. H., Bauer, J. E., Canuel, E. A., Chambers, R. M., Yamashita, Y., Jaffé, R., and
- 853 Barrett, A.: Effects of land use on sources and ages of inorganic and organic
- carbon in temperate headwater streams, Biogeochem., 119, 275-292, doi:
- 855 10.1007/s10533-014-9965-2, 2014.
- Masiello, C.A.: New directions in black carbon organic geochemistry, Mar. Chem., 92,
 201-213, doi:10.1016/j.marchem.2004.06.043, 2004.
- 858 Masiello, C. A., and Druffel, E. R. M.: Carbon isotope geochemistry of the Santa Clara
- River, Global Biogeochem. Cy., 15, 407-416, doi:org/10.1029/2000GB001290,
 2001.
- 861 Mayer, L. M.: Relationships between mineral surfaces and organic carbon concentrations
- 862 in soils and sediments, Chem. Geol., 114, 347-363, doi:org/10.1016/0009-
- 863 2541(94)90063-9, 1994a.
- Mayer, L. M.: Surface area control of organic carbon accumulation in continental shelf
 sediments, Geochim. Cosmochim. Ac, 58, 1271-1284, doi:org/10.1016/00167037(94)90381-6, 1994b.
- 867 Mayer, L. M.: Extent of coverage of mineral surfaces by organic matter in marine
- 868 sediments, Geochim. Cosmochim. Ac, 63, 207-215, doi:org/10.1016/S0016-

869 7037(99)00028-9, 1999.

870	Mayer L. M., Jumars, P. A., Taghon, G. L., Macko, S. A., Trumbore, S.: Low-density
871	particles as potential nitrogenous foods for benthos, J. Mar. Res., 51, 373-389,
872	doi:org/10.1357/0022240933223738, 1994.
873	Mayer, L. M., Schick, L. L., Hardy, K. R., Wagai, R., and McCarthy, J.: Organic matter
874	in small mesopores in sediments and soils, Geochim. Cosmochim. Ac., 68: 3863-
875	3872, doi: 10.1016/j.gca.2004.03.019, 2004.
876	McIntosch, H. A., McNichol, A. P., Xu, L., Canuel, E.A.: Source-age dynamics of
877	estuarine particulate organic matter using fatty acid $\delta^{13}C$ and $\Delta^{14}C$ composition,
878	Limnol. Oceanogr., 60, 2015, 611-628, doi: 10.1002/lno.10053, 2015.
879	McNichol, A.P., Osborne, E.A., Gagnon, A. R., Fry, B., and Jones, G. A.: 1994. TIC,
880	TOC, DIC, DOC, PIC, POC – unique aspects in the preparation of oceanographic
881	samples for ¹⁴ CAMS, Nucl. Instrum. Methods, B, 92, 162–165, 1994.
882	Megens, L., van der Plicht, J. and de Leeuw, J.W.: Temporal variations in 13 C and 14 C
883	concentrations in particulate organic matter from the southern North Sea,
884	Geochim. Cosmochim. Ac. 65, 2899–2911, doi:org/10.1016/S0016-
885	7037(01)00648-2, 2001.
886	Megens, L., van der Plicht, J., de Leeuw, J. W., and Smedes, F.: Stable carbon and
887	radiocarbon isotope compositions of particle size fractions to determine origins of
888	sedimentary organic matter in an estuary, Org. Geochem., 33, 945-952,
889	doi:org/10.1016/S0146-6380(02)00060-8, 2002.
890	Milliman, J. D. and Farnsworth, K. L.: River Discharge to the Coastal Ocean, Cambridge
891	Univ. Press., 384 pp., 2011.

892	Mitra, S., Bianchi, T. S., McKee, B. A., and Sutula, M.: Black carbon from the
893	Mississippi River: quantities, sources, and potential implications for the global
894	carbon cycle, Environ,. Sci. Technol., 36, 2296-2302, doi:org/10.1021/es015834b,
895	2002.
896	Nilsen, E. B., and Delaney, M. L.: Factors influencing the biogeochemistry of
897	sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta,
898	Estuaries, 28, 653-663, doi:org/10.1007/BF02732904, 2005.
899	Oana, S., and Deevey, E. S.: Carbon 13 in lake waters, and its possible bearing on
900	paleolimnology, Am. J. Sci., 258-A, 253-272, 1960.
901	Pearson, A.: Pathways of carbon assimilation and their impact on organic matter values
902	of δ^{13} C, edited by: Timmis, K., Springer-Verlag, Berlin, 143–156,
903	doi:10.1007/978-3-540-77587-4-9, 2010.
904	Philippsen, B.: The freshwater reservoir effect in radiocarbon dating. Heritage Sci., 1,
905	24, available at: http://www.heritagesciencejournal.com/content/1/1/24,
906	doi.org/10.1186/2050-7445-1-24, 2013.
907	Prahl, F. G.: Chemical evidence of differential particle dispersal in the southern
908	Washington coastal environment, Geochim. Cosmochim. Ac, 49, 2533-2539,
909	doi:org/10.1016/0016-7037(85)90121-8, 1985.
910	Ransom, B., Kim, D., Kastner, M., and Wainwright, S.: Organic matter preservation on
911	continental slopes: importance of mineralogy and surface area, Geochim.
912	Cosmochim. Ac, 62, 1329-1345, doi:org/10.1016/S0016-7037(98)00050-7, 1998.
913	Raymond, P. A., and Bauer, J. E.: Riverine export of aged terrestrial organic matter to the
914	North Atlantic Ocean, Nature, 409, 497-500, doi:org/10.1038/35054034, 2001a.

915	Raymond, P. A., and Bauer J. E.: Use of ¹⁴ C and ¹³ C natural abundances for evaluating
916	riverine, estuarine and coastal DOC and POC sources and cycling: a review and
917	synthesis, Org. Geochem., 32, 469-485, doi:org/10.1016/S0146-6380(00)00190-
918	X, 2001b.
919	Reed, D. J.: Understanding tidal marsh sedimentation in the Sacramento-San Joaquin
920	Delta, California, J. Coast. Res., 36, 605-611, 2002.
921	Reneau, S. L., and Dietrich, W. E.: Erosion rates in the southern Oregon Coast Range:
922	Evidence for an equilibrium between hillslope erosion and sediment yield, Earth
923	Surf. Proc. Landforms, 16, 307-322, doi:org/10.1002/esp.3290160405, 1991.
924	Richter, D. D., Markewitz, D., Trumbore, S. E., and Wells, G. G.: Rapid accumulation
925	and turnover of soil carbon in a re-establishing forest, Nature, 400, 56-58,
926	doi.org/10.1038/21867, 1999.
927	Rosenheim, B. E., Roe, K. M., Roberts, B. J., Kolker, A. S., Allison, M. A., and
928	Johannesson, K. H.: River discharge influences on particulate organic carbon age
929	structure in the Mississippi/Atchafalaya River System, Global Biogeochem. Cy.,
930	27, 154-166, doi:10.1002/gbc.20018, 2013.
931	Rozentsvet, O. A., Dembitsky, and N. M., and Zhuicova, V. S.: Lipids from macrophytes
932	of the middle Volga, Phytochem., 38, 1209-1213, doi:org/10.1016/0031-
933	9422(94)00728-C, 1995.
934	Rozentsvet, O. A., Saksonov, S. V., and Dembitsky, V. M.: Hydrocarbons, fatty acids,
935	and lipids of freshwater grasses of the Potamogetonaceae family, Biochemistry-
936	USSR+, 67, 422-429, 2002.

937	Rühlmann J., Körschens, M., and Greafe, J.: A new approach to calculate the particle
938	density of soils considering properties of the soil organic matter and the mineral
939	matrix, Geoderma, 130, 272-283, doi: 10.1016/j.geoderma.2005.01.024, 2006.
940	Rullkötter, J., and Michaelis, W.: The structure of kerogen and related materials. A
941	review of recent progress and future trends, Org. Geochem., 16, 829-852,
942	doi:org/10.1016/0146-6380(90)90121-F, 1990.
943	Sampere T. P., Bianchi, T. S., Wakeham, S. G., and Allison, M. A.: Sources of organic
944	matter in surface sediments of the Louisiana continental margin: effects of
945	primary depositional/transport pathways and Hurricane Ivan, Cont. Shelf Res., 28,
946	2472-2487, doi:10.1016/j.csr.2008.06.009, 2008.
947	Schoellhamer, D. H., Wright, S. A., and Drexler, J. Z.: Conceptual model of
948	sedimentation in the Sacramento-San Joaquin River Delta, San Francisco Estuary
949	Watershed Sci., 10, 1-25, available at:
950	http://ca.water.usgs.gov/pubs/2012/2652z8sq.pdf, 2012.
951	Schoellhamer, D. H., Wright, S. A., and Drexler, J. Z.: Adjustment of the San Francisco
952	estuary and watershed to decreasing sediment supply in the 20th century, Mar.
953	Geol., 345, 63-71, 2013.
954	Schreiner, K. M., Bianchi, T. S., Eglinton, T. I., Allison, M. A., and Hanna, A. J.:
955	Sources of terrigenous inputs to surface sediments of the Colville River Delta and
956	Simpson's Lagoon, Beaufort Sea, Alaska, J. Geophys. ResBiogeo., 118, 808-
957	824, doi:10.1002/jgrg.20065, 2013.

958	Shang, C., and Tiessen, H.: Sequential versus parallel density fractionation of silt-sized
959	organomineral complexes of tropical soils using metatungstate, Soil Biol.
960	Biochem., 33, 259-262, doi: org/10.1016/S0038-0717(00)00144-9, 2001.
961	Sollins, P., Swanston, C., Kleber, M., Filley, T. Kramer, M., Crow, S., Caldwell, B. A.,
962	Lajtha, K., and Bowden, R.: Organic C and N stabilization in a forest oil:
963	Evidence from sequential density fractionation, Soil. Biol Biochem., 38, 3313-
964	3324, doi:10.1016/j.soilbio.2006.04.014, 2006.
965	Stankiewicz, B. A., Briggs, D. E. G., Michels, R., Collinson, M.E., Flannery, M. B., and
966	Evershed, R. P.: Alternative origin of aliphatic polymer in kerogen, Geol., 28,
967	559-562, doi:org/10.1130/0091-7613(2000)028%3C0559:AOOAPI%3E2.3.CO;2,
968	2000.
969	Stuiver, M.: Workshop on ¹⁴ C data reporting, Radiocarbon, 22, 964-966, 1980.
970	Stuiver M., and Polach, H. A.: Discussion: Reporting of 14C data, Radiocarbon, 19: 355-
971	363, 1997.
972	Trumbore, S.E.: Radiocarbon and soil carbon dynamics, Annu. Rev. Earth Pl. Sc., 37, 47-
973	66, doi:10.1146/annurev.earth.36.031207.124300, 2009.
974	Trumbore, S. E., Vogel, and J. S., Southon, J. R.: AMS ¹⁴ C measurements of fractionated
975	soil organic matter: An approach to deciphering the soil carbon cycle,
976	Radiocarbon, 31, 644-654, 1989.
977	Veilleux, MH., Dickens, A. F., Brandes, J., and Gélinas Y.: Density separation of
978	combustion-derived soot and petrogenic graphitic black carbon: Quantification
979	and isotopic characterization, in: From Deep-Sea to Coastal Zones: Methods and

980	Techniques For Studying Paleoenvironments, IOP Conf. Series: Earth and
981	Environ. Sci., 5, 1–9, doi:10.1088/1755-25 1307/5/1/012010, 2010.
982	von Reden K. F., Schneider, R. F., McNichol, A. P., and Pearson, A.: ¹⁴ C-AMS
983	measurements of $< 100 \ \mu g$ samples with a high-current system, Radiocarbon, 40,
984	247-253, 1998.
985	Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansouri, M. P., Sikes, E. L., and Gelin,
986	F.: Microalgal biomarkers: A review of recent research developments, Org.
987	Geochem., 29, 1163-1169, doi:org/10.1016/S0146-6380(98)00062-X, 1998.
988	Volkman, J. K.: Lipid markers for marine organic matter, in: The Handbook of
989	Environmental Chemistry, vol. 2, Reactions and Processes, Part N, Marine
990	Organic Matter: Biomarkers, Isotopes and DNA, edited by: Hutzinger, O. and
991	Volkman, J. K., Springer, Berlin, 27–70, 2006.
992	Wakeham, S. G., Lee, C, Hedges, J. I., Hernes, P. J., and Peterson, M. L.: Molecular
993	indicators of diagenetic status in marine organic matter, Geochim. Cosmochim.
994	Ac, 61, 5363-5369, doi:org/10.1016/S0016-7037(97)00312-8, 1997.
995	Wakeham, S. G., McNichol, A. P., Kostka, J., and Pease, T. K.: Natural abundance
996	radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt
997	marsh sediments, Geochim. Cosmochim. Ac, 70, 1761-1771,
998	doi:10.1016/j.gca.2005.12.020, 2006.
999	Wakeham, S. G., Canuel, E. A., Lerberg, E. J., Mason, P., Sampere, T., and Bianchi T.:
1000	Partitioning of organic matter in continental margin sediments among density
1001	fractions, Mar. Chem., 115, 211-225, doi:10.1016/j.marchem.2009.08.005, 2009.

1002	Waterson E. J., and Canuel, E. A.: Sources of sedimentary organic matter in the					
1003	Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and					
1004	$\delta^{13}C_{TOC}$ analyses, Org. Geochem., 39, 422-439,					
1005	doi:10.1016/j.orggeochem.2008.01.011, 2008.					
1006	Weiler, R. R., and Mills, A. A.: Surface properties and pore structure of marine					

- 1007 sediments, Deep-Sea Res., 12, 511-529, doi.org/10.1016/0011-7471(65)90405-5, 1965. 1008
- 1009 Wright, S.A., and Schoellhamer, D. H.: Trends in the sediment yield of the Sacramento
- 1010 River, California, 1957-2001, San Francisco Estuary and Watershed Science, 2, 1-1011 14, 2004.
- Wright S. A., and Schoellhamer, D. H.: Estimating sediment budgets at the interface 1012
- 1013 between rivers and estuaries with application to the Sacramento-San Joaquin
- 1014 River Delta, Water Resour. Res., 41, W09428, doi:10.1029/2004WR00375, 2005.

1015	Figure	Captions
	<u> </u>	1

1017 Fig. 1. Map of sampling locations in the Sacramento-San Joaquin River Delta.

- 1018
- 1019 Fig. 2. Distributions of (a) mass, (b) organic carbon content, (c) atomic C:N ratio, and
- 1020 (d) percent of total organic carbon for the Delta sediment bulk and density fractions.

1021

1022 Fig. 3. Mean and standard deviations of distributions of (a) mass, (b) organic carbon

1023 content, (c) atomic C:N ratio, and (d) percent of total organic carbon for each density

1024 fractions across the five study sites.

1025

- Fig. 4. Surface area (SA) (following combustion) (a) and organic carbon/surface area
 ratio (OC/SA) (b) for Delta bulk sediment and density fractions.
- 1028

1029 Fig. 5. δ^{13} C (a) and Δ^{14} C (b) values for OC in Delta bulk sediment and density fractions

1030 and $\delta^{13}C$ (c) and $\Delta^{14}C$ (d) values for fatty acids in bulk sediments.

1031

1032	Fig. 6. Cross plots of (a) δ^{13} C vs. Δ^{14} C for OC in Delta bulk sediment and density
1033	fractions: black symbols = Elk Slough; white symbols = Venice Cut; gray symbols =
1034	Nurse Slough and (b) δ^{13} C vs. Δ^{14} C for fatty acids in bulk sediments: black symbols
1035	= bulk OC; white symbols = long-chain FA; gray symbols = short-chain FA.
1036	

	δ ¹³ C (‰)	∆ ¹⁴ C (‰)	fm	fm error	Age (yr BP)	Age Error
			Elk Slough			
<1.6	-28.2	10	1.017	0.0039	modern	
1.6-2.0	-28.2	94	1.101	0.0043	modern	
2.0-2.5	-28.0	89	1.097	0.0034	modern	
>2.5	-27.4	-25	0.982	0.0042	150	35
bulk	-27.5	3.4	1.010	0.0031	modern	
Short FA	-36.3	91	1.100	0.0072	modern	
Long FA	-33.0	61	1.069	0.0091	modern	
			Venice Cut			
<1.6	-27.3	-147	0.859	0.0027	1220	25
1.6-2.0	-27.8	-152	0.854	0.0028	1270	25
2.0-2.5	-27.2	-114	0.892	0.0037	920	35
>2.5	-26.8	-339	0.666	0.0029	3270	35
bulk	-27.1	-151	0.854	0.0037	1260	35
Short FA	-37.5	90	1.099	0.0097	modern	
Long FA	-31.0	-180	0.825	0.0097	1840	100
			Nurse Slough			
<1.6	-27.3	-247	0.758	0.0029	2230	30
1.6-2.0	-27.1	-135	0.871	0.0027	1110	25
2.0-2.5	-26.9	-144	0.862	0.0033	1190	30
>2.5	-26.6	-382	0.622	0.0026	3810	30
bulk	-27.1	-161	0.845	0.0032	1350	30
Short FA	-35.2	19	1.027	0.0056	modern	
Long FA	-31.6	-80	0.927	0.0097	915	85

Table 1. Stable and radiocarbon isotope data for OC in density fractions, bulk OC and fatty acids for Elk Slough, Venice Cut and Nurse Slough sediments.

