Biogeosciences Discuss., 12, 16479–16526, 2015 www.biogeosciences-discuss.net/12/16479/2015/ doi:10.5194/bgd-12-16479-2015 © Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Reviews and syntheses: Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further studies

D.-G. Kim¹, A. D. Thomas², D. Pelster³, T. S. Rosenstock⁴, and A. Sanz-Cobena⁵

¹Wondo Genet Collage of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia

²Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK

³International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya

⁴World Agroforestry Centre (ICRAF), P.O. Box 30677-00100, United Nations Avenue, Nairobi, Kenya

⁵Technical University of Madrid, School of Agriculture, Avd. Complutense s/n, 28040 Madrid, Spain

Received: 6 September 2015 – Accepted: 14 September 2015 – Published: 9 October 2015 Correspondence to: D.-G. Kim (donggillkim@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural and agricultural lands, outlines the knowledge gaps and suggests future directions and strategies for GHG emission studies. GHG 5 emission data were collected from 73 studies conducted in 22 countries in sub-Saharan Africa (SSA). Soil GHG emissions from African natural terrestrial systems ranged from 3.3 to 57.0 Mg carbon dioxide (CO₂) ha⁻¹ yr⁻¹, -4.8 to 3.5 kgmethane (CH₄) ha⁻¹ yr⁻¹ and -0.1 to 13.7 kg nitrous oxide (N₂O) ha⁻¹ yr⁻¹. Soil physical and chemical properties, rewetting, vegetation type, forest management and land-use changes were all found to be important factors affecting soil 10 GHG emissions. Greenhouse gas emissions from African aquatic systems ranged from 5.7 to 232.0 MgCO₂ ha⁻¹ yr⁻¹, -26.3 to 2741.9 kgCH₄ ha⁻¹ yr⁻¹ and 0.2 to $3.5 \text{ kg} \text{ N}_2 \text{ O} \text{ ha}^{-1} \text{ yr}^{-1}$ and were strongly affected by discharge. Soil GHG emissions from African croplands ranged from 1.7 to $141.2 \text{ Mg CO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$, -1.3 to 66.7 kg CH₄ ha⁻¹ yr⁻¹ and 0.05 to 112.0 kg N₂O ha⁻¹ yr⁻¹ and the N_2O emission factor (EF) ranged from 0.01 to 4.1%. Incorporation of crop residues or manure with inorganic fertilizers resulted in significant changes in GHG emissions but these were different for CO₂ and N₂O. Soil GHG emissions in vegetable gardens ranged from 73.3 to 132.0 Mg CO₂ ha⁻¹ yr⁻¹ and 53.4 to 177.6 kg N₂O ha⁻¹ yr⁻¹ and N₂O EFs ranged from 3 to 4 %. Soil CO₂ and N₂O emissions from agroforestry were 38.6 Mg CO₂ ha⁻¹ yr⁻¹ and 20 0.2 to 26.7 kg N₂O ha⁻¹ yr⁻¹, respectively. Improving fallow with nitrogen (N)-fixing trees increased CO₂ and N₂O emissions compared to conventional croplands and type and quality of plant residue is likely to be an important control factor affecting N_2O emissions. Throughout agricultural lands, N₂O emissions slowly increased with N inputs below 150 kg N ha⁻¹ yr⁻¹ and increased exponentially with N application rates up to 25 $300 \text{ kg N} \text{ha}^{-1} \text{ yr}^{-1}$. The lowest yield-scaled N₂O emissions were reported with N application rates ranging between 100 and 150 kg N ha⁻¹. Overall, total CO₂ equivalent (eq)

emissions from African natural and agricultural lands were 56.9 ± 12.7 PgCO₂ eq yr⁻¹ and natural and agricultural lands contributed 76.3 and 23.7 %, respectively. Additional GHG emission measurements throughout Africa agricultural and natural lands are urgently required to reduce uncertainty on annual GHG emissions from the different land ⁵ uses and identify major control factors and mitigation options on emissions. There is also a need to develop a common strategy for addressing this data gap that may involve identifying priorities for data acquisition, utilizing appropriate technologies, and establishing networks and collaboration.

1 Introduction

Global greenhouse gas emissions were estimated to be 49 (±4.5) Gt CO₂ eq in 2010 (IPCC, 2014), with approximately 21.2–24% (10.3–12 Gt CO₂ eq) of emissions originating from soils in agricultural, forestry and other land use (AFOLU) (Tubiello et al., 2015; IPCC, 2014). Annual non-CO₂ GHG emissions (primarily CH₄ and N₂O) from agriculture were estimated to be 5.2–5.8 Gt CO₂ eqyr⁻¹ in 2010 (FAOSTAT, 2014;
 Tubiello et al., 2013), with approximately 4.3–5.5 Gt CO₂ eqyr⁻¹ attributable to land

use and land-use change activities (IPCC, 2014).

Greenhouse gas fluxes in Africa play an important role in the global GHG budget (Thompson et al., 2014; Hickman et al., 2014; Valentini et al., 2014; Ciais et al., 2011; Bombelli et al., 2009). In recent years, conversion rates of African natural lands,

- ²⁰ including forest, grassland and wetland to agricultural lands have increased (Gibbs et al., 2010; FAO, 2010). The dominant type of land use change has been the conversion of forest to agriculture with average deforestation rates of 3.4 million ha per year (FAOSTAT, 2014) (Fig. 1). This land-use conversion results in an estimated release of $0.32 \pm 0.05 \text{ PgC yr}^{-1}$ (Valentini et al., 2014) or $157.9 \pm 23.9 \text{ Gt CO}_2$ eq in 1765 to
- ²⁵ 2005 (Kim and Kirschbaum, 2015), higher than fossil fuel emissions for the continent (Valentini et al., 2014).

Soil emissions of all the major GHGs from Africa can be potentially significant at global scales. For example, CO₂ eq emissions from 12 river channels in SSA and wetlands of the Congo River were about 0.9 Pg C per year, equivalent to about 25 % of the global terrestrial and ocean carbon sink (Borges et al., 2015). Nitrous oxide emissions in Africa contribute between 6–19 % of the global total, and changes in soil N₂O fluxes in Africa drive large inter-annual variations in tropical and subtropical N₂O sources (Thompson et al., 2014; Hickman et al., 2011). Nitrous oxide emissions from biogenic sources and fires in natural lands were estimated to contribute to 34 % of total N₂O emissions in the region (Valentini et al., 2014). Even with the low fertilizer rates used across the continent, agricultural GHG emissions (Valentini et al., 2014). According to Lassaletta et al. (2014), mean N application rates in Africa were 34 kg N ha⁻¹ in 2009 and only 16 kg N ha⁻¹ in sub-Saharan African countries. Only Mauritius, Botswana and South Africa had average N application rates exceeding100 kg N ha⁻¹. However, use

of synthetic fertilizers such as urea has increased in the last four decades as well as the number of livestock (and their manure and urine products) (Bouwman et al., 2009 and 2013) (Figs. 2 and 3). The increasing trend in N application rates is expected to cause a twofold increase in agricultural N₂O emissions in Africa by 2050 (from 2000) (Hickman et al., 2011). In the case of CH₄ emissions, there are important differences
 between ecosystems. Tropical humid forest, wetlands and termite mounds are likely sources of CH₄, while seasonally dry forests and savannahs are typically CH₄ sinks (Valentini et al., 2014).

Our current understanding of GHG emissions in Africa is particularly limited when compared to the potential the continent has as both a GHG sink and source. This lack

²⁵ of data on GHG emissions from African natural and agricultural lands and the lack of a comprehensive analysis of existing data hinder the progress of our understanding of GHG emissions on the continent (Hickman et al., 2014; Valentini et al., 2014; Ciais et al., 2011; Bombelli et al., 2009). In order to identify mitigation measures and other climate smart interventions for the region it is important to quantify baseline GHG emis-

sions, as well as understand the impacts of different land-use management strategies on GHG emissions (e.g., Palm et al., 2010).

In this study our objectives are to synthesize currently available data on GHG emissions from African AFOLU; create an inventory of information from studies on emis-

sions; and select priority topics for future GHG emission studies in natural and agricultural lands in SSA.

2 Methodology

2.1 Data collection

Data were acquired by searching existing peer-reviewed literature using the names of the sub-Saharan countries and the GHGs (i.e. CO_2 , CH_4 and N_2O) as search terms (using Web of Science and Google Scholar; 1960–2015). We selected studies that reported in situ annual GHG emissions or those that provided enough information to estimate annual GHG emissions through unit conversion and/or extrapolation of given data. Data from 73 studies, conducted in 22 countries (n = 244) in SSA were used and were further categorized as GHG emission in natural lands (n = 117; Table S1 in the Supplement) and agricultural lands (n = 127; Table S2) (Fig. 4). The category of GHG emissions in natural lands were further divided into emissions from forest/plantation/woodland (n = 55), savannah/grassland (n = 31), streams/rivers (n = 14), wetlands/floodplains/lagoons/reservoirs (n = 11), termite mounds (n = 5), and salt names (n = 1) (Table 1). The category of GHG emission in agricultural lands

- ²⁰ salt pans (n = 1) (Table 1). The category of GHG emission in agricultural lands, were subdivided into emissions from cropland (n = 105), rice paddy (n = 1), vegetable garden (n = 5), and agroforestry (n = 16) (Table 1). Across all categories there were 174 CO₂, 201 CH₄ and 184 N₂O emissions measurements. Where N₂O emission studies included experimental data from control plots with no N fertilizer additions (i.e. for background N₂O emissions) and from plots with different levels of applied N, a N₂O
- ²⁵ background N₂O emissions) and from plots with different levels of applied N, a N₂O emission factor (EF) was calculated following the IPCC (2006) Tier I methodology as

follows:

 $N_2 O EF (\%) = \frac{N_2 O \text{ emission}_{N \text{ treatment}} - N_2 O \text{ emission}_{control}}{N \text{ input}} \times 100$ (1)

where, $N_2O \text{ EF}$ (%) is N_2O emission factor, N_2O emission_{N treatment} is N_2O emission in N input, N_2O emission_{control} is control treatments with no N fertilizer additions, and N_{input} is the amount of added N.

It should be noted that our data compilation includes a wide variety of studies that were conducted under diverse biophysical conditions using a range of methodologies for quantifying GHG emissions (e.g., different sampling protocols, chamber design, and emission rate calculations), soil properties, and climatic factors. Therefore, the overall figures on GHG emissions shown are based on results achieved by different measurement techniques with inherent and contrasting sources of error.

2.2 Statistical analyses

The compiled datasets were used to examine the best model fit and to derive the corresponding model parameters for N_2O emissions and yield-scaled N_2O emissions as

- ¹⁵ a function of the respective N input levels. Different data fitting models (linear, nonlinear, natural log, logarithm and sigmoidal) were tested for each dataset. The regression models were checked for violation of assumptions of normal distribution (Shapiro–Wilk test), homoscedasticity (Breusch–Pagan test), and constant variance (Durbin–Watson statistic) (Motulsky and Christopoulos, 2004). Separate *t* tests were used to assess
- significance of regression coefficients and intercepts in the fitted parametric models and adjusted coefficients of determination (adjusted R²) of fitted parametric models were used as criteria for model selection: the model with the higher adjusted R² was selected. Statistical significance was considered at the critical level of 5 %. These statistical analyses were conducted using SAS[®] ver. 9.2 (SAS Institute, Cary, NC, USA) and SigmaPlot[®] ver. 11.0 (Systat Software Inc., San Jose, CA, USA).

3 Results and discussion

3.1 Greenhouse gas emissions in natural lands

3.1.1 Terrestrial systems

- Soil GHG emissions from African natural terrestrial systems such as natural forest. plantation, woodland, savannah, grassland, termite mounds and salt pans ranged from 3.3 to 130.9 MgCO₂ ha⁻¹ yr⁻¹, -4.8 to $3.5 \text{ kg} \text{CH}_4 \text{ ha}^{-1} \text{ yr}^{-1}$ and -0.1 to $13.7 \text{ kg} \text{ N}_2 \text{ O} \text{ ha}^{-1} \text{ yr}^{-1}$ (Tables 1 and S1). The high variability in emission rates was likely related to differences in soil temperature, moisture content and physical-chemical properties as well as the type of natural vegetation present. Within forest systems, CO₂ emissions were strongly related to both soil moisture and temperature. For example, soil moisture explained about 50% of the seasonal variability in soil CO₂ efflux in a Croton macrostachys, Podocarpus falcatus and Prunus africana forest in Ethiopia (Yohannes et al., 2011), as well as much of the seasonal variation in soil CO_2 efflux in a 3-year-old *Eucalyptus* plantation in Republic of Congo (Epron et al., 2004). Thomas et al. (2011) found that the Q_{10} of soil CO₂ efflux (a measure of the temperature sensi-15 tivity of efflux, where a Q_{10} of 2 represents a doubling of efflux given a 10 °C increase in temperature) was dependent on soil moisture at sites across the Kalahari in Botswana, ranging from 1.1 in dry soils, to 1.5 after a 2 mm rainfall event and 1.95 after a 50 mm event. Similarly, in a Zambian woodland, the main driving factor controlling CO2 emis-
- sions at a seasonal time scale was a combination of soil water content and temperature (Merbold et al., 2011).

Soil physical (e.g., bulk density, porosity and soil texture) and chemical properties (e.g., pH, C and N) also affected soil GHG emissions (e.g., Saggar et al., 2013; Smith, 2010; Snyder et al., 2009). Soil CO₂ efflux was positively related to total soil C content in undisturbed *miombo* woodland in Zambia, although not in an adjacent disturbed woodland (Merbold et al., 2011). In a Kenyan rainforest, CO₂ emissions were negatively correlated with subsoil C and positively correlated with subsoil N concentrations,

while N₂O emissions were negatively correlated with clay content and topsoil C: N ratios (Werner et al., 2007). However, soil bulk density and pH were the most influential factors driving spatial variation of in situ N₂O emissions in a tropical highland rainforest in Rwanda (Gharahi Ghehi et al., 2014). Similarly, a laboratory-based experiment
⁵ using soils from 31 locations in a tropical mountain forest in Rwanda showed that N₂O

emissions were negatively correlated with soil pH, and positively correlated with soil moisture, soil C and soil N (Gharahi Ghehi et al., 2012).

In many temperate systems, vegetation type also affects soil GHG emissions, likely because of differences in litter quality and production rate, amount of below-ground biamage the structure of root systems as well as plant mediated effects on acil micro

- biomass, the structure of root systems as well as plant-mediated effects on soil microclimate (e.g., Díaz-Pinés et al., 2014; Masaka et al., 2014; Kim et al., 2010). This is consistent with findings from African systems where annual soil CO₂ efflux also varied with vegetation types. For example, annual soil CO₂ emissions were significantly lower in N-fixing acacia monocultures than in eucalypt monocultures and mixed-species stands
- ¹⁵ in Republic of Congo (Epron et al., 2013). The differences were attributed to leaf area index in another study from the Republic of Congo where they found 71 % of seasonal soil CO₂ efflux variability was explained by the quantity of photosynthetically active radiation absorbed by the grass canopy (Caquet et al., 2012). Also in the Republic of Congo, it was found that litterfall accounted for most of the age-related trends after the
- first year of growth, and litter decomposition produced 44 % of soil CO₂ flux in the oldest stand (Nouvellon et al., 2012), strongly suggesting that the amount and quality of litter plays a major role in determining soil CO₂ flux. However, the effect of vegetation type can also interact with soil physical-chemical properties. For example in Benin, root respiration contributed to 30 % of total soil CO₂ efflux in oil palms when the soil was at field capacity and 80 % when soil was dry (Lamade et al., 1996).

Forest soils predominantly act as sinks for CH_4 (Werner et al., 2007). In Cameroon, the largest CH_4 oxidation rates were observed from relatively undisturbed nearprimary forest sites (-14.7 to -15.2 ng m⁻² s⁻¹) compared to disturbed forests (-10.5 to 0.6 ng m⁻² s⁻¹) (Macdonald et al., 1998). Savannah and grassland were found to

be both a sink and source of CH_4 . In Mali, CH_4 uptake was observed in dry sandy savannah (Delmas et al., 1991), while a savannah in Burkina Faso was found to be both a CH_4 sink and source during the rainy season, although overall it was a net CH_4 source (Brümmer et al., 2009).

- Soil rewetting typically has a large impact on GHG emissions. Two broad mechanisms responsible for changed soil GHG flux following rewetting have been hypothesized: (1) enhanced microbial metabolism by an increase in available substrate due to microbial death and/or destruction of soil aggregates (i.e. commonly known as the Birch effect, Birch, 1964), and (2) physical mechanisms that can influence gas flux,
 including infiltration, reduced diffusivity, and gas displacement in the soil (e.g., Kim et al., 2012). Consistent with this mechanisms of re-wetting effects in soils of other continents (e.g., Kim et al., 2012), soil CO₂ efflux increased immediately after rainfall in a sub-tropical palm woodland in northern Botswana, however the increase was short-lived (Thomas et al., 2014), while large pulses of CO₂ and N₂O, followed by
- ¹⁵ a steady decline were also observed after the first rainfall event of the wet season in a Kenyan rainforest (Werner et al., 2007). Soil CO₂ efflux in a South African savannah was strongly stimulated by addition of rainfall (Fan et al., 2015; Zepp et al., 1996) and soil N₂O concentrations increased markedly 30 min after wetting and peaked between 2 and 5 h after rainfall in a semi-arid savannah (Scholes et al., 1997). In Zimbabwe, the
- release of N₂O from dryland savannahs was shown to constitute an important pathway of release for N, and emissions were strongly linked to patterns of rainfall (Rees et al., 2006). In Botswana, Thomas and Hoon (2010) reported large and short-lived pulses of soil CO₂ efflux after artificial wetting of dry soils: soil CO₂ efflux on dry soils was between 2.8–14.8 mg Cm⁻² h⁻¹ but increased to 65.6 mg Cm⁻² h⁻¹ in the hour after light
 wetting and 339.2 mg Cm⁻² h⁻¹ in the hour after heavy wetting.

Forest management such as burning, which is a common practice in SSA, and thinning, affects GHG emissions (Table 2). The IPCC Tier 1 methodology only calculates the amount of GHG emissions as a percentage of the carbon that is released through the burning; however it may also increase forest soil GHG emissions once the fire has

passed. For example, soil CO₂ efflux immediately increased after burning of woodland in Ethiopia (Andersson et al., 2004); also, five days after burning rainfall resulted in a 2-fold increase in soil CO₂ efflux from the burned plots compared to the unburned plots. In contrast, 12 days after burning soil CO₂ efflux was 21 % lower in the burned plots (Andersson et al., 2004). However, contrasting impacts of fire on soil GHG emission were observed in a savannah/grassland in the Republic of Congo where fire did not change soil CO₂, CH₄ and N₂O fluxes (Castaldi et al., 2010; Delmas et al., 1991). Similarly, in South Africa, soil CH₄ efflux was not significantly affected by burning (Zepp et al., 1996). In contrast, annual fires decreased soil CH₄ oxidation rates in a Ghanaian
savannah (Prieme and Christensen, 1999). These case studies demonstrate that fire impacts are not always consistent and this is likely the result of different fire charac-

teristics (e.g., intensity or frequency), soil type (e.g., Kulmala et al., 2014; Kim et al., 2011) and post-fire weather conditions. Thinning forest cover also can increase soil CO₂ efflux. Yohannes et al. (2013) reported 24 and 14% increases in soil CO₂ efflux ¹⁵ in the first and second years following thinning of a 6 year old *Cupressus lusitanica* plantation in Ethiopia.

Termite mounds are known sources of CH_4 and CO_2 , and a study in a Burkina Faso savannah found that CH_4 and CO_2 released by termites (*Cubitermes fungifaber*) contributed 8.8 and 0.4% of total soil CH_4 and CO_2 emissions, respectively (Brümmer et al., 2009). In Cameroon, the mounds of soil-feeding termites (*Thoracotermes*)

- ²⁰ mer et al., 2009). In Cameroon, the mounds of soil-feeding termites (*Thoracotermes macrothorax* and *Cubitermes fungifaber*) were point sources of CH₄ ranging 53.4 to 636 ng s⁻¹ mound⁻¹, which at the landscape scale may exceed the general sink capacity of the soil (Macdonald et al., 1998). In Zimbabwe, it was found that *Odontotermes transvaalensis* termite mounds located in dambos (seasonal wetlands) were an im-
- ²⁵ portant source of GHGs, and emissions varied with catena position for CO₂ and CH₄ (Nyamadzawo et al., 2012).

Compared to the other environments covered in this review there are very few studies from salt pans. Thomas et al. (2014) however, found soil CO_2 efflux increased with temperature and also increased for a few hours after flooding of the surface of the

Makgadikgadi salt pan in Botswana. Annual CO_2 emissions in salt pan were estimated as 0.7 Mg CO_2 ha⁻¹ yr⁻¹ (Thomas et al., 2014).

3.1.2 Aquatic systems

Greenhouse gas emissions from African aquatic systems such as streams, rivers, wetlands, floodplains, reservoir, and lagoons ranged from 5.7 to $232.0 \text{ Mg CO}_{2} \text{ ha}^{-1} \text{ yr}^{-1}$. -26.3 to 2741.9 kg CH₄ ha⁻¹ yr⁻¹ and 0.2 to 4.5 kg N₂O ha⁻¹ yr⁻¹ (Tables 1 and S1). In the Nyong River (Cameroon), CO_2 emissions (5.5 kg CO_2 m⁻² yr⁻¹) were four times greater than the flux of dissolved inorganic carbon (Brunet et al., 2009). In Ivory Coast, three out of five lagoons were oversaturated in CO₂ during all seasons and all were CO_2 sources (3.1–16.2 g CO_2 m⁻² d⁻¹) due to net ecosystem heterotrophy and inputs 10 of riverine CO₂ rich waters (Koné et al., 2009). In the flooded forest zone of the Congo River basin (Republic of Congo) and the Niger River floodplain (Mali), high CH₄ emissions $(5.16 \times 10^{20} - 6.35 \times 10^{22} \text{ g CH}_4 \text{ m}^{-2} \text{ d}^{-1})$ were recorded on flooded soils (Tathy et al., 1992; Delmas et al., 1991). In Zimbabwe, dambos can be major or minor sources of GHGs depending on catena position. Upland dambos were important sources of 15 N₂O and CO₂, and a sink for CH₄; while those in a mid-slope position were a major source of CH₄, but a weak source of CO₂ and N₂O; and those at the bottom were a weak source for all GHGs (Nyamadzawo et al., 2014a). In the Congo Basin (Republic of Congo), streams and rivers in savannah regions had higher CO₂ emissions $(46.8-56.4 \text{ gCO}_2 \text{ m}^{-2} \text{ d}^{-1})$ than swamps $(13.7-16.3 \text{ gCO}_2 \text{ m}^{-2} \text{ d}^{-1})$ and tropical 20 forest catchments $(37.9-62.9 \text{ g CO}_2 \text{ m}^{-2} \text{ d}^{-1})$ (Mann et al., 2014). In the Okavango Delta (Botswana), the average CH_4 flux in river channels (0.75 g CH_4 m⁻² d⁻¹) was higher than that in floodplains and lagoons $(0.41-0.49 \,\mathrm{g}\,\mathrm{CH}_{4}\,\mathrm{m}^{-2}\,\mathrm{d}^{-1})$ (Gondwe and Masamba, 2014). In the Zambezi River (Zambia), while CO₂ and CH₄ concentrations in the main channel were highest downstream of the floodplains, N₂O concentrations 25 were lowest downstream of the floodplains (Teodoru et al., 2015). Overall, 38% of the total C in the Zambezi River is emitted into the atmosphere, mostly as CO₂ (98%)

(Teodoru et al., 2015). A recent study of 10 river systems in SSA estimated water-air CO_2 , CH_4 and N_2O fluxes to be 8.2 to 66.9 g CO_2 m⁻² d⁻¹, 0.008 to 0.46 g CH_4 m⁻² d⁻¹, and 0.09 to 1.23 mg N_2Om^{-2} d⁻¹, respectively (Borges et al., 2015). The authors suggested that lateral inputs of CO_2 from soils, groundwater and wetlands were the largest contributors of the CO_2 emitted from the river systems (Borges et al., 2015).

5

The concentration and flux of GHGs are strongly linked to stream discharge but clear patterns have not yet been identified. In the Congo River, surface CO₂ flux was positively correlated with discharge (Wang et al., 2013), while in Ivory Coast, rivers were often oversaturated with CO₂ and the seasonal variability of partial pressure of CO₂
(*p*CO₂) was due to dilution during the flooding period (Koné et al., 2009). Similarly, CO₂ fluxes show a very pronounced seasonal pattern strongly linked to hydrological conditions in the Oubangui River in the Central African Republic (Bouillon et al., 2012). Although higher CH₄ concentrations were found during low-discharge conditions, N₂O

concentrations were lowest during low-discharge conditions (Bouillon et al., 2012). ¹⁵ In the Zambezi River (Zambia), inter-annual variability was relatively large for CO_2 and CH_4 and significantly higher concentrations were measured during wet seasons (Teodoru et al., 2015). However, inter-annual variability of N₂O was less pronounced and generally higher values were found during the dry season (Teodoru et al., 2015).

The relationship between GHG fluxes from aquatic systems and water temperature is not clear. In the Okavango Delta (Botswana), CH₄ emissions were highest during the warmer, summerrainy season and lowest during cooler winter season suggesting the emissions were probably regulated by water temperature (Gondwe and Masamba, 2014). However, Borges et al. (2015) found no significant correlation between water temperature and pCO_2 and dissolved CH₄ and N₂O in 11 SSA river systems, although

there was a positive relationship between pCO_2 and dissolved organic C in six of the rivers. They also found the lowest N₂O values were observed at the highest pCO_2 and lowest %O₂ levels, suggesting the removal of N₂O by denitrification (Borges et al., 2015).

3.2 Greenhouse gas emissions from agricultural lands

3.2.1 Croplands

Soil GHG emissions reported from African croplands ranged from 1.7 to $141.2 \text{ Mg CO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$, -1.3 to $66.7 \text{ kg CH}_4 \text{ ha}^{-1} \text{ yr}^{-1}$ and 0.05 to $112.0 \text{ kg N}_2 \text{ O ha}^{-1} \text{ yr}^{-1}$ (Tables 1 and S1). The N₂O EF ranged from 0.01 to 4.1% (Tables 1 and S1).

The effects of the amount and type of N input on N₂O emissions in croplands have been studied in several locations (Table 2). In western Kenya, the rate of N fertilizer application (0 to 200 kg Nha⁻¹) had no significant effect on N₂O emissions (620 to 710 g N₂O-Nha⁻¹ for 99 days) (Hickman et al., 2014), however another study from western Kenya, found a relationship between N input and N₂O emissions that was best described by an exponential model with the largest impact on N₂O emissions occurring when N inputs increased from 100 to 150 kg N ha⁻¹ (Hickman et al., 2015). An incubation study in Madagascar demonstrated that application of mixed urea and diammonium-phosphate resulted in lower N₂O emissions (28 vs. 55 ng N₂O–N g⁻¹ h⁻¹ for 28 days, respectively) than a mixed application of urea and NPK fertilizer (Rabenarivo et al., 2014).

Incorporation of crop residues to the soil has frequently been proposed to increase soil fertility (Malhi et al., 2011), however incorporation of crop residues also affects CO₂ and N₂O emissions (Table 2). In Tanzania, incorporation of plant residue into soil increased annual CO₂ fluxes substantially (emissions rose from 2.5 to 4.0 and 2.4 to 3.4 MgCha⁻¹ yr⁻¹ for clay and sand soils, respectively) (Sugihara et al., 2012), although a study in Madagascar showed that rice-straw residue application resulted in larger fluxes of CO₂ but reduced N₂O emissions due to N immobilization (Rabenar-²⁵ ivo et al., 2014). In contrast, application of *Tithonia diversifolia* (tithonia) leaves led to

greater N_2O emissions compared to urea application in maize fields in Kenya (Sommer et al., 2015; Kimetu et al., 2007). The higher N_2O emissions after application of

Tithonia diversifolia were attributed to high levels of nitrate and available carbon in the soil caused by the application that subsequently enhanced denitrification rates. In incubation studies with cultivated soil from Ghana, N₂O emissions were significantly higher from soils amended with low C : N ratio clover residues compared to high C : N ratio barley residues (Frimpong et al., 2012) and increasing the proportion of maize in a cowpea-maize residue significantly decreased N₂O emissions compared to cowpea residue incorporation alone (Frimpong et al., 2011), again likely due to the higher C : N ratio of the maize residue compared with the cowpea. Another incubation study with cultivated soil from Ghana showed that N₂O emissions increased after addition of

- ¹⁰ residues of three tropical plant species (*Vigna unguiculata, Mucuna pruriens* and *Leucaena leucocephala*) and emissions were positively correlated with the residue C:N ratio, and negatively correlated with residue polyphenol content, polyphenol:N ratio and (lignin + polyphenol):N ratio (Frimpong and Baggs, 2010). It is rare for N₂O emissions to be positively correlated to C:N ratio and the authors of the study suggest that it was either because soil C was limiting denitrification rates or that release of N
- from the residues was slow (Frimpong and Baggs, 2010). The results demonstrate that the quality of residues (e.g., C:N ratio, N, lignin and soluble polyphenol contents) affect GHG emissions and further studies are needed to clearly identify the relationship between them (Snyder et al., 2009; Mafongoya et al., 1997).

Adding an additional source of N (mineral or organic) when crop residues are incorporated into the soil could stimulate mineralization of crop residues, increase N-use efficiency and produce higher yields (e.g., Garcia-Ruiz and Baggs, 2007) (Table 2). It was found that application of mixed crop residue or manure and inorganic fertilizers resulted in different response of CO₂ and N₂O emissions. In maize (*Zea mays* L.) and winter wheat (*Triticum aestivum* L.) fields in Zimbabwe, application of inorganic fertilizer (application of MILL NO. N) with manure increased CO.

tilizer (ammonium nitrate, NH_4NO_3-N) with manure increased CO_2 emissions (26 to 73%), compared to sole application of manure (Nyamadzawo et al., 2014a). However, the mixed application resulted in lower N_2O emissions per yield (1.6–4.6 g N_2O kg⁻¹ yield), compared to sole application of inorganic fertilizer (6–14 g N_2O kg⁻¹ yield) (Nya-

madzawo et al., 2014a). Similarly, in a maize field in Zimbabwe, N₂O emissions were lower after the application of composted manure and inorganic fertilizer (NH₄NO₃–N) compared to sole application of inorganic fertilizer. The same treatments, however, led to the opposite results for CO₂ emissions (Mapanda et al., 2011). In Mali, pearl mil-

- $_{5}$ let (*Pennisetum glaucum*) fields treated with both manure and inorganic fertilizer urea emitted significantly less N₂O than plots receiving only urea fertilizer (Dick et al., 2008). The lower N₂O emissions in soils amended with manure were attributed to the initial slow release and immobilisation of mineral N and the consequently diminished pool of N available to be lost as N₂O (Nyamadzawo et al., 2014a, b; Mapanda et al., 2011; Dick
- et al., 2008). In an incubation study with cultivated soils from Zimbabwe, Ghana and Kenya, combining organic residue (maize, calliandra, and tithonia) and urea fertilizers decreased N₂O emissions in coarse-textured soils but it increased N₂O emissions in fine-textured soils due to the higher level of available N (Gentile et al., 2008).

The effects of crop type and management on GHG emissions have also been studied ¹⁵ by several groups (Table 2). In Uganda, there were no significant differences in soil CO_2 effluxes from different crops (lettuces, cabbages, beans) (Koerber et al., 2009). However, in Zimbabwe, rape production resulted in greater N₂O emissions (0.64–0.93 % of applied N was lost as N₂O) than tomatoes (0.40–0.51 % of applied N was lost as N₂O) (Masaka et al., 2014). The results suggest that the effect of crop type on GHG emis-²⁰ sions is difficult to predict and more research is needed to elucidate the relationship

between crops, crop management and GHG emissions.

In Mali, growing N-fixing haricot beans in rotation did not significantly increase N_2O emissions (Dick et al., 2008). In Madagascar, N_2O emissions were not significantly affected by management practices such as direct seeding mulch-based cropping and

traditional hand-ploughing after harvesting (Chapuis-Lardy et al., 2009). However, the authors admitted the lack of difference between treatments may be partially due to the short duration of the experiment and suggested more complete monitoring to validate the observation. In highland Tanzanian maize fields, GHG fluxes were similar from soils under conventional and various conservation agriculture practices (Kimaro et al., 2009).

2015). However, when fluxes were yield-scaled the global warming potential (Mg CO₂ eq Mg grain⁻¹) was lower from fields with reduced tillage plus mulch and leguminous trees (2.1–3.1) and from fields with reduced tillage plus mulch and nitrogen fertilizer (1.9–2.3) compared to fields under conventional agriculture (1.9–8.3) (Kimaro et al., 2015).

Croplands were found to be both a sink and a source of CH_4 . In Burkina Faso, CH_4 flux rates from croplands ranged from -0.67 to $0.70 \text{ kg} CH_4$ –C ha⁻¹ yr⁻¹ (Brümmer et al., 2009), while in Republic of Congo, CH_4 uptake was observed in cassava and peanut fields and a recently ploughed field (Delmas et al., 1991). However, cropped and fertilised dambos in Zimbabwe were consistently sources of CH_4 (13.4 to $66.7 \text{ kg} CH_4 \text{ ha}^{-1} \text{ yr}^{-1}$) (Nyamadzawo et al., 2014b).

3.2.2 Grazing grassland

Only one study measured GHG emissions in grazing grasslands. Thomas (2012) found that soil CO_2 efflux from a Botswana grazing land was significantly higher in sandy soils where the biological soil crust (BSC) was removed and on calcrete where the BSC was buried under sand. The results indicated the importance of BSCs for C cycling in drylands and indicate that intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage (Thomas, 2012).

3.2.3 Rice paddies

15

- ²⁰ Rice paddies are known to be sources of CH₄ (e.g., Linquist et al., 2012). Experiments measuring GHG emissions in rice paddies were conducted in Kenya (Tyler et al., 1988) and Zimbabwe (Nyamadzawo et al., 2013). In Kenya, the range of δ^{13} C in CH₄ for rice paddies was from -57 to -63‰ and δ^{13} CH₄ did not show any seasonal trend and did not indicate appreciable variability among two different strains of rice (Tyler et al.,
- 1988). In Zimbabwe, intermittently saturated dambo rice paddies were a source of GHG and annual emissions from these rice paddies (150 day growing season and 126 kg

of applied N ha⁻¹) were estimated as 2680 kgCO₂ ha⁻¹ yr⁻¹, 12.5 kgCH₄ ha⁻¹, and 0.12 kgN₂O ha⁻¹ (Nyamadzawo et al., 2013). The IPCC (2006) use a CH₄ emission factor of 1.30 kgCH₄ ha⁻¹ day⁻¹ for rice cultivation. The CH₄ emissions in the dambo rice paddies referred to here are much lower than the IPCC estimate (195 kgCH₄ ha⁻¹ day⁻¹ x 150 days). The corresponding IPCC (2006) N₂O EF is 0.3 % for rice cultivation and thus the N₂O emissions in the dambo rice paddies are also much lower than the IPCC estimate (0.40 kgN₂O–N ha⁻¹ = 126 kgN ha⁻¹ x 0.003; 0.63 kgN₂O ha⁻¹).

3.2.4 Vegetable gardens

Greenhouse gas emissions from soils in vegetable gardens in peri-urban areas of Burk-10 ina Faso (Lompo et al., 2012) and Niger (Predotova et al., 2010) were much higher than all other land uses, ranging from 73.3 to $132.0 \text{ MgCO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$ and 53.4 to 177.6 kg N₂O ha⁻¹ yr⁻¹ (Tables 1 and S1). In Burkina Faso annual CO₂ and N₂O emissions from the garden soils were 68 to 85% and 3 to 4% of total C and N input, respectively (Lompo et al., 2012). The N_2O EFs (3 to 4%) were higher than the IPCC default 15 value of 1.0% for all cropping systems (IPCC, 2006) and the global N₂O EF of vegetable fields (0.94%) (Rezaei Rashti et al., 2015). The high N₂O EFs may be attributed to the large amount of applied N in vegetable gardens (2700–2800 kg N ha⁻¹ yr⁻¹) since surplus N will stimulate N₂O production and also indirectly promote N₂O production by inhibiting biochemical N_2O reduction (e.g., Shcherbak et al., 2014; Kim et al., 2013). 20 In vegetable gardens of Niger, a simple plastic sheet roofing and addition of ground rock phosphate to stored ruminant manure decreased N₂O gaseous losses by 50 % in comparison to dung directly exposed to the sun (Predotova et al., 2010). The authors

argued that a decreased evaporation rate was behind this abating effect.

3.2.5 Agroforestry

Soil CO₂ and N₂O emissions from African agroforestry were $38.6 \text{ Mg CO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$ and 0.2 to 26.7 kg N₂O ha⁻¹ yr⁻¹, respectively (Tables 1 and S1). In agroforestry homegardens in Sudan, CO₂ (16.6 Mg CO₂ ha⁻¹ from June to December) and N₂O emissions (17.3 kgN₂O ha⁻¹ from June to December) accounted for two-thirds of total C output and one-third of total N output, respectively and the CO₂ and N₂O fluxes were positively correlated with soil moisture (Goenster et al., 2015). Improving fallow with N-fixing trees is a common practice in several areas of Africa since it provides additional N to the soil that can be utilised by the subsequent cash crop (e.g., Makumba et al., 2007; Chikowo et al., 2004; Dick et al., 2001). However, the practice is also 10 thought to increase CO₂ and N₂O emissions compared to conventional croplands (Table 2). In an intercropping system with a N-fixing tree (Gliricidia) and maize in southern Malawi, soil C was depleted as a result of enhanced CO₂ emissions, with over 67% of soil C lost over the first 7 years of intercropping (Kim, 2012). In Zimbabwe, N₂O emissions in improved-fallow agroforestry systems were 7 times higher than emissions 15

- in maize monoculture (Chikowo et al., 2004). In Senegal, soil collected under the Nfixing tree (*Acacia raddiana*) emitted significantly more N₂O than soil collected under the N-fixing crop (*Arachis hypogaea*) and non-N fixing tree (*Eucalyptus camaldulensis*) (Dick et al., 2006). In western Kenya, N₂O emissions increased after incorporation
- of fallow residues and emissions were higher after incorporation of improved-fallow legume residues than natural-fallow residues (Baggs et al., 2006; Millar and Baggs, 2004; Millar et al., 2004). It was found that N₂O emissions were positively correlated with residue N content (Baggs et al., 2006; Millar et al., 2004) and negatively correlated with polyphenol content and their protein binding capacity (Millar and Baggs, 2004), soluble C-to-N ratio (Millar and Baggs, 2005) and lignin content (Baggs et al., 2006).
- ²⁵ soluble C-to-N ratio (Millar and Baggs, 2005) and lignin content (Baggs et al., 2006). While high residue N content likely leads to more available soil N and consequently increased N₂O production (Baggs et al., 2006; Millar and Baggs, 2005; Millar et al., 2004), polyphenols and lignins are both resistant to decomposition and could result in

N immobilization resulting in less labile soil N and less N_2O production (Baggs et al., 2006; Millar and Baggs, 2004). The type and quality of plant residue is likely to be an important control factor affecting N₂O emissions.

- As in natural systems, improved fallow with N-fixing trees also results in increased $_{\rm 5}$ N₂O emissions following rainfall events. In an incubation experiment in Uganda, N₂O emissions following simulated rainfall were a least 4 times larger for soils from under N-fixing trees (Calliandra calothyrsus) compared to soils with non-N fixing trees (Grevillea robusta) (Dick et al., 2001). Similarly, in Mali, N₂O emissions were around six times higher from improved fallow with N-fixing trees (Gliricidia sepium and Acacia colei) following a simulated rainfall event, compared with the emissions from soil under tradi-10 tional fallow and continuous cultivation (Hall et al., 2006). Replacing traditional natural
- fallow with improved-fallow systems in the humid tropics of Kenya also increased N₂O emissions by up to $3.9 \text{ kgN}_2\text{O}-\text{N}$ ha⁻¹ over a 122 day maize cropping season (Millar et al., 2004).

3.3 Greenhouse gas emissions from land use change 15

Land-use change affects soil GHG emissions due to changes in vegetation, soil, hydrology and nutrient management (e.g., Kim and Kirschbaum, 2015) and the effects of land-use change on soil GHG emissions have been observed in woodlands and savannah. In Zimbabwe, clearing and converting woodlands to croplands increased soil emissions of CO₂, CH₄ and N₂O (Mapanda et al., 2012) and soil CO₂ emissions 20 from the converted croplands were higher than Eucalyptus plantations established in former natural woodlands (Mapanda et al., 2010). In Republic of Congo, early-rotation changes in soil CO₂ efflux after afforestation of a tropical savannah with Eucalyptus were mostly driven by the rapid decomposition of savannah residues and the increase

in *Eucalyptus* rhizospheric respiration (Nouvellon et al., 2012). 25

3.4 Summary of greenhouse gas emissions in natural and agricultural lands in Africa

3.4.1 CO₂ emissions

Carbon dioxide emissions ranged from 3.3 to $130.9 \text{ Mg} \text{CO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$ in natural terrestrial systems and from -11.9 to $232.0 \text{ Mg} \text{CO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$ in aquatic systems. The area weighted average was $27.6 \pm 17.2 \text{ Mg} \text{CO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$ (Tables 1 and S1). Aquatic systems such as water bodies or water submerged lands were the largest source of CO₂ followed by forest, savannah, termite mounds and salt pans (Table 1). Soil CO₂ emissions in agricultural lands were similar to emissions from natural lands and ranged from 6.5 to 141.2 Mg CO₂ ha⁻¹ yr⁻¹ with an area weighted average of $23.0 \pm 8.5 \text{ Mg} \text{CO}_2 \text{ ha}^{-1} \text{ yr}^{-1}$

(Tables 1 and S2). Vegetable gardens were the largest sources of CO_2 emission largely due to the large C inputs, followed by agroforestry, cropland and rice fields (Tables 1 S2).

3.4.2 CH₄ emissions

¹⁵ Forest/plantation/woodland were sinks of CH₄ (-1.5±0.6 kgCH₄ ha⁻¹ yr⁻¹) and savannah/grassland, crop lands, termite mounds, and rice fields were low to moderate CH₄ sources (0.5–30.5 kgCH₄ ha⁻¹ yr⁻¹). Stream/river and wetland/floodplain/lagoon/reservoir were high CH₄ sources (766.0–950.4 kgCH₄ ha⁻¹ yr⁻¹) (Tables 1 and S1). The area weighted averages of CH₄ emis ²⁰ sions from natural and agricultural lands were 43.0±5.8 and 19.5±5.6 kgCH₄ ha⁻¹ yr⁻¹, respectively.

3.4.3 N_2O emissions and emission factor (EF)

Nitrous oxide emissions in natural lands ranged from -0.1 to $13.7 \text{ kg} \text{N}_2 \text{O} \text{ha}^{-1} \text{ yr}^{-1}$ and the area weighted average was $2.5 \pm 0.8 \text{ kg} \text{N}_2 \text{O} \text{ha}^{-1} \text{ yr}^{-1}$ (Tables 1 and S1). Our study

Discussion BGD 12, 16479–16526, 2015 Pape **Greenhouse** gas emissions D.-G. Kim et al. Discussion **Title Page** Paper Introduction Abstract Conclusions References **Figures** Tables Discussion Paper 14 Back Close Full Screen / Esc Discussion **Printer-friendly Version** Interactive Discussion Pape

reveals that forest, plantation and woodland were the largest source of N₂O followed by rivers and wetlands, savannah and termite mounds (Table 1). Soil N₂O emissions in agricultural lands ranged from 0.051 to 177.6 kg N₂O ha⁻¹ yr⁻¹ and the area weighted average was 4.5 ± 2.2 kg N₂O ha⁻¹ yr⁻¹ (Tables 1 and S2). The largest N₂O source in agricultural lands was vegetable gardens followed by agroforestry, cropland and rice fields (Table 1). The N₂O EF was 0.5 ± 0.2 % and 3.5 ± 0.5 % for cropland and vegetable gardens, respectively (Tables 1 and S1). The results indicate that the N₂O EF of African cropland is lower and the N₂O EF of African vegetable gardens is higher than IPCC

- default N₂O EF (1 %, IPCC, 2006).
 The relationship between N input and N₂O emissions varied depending on N input level (Fig. 4). N₂O emissions increase slowly up to 150 kgNha⁻¹ yr⁻¹, after which emissions increase exponentially up to 300 kgNha⁻¹ yr⁻¹ (Fig. 5a). Consistent with van Groenigen (2010) N inputs of over 300 kgNha⁻¹ yr⁻¹ resulted in an exponential increase in emission (Fig. 5b), slowing to a steady state with N inputs of 3000 kgNha⁻¹ yr⁻¹. Overall, the relationship between N input and N₂O emissions shows a sigmoidal pattern (Fig. 5c). The observed relationship is consistent with the proposed hypothetical conceptualization of N₂O emission by Kim et al. (2013) showing a sigmoidal response of N₂O emissions to N input increases. The results suggest that N inputs over 150 kgNha⁻¹ yr⁻¹ may cause an abnormal increase of N₂O emissions in Africa. The relationship between N input and N₂O emissions were reported for N application rates ranging from 100 to 150 kgNha⁻¹ (Fig. 6). The results are in line with the global meta-analysis of Philiber
- 150 kgNha⁻¹ (Fig. 6). The results are in line with the global meta-analysis of Philiber et al. (2012) who showed that from an N application rate ~ 150 kgNha⁻¹ the increase in N₂O emissions is not linear but exponential.

25 3.4.4 CO₂ eq emission

Carbon dioxide eq emission (including CO_2 , CH_4 and N_2O) in natural lands ranged from 11.7 to 121.3 Mg CO_2 eq ha⁻¹ yr⁻¹ and the area weighted average of CO_2 eq emissions

(excluding salt pans) was 29.9 ± 22.5 Mg CO₂ eq ha⁻¹ yr⁻¹ (Table 1). Water bodies or water submerged lands such as rivers and wetlands were the largest source of CO₂ eq emissions followed by forest/plantation/woodland, savannah/grassland and termite mounds (Table 1). Carbon dioxide eq emissions in agricultural lands ranged from 7.3
 to 26.1 Mg CO₂ eq ha⁻¹ yr⁻¹ and had an area weighted average of CO₂ eq emissions (excluding vegetable gardens and agroforestry) of 25.6 ± 12.4 Mg CO₂ eq ha⁻¹ yr⁻¹ (Table 1).

Total CO₂ eq emissions in natural lands (excluding salt pans) were $43.4 \pm 9.3 \text{ Pg} \text{CO}_2 \text{ eq} \text{yr}^{-1}$ with forest/plantation/woodland the largest source followed by savannah/grassland, stream/river, wetlands/floodplains/lagoons/reservoir, and termite mounds (Table 1). Total CO₂ eq emissions in agricultural lands (excluding vegetable gardens and agroforestry) were $13.5 \pm 3.4 \text{ Pg} \text{CO}_2 \text{ eq} \text{yr}^{-1}$ with crop land the largest source followed by rice fields (Table 1). Overall, total CO₂ eq emissions in natural and agricultural lands were $56.9 \pm 12.7 \text{ Pg} \text{CO}_2 \text{ eq} \text{yr}^{-1}$ with natural and agricultural lands for a source followed by rice fields (Table 1). Overall, total CO₂ eq emissions in natural and agricultural lands were $56.9 \pm 12.7 \text{ Pg} \text{CO}_2 \text{ eq} \text{yr}^{-1}$ with natural and agricultural lands for a source followed by rice fields (Table 1). Overall, total CO₂ eq emissions in natural and agricultural lands were $56.9 \pm 12.7 \text{ Pg} \text{CO}_2 \text{ eq} \text{yr}^{-1}$ with natural and agricultural lands the largest source followed by rice fields (Table 1).

3.5 Suggested future studies

Despite an increasing number of published estimates of GHG emissions in the last decade, there remains a high degree of uncertainty about the contribution of AFOLU to emissions in SSA. To address this and reduce the uncertainty surrounding the esti-

- ²⁰ mates, additional GHG emission measurements across agricultural and natural lands throughout Africa are urgently required. Identifying controlling factors and their effects on GHG fluxes is a pre-requisite to enhancing our understanding of efflux mechanisms and a necessary step towards scaling up the field-scale data to landscape, national and continental scales. It is important to know how GHG fluxes can be affected by manage-²⁵ ment practices and natural events such as logging (e.g., Yashiro et al., 2008), thinning
- (e.g., Yohannes et al., 2013), storms (e.g., Vargas, 2012), pest outbreaks (e.g., Reed et al., 2014), fires (e.g., Andersson et al., 2004), and wood encroachment (e.g., Smith

and Johnson, 2004) in natural terrestrial systems and changing discharge (e.g., Wang et al., 2013) and water table (e.g., Yang et al., 2013) in aquatic systems. It is also important in agricultural lands to know how GHG fluxes are affected by management factors such as soil compaction (e.g., Ball et al., 1999), tillage (e.g., Sheehy et al., 2013), re-

- ⁵ moval of crop residues (Jin et al., 2014), incorporation of crop residues and synthetic fertilizer (e.g., Nyamadzawo et al., 2014a), N input (e.g., Hickman et al., 2015) and crop type (e.g., Masaka et al., 2014). However, because management and soil physical/chemical interactions cause different responses in soil GHG emissions (e.g. Pelster et al., 2012), it is critical to measure these interaction effects in the African context. The
- effect of predicted climatic change in Africa such as increased temperature (e.g., Dijkstra et al., 2012), changing rainfall patterns (e.g., Hall et al., 2006), increase in droughts incidence (e.g., Berger et al., 2013), rewetting effects (e.g., Kim et al., 2012) and increased atmospheric CO₂ concentration (e.g., Lane et al., 2013) also require further testing using laboratory and field experiments.
- ¹⁵ Where possible studies should seek to identify and separate driving processes contributing to efflux of soil CO₂ (e.g., autotrophic and heterotrophic sources), CH₄ (e.g., methanogenesis and methanotrophy) and N₂O (e.g., nitrification, denitrification, nitrifier denitrification). This is important because the consequences of increasing GHG emissions depend on the mechanism responsible. For example, if greater soil CO₂ efflux is
- ²⁰ primarily due to autotrophic respiration from plant roots, then it simply reflects greater plant growth. If however, it is due to heterotrophic microbial respiration of soil organic carbon then it represents a depletion of soil organic matter and a net transfer of C from soil to the atmosphere. Currently there are very few studies that differentiate these sources making it impossible to truly determine the consequences and implications on ²⁵ changes in soil GHG efflux.

Land-use change has been recognized as the largest source of GHG emission in Africa (Valentini et al., 2014). Hence, various types of conversion from natural lands to different land-use types should be assessed to know how these changes may affect the GHG budget (e.g., Kim and Kirschbaum, 2015). The focus of the assessment should be

on deforestation and wetland drainage, followed by a conversion to agricultural lands, since they are dominant types of land-use change in Africa (Valentini et al., 2014).

3.6 Strategic approaches for data acquisition

A strategic plan for acquisition of soil GHG emission data in sub-Saharan Africa is required. The success of any plan is dependent on long-term investment, stakeholder involvement, technical skill and supporting industries, which have not always been available in the region (Olander et al., 2013; Franks et al., 2012). A major challenge is to address the lack of consistency in the various methodologies used to quantify GHG emissions (Rosenstock et al., 2013). Relatively low cost and simple techniques can be used to determine GHG emission estimates in the first instance. Soil CO₂ fluxes can be quantified with a soda lime method (Tufekcioglu et al., 2001; Cropper et al., 1985; Edwards, 1982) or an infra-red gas analyzer (Bastviken et al., 2015; Verchot et al., 2008; Lee and Jose, 2003) and these do not require advanced technology or high levels of resource to undertake. Later, other GHG such as N₂O and CH₄ fluxes in addition to

- ¹⁵ CO₂ flux can be measured with more advanced technology (e.g., gas chromatography, photo-acoustic spectroscopy, or laser gas analyzers). Initially, the measurement can be conducted using manual gas chambers with periodical sampling frequencies. The sampling interval can be designed so that it is appropriate to the particular type of land-use or ecosystem, management practices and/or for capturing the effects of episodic
- events (e.g., Parkin, 2008). For example, GHG measurement should be more during potentially high GHG emission periods following tillage and fertilizer applications and rewetting by natural rainfalls or irrigation. With more advance technology and utilisation of automatic chamber systems measurements can be conducted at a much high frequency with relative ease.

²⁵ In order for the challenges associated with improving our understanding of GHG emissions from African soils it is critical to establish networks of scientists and scientific bodies both within Africa and across the world. Good communication and collaboration between field researchers and the modelling community should also be established

during the initial stages of research, so results obtained from field scientists can be effectively used for model development and to generate hypotheses to be tested in the field and laboratory (de Bruijn et al., 2009).

- Furthermore, lessons learned from scientific experiments can only really be suc ⁵ cessfully implemented by farmers if local stakeholders are involved from the start and throughout (see for example Stringer et al., 2012). Interviews, focus-groups, on-site or farm demonstrations, local capacity building training, local farmers and extension staff can all improve dialogue and understanding between local communities and scientists, ultimately improving the likelihood of successful GHG emission and mitigation
 ¹⁰ strategies. These will equip local researchers and stakeholders (including farmers and
- extension staff) with state of art methodologies and help motivate them to develop their GHG mitigation measures and assist them in understand their roles and contributions to global environmental issues.

4 Conclusions

- ¹⁵ This paper synthesizes the available data on GHG emissions from African agricultural and natural lands. Emissions of CO₂, CH₄ and N₂O in a variety of environments (forests, savannahs, termite mounds, salt pans, agricultural areas and water bodies) were considered. Two broad conclusions can be drawn from the work. The first one is that African natural and agricultural lands may be a significant source of GHG and
- that the emissions may increase through land-use change and management strategies. Secondly, there are huge research gaps. Africa is a vast continent, with a multitude of land uses, climates, soils and ecosystems. Field-based data on soil GHG emissions from many areas, soil types and environments are extremely sparse and as a result our understanding of Africa's contribution to global GHG emissions remains incom-
- ²⁵ plete and highly uncertain. There is an urgent need to develop and agree on a strategy for addressing this data gap. The strategy may involve identifying priorities for data

acquisition, utilizing appropriate technologies, and establishing networks and collaboration.

Appendix: A blog for open discussion and web based open databases

We have created a blog entitled "Greenhouse gas emissions in Africa: study summary and database" (http://ghginafrica.blogspot.com/) and an open-access database, which can be modified by the users, entitled "Soil greenhouse gas emissions in Africa database" (linked in the blog) based on this review. In the blog, we have posted a technical summary of each section of this review, where comments can be left under the posts. The database contains detailed information on the studies reported on GHG
emissions, such as ecosystem and land use types, location, climate, vegetation type, crop type, fertilizer type, N input rate, soil properties, GHGs emission measurement periods, N₂O EF, and corresponding reference. The database is hosted in web based spreadsheets and is easily accessible and modified. The authors do not have any relationship with the companies currently being used to host the blog and databases.

¹⁵ The Supplement related to this article is available online at doi:10.5194/bgd-12-16479-2015-supplement.

Acknowledgements. We are grateful for the numerous researchers and technicians who provided invaluable data. It is impossible to cite all the references due to limited space allowed and we apologize for the authors whose work has not been cited. We are also grateful to Luis Lassaletta for providing raw data of N application rates in Africa and Antony Smith for creating maps showing studies sites. A. Sanz-Cobena gratefully acknowledges to the Spanish Ministry of Science and Innovation and the Autonomous Community of Madrid for their economic support through the NEREA project (AGL2012-37815-C05-01, AGL2012-37815-C05-04), the Agrisost Project (S2013/ABI-2717) and the FACCE JPI MACSUR project. D.-G. Kim acknowledges sup-

port from Research and Development Office, Wondo Genet College and IAEA Coordinated Research Project (CRP D1 50.16).

References

15

25

Andersson, M., Michelsen, A., Jensen, M., and Kjøller, A.: Tropical savannah woodland: effects

- of experimental fire on soil microorganisms and soil emissions of carbon dioxide, Soil Biol. Biochem., 36, 849–858, 2004.
 - Baggs, E., Chebii, J., and Ndufa, J.: A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya, Soil Till. Res., 90, 69–76, 2006.
- ¹⁰ Ball, B. C., Scott, A., Parker, J. P.: Field N₂O, CO₂ and CH₄ fluxes in relation to tillage, compaction and soil quality in Scotland, Soil Till. Res., 53, 29–39, 1999.
 - Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide (CO₂) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849–3859, doi:10.5194/bg-12-3849-2015, 2015.
 - Berger, S., Jung, E., Köpp, J., Kang, H., and Gebauer, G.: Monsoon rains, drought periods and soil texture as drivers of soil N₂O fluxes – soil drought turns East Asian temperate deciduous forest soils into temporary and unexpectedly persistent N₂O sinks, Soil Biol. Biochem., 57, 273–281, 2013.
- ²⁰ Birch, H. F.: Mineralisation of plant nitrogen following alternate wet and dry conditions, Plant Soil, 20, 43–49, 1964.
 - Bombelli, A., Henry, M., Castaldi, S., Adu-Bredu, S., Arneth, A., de Grandcourt, A., Grieco, E., Kutsch, W. L., Lehsten, V., Rasile, A., Reichstein, M., Tansey, K., Weber, U., and Valentini, R.: An outlook on the Sub-Saharan Africa carbon balance, Biogeosciences, 6, 2193– 2205, doi:10.5194/bg-6-2193-2009, 2009.
 - Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., Omengo, F. O., Guerin, F., Lambert, T., Morana, C., Okuku, E., and Bouillon, S.: Globally significant greenhouse-gas emissions from african inland waters, Nature Geosci., doi:10.1038/ngeo2486, 2015.

- Bouillon, S., Yambélé, A., Spencer, R. G. M., Gillikin, D. P., Hernes, P. J., Six, J., Merckx, R., and Borges, A. V.: Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin), Biogeosciences, 9, 2045–2062, doi:10.5194/bg-9-2045-2012, 2012.
- ⁵ Bouwman, A. F., Beusen, A. H. W., and Billen, G.: Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050, Global Biogeochem. Cy., 23, GB0A04, 2009.

Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phos-

- ¹⁰ phorus cycles in agriculture induced by livestock production over the 1900–2050 period, P. Natl. Acad. Sci. USA, 110, 20882–20887, 2013.
 - Brümmer, C., Papen, H., Wassmann, R., and Brüggemann, N.: Fluxes of CH₄ and CO₂ from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa), Global Biogeochem. Cy., 23, GB1001, doi:10.1029/2008GB003237, 2009.
- ¹⁵ Brunet, F., Dubois, K., Veizer, J., Nkoue Ndondo, G. R., Ndam Ngoupayou, J. R., Boeglin, J. L., and Probst, J. L.: Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroun, Chem. Geol., 2, 563–572, 2009.
 - Caquet, B., De Grandcourt, A., Thongo M'bou, A., Epron, D., Kinana, A., Saint André, L., and Nouvellon, Y.: Soil carbon balance in a tropical grassland: estimation of soil respiration and
- its partitioning using a semi-empirical model, Agr. Forest Meteorol., 158–159, 71–79, 2012. Castaldi, S., de Grandcourt, A., Rasile, A., Skiba, U., and Valentini, R.: CO₂, CH₄ and N₂O fluxes from soil of a burned grassland in Central Africa, Biogeosciences, 7, 3459–3471, doi:10.5194/bg-7-3459-2010, 2010.

Chapuis-Lardy, L., Metay, A., Martinet, M., Rabenarivo, M., Toucet, J., Douzet, J. M., Razafim-

²⁵ belo, T., Rabeharisoa, L., and Rakotoarisoa, J.: Nitrous oxide fluxes from malagasy agricultural soils, Geoderma, 148, 421–427, 2009.

- Chikowo, R., Mapfumo, P., Nyamugafata, P., and Giller, K. E.: Mineral n dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe, Plant Soil, 259, 315–330, 2004.
- ³⁰ Ciais, P., Bombelli, A., Williams, M., Piao, S. L., Chave, J., Ryan, C. M., Henry, M., Brender, P., and Valentini, R.: The carbon balance of Africa: synthesis of recent research studies, Philos. T. Roy. Soc. A, 269, 2038–2057, 2011.

- Cropper Jr., W., Ewel, K. C., and Raich, J.: The measurement of soil CO₂ evolution in situ, Pedobiologia, 28, 35–40, 1985.
- de Bruijn, A. M. G., Butterbach-Bahl, K., Blagodatsky, S., and Grote, R.: Model evaluation of different mechanisms driving freeze-thaw N₂O emissions, Agric. Ecosyst. Environ., 133, 196–207, 2009.
- Delmas, R. A., Marenco, A., Tathy, J. P., Cros, B., and Baudet, J. G. R.: Sources and sinks of methane in African savanna. CH₄ emissions from biomass burning, J. Geophys. Res., 96, 7287–7299, 1991.

15

- Díaz-Pinés, E., Schindlbacher, A., Godino, M., Kitzler, B., Jandl, R., Zechmeister-
- ¹⁰ Boltenstern, S., and Rubio, A.: Effects of tree species composition on the CO₂ and N₂O efflux of a Mediterranean mountain forest soil, Plant Soil, 384, 243–257, 2014.
 - Dick, J., Skiba, U., and Wilson, J.: The effect of rainfall on NO and N₂O emissions from Ugandan agroforest soils, Phyton, 41, 73–80, 2001.

Dick, J., Skiba, U., Munro, R., and Deans, D.: Effect of N-fixing and non n-fixing trees and crops on NO and N₂O emissions from Senegalese soils, J. Biogeogr., 33, 416–423, 2006.

Dick, J., Kaya, B., Soutoura, M., Skiba, U., Smith, R., Niang, A., and Tabo, R.: The contribution of agricultural practices to nitrous oxide emissions in semi-arid Mali, Soil Use Manage., 24, 292–301, 2008.

Dijkstra, F. A., Prior, S. A., Runion, G. B., Torbert, H. A., Tian, H., Lu, C., and Venterea, R. T.:

- ²⁰ Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments, Front. Ecol. Environ., 10, 520–527, 2012.
 - Edwards, N.: The use of soda-lime for measuring respiration rates in terrestrial systems, Pedobiologia, 23, 321–330, 1982.

Epron, D., Nouvellon, Y., Roupsard, O., Mouvondy, W., Mabiala, A., Saint-André, L., Joffre, R.,

- Jourdan, C., Bonnefond, J.-M., Berbigier, P., and Hamel, O.: Spatial and temporal variations of soil respiration in a eucalyptus plantation in Congo, Forest Ecol. Manage., 202, 149–160, 2004.
 - Epron, D., Nouvellon, Y., Mareschal, L., e Moreira, R. M., Koutika, L.-S., Geneste, B., Delgado-Rojas, J. S., Laclau, J.-P., Sola, G., and de Moraes Goncalves, J. L.: Partitioning of net
- ³⁰ primary production in eucalyptus and acacia stands and in mixed-species plantations: Two case-studies in contrasting tropical environments, Forest Ecol. Manage., 301, 102–111, 2013.

- Fan, Z., Neff, J. C., and Hanan, N. P.: Modeling pulsed soil respiration in an African savanna ecosystem, Agr. Forest Meteorol., 200, 282–292, 2015.
- FAO: Global Forest Resources Assessment 2010, FAO Forestry Paper 163, Food and Agriculture Organization of the United Nations, Rome, 340 pp., available at: http://www.fao.org/ forestry/fra/fra2010/en/ (last access: 1 October 2015), 2010.
- forestry/fra/fra2010/en/ (last access: 1 October 2015), 2010.
 FAOSTAT: available at: http://faostat.fao.org/site/377/default.aspx#ancor (last access: 1 October 2015), 2014.
 - Franks, J. R. and Hadingham, B.: Reducing greenhouse gas emissions from agriculture: Avoiding trivial solutions to a global problem, Land Use Policy, 29, 727–736, 2012.
- ¹⁰ Frimpong, K. A. and Baggs, E. M.: Do combined applications of crop residues and inorganic fertilizer lower emission of N₂O from soil?, Soil Use Manage., 26, 412–424, 2010.
 - Frimpong, K. A., Yawson, D. O., Baggs, E. M., and Agyarko, K.: Does incorporation of cowpeamaize residue mixes influence nitrous oxide emission and mineral nitrogen release in a tropical luvisol?, Nutr. Cycl. Agroecosys., 91, 281–292, 2011.
- ¹⁵ Frimpong, K. A., Yawson, D. O., Agyarko, K., and Baggs, E. M.: N₂O emission and mineral N release in a tropical acrisol incorporated with mixed cowpea and maize residues, Agronomy, 2, 167–186, 2012.
 - Garcia-Ruiz, R. and Baggs, E.: N₂O emission from soil following combined application of fertiliser-N and ground weed residues, Plant Soil, 299, 263–274, 2007.
- Gentile, R., Vanlauwe, B., Chivenge, P., and Six, J.: Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations, Soil Biol. Biochem., 40, 2375–2384, 2008.
 - Gharahi Ghehi, N., Werner, C., Cizungu Ntaboba, L., Mbonigaba Muhinda, J. J., Van Ranst, E., Butterbach-Bahl, K., Kiese, R., and Boeckx, P.: Spatial variations of nitrogen trace gas emis-
- sions from tropical mountain forests in Nyungwe, Rwanda, Biogeosciences, 9, 1451–1463, doi:10.5194/bg-9-1451-2012, 2012.
 - Gharahi Ghehi, N., Werner, C., Hufkens, K., Kiese, R., Van Ranst, E., Nsabimana, D., Wallin, G., Klemedtsson, L., Butterbach-Bahl, K., and Boeckx, P.: N₂O and NO emission from the Nyungwe tropical highland rainforest in Rwanda, Geoderma Regional, 2–3, 41–49, 2014.
- Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., and Foley, J. A.: Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s, P. Natl. Acad. Sci. USA, 107, 16732–16737, 2010.

Goenster, S., Wiehle, M., Predotova, M., Gebauer, J., Ali, A. M., and Buerkert, A.: Gaseous emissions and soil fertility of homegardens in the Nuba Mountains, Sudan, J. Plant Nutr. Soil Sc., 178, 413-424, 2015.

Gondwe, M. J. and Masamba, W. R.: Spatial and temporal dynamics of diffusive methane

- emissions in the Okavango delta, northern Botswana, Africa, Wetl. Ecol. Manag., 22, 63-78, 5 2014.
 - Hall, N. M., Kaya, B., Dick, J., Skiba, U., Niang, A., and Tabo, R.: Effect of improved fallow on crop productivity, soil fertility and climate-forcing gas emissions in semi-arid conditions, Biol. Fertil. Soils, 42, 224–230, 2006.
- Hickman, J. E., Havlikova, M., Kroeze, C., Palm, C. A.: Current and future nitrous oxide emis-10 sions from African agriculture, Curr. Opin. Environ. Sustain., 3, 370-378, 2011.
 - Hickman, J. E., Palm, C., Mutuo, P., Melillo, J., and Tang, J.: Nitrous oxide (N₂O) emissions in response to increasing fertilizer addition in maize (Zea mays L.) agriculture in western Kenya, Nutr. Cycl. Agroecosys., 100, 177-187, 2014.
- Hickman, J. E., Tully, K. L., Groffman, P. M., Diru, W., and Palm, C. A. C. J. G.; A potential tipping 15 point in tropical agriculture: avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya, J. Geophys. Res., 12, 938–951, doi:10.1002/2015JG002913, 2015. Intergovernmental Panel on Climate Change (IPCC): Guidelines for National Greenhouse Gas Inventories, Geneva, Switzerland, available at: http://www.ipcc-nggip.iges.or.jp/public/ 2006gl/index.html (last access: 27 March 2015), 2006.
 - IPCC: Summary for policymakers, in: Climate Change 2014, Mitigation of Climate Change, contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Krie-
- mann, B., Savolainen, J., Schlomer, S., von Stechow, C., Zwickel, T., and Minx, J. C., Cam-25 bridge University Press, Cambridge, UK and New York, NY, USA, 1-30, 2014.
 - Jin, V. L., Baker, J. M., Johnson, J. M. F., Karlen, D. L., Lehman, R. M., Osborne, S. L., Sauer, T. J., Stott, D. E., Varvel, G. E., and Venterea, R. T.: Soil greenhouse gas emissions in response to corn stover removal and tillage management across the us corn belt, BioEnergy Research. 7. 517–527. 2014.
 - Kim, D.-G.: Estimation of net gain of soil carbon in a nitrogen-fixing tree and crop intercropping system in sub-Saharan Africa: results from re-examining a study, Agroforest. Syst., 86, 175-184, 2012.

20

30

- Kim, D.-G. and Kirschbaum, M. U.: The effect of land-use change on the net exchange rates of greenhouse gases: a compilation of estimates, Agr. Ecosyst. Environ., 208, 114–126, 2015.
- Kim, D.-G., Mu, S., Kang, S., and Lee, D.: Factors controlling soil CO₂ effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea, Soil
- ⁵ Biol. Biochem., 42, 576–585, 2010.

25

- Kim, D.-G., Vargas, R., Bond-Lamberty, B., and Turetsky, M. R.: Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research, Biogeosciences, 9, 2459–2483, doi:10.5194/bg-9-2459-2012, 2012.
- Kim, D.-G., Hernandez-Ramirez, G., and Giltrap, D.: Linear and nonlinear dependency of direct
- nitrous oxide emissions on fertilizer nitrogen input: a meta-analysis, Agr. Ecosyst. Environ., 168, 53–65, 2013.
 - Kim, Y. S., Makoto, K., Takakai, F., Shibata, H., Satomura, T., Takagi, K., Hatano, R., and Koike, T.: Greenhouse gas emissions after a prescribed fire in white birch-dwarf bamboo stands in northern Japan, focusing on the role of charcoal, Eur. J. Forest Res., 130, 1031– 1044, 2011.
- Kimaro, A., Mpanda, M., Rioux, J., Aynekulu, E., Shaba, S., Thiong'o, M., Mutuo, P., Abwanda, S., Shepherd, K., Neufeldt, H., and Rosenstock, T.: Is conservation agriculture "climate-smart" for maize farmers in the highlands of Tanzania?, Nutr. Cycl. Agroecosys., doi:10.1007/s10705-015-9711-8, 2015.
- ²⁰ Kimetu, J., Mugendi, D., Bationo, A., Palm, C., Mutuo, P., Kihara, J., Nandwa, S., and Giller, K.: Partial balance of nitrogen in a maize cropping system in humic nitisol of Central Kenya, Nutr. Cycl. Agroecosys., 76, 261–270, 2007.
 - Koerber, G. R., Edwards-Jones, G., Hill, P. W., Nyeko, P., York, E. H., and Jones, D. L.: Geographical variation in carbon dioxide fluxes from soils in agro-ecosystems and its implications for life-cycle assessment, J. Appl. Ecol., 46, 306–314, 2009.
 - Koné, Y. J. M., Abril, G., Kouadio, K. N., Delille, B., and Borges, A. V.: Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa), Estuar. Coast., 32, 246–260, 2009.

Kulmala, L., Aaltonen, H., Berninger, F., Kieloaho, A.-J., Levula, J., Bäck, J., Hari, P., Kolari, P.,

³⁰ Korhonen, J. F. J., Kulmala, M., Nikinmaa, E., Pihlatie, M., Vesala, T., and Pumpanen, J.: Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash, Agr. Forest Meteorol., 188, 33–44, 2014.

- Lamade, E., Djegui, N., and Leterme, P.: Estimation of carbon allocation to the roots from soil respiration measurements of oil palm, Plant Soil, 181, 329–339, 1996.
- Lane, R. W., Menon, M., McQuaid, J. B., Adams, D. G., Thomas, A. D., Hoon, S. R., and Dougill, A. J.: Laboratory analysis of the effects of elevated atmospheric carbon dioxide on respiration in biological soil crusts, J. Arid Environ., 98, 52–59, 2013.
- Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., and Garnier, J.: 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland, Environ. Res. Lett., 9, 105011, doi:10.1088/1748-9326/9/10/105011, 2014.

- Lee, K.-H. and Jose, S.: Soil respiration and microbial biomass in a pecan-cotton alley cropping system in southern USA, Agroforest. Syst., 58, 45–54, 2003.
- Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C., and van Groenigen, K. J.: Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis, Field Crop. Res., 135, 10–21, 2012.

Lompo, D. J.-P., Sangaré, S. A. K., Compaoré, E., Papoada Sedogo, M., Predotova, M.,

- Schlecht, E., and Buerkert, A.: Gaseous emissions of nitrogen and carbon from urban vegetable gardens in bobo-dioulasso, Burkina Faso, J. Plant Nutr. Soil Sc., 175, 846–853, 2012.
 Macdonald, J. A., Eggleton, P., Bignell, D. E., Forzi, F., and Fowler, D.: Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the mbalmayo forest reserve, Cameroon, Glob. Change Biol., 4, 409–418, 1998.
- Mafongoya, P., Giller, K., and Palm, C.: Decomposition and nitrogen release patterns of tree prunings and litter, Agroforest. Syst., 38, 77–97, 1997.
 - Makumba, W., Akinnifesi, F. K., Janssen, B., and Oenema, O.: Long-term impact of a gliricidiamaize intercropping system on carbon sequestration in southern Malawi, Agr. Ecosyst. Environ., 118, 237–243, 2007.
- Malhi, S., Nyborg, M., Solberg, E., Dyck, M., and Puurveen, D.: Improving crop yield and N uptake with long-term straw retention in two contrasting soil types, Field Crop. Res., 124, 378–391, 2011.
 - Mann, P. J., Spencer, R. G., Dinga, B., Poulsen, J. R., Hernes, P., Fiske, G., Salter, M. E., Wang, Z. A., Hoering, K. A., and Six, J.: The biogeochemistry of carbon across a gradient of
- ³⁰ streams and rivers within the Congo basin, J. Geophys. Res.-Biogeo., 119, 687–702, 2014. Mapanda, F., Mupini, J., Wuta, M., Nyamangara, J., and Rees, R.: A cross-ecosystem assess
 - ment of the effects of land cover and land use on soil emission of selected greenhouse gases and related soil properties in Zimbabwe, Eur. J. Soil Sci., 61, 721–733, 2010.

- Mapanda, F., Wuta, M., Nyamangara, J., and Rees, R. M.: Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe, Plant Soil, 343, 67–81, 2011.
- Mapanda, P., Wuta, M., Nyamangara, J., Rees, R., and Kitzler, B.: Greenhouse gas emissions
- from savanna (miombo) woodlands: Responses to clearing and cropping, Afr. Crop Sci. J., 20, 385–400, 2012.
 - Masaka, J., Nyamangara, J., and Wuta, M.: Nitrous oxide emissions from wetland soil amended with inorganic and organic fertilizers, Arch. Agron. Soil Sci., 60, 1363–1387, 2014.
 - Merbold, L., Ziegler, W., Mukelabai, M. M., and Kutsch, W. L.: Spatial and temporal variation of
- ¹⁰ CO₂ efflux along a disturbance gradient in a *miombo* woodland in Western Zambia, Biogeosciences, 8, 147–164, doi:10.5194/bg-8-147-2011, 2011.
 - Millar, N. and Baggs, E. M.: Chemical composition, or quality, of agroforestry residues influences N₂O emissions after their addition to soil, Soil Biol. Biochem., 36, 935–943, 2004.
 - Millar, N. and Baggs, E. M.: Relationships between N_2O emissions and water-soluble c and n
- contents of agroforestry residues after their addition to soil, Soil Biol. Biochem., 37, 605–608, 2005.
 - Millar, N., Ndufa, J., Cadisch, G., and Baggs, E.: Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics, Global Biogeochem. Cy., 18, GB1032, doi:10.1029/2003GB002114, 2004.
- Motulsky, H. J. and Christopoulos, A.: Fitting Models to Biological Data Using Linear and Nonlinear Regression: a Practical Guide to Curve Fitting, Oxford University Press, New York, 2004.
 - Nouvellon, Y., Epron, D., Marsden, C., Kinana, A., Le Maire, G., Deleporte, P., Saint-Andre', L., Bouillet, J.-P., and Laclau, J.-P.: Age-related changes in litter inputs explain annual trends
- ²⁵ in soil CO₂ effluxes over a full eucalyptus rotation after afforestation of a tropical savannah, Biogeochemistry, 111, 515–533, 2012.
 - Nyamadzawo, G., Gotosa, J., Muvengwi, J., Wuta, M., Nyamangara, J., Nyamugafata, P., and Smith, J. L.: The effect of catena position on greenhouse gas emissions from dambo located termite (*Odontotermes transvaalensis*) mounds from central Zimbabwe, Atmospheric and Climate Sciences, 2, 501–509, 2012.
- Nyamadzawo, G., Wuta, M., Chirinda, N., Mujuru, L., and Smith, J. L.: Greenhouse gas emissions from intermittently flooded (dambo) rice under different tillage practices in chiota smallholder farming area of Zimbabwe, Atmospheric and Climate Sciences, 3, 13–20, 2013.

Nyamadzawo, G., Wuta, M., Nyamangara, J., Smith, J. L., and Rees, R. M.: Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management, Nutr. Cycl. Agroecosys., 100, 161–175, 2014a.

Nyamadzawo, G., Shi, Y., Chirinda, N., Olesen, J.r., Mapanda, F., Wuta, M., Wu, W., Meng, F., Oelofse, M., de Neergaard, A., and Smith, J.: Combining organic and inorganic nitrogen

- ⁵ Oelofse, M., de Neergaard, A., and Smith, J.: Combining organic and inorganic nitrogen fertilisation reduces N₂O emissions from cereal crops: a comparative analysis of China and Zimbabwe, Mitig. Adapt. Strategies Glob. Chang., doi:10.1007/s11027-014-9560-9, 2014b.
 - Olander, L., Wollenberg, E., Tubiello, F., and Herold, M.: Advancing agricultural greenhouse gas quantification, Environ. Res. Lett., 8, 011002, doi:10.1088/1748-9326/8/1/011002, 2013.
- Palm, C. A., Smukler, S. M., Sullivan, C. C., Mutuo, P. K., Nyadzi, G. I., and Walsh, M. G.: Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa, P. Natl. Acad. Sci. USA, 107, 19661–19666, 2010.

Parkin, T. B.: Effect of sampling frequency on estimates of cumulative nitrous oxide emissions, J. Environ. Qual., 37, 1390–1395, 2008.

- Pelster, D. E., Chantigny, M. H., Rochette, P., Angers, D. A., Rieux, C., Vanasse, A.: Nitrous oxide emissions respond differently to mineral and organic N sources in contrasting soil types, J. Environ. Qual., 41, 427–435, 2012.
 - Predotova, M., Schlecht, E., and Buerkert, A.: Nitrogen and carbon losses from dung storage in urban gardens of Niamey, Niger, Nutr. Cycl. Agroecosys., 87, 103–114, 2010.
- ²⁰ Priemé, A. and Christensen, S.: Methane uptake by a selection of soils in Ghana with different land use, J. Geophys. Res., 104, 23617–23622, 1999.
 - Rabenarivo, M., Wrage-Moennig, N., Chotte, J. L., Rabeharisoa, L., Razafimbelo, T. M., and Chapuis-Lardy, L.: Emissions of CO₂ and N₂O from a pasture soil from Madagascarsimulating conversion to direct-seeding mulch-based cropping in incubations with organic and inorganic inputs, J. Plant Nutr. Soil Sc., 177, 360–368, 2014.
 - Reed, D. E., Ewers, B. E., and Pendall, E.: Impact of mountain pine beetle induced mortality on forest carbon and water fluxes, Environ. Res. Lett., 9, 105004, doi:10.1088/1748-9326/9/10/105004, 2014.

25

30

Rees, R. M., Wuta, M., Furley, P. A., and Li, C.: Nitrous oxide fluxes from savanna (miombo) woodlands in Zimbabwe, J. Biogeogr., 33, 424–437, 2006.

Rezaei Rashti, M., Wang, W., Moody, P., Chen, C., and Ghadiri, H.: Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: a review, Atmos. Environ., 112, 225–233, 2015.

BGD 12, 16479–16526, 2015					
Greenhouse gas emissions					
DG. Kim et al.					
Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	►I				
•	•				
Back	Close				
Full Screen / Esc					
Printer-friendly Version					
Interactive	Interactive Discussion				
CC ①					

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

- Rosenstock, T., Rufino, M., Butterbach-Bahl, K., and Wollenberg, E.: Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems, Environ. Res. Lett., 8, 021003, doi:10.1088/1748-9326/8/2/021003, 2013.Saggar, S., Jha, N., Deslippe, J., Bolan, N. S., Luo, J., Giltrap, D. L., Kim, D. G., Zaman, M., and
- Tillman, R. W.: Denitrification and N₂O:N₂ production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts, Sci. Total Environ., 465, 173–195, 2013.
 - Scholes, M. C., Martin, R., Scholes, R. J., Parsons, D., and Winstead, E.: NO and N₂O emissions from savanna soils following the first simulated rains of the season, Nutr. Cycl. Agroecosys 48 115–122 1997

Shcherbak, I., Millar, N., and Robertson, G. P.: Global metaanalysis of the nonlinear response of soil nitrous oxide (N₂O) emissions to fertilizer nitrogen, P. Natl. Acad. Sci. USA, 111, 9199–9204, 2014.

Sheehy, J., Six, J., Alakukku, L., and Regina, K.: Fluxes of nitrous oxide in tilled and no-tilled boreal arable soils. Agr. Ecosyst. Environ., 164, 190–199, 2013.

boreal arable soils, Agr. Ecosyst. Environ., 164, 190–199, 2013.
 Smith, D. L. and Johnson, L.: Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands, Ecology, 85, 3348–3361, 2004.

Smith, K.: Nitrous Oxide and Climate Change, Earthscan, London, UK, 240 pp., 2010.

Snyder, C. S., Bruulsema, T. W., Jensen, T. L., and Fixen, P. E.: Review of greenhouse gas emissions from crop production systems and fertilizer management effects, Agr. Ecosyst. Environ., 133, 247–266, 2009.

- Sommer, R., Mukalama, J., Kihara, J., Koala, S., Winowiecki, L., and Bossio, D.: Nitrogen dynamics and nitrous oxide emissions in a long-term trial on integrated soil fertility management in western Kenya, Nutr. Cycl. Agroecosys., doi:10.1007/s10705-015-9693-6, 2015.
- Stringer, L., Dougill, A. J., Thomas, A. D., Spracklen, D., Chesterman, S., Speranza, C. I., Rueff, H., Riddell, M., Williams, M., and Beedy, T.: Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands, Environ. Sci. Policy, 19, 121–135, 2012.

Sugihara, S., Funakawa, S., Kilasara, M., and Kosaki, T.: Effects of land management on CO2

- ³⁰ flux and soil C stock in two Tanzanian croplands with contrasting soil texture, Soil Biol. Biochem., 46, 1–9, 2012.
 - Tathy, J., Cros, B., Delmas, R., Marenco, A., Servant, J., and Labat, M.: Methane emission from flooded forest in central Africa, J. Geophys. Res., 97, 6159–6168, 1992.

Discussion Pa	B(12, 16479–	BGD 12, 16479–16526, 2015				
oer	Greenho emis	Greenhouse gas emissions				
Discus	DG. K	DG. Kim et al.				
sion P	Title	Page				
aper	Abstract	Introduction				
	Conclusions	References				
Dis	Tables	Figures				
cussi	14	►I				
on P	•	•				
aper	Back	Close				
_	Full Scre	Full Screen / Esc				
Discussion Paper	Printer-frier Interactive	ndly Version Discussion				

¹⁰ cosys., 48, 115–122, 1997.

- Teodoru, C. R., Nyoni, F. C., Borges, A. V., Darchambeau, F., Nyambe, I., and Bouillon, S.: Dynamics of greenhouse gases (CO₂, CH₄, N₂O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget, Biogeosciences, 12, 2431–2453, doi:10.5194/bg-12-2431-2015, 2015.
- Thomas, A. D.: Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO₂ efflux in two semiarid grasslands in southern Botswana, Philos. T. Roy. Soc. B, 367, 3076–3086, 2012.

Thomas, A. D. and Hoon, S. R.: Carbon dioxide fluxes from biologically-crusted Kalahari sands after simulated wetting, J. Arid Environ., 74, 131–139, 2010.

Thomas, A. D., Hoon, S. R., and Dougill, A. J.: Soil respiration at five sites along the kalahari transect: Effects of temperature, precipitation pulses and biological soil crust cover, Geoderma, 167, 284–294, 2011.

Thomas, A. D., Dougill, A. J., Elliott, D. R., and Mairs, H.: Seasonal differences in soil CO₂ efflux and carbon storage in Ntwetwe pan, Makgadikgadi Basin, Botswana, Geoderma, 219, 72–81, 2014.

15

- Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R. L., Prinn, R. G., Weiss, R. F., Tohjima, Y., Nakazawa, T., Krummel, P. B., Steele, L. P., Fraser, P., O'Doherty, S., Ishijima, K., and Aoki, S.: Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion, Atmos. Chem. Phys., 14, 1801–1817, doi:10.5194/acp-14-1801-2014, 2014.
- Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., and Smith, P.: The FAOSTAT database of greenhouse gas emissions from agriculture, Environ. Res. Lett., 8, 015009, doi:10.1088/1748-9326/8/1/015009, 2013.
 - Tubiello, F. N., Salvatore, M., Ferrara, A. F., House, J., Federici, S., Rossi, S., Biancalani, R., Condor Golec, R. D., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., Schmid-
- ²⁵ huber, J., Sanz Sanchez, M. J., Srivastava, N., and Smith, P.: The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012, Glob. Change Biol., 21, 2655–2660, 2015.
 - Tufekcioglu, A., Raich, J., Isenhart, T., and Schultz, R.: Soil respiration within riparian buffers and adjacent crop fields, Plant Soil, 229, 117–124, 2001.
- ³⁰ Tyler, S. C., Zimmerman, P. R., Cumberbatch, C., Greenberg, J. P., Westberg, C., and Darlington, J. P.: Measurements and interpretation of ^{d13}C of methane from termites, rice paddies, and wetlands in Kenya, Global Biogeochem. Cy., 2, 341–355, 1988.

- Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Ciais, P., Grieco, E., Hartmann, J., Henry, M., Houghton, R. A., Jung, M., Kutsch, W. L., Malhi, Y., Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin, P., Poulter, B., Raymond, P. A., Santini, M., Sitch, S., Vaglio Laurin, G., van der Werf, G. R., Williams, C. A.,
- and Scholes, R. J.: A full greenhouse gases budget of Africa: synthesis, uncertainties, and 5 vulnerabilities, Biogeosciences, 11, 381–407, doi:10.5194/bg-11-381-2014, 2014.

Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K., and Van Kessel, C.: Towards an agronomic assessment of N₂O emissions: a case study for arable crops, Eur. J. Soil Sci., 61, 903–913, 2010.

Vargas, R.: How a hurricane disturbance influences extreme CO₂ fluxes and variance in a trop-10 ical forest, Environ. Res. Lett., 7, 035704, doi:10.1088/1748-9326/7/3/035704, 2012.

Verchot, L. V., Brienza Junior, S., de Oliveira, V. C., Mutegi, J. K., Cattanio, J. H., and Davidson, E. A.: Fluxes of CH_4 , CO_2 , NO, and N_2O in an improved fallow agroforestry system in eastern Amazonia, Agr. Ecosyst. Environ., 126, 113-121, 2008.

- Wang, Z. A., Bienvenu, D. J., Mann, P. J., Hoering, K. A., Poulsen, J. R., Spencer, R. G., and 15 Holmes, R. M.: Inorganic carbon speciation and fluxes in the Congo River, Geophys. Res. Lett., 40, 511–516, 2013.
- Werner, C., Kiese, R., and Butterbach-Bahl, K.: Soil-atmosphere exchange of N₂O, CH₄, and CO₂ and controlling environmental factors for tropical rain forest sites in western Kenya, J. Geophys. Res., 112, D03308, doi:10.1029/2006JD007388, 2007. 20
 - Yang, J., Liu, J., Hu, X., Li, X., Wang, Y., and Li, H.: Effect of water table level on CO_2 , CH_4 and N₂O emissions in a freshwater marsh of Northeast China, Soil Biol. Biochem., 61, 52–60, 2013.

Yashiro, Y., Kadir, W. R., Okuda, T., and Koizumi, H.: The effects of logging on soil greenhouse

- gas (CO₂, CH₄, N₂O) flux in a tropical rain forest, Peninsular Malaysia, Agr. Forest Meteorol., 25 148, 799-806, 2008.
 - Yohannes, Y., Shibistova, O., Abate, A., Fetene, M., and Guggenberger, G.: Soil CO₂ efflux in an afromontane forest of ethiopia as driven by seasonality and tree species, Forest Ecol. Manag., 261, 1090-1098, 2011.
- Yohannes, Y., Shibistova, O., Asaye, Z., and Guggenberger, G.: Forest management influence 30 on the carbon flux of cupressus lusitanica plantation in the Munessa forest, Ethiopia, Forest Res., 2, doi:10.4172/2168-9776.1000111, 2013.

Discussion Pa	BGD 12, 16479–16526, 2015
iper	Greenhouse gas emissions
Discus	DG. Kim et al.
sion	Title Page
Dape	Abstract Introduction
_	Conclusions References
Disc	Tables Figures
ussi	14 × 1
on Pa	• • • • • •
aper	Back Close
_	Full Screen / Esc
Discussion Paper	Printer-friendly Version Interactive Discussion

Zepp, R. G., Miller, W. L., Burke, R. A., Parsons, D. A. B., and Scholes, M. C.: Effects of moisture and burning on soil–atmosphere exchange of trace carbon gases in a southern African savanna, J. Geophys. Res., 101, 23699–23706, 1996.

Table 1. Summary of greenhouse gas carbon dioxide (CO_2) , methane (CH_4) , nitrous oxid	Je
(N ₂ O) emissions and CO ₂ equivalents (CO ₂ eq) in natural and agricultural lands in sub-Sahara	an
African countries. Mean \pm standard error (number of data) are shown.	

Туре	Area (Mha)	CO_2 emission	CH_4 emission	N_2O emission	N ₂ O emission factor	CO ₂ eq emission	Total CO ₂ eq emission
		lvig CO ₂ na yr	kg CH₄na yr	kg N ₂ Ona yr	%	Mg CO2 eqna yr	Pg CO ₂ eq yr
Forest/plantation/ woodland	740.6 ^a	32.0 ± 5.0 (34)	-1.5 ± 0.6 (15)	4.2 ± 1.5 (10)	d	34.0 ± 5.7	25.2 ± 4.2
Savannah/grassland	638.9 ^a	15.5 ± 3.8 (11)	0.5 ± 0.4 (18)	0.6 ± 0.1 (6)	d	15.8 ± 3.8	10.1 ± 2.4
Stream/river	28.2 ^a	78.1 ± 13.2 (27)	436.3 ± 133.8 (24)	1.6 ± 0.3 (17)	d	93.4 ± 17.9	2.8 ± 1.0
Wetlands/floodplains/ lagoons/reservoir	43.8 ^a	96.6 ± 31.0 (7)	950.4 ± 350.4 (5)	2.0 ± 1.5 (2)	d	121.3 ± 39.7	5.3 ± 1.7
Termite mounds	0.97 ^b	11.6 ± 6.2 (3)	2.3 ± 1.1 (3)	0.01 (1)	d	11.7 ± 6.3	0.01 ± 0.01
Salt pan	d	0.7 (1)	d	d	d	d	d
Total natural lands ^h	1452.5	27.6 ± 2.9 e	43.0 ± 5.8 ^e	2.5 ± 0.4^{e}	d	29.9 ± 22.5 ^e	43.4 ± 9.3 (76.3 %) ^g
Cropland	468.7 ^a	23.4 ± 5.1 (45)	19.3 ± 4.2 (26)	4.0 ± 1.5 (83)	0.5 ± 0.2 (24)	26.1 ± 6.0	12.2 ± 2.8
Rice field	10.5 ^c	6.5 (1)	30.5 (1)	0.19 (1)	d	7.3	1.3 ± 0.6
Vegetable gardens	d	96.4 ± 10.2 (5)	d	120.1 ± 26.1 (5)	3.5 ± 0.5 (2)	d	d
Agroforestry	190 ^f	38.6 (1)	d	4.7 ± 2.2 (15)	d	d	d
Total agricultural lands ⁱ Total natural and agricultural lands ^j	479.2 1931.7	23.0 ± 8.5 ^e	19.5±5.6 ^e	4.5 ± 2.2 ^e	d	25.6 ± 12.4 ^e	$\begin{array}{c} 13.5 \pm 3.4 \; (23.7 \; \%)^9 \\ 56.9 \pm 12.7 \end{array}$

- ^a GlobCover 2009. ^b 0.07 % of savanna and rainforest (Brümmer et al., 2009). ^c FAO STAT (http://faostat3.fao.org/home/E), year 2012.

^d No data available. ^e Area weighted average.

 $^{\rm f}$ Zomer et al. (2009). $^{\rm g}$ Contribution to CO $_2$ eq emission in total natural and agricultural lands.

^h Except salt pan.

ⁱ Except vegetable gardens and agroforestry.

^j Except salt pan, vegetable gardens and agroforestry.

Discussion Paper	BGD 12, 16479–16526, 20 Greenhouse gas emissions	BGD 12, 16479–16526, 2015 Greenhouse gas emissions				
Discussior	DG. Kim et al.					
n Paper	Abstract Introducti Conclusions Reference	on es				
Discussion Pa	Tables Figures I >I I >I					
per Di	Back Close Full Screen / Esc					
scussion Paper	Interactive Discussion					

Table 2. Summary of the effect of management practices on greenhouse gas (GHG) emissions.

Land use/ecosystem type	Management practices	Impact on GHG CO_2 N ₂ O CH ₄		HG	Country (data source)
5 51	3 .			CH_4	
Forest/plantation/Woodland	Burning	+			Ethiopia; Andersson et al. (2004)
·	Thinning	+			Ethiopia; Yohannes et al. (2013)
	Land use change (cleaning	+	+	+	Zimbabwe; Mapanda et al. (2012, 2010)
	and conversion to croplands)				
	Flooding			+	Cameroon; Macdonald et al. (1998); Republic of Congo; Tathy et al. (1992): Mali: Delmas et al. (1991)
Savannah/grassland	Burning	•	•	•	Republic of Congo; Castaldi et al. (2010); Delmas et al. (1991);
e e	0				South Africa; Zepp et al. (1996)
	Land use change (cleaning	+			^a Republic of Congo; Nouvellon et al. (2012)
	and conversion to croplands)				1 0, ()
Croplands	Increase in N fertilization rate		+		Kenya; Hickman et al. (2015)
	Type of synthetic fertilizer		•		Madagascar; Rabenarivo et al. (2014)
	Application of plant residues		-		Tanzania; Sugihara et al. (2012); ^b Madagascar; Rabenarivo et al. (2014)
		+	+		Kenva: Kimetu et al. (2006): ^c Ghana: Frimpong et al. (2012)
	Crop residues + N fertilizer		+		^d Zimbabwe: Nyamadzawo et al. (2014a, b)
			_		^e Zimbabwe, Ghana and Kenva: Gentile et al. (2008)
	Combination of synthetic and organic fertilizers	+	-		^f Zimbabwe; Mapanda et al. (2011)
	organio ionalizoto		_		^g Mali: Dick et al. (2008)
	Crop type				^h Uganda: Koerber et al. (2009)
			_		ⁱ Zimbabwe: Masaka et al. (2014)
	Introducing N fixing crops in		_		Mali; Dick et al. (2008)
	rotations				
	Direct seeding mulch-based		•		Madagascar; Chapuis-Lardy et al. (2009)
	Hand-ploughing after har-		•		Madagascar; Chapuis-Lardy et al. (2009)
	Intonsivo grazing				Rotowana: Thomas (2012)
Vegetable gardens	Plastic cover for ruminant	Ŧ	_		Niger: Predotova et al. (2010)
vegetable garderis	manure		-		Nigel, Fledolova el al. (2010)
	Incorporation of fallow		+		Kenva: Baggs et al. (2006): Millar and Baggs (2004): Millar
	residues		•		et al. (2004)
Agroforestry	Improving fallow with N-fixing		+		Zimbabwe; Chikowo et al. (2004)
	crops				
	Cover crops		+		Kenya; Millar et al. (2004)
	N-fixing tree species	+	+		Malawi; Kim (2012); Makumba et al. (2007); Senegal; Dick et al. (2006)

^a U+DAP instead U+NPK.

^b N₂O study.

^c Low C: N ratio clover residues compared to high C: N ratio barley residues.

^d Application of ammonium nitrate with manure to maize (Zea mays L.) and winter wheat (Triticumaestivum L.) plant residues.

^e Plant residues of maize, calliandra, and tithonia + urea.

^f Mixed application of composted manure and inorganic fertilizer (AN).

^g Manure and urea.

^h Lettuces vs. cabbages vs. beans.

ⁱ Tomatoes vs. rape.

+ indicates increasing, • indicates no change, and - indicates decreasing.

16520

Figure 1. Change of areas of agricultural land and forest in Africa. Data source: FAOSTAT, http://faostat.fao.org/site/377/default.aspx#ancor, access 23 April 2015.

Interactive Discussion

Figure 2. Change of use of urea fertiliser in Africa. Data source: FAOSTAT, http://faostat.fao. org/site/422/default.aspx#ancor, access 23 April 2015.

Figure 3. Trends of African livestock population. Data source: FAOSTAT, http://faostat3.fao.org/ faostat-gateway/go/to/download/Q/QA/E, access 23 April 2015.

Discussion Paper

BGD

Figure 4. Maps showing study sites of CO_2 , CH_4 and N_2O fluxes.

Figure 6. Relationship between nitrogen (N) input and yield scaled nitrous oxide (N_2O) emissions. Grain type: (a) rape (*Brassica napus*) and (b) and (c) maize (*Zea mays* L.). Data sources: (a) from Nyamadzawo et al. (2014), (b) from Hickman et al. (2014) and (c) from Hickman et al. (2015). The dashed lines indicate 95% confidence intervals. Note the different scales across panels.

