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Editor’s comments

We would like to thank the editor for their attention to detail in both the paper and the

reviewer comments and replies. We have made all the modifications suggested.Below, we

include the detailed response to the reviewers’ comments, followed by a point y point list

of changes made to the manuscript and a marked up version of the revised manuscript.

Review 1

We would like to thank the reviewer for their comments and the time they took to read our

manuscript. We agree that there re many more directions of discussion possible starting

from our analysis, but we have chosen to discuss in detail what we termed the combination

model, as a proposed middle ground between the existing approaches and our initial,

potentially over-fitted and certainly unrealistic local approach. We agree that we have not
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discussed in detail the feasibility of using such a parametrisation in a ESM framework and

we have now included a more detailed discussion of this issue.

p. 16848 line 7: change assumption to simplification (more on this below)

Now changed

p. 16949 line 13-15: ”...underlying assumption that all plants...show an

identical be- havior” - this statement, while not incorrect, implies that modelers

who use PFTs are ignorant of the limitations of PFTs. Most, if not all, PFT-

based studies (including Sitch et al 2003) are careful to point out the limitations

of this approach, but also to highlight the reasons such simplifications are

necessary.

We did not mean to imply that the authors of studies which use PFTs are not aware

of the limitations and we use the word ’assumption’ in its scientific sense, in that every

theory is based on a number of assumptions which do not make that theory necessarily

wrong but only limited in its application. We have now clarified this in the text.

ine 25-26: This cursory explanation of why PFTs are used misses a criti-

cal point - for vegetation models that are intended to be used under future

climate scenarios (including possible no-analog climates) it is critical to use

physiologically based parameterizations. Because so many of the parameters

in veg models are unknown globally at fine taxonomic levels, PFTs are used to

generalize. Models that include fitted parameters that vary across space wont

work in a DGVM context where plant communities may change under future

climate scenarios.

We agree with the reviewer that we have not discussed in sufficient details the advantage
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of using PFT for future scenarios in DGVMs, and we have now added this to the text.

However, we must add that efforts are being made to develop alternative methodologies

(e.g. Fisher et al., 2015).

p. 16850 line 18: ”three main different model parameterizations” - by my

count there are at least five parameterizations treated equally (local, PFT, com-

bined, global, regional), plus two more introduced later where you let tropical

evergreen forest vary by but not other PFTs, for the combined and PFT op-

tions (p 16858 line 20). Which are the actual models used in all the figures, I

believe. Please clarify.

We thank the reviewer for pointing out that this is not clear in the text and we have

now clarified this. There are three main parametrisations which we show figures for and

discuss in detail - local, PFT and combined - as well as two other parameterisations, global

and regional, which we only show overall fit for.

p. 16853 line 15-17: any data to back this statement up? or a reference?

This result was included in our previous study (Caldararu et al., 2014), which we have

now added a reference for.

p. 16854 line 2: Its confusing to me that leaf level compensation point is in

W/m2 but canopy level is in umol/m2/s.

This results from the units that the original PAR data is in as well as the structure of

the model.

line 5: ”... do not represent measurable values in the field...” I read this as

meaning q and phi are fitting parameters.
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Absolute values for the parameters ϕ and q cannot be compared to measured values,

but relative values and variations across the globe can be considered to have biological

significance. This has now been clarified in the text.

p. 16858 line 20: broadleaf tropical forest performing better. Is there a

figure that shows this? This is a fairly significant change to the modeling

approach and deserves a bit more discussion, I think.

We have now included a figure in the appendix with detailed results for the regional

parametrisation.

line 25-26: So, based on these numbers and the change to using regional

tropical forest parameters, Table 2 (references in line 14) includes this change?

How did the PFT and combined models perform without this change? Also,

doesnt this mean there should be 3 dashed lines in Fig 7 TEF?

All figures and tables present in the paper include regional tropical forest parameters.

Figure 7 only shows parameter values for the TEF Amazon region; this has now been

clarified in the figure legend and caption.

p. 16859 lines 1-4: again, are there figures to back up these statements?

Yes, all statements in this paragraphs are based on Figure 1.

line 25: I think ”Biome” in Fig. 5 should be ”PFT”?

Yes, we apologise for this mistake, this has now been corrected.

p. 16860 lines 10-12: the values reported in figures 7 and 8 are a concern,

given that they range far beyond what is physiologically reasonable. For ex-
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ample, leaves in temperate deciduous forest rarely last beyond 8 months, yet

a-crit for these plants in your model goes out beyond 2 years.

As we explain in Section 5.1 , the agecrit values are only representative of leaf lifespan

in the model in regions where leaf loss is driven by leaf aging, so that parameter values in,

for example, broadleaf temperate forests are not constrained. We have now clarified this

in the text. In the interest of space, we do not show a comparison of the agecrit values and

effective leaf age, as we have done in our previous study (Caldararu et al., 2014).

I’m also finding the use of compensation point confusing. There are three

different compensation points mentioned in this ms - C- direct, C-diffuse, and q

(and they have different units!). Im fairly sure all the figures and the discussion

refer to C-direct, but this needs to be clarified, and defined, as Im not sure

what the difference between a direct and diffuse compensation point would be,

nor can I find any discussion of this in the literature.

Throughout the discussion, compensation point refers to the direct compensation point,

Cdirect parameter, and this has now been clarified at the start of the discussion. The direct

and diffuse compensation point arise from a need to represent the two light components

accurately without introducing a full canopy layer model, which would introduce addi-

tional complexity into our phenology model. Within a detailed canopy model, the two

compensation point parameters would be more realistically represented by a sunlit and

shaded compensation points, as it has been shown that leaves grown in different light en-

vironments will adapt to their light conditions. We have now included this explanation in

the text of the discussion.

line 20: ”The discrepancy...” Im not sure what you mean by this statement.

This sentence refers to the differences in fitted parameter values between the model
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parametrisations, as shown in Figure 8.

p. 16861 line 1: The discussion jumps right in to talking exclusively about

the combined model, without any overall summary - why choose this model of

your 5-7 models described?

We have chosen to focus on the combined model as this is a compromise between PFT

level parameters and local traits, providing a much smaller number of parameters than the

local model but attempting to overcome the disadvantages of using PFT level parameters.

In the discussion we are trying to explore the possibility that this approach can be used

more generally or if it is a result of our specific model structure or fitting procedure. We

have now added a paragraph at the start of the discussion outlining overall results.

section 5.1: This section highlights the apparent importance of compensa-

tion point, but I would like to see some references to realistic values for these

parameters, if they exist, or a discussion of why they dont and how this model

is still useful if its using un-measurable parameters.

Light compensation point values are calculated from photosynthetic light response

curves at the leaf level or extrapolated to the plant level (e.g. Givnish et al., 2004; Baltzer

and Thomas, 2007). We have now included a brief comparison with literature values in

the text of the discussion.

Review 2

We would like to thank the reviewer for their thorough comments and we hope that our

response and modifications to the manuscript will clarify the methods and the analysis.
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How was the MODIS data aggregated from a 1km resolution to a 2deg x

2.5deg resolution? Mean? Median? And why?

The MODIS LAI data was aggregated using mean values within each model grid cell.

This was done partially because of computational constraints (see below) and partially

because after the quality filtering procedure data for a 1 km pixel has a large number

of missing values and would be unsuitable for fitting a phenology model, which relies on

timeseries information. This has now been clarified in the text.

How was the 8-day MODIS data treated in terms of a model run at a

daily time step? (Im assuming the model time step is daily, although this is

not explicitly stated). Was the MODIS data interpolated from 8-day to daily

values? Were comparisons of model output to MODIS LAI done at an 8-day

or daily time step?

The model was run at a daily time step but only fitted at those dates when data was

available, i.e. every 8 days, a method which did not require interpolation of the MODIS

data. We have now added this information to the text.

How was the soil moisture data regridded to match the GEOS-4 resolution?

This was done through nearest neighbour interpolation and this information has now

been added to the soil moisture data section.

Also, why did the authors choose such a coarse resolution when the primary

datasets that describe the vegetation (LAI and the PFT map) are provided at

a much finer resolution? There are PAR datasets at finer resolutions available

(e.g. CERES 1deg x 1deg). I understand when running global scale models

computational limits may be restrictive, but the reasoning for using such a
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coarse scale should be more specifically described.

Our main limitation was indeed computational effort. The nature of the fitting algo-

rithm and that we were running multiple fitting setups required a coarse spatial resolution.

Trial runs with a higher spatial resolution (0.5◦ latitude x 0.66◦ longitude) showed that

the problem was intractable. We have now added a justification for the resolution in the

text, as advised.

In particular this aggregation produces some curious observed LAI values;

for example it is a bit odd that the forest PFTs shown in Figure 3 have observed

values of ¡1.0. The PFT classification based on dominance should be addressed

more thoroughly beyond the quick analysis provided in Figure 6 (which needs

clarification as well see below)

The PFT which show an abnormally low LAI is the evergreen boreal forest, which has

some problems due to heterogeneity even at the native resolution, as discussed in Caldararu

et al. (2014)

The introduction says 3 main model parameterizations are applied, but

appears to list 5 as it includes global and regional. The Model Set-up section

says 5 are implemented, this should be consistent to avoid confusion.

We thank the reviewer for pointing out that this is not clear in the text and we have

now clarified this. There are three main parametrisations which we show figures for and

discuss in detail - local, PFT and combined - as well as two other parametrisations, global

and regional, which we only show overall fit for.

In the model performance metrics section, there is no mention of regions or

pixels that do not conform to a regular seasonal signal. Such as arid systems
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where multiple seasonal peaks may be present in response to precipitation

events, crop systems with two planting/harvest cycles per year, or tropical

systems where there may be minimal seasonal variation. The authors should

address whether these non-standard seasonal cycles were present, and if so,

how they were addressed.

The model has the capability of representing these ’non-regular’ seasonal cycles, as,

unlike traditional phenology models, it does not rely on start and end of season thresholds

and can even represent the continuous leaf growth and loss necessary in evergreen tropical

forests. With regards to model performance metrics, the only problem might arise from

comparing timing prediction and to this end we also use time of maximum. Pixels classified

as crops have not been used in the analysis and we thank the reviewer for pointing out

that we have omitted to explain this.

The maps of results (Figures 1 and 2) are key components of the manuscript,

proving a global look at the results of a model applied globally. However, there

is a spatial shift between the pixels and the geographic borders. There are

pixels clearly over oceans. Either this is a basic problem due to an unresolved

projection difference between layers, or some of the input layers have not been

properly georeferenced calling into question the overall results. Second, why

do large areas and certain pixels have no results in some maps; N Spain, NE

Europe and W Russia, N America and Canada border region, SE U.S., S

Africa, C America, N South America, Sweden, Norway? There is no mention

of masking or screening pixels in the methods.

This problem is caused by overlaying large grid cells on a map. Missing cells are either
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non-vegetated (e.g. the Sahara desert) or cells that have been classed as majority water.

The legends of Figures 1 and 2 also need work. For the Figure 1 legend, the

upper limit (>0.8) should either be placed where the current 0.8 text is, or be

changed to >1.0; it is redundant in its current form. The legend in Figure 2

does not make sense. It currently implies that all gray pixels had no difference

in mean or amplitude between predicted and observed, obviously not true.

Also, the upper limit in each legend shows 0,7 instead of 0.7.

For the legend in figure 1, each number refers to the upper limit of the colour to the

left of it an the ’>0.8’ label is necessary to designate the value of the darkest red. The

legend and colour scale in figure 2 have now been rectified.

The results shown in figure 1 do not match results provided in the text.

Tropical forests are said to have RMSE errors of 0.15 (local), 0.22 (PFT) and

0.16 (Combined). These areas would appear as primarily yellow or light orange

on the maps, but for PFT results, nearly all tropical forests fit into the ¿0.8

category. The local and combined maps show values in the range of 0.4 to

¿0.8. In figure 5 and figure 7, Boreal Evergreen Forest is denoted as BEF in

the figure and TEF in the text.

The discrepancy between figure 1 and the text arose from a mistake on our part where

we accidentally plotted absolute RMSE values in figure 1, a mistake which has now been

corrected. We have also corrected the captions for figures 5 and 7 to denote boreal evergreen

forest by BEF.

For figure 6, the authors do not say which model these results are from;

this is not made clear until section 5.3 in the Discussion. The y-axes are
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labeled Relative, does this equate to the normalization used in other figures

and results? And if so, there is a significant portion of pixels with LAI mean

and amplitude biases greater than 0.7 (the maximum value used in figure 2).

Why not display this larger range in figure 2?

The results in Figure 6 are from the PFT model and this has now been clarified in the

legend and the results text. The reason the colourbar range in figure 1 and 2 do not show

a larger range of values is because the local, PFT and combined model are all on the same

colour scale and the PFT model has much higher errors.

In the local and combined models the parameters are not constrained to

realistic ranges. This calls into question the applicability of these models. For

example, the age-crit parameter approaches nearly two years in some temperate

deciduous forests, and can be as short as a few months in boreal evergreen

forests, this is not realistic. I understand that one goal of this manuscript was

exploratory, to allow parameters to range to achieve the best fit. But when the

parameterization is allowed to vary regardless of known biological limits, the

resulting model loses it applicability to represent realistic conditions which is

the ultimate goal of applying such models to predict future conditions. This

lack of realistic representation is also apparent in the aggregation problem

mentioned earlier, where Forest PFTs have observed mean LAI values less

than 1.0.

As we explain in the discussion. the agecrit parameter does not represent effective leaf

e.g. in areas that are not limited by leaf ageing, such as the temperate regions, where

the parameter is not well constrained. We aimed to have a general global model and let

all parameters be fitted in any location of the globe, even where some of the processes,

leaf loss through ageing in this case, are not applicable. The model correctly identifies the

11



driving factor for leaf loss however and this does not lead to any errors in model results.

We apologise if this was not clear enough in the text an we have expanded this explanation.

Amain goal of the manuscript was to demonstrate how more specific parameteriza-

tion of a phenology model would improve upon the widely applied method

of general PFT parameterizations. In order to make such a comparison and

demonstrate model improvement, the widely applied method (general PFT)

must be run in its true format; i.e. representation of multiple PFTs within a

single grid cell. To their credit, the authors clearly make this point in Section

5.3, and stipulate that this may be main source of error in the PFT model.

A main concern is that the PFT model shown here is not representative of

the method used in the majority of global models, yet the results of this ap-

plication are treated as though they are representative of this model in other

applications. For example (P. 16850 L. 8-10), the authors state it is important

to formally evaluate the PFT model in comparison to alternative approaches.

Yes, certainly true, but that is not what is being done in this manuscript. Also,

the authors claim in the conclusion that a model with PFT wide parameters

cannot explain the observed spatial variation. . .and a response would be of

course it cant explain the variation when the PFTs are aggregated to a sin-

gle dominant PFT across a 2.0x2.5 degree extent. For instance the authors

state in the Abstract and P. 16849 L. 13-14 that the PFT approach makes an

assumption that all plants within a PFT show identical behavior. True to a

degree, but in its application here this assumption is taken a step further in

that the mix of PFTs (plants) in a grid cell are being forced to show behavior

identical to a completely separate PFT, e.g. where a grid cell may cover both

forested and shrubland systems.
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We acknowledge that the simplified way in which we use the PFT parameters is one of

the major shortcomings of our study and that DGVMs which use the PFT concept allow for

multiple PFTs in one grid cell. The fact that we are constraining our model parameters to

data makes this a mathematically and computationally difficult problem however. Recent

studies have compared the use of plant traits and PFT parameters in non-data constrained

conditions and shown that the trait based models perform better (Sakschewski et al., 2015;

Verheijen et al., 2013). We have chosen to explore the same question in the context of a

data constrained model, which can bring more information to the model but also imposes

some limitations on the parametrisation scheme. We have attempted to further discuss

and justify our approach in the text.

First, some methods descriptions need to be more specific including some

discussion of pixels which may not follow regular seasonal cycles. Second, the

results need to be clarified; with attention paid to the figures, clarification

in why some areas show no results and discrepancies between text and figures

sorted out. Third, in order for the results to be applicable to the current state of

model development and application some form of constraint should be applied

to parameters based on biological limits; presenting a model that provides a

better fit without this consideration still does not allow for its application.

We hope that we have sufficiently clarified the methods and results and we have better

explained the relationship between our age parameter and leaf age. We would like to

thank the reviewer once again for their attention to detail in finding the discrepancies sin

the figures and text.

Finally, in order to demonstrate improvement if phenology representation,

the results should be compared to a PFT scale model as it is truly applied.

This could be done by using existing model runs and results from other sources

so that the authors do not face computational constraints.
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Unfortunately comparing to different models would raise a number of completely dif-

ferent questions, as our model uses the plant optimality hypothesis, while most other

phenology models use a degree day approach. Such a model comparison would be inter-

esting, but would not answer the remaining question about our treatment of PFTs. We

have attempted to discuss this problem openly and outline the limitations of our study.

Changes made to manuscript

All page and line numbers refer to the Discussion paper. Changes in italics were made in

response to the editor’s comments.

p 16848 l7 “assumption” changed to “simplification”

p 16849 l16 Included clarification of why the PFT paradigm was necessary

p 16849 l26 Added short discussion of use of PFTs in DGVMs for future predictions

p 16850 l18 Clarified number of parametrisations

p 16851 l14 Added explanation of how the data was regridded and the reason for the

regrinding as well as a mention of how we dealt with pixels classified as crops

p 16852 l20 Added statement that the model is capable or reproducing irregular seasonal

cycles.

p 16853 l8 Added brief explanation for the reason of using two compensation points

p 16853 l18 Added reference to previous study

p 16854 l7 Added explanation of physical meaning of scaled photosynthesis parameters

p 16854 l7 Added explanation of different units for the light-related parameters

p 16857 l8 Added information of model timestep

p 16858 l 26 Additional reference to Figure 1 for clarity.

p 16859 l19 Added information on low LAI values in boreal forests

p 16860 l5 Added “In the PFT model”
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p 16861 l1 Added short general paragraph at the start of the discussion.

p 16861 l27 Added explanation of relationship between diffuse and direct compensation

point parameters.

p 16862 l3 Added comparison with literature values of light compensation point

p 16862 l5 Expanded explanation of relationship between our age parameter and leaf

lifespan, including reference to previous study

p 16865 l 17 Added paragraph on using a trait based model in the context of an ESM.

p 16876 Fig 1 Modified to correctly show relative RMSE

p 16877 Fig 2 Colourbar corrected

p 16880 Fig 5 Legend fixed. TEF replaced with BEF

p 16881 Fig 6 ’in the PFT model’ added

p 16882 Fig 7 TEF replaced by TEF Amazon and TEF corrected to BEF
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Abstract. Leaf seasonality impacts a variety of important biological, chemical and physical Earth

system processes, which makes it essential to represent leaf phenology in ecosystem and climate

models. However, we are still lacking a general, robust parametrisation of phenology at global scales.

In this study, we use a simple process-based model, which describes phenology as a strategy for

carbon optimality, to test the effects of the common assumption
:::::::::::
simplification

:
in global modelling5

studies that plant species within the same plant functional type have the same parameter values,

implying they are assumed to have the same species traits. In a previous study this model was shown

to predict spatial and temporal dynamics of leaf area index (LAI) well across the entire global land

surface provided local grid cell parameters were used, and is able to explain 96% of the spatial

variation in average LAI and 87% of the variation in amplitude. In contrast, we find here that a10

PFT level parametrisation is unable to capture the spatial variability in seasonal cycles, explaining

on average only 28% of the spatial variation in mean leaf area index and 12% of the variation in

seasonal amplitude. However we also show that allowing only two parameters, light compensation

point and leaf age, to be spatially variable dramatically improves the model predictions, increasing

the model’s capability of explaining spatial variations in leaf seasonality to 70% and 57% of the15

variation in LAI average and amplitude respectively. This highlights the importance of identifying

the spatial scale of variation of plant traits and the necessity to critically analyse the use of the plant

functional type assumption in Earth system models.

1 Introduction

The ability to understand and predict leaf seasonal cycles, a process known as leaf phenology, is20

essential to our understanding of earth systems processes, through its impact on the carbon and wa-

ter cycles (White et al., 1999; Wilson and Baldocchi, 2000) and climate (Hayden, 1998). As such,

phenology is an essential component of global vegetation models and an improvement in our under-

standing of, and ability to predict, leaf phenology would improve Earth System Model predictions.

One of the aspects of global vegetation models that is currently under scrutiny is the way param-25

eters are assigned to the simulated vegetation within a given model grid cell. Traditionally, models
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make use of the Plant Functional Type concept (PFT). In this approach, a small number of PFTs are

defined, each with a corresponding set of parameters, then a given grid cell is assigned to one, or a

mixture of, these PFTs. However, more recently efforts are being made to include a more biologi-

cally detailed representation in the form of plant traits. PFTs are classes of plant species with similar30

characteristics and roles within ecosystems (Box, 1996; Smith, 1997) and found within certain bio-

climatic regions (Prentice et al., 1992; Haxeltine and Prentice, 1996). All model parameter values

are then assigned to each PFT either based on ground measurements or through parameter estima-

tion. This approach has the underlying assumption that all plants within such a PFT show an identical

behaviour (Sitch et al., 2003), an assumption applied to all processes represented in such models, in-35

cluding leaf phenology. Dynamic global vegetation models predict PFT distributions based either

on pre-defined climate envelopes (Prentice et al., 1992) or pre-defined competitive outcomes, both

approaches being based on existing PFT distributions (Arora and Boer, 2006) . Recent studies have

attempted to use a more physiological based approach (Fisher et al., 2015)
::::
Such

:::
an

::::::::::
assumption

::
is

::::::::
necessary

:::::::
because

::
of

:::
the

::::
lack

::
of

:::::::
available

::::::::::::
measurements

::::::
across

:::
the

:::::
globe

::::::
needed

:::
for

::::::
models

::::::
which40

::
are

:::
not

::::
data

::::::::::
constrained.

The main advantage of using PFTs in vegetation models is the simplicity of the concept and

the relatively small number of parameters, minimising both the amount of data and computational

effort required. Using PFTs to represent ecological processes at global scales would be the ob-

vious initial choice for parameter inference because the number of parameters can be kept low45

while still representing the various types of vegetation.
::::
PFTs

:::
are

::::
also

::
a

:::::
useful

:::::::
concept

:::
for

::::::
future

::::::
climate

:::::::::
predictions

::::::
where

:::::::
expected

:::::::
changes

::
in

:::::::::
vegetation

::::
type

:::
can

::
be

:::::
easily

::::::::::
represented

::
in

::::
this

::::
way.

:::::::
Dynamic

::::::
global

:::::::::
vegetation

:::::::
models

::::::
predict

::::
PFT

:::::::::::
distributions

:::::
based

:::::
either

:::
on

::::::::::
pre-defined

:::::::
climate

::::::::
envelopes

::::::::::::::::::::
(Prentice et al., 1992) or

:::::::::
pre-defined

::::::::::
competitive

:::::::::
outcomes,

::::
both

::::::::::
approaches

:::::
being

:::::
based

::
on

:::::::
existing

::::
PFT

::::::::::
distributions

:::::::::::::::::::::
(Arora and Boer, 2006) .

::::::
Recent

::::::
studies

::::
have

::::::::
attempted

::
to
::::
use

:
a
:::::
more50

:::::::::::
physiological

:::::
based

::::::::
approach

:::::::::::::::::
(Fisher et al., 2015) .

However, there are a number of disadvantages to using the PFT approach, mainly due to the

fact that a PFT-type categorisation imposes fixed parameter values and cannot capture the contin-

uous variation observed in plant traits within and among PFTs (see review by Van Bodegom et al.,

2012). Capturing such heterogeneity may not only improve the prediction of biogeochemical and55

physical dynamics in Earth system models but may also improve predictions of other longer term

vegetation processes such as shifts in vegetation composition to climate change. Recent studies have

therefore focussed on replacing the PFT method with using plant traits (Sakschewski et al., 2015;

Verheijen et al., 2013; Pavlick et al., 2013) and identifying the distribution of traits to use in differ-

ent locations across the Earth surface (Kattge et al., 2011; Reich et al., 2007).60

Given the potential advantages and disadvantages of the PFT approach, it is important to formally

evaluate it in comparison to alternative approaches, such as using location-specific traits, but such a

formal comparison has not been carried out to date.
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In the current paper we aim to investigate the use of PFT and trait based parameters within the

framework of a data constrained global phenology model. We have chosen to use a previously de-65

veloped leaf phenology model (Caldararu et al., 2014) as a simpler case than a full scale DGVM.

For the purpose of this paper, we use the term phenology to encompass seasonal trajectories of leaf

area index (LAI) as well as the timing of leaf off and leaf on, which is what the term refers to in

its stricter sense. We explore the extent to which the PFT assumption can capture the spatial vari-

ability in leaf seasonality. To this end, we use three main different model parametrisations: the local70

parametrisation, the fitted parameters at the PFT level and a novel approach which combines PFT

level parameters with local traits,as well as
:::
and

:::
two

:::::::::
additional

::::
ones

:
- a global and regional parametri-

sation (Section 3). We explore the differences between the different parametrisations (Section 4) and

we aim to explain the effects shown by local parameters and their relationships with plant traits

(Section 5).75

2 Datasets used

2.1 LAI data

We use leaf area index (LAI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS)

on board the Terra platform. We use the MODIS collection 5 product MOD15A which is available at

1 km spatial resolution and an 8 day time step (https://lpdaac.usgs.gov/). The MODIS LAI is based80

on a reflectance algorithm which uses the red and near infrared bands and includes corrections for

canopy structure and background soil reflectance (Knyazikhin et al., 1999). In cases where this main

algorithm fails, a backup algorithm is used, which is based on an empirical relationship between

LAI and NDVI (normalised difference vegetation index). We use the quality assurance flags pro-

vided with this product to filter pixels that were derived using the backup algorithm or which are85

classified as snow covered, as described in Caldararu et al. (2012). We use data for the globe with

a spatial resolution of 1 km, which we then aggregate to the GEOS-4 base resolution of 2◦ latitude

by 2.5◦ longitude
:
,
::
by

::::::::::
calculating

:::
the

:::::
mean

::
of

:::
all

:::::
pixels

::::::
within

::
a
::::
grid

::::
cell.

:::
All

:::::
pixels

::::::::
classified

:::
as

:::::::
cropland

::::
were

::::::::
excluded

::::
prior

:::
to

::::::::
averaging.

::::
The

::::::::::
aggregation

::
to

:::
the

::::::
coarser

:::::::::
resolution

:::
was

:::::
done

::::
both

::
to

:::::
reduce

::::::::::::
computational

:::::
effort

::::
and

::
to

:::::
obtain

:::::::::
timeseries

:::::::
without

:::
the

::::
gaps

:::::::
resulting

:::::
from

:::
our

:::::::
filtering90

::::::::
procedure. The data was split into a training (2001-2005) and an evaluation (2006) dataset.

2.2 Environmental variables

To drive the model, we use temperature and photosynthetically active radiation (PAR) data from as-

similated meteorological data products of the Goddard Earth Observing System (GEOS-4) (Bey et al.,

2001), which is available at a spatial resolution of 2◦ latitude by 2.5◦ longitude and a temporal resolu-95

tion of 3 hours, which we average to a one day temporal resolution. The soil moisture data required

in the model was obtained from the NCAR/NCEP reanalysis daily average surface flux data set
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(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html) (Kalnay et al., 1996).

this is provided at a 1 day temporal resolution and has been regridded to the GEOS-4 spatial resolu-

tion.100

2.3 Plant functional type map

We use a global PFT map which is used in the Integrated Biosphere simulation model (IBIS)

(Kucharik et al., 2000). This differentiates between 13 different plant functional types based on gen-

eral plant properties (trees vs. grasses), temperature tolerance (tropical vs. temperate) and leaf habit

(deciduous vs. evergreen). The PFT data is provided at a 1 km spatial resolution, which we re-grid105

at the GEOS 4 native resolution based on majority landcover in each grid cell.

3 Model fitting

3.1 Model description

We use a global scale mechanistic phenology model (Caldararu et al., 2014) which is based on a

carbon benefit approach so that leaf gains and losses are adjusted to achieve the optimal carbon110

assimilation at the canopy level. The phenological timing predicted by traditional models arises

implicitly by predicting LAI values. At each timestep t and for each location x, the model calculates

leaf gain and loss, and hence overall change in LAI as:

dLAI(x, t)

dt
= P (I0(x, t),LAI(x, t− 1))−

amax∑
a=0

L(x.t,a), (1)

Here, P refers to leaf production processes, which are calculated as a function of solar radiation115

I0 and the LAI at the previous timestep LAI(x, t− 1) and L refers to leaf loss summed over all

groups of leaves of the same age a (see Table 1 for a full list of parameters).

To describe leaf gain, we define the concept of target LAI as the optimum number of leaf layers

for a given light level at the top of the canopy I0 so that the bottommost leaf layer receives sufficient

light for photosynthesis, that is light at the compensation point C (Wm−2). The target is calculated120

using Beer’s law of light extinction and expressed as:

LAItarg =− 1

α
ln(

C

I0
), (2)

Here α is the canopy extinction coefficient calculated as a function of day of year and latitude

(Brock, 1981; dePury and Farquhar, 1997). The solar radiation at the top of the canopy I0 is averaged

over a number of p days. We calculate separate values for LAItarg for direct and diffuse radiation to125

account for the different response of photosynthesis to the two. The overall target is then calculated

as the minimum of the two values.
::
We

:::::::
choose

::
to

:::
use

::
a

:::::
direct

:::
and

::::::
diffuse

::::::::::::
compensation

:::::
point

::
as

::
a
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::::::::
simplified

::::::::::::
representation

::
of

::::
light

::::::::::
distribution

::
in

:::
the

:::::::
canopy. At any time step, if the existing LAI is

lower than the target value, new leaves are gained to reach the target LAI. We introduce a parameter

gainmax to limit the new leaves that can be added at each time step to reflect the physiological limits130

to building new leaves. The gain at any time t and for all locations x is then calculated as:

P (x, t) =


gainmax, LAItarg(x, t)−LAI(x, t− 1)> gainmax

LAItarg(x, t)−LAI(x, t− 1), 0< LAItarg(x, t)−LAI(x, t− 1)< gainmax

0, LAItarg(x, t)−LAI(x, t− 1)< 0

(3)

To account for the effects of temperature, we set a threshold of 0◦C mean daily temperature under

which no leaves are gained. Initial parameter optimisations where this threshold is a free parameter

have shown that the model is not very sensitive to its value
:::::::::::::::::::
(Caldararu et al., 2014) .135

Following the optimality hypothesis, leaves are lost when their carbon assimilation is less than

their respiration and maintenance cost, defined as the limit assimilation value Amin. We calculate

the carbon assimilation as a linear function of PAR absorbed by the canopy, Itot, per unit leaf area:

Alight =
ϕItot − q

LAI
. (4)

Here ϕ and q are model parameters representing photosynthetic efficiency (µmol s−1 W−1) and140

canopy level light compensation point (µmol m−2 s−1). Due to the lack of data constraints for carbon

assimilation in our modelling framework, we normalise assimilation values and associated param-

eters. As a result, parameter values for ϕ and q in the above equation do not represent measurable

values in the field, but instead scale between potential minimum and maximum photosynthetic rates

within the model.
:::::
While

:::
the

:::::::
absolute

::::::
values

::
of

:::::
these

:::
two

:::::::::
parameters

:::::
have

::::
been

::::::
scaled,

:::
the

:::::::
relative145

::::::::::
distributions

:::::
across

:::
the

:::::
globe

::::
can

:::
still

:::
be

:::::::::
interpreted

::
as

::::::
having

:::::::
physical

::::::::
meaning.

::
It

::
is

:::::
worth

::::::
noting

:::
that

:::
the

:::
the

::::::
canopy

:::::
level

:::::::::::
compensation

:::::
point

:
q
::::
and

:::
the

:::::
direct

:::
and

::::::
diffuse

::::::::::::
compensation

:::::
points

:::::
used

::
in

:::
the

:::::::::
calculation

::
of

:::
the

::::::
target

::::
LAI

::::
have

:::::::
different

:::::
units

::::::
(µmol

::::
m−2

::::
s−1

:::
and

::::::
Wm−2

::::::::::::
respectively),

:::
due

::
to

:::
the

::::
units

::::
that

:::
the

::::::
original

:::::
PAR

:::
data

::
is
::
in
:::
as

:::
well

:::
as

:::
the

:::::::
structure

::
of

:::
the

::::::
model.

:

To account for water limitation to assimilation and, implicitly, phenological processes, we intro-150

duce a factor fW calculated as:

fw =
s1(Ws)

s2

ϵLAI
− u

ϵ
(5)

where Ws is volumetric soil moisture (unitless
:::
unit

::::
less) obtained from the NCAR/NCEP dataset,

s1 and s2 are parameters associated with water extraction capacity from the soil, ϵ represent potential

evapotranspiration and u is plant water use.155
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Similarly, we define an age factor fage to describe the declining carbon assimilation of leaves as

they age:

fa =min(1,expµ(acrit−a)), (6)

where µ is the rate of decrease with age (years−1) after a limit age acrit (years). Using both these

factors the overall assimilation is calculated as:160

Atot =Alightfwfa. (7)

Overall, the leaf loss at any point in time t and all locations x for any group of leaves of the same

age a (cohort) is:

L(x, t,a) =

 LAI(x, t,a), Atot(t,a)<Amin

0, Atot(t,a)≥Amin.
(8)

To calculate the overall canopy LAI loss we can then sum over all age groups.165

3.2 Model setup

We use five different model parametrisation to explore the extent to which the PFT approach is

applicable to a data constrained phenology model. The first such model setup, previously used in

Caldararu et al. (2014) is to fit a unique parameter set to each grid cell. We will term this the ’local’

model. This approach involves a very large number of parameters (14 parameters at each grid cell,170

for 2041 vegetated grid cells results in a total of 28574 parameters). It is important to note, however,

that the total amount of data available from sources such as MODIS is also very large, making it

possible to parametrize extremely parameter-rich models, depending on the exact nature of the data.

The second model setup is using one set of parameters for each PFT, resulting in only 182 pa-

rameters for the entire globe. We term this the ’PFT’ model. To investigate the potential effects of175

geographical separation, we further separate each PFT into geographical regions (e.g. North Amer-

ican temperate deciduous broadleaf and European temperate deciduous broadleaf), resulting in 44

regions. This was done to test the assumption that species evolving in different geographical loca-

tions have different physiological parameters even when belonging to the same PFT. This setup is

referred to as the ’region’ model and has 616 parameters. As a point of reference, we also introduce180

a ’global’ model where parameters are common for all grid cells, under the assumption that there is

no difference in phenological behaviour between vegetation types or geographical regions.

To test the extent to which each parameter represents local characteristics, in the final model setup

one or more parameters are location specific while the rest have PFT wide values. We then term a
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parameter ’local’ if it has a specific value at each grid cell. This setup is the ’combination’ model’.185

As there are a very large number of possible combinations of local parameters, we perform an initial

analysis to determine which parameters would most improve the model performance, if local. We

performed a principal components analysis (PCA) of the spatial variation in parameter values fitted

for the local model. This highlighted that the principal axis of variation in all parameter values was

strongly correlated with variation in Cdirect, while the second axis was dominated by variation in190

acrit (Table A1). We also fit 14 different model parametrisations, allowing each parameter in turn

to be local, while the other parameters are fitted at the PFT level. The two parameters identified by

the PCA, the light compensation point Cdirect and the leaf age limit acrit, also show an increase in

model performance, especially in terms of spatial variation explained (Table A2). As a consequence

of these two analyses, we focus in detail on only one model that combined local and PFT parameters195

in which the Cdirect and acrit parameters are local. This model has 4238 parameters for the whole

globe, compared to 28574 for the local model and 182 for the PFT.

We fit all models to the data using a custom Markov Chain Monte Carlo (MCMC) algorithm,

known as the Filzbach algorithm (http://research.microsoft.com/en-us/um/cambridge/groups/science/tools/filzbach/filzbach.htm),

which has been described in detail in Caldararu et al. (2012). Filzbach utilizes MCMC with the200

Metropolis-Hastings algorithm to estimate the joint distribution of the parameter set θ. In our study

we assume no prior information about θ and so our implementation reduces to estimating the θ as-

sociated with the highest probability of the observations given the model. To do this we need to

define a likelihood function that gives the probability of the data for any set of predictions from

the model with a given parametrization. For the local model this likelihood function is maximised205

independently at each location x and is calculated as:

l(Zx|θx) =
∑
t(x)

ln[n(LAIobs(x, t),LAIpred(x, t,θx),σx)] (9)

where LAIpred(x, t,θx) is the predicted LAI at location x at time t (this depends on the model pa-

rameters θx); LAIobs(x, t) is the observed MODIS LAI at location x at time t; and n(LAIobs(x, t),LAIpred(x, t,θx),σx)

denotes the probability density for observing LAIobs(x, t) given a normal distribution with mean210

LAIpred(x, t,θx) and standard deviation σx which expresses the magnitude of unexplained varia-

tion in LAI. The likelihood is calculated as a sum over all time steps at location x, expressed as

t(x).

For the global, regional and PFT models, the likelihood estimation is carried out at the global,

regional or PFT level, the likelihood being calculated as the sum at all locations x within a group G,215

x(G):

l(ZG|θG) =
∑
x(G)

∑
t(x)

ln[n(LAIobs(x, t),LAIpred(x, t,θG),σG)] (10)

Here ZG and θG denote observed LAI and model parameters for a given group of grid cells G.

Within the combination model, the likelihood is again minimised for a whole PFT but in addition to
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the PFT level parameters θG the predicted LAI is also a function of local parameters θB,x. For all220

model parametrisations we use years 2001-2005 as training data and 2006 for evaluation purposes.

:::
The

::::::
model

::::
was

:::
run

::
at

:
a
:::::

daily
::::::::
timestep,

:::
but

:::
the

:::::::::
likelihood

::::
was

::::
only

:::::::::
computed

:::::
when

:::::::
MODIS

::::
data

:::
was

::::::::
available,

::::
with

::
a

:::::::
timestep

::
of

::
8

::::
days.

:

Without separating training and test data in this way, the more parameter-rich models would be

guaranteed to give a better fit to the data. Separating the training and test improves our ability to225

assess model performance although, given that the training test data are separated by a relatively

short time, and not separated in space, we expect a tendency for the more parameter-rich models to

provide superior performance against the test data.

3.3 Model performance metrics

To compare the different types of models described above, we define several model performance230

metrics against the test data. The best model should be able to capture both the timing and magnitude

of the seasonal cycle at each location and the spatial variability in seasonal cycles across the globe.

As an overall measure of fit we use the root mean squared error (RMSE) normalised by the mean LAI

which is a measure of the fit at each particular location. The mean LAI and LAI amplitude describe

the magnitude of the seasonal cycle and we use the percent of variation explained to capture the235

extent to which the model describes their spatial distribution. Similarly, we use the start and end of

the growing season to describe the timing. We define the start of the growing season as the first date

of the year when the LAI reaches 0.2 of the maximum LAI, while the end of the growing season

is the equivalent last date. To capture the timing in tropical areas with a less pronounced seasonal

cycle, we also use the timing of maximum LAI. All metrics are reported for the model evaluation240

period (2006).

We choose not to use statistical information criteria (e.g. Bayesian information criteria) because

our model fitting methodology does not easily allow the computation of a single likelihood metric.

The model structure is the same for all parametrisations, with the main model differences being the

number of parameters at each grid cell. However, this means that different quantities of data are also245

used to fit different models. For example, since the local model is fitted separately at each location,

effectively consists of 2041 separate models, each with 14 parameters, while the PFT model contains

13 models each with 14 parameters. Rather than work out a global information criterion based-metric

for the models we instead opt to use the more meaningful metrics of the relationships between the

model predictions and the data described250

4 Results

An overall comparison of the five model parametrisations (Table 2) shows that the global model

has the highest error, while the local model has the lowest error. The fact that the global setup has
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a very high error is not unexpected since there are known physiological differences between plant

functional types, which is why the use of PFTs is common in global modelling studies. However,255

the PFT model also has a much higher error than the local one. The regional model does not show

a significant improvement from the PFT, with the exception of the tropical broadleaf evergreen for-

est PFT. Below we will discuss in detail only the PFT, combination and local models, where this

particular forest PFT has been separated into geographical (continental) regions.

Figure 1 shows the overall model error over the entire study period for the three main model260

parametrisations. Relative root mean squared error (RMSE, unitless) values are much higher for the

PFT model than for the local model, 0.52 ±0.5 compared to only 0.24 ± 0.03. The combination

model has a lower error of 0.38 ± 0.45. These errors are much lower for tropical forests, typically

0.15 for the local model, compared to 0.22 for the PFT and 0.16 for the combination models. Similar

errors occur in temperate deciduous areas. The highest errors are observed in tropical grasslands and265

shrublands for all models and specifically for the PFT model (up to 2).

Figure 2 shows the relative difference between model and observed LAI annual mean and ampli-

tude. Both the local and combination models underestimate the mean LAI across all PFTs by 11.3%

and 23.4% respectively. The PFT model exhibits a higher bias, with a mean value of 45.4%, with

the highest difference in tropical and temperate deciduous regions (over 90%). The PFT model un-270

derestimates the seasonal amplitude in tropical forests by up to 50% and by 20% in higher latitude

regions, while overestimating it by up to 200% in subtropical grasslands and savannas. The combi-

nation model shows a similar pattern but a lower bias, with differences of 27 % in tropical forests

and 13% in temperate areas, similar to those of the local model.

Figures 3 and 4 show a comparison of predicted and observed LAI mean and amplitude for forest275

and grass PFTs, respectively. The PFT model captures the mean behaviour but is not able to predict

the full range of values in either mean LAI or seasonal amplitude for any PFT, explaining on average

only 28% and 12% respectively of the spatial variation in LAI mean and amplitude. The combination

model shows an improvement explaining on average 70% of the spatial variation in mean LAI and

56% of the amplitude, compared to the local model, which explains 90% and 87% respectively.
:::
The280

:::::
model

::::::
results

::
in

:::::
boreal

::::::
regions

:::
are

:::::::
difficult

::
to

:::::::
interpret

:::::::
because

::
of

:::
the

::::::::::::::::
uncharacteristically

:::
low

::::::
values

::
of

:::
the

:::::::
MODIS

::::
LAI

::
in

:::::
these

:::::::
regions,

:::::
which

::::
are

:::::::
partially

::::::
caused

:::
by

::::
high

::::::
within

:::
cell

::::::::::::
heterogeneity

::::::::::::::::::::
(Caldararu et al., 2014) .

All models show a similar ability to predict the timing of the seasonal cycle, with an error of 16

days for the start of the growing season and differences of up to 24 days for the maximum and end of285

the growing season, while in tropical evergreen forests where the time of maximum LAI is 16 days

earlier compared to that shown by the MODIS data.

Figure 5 shows LAI time series for four different PFTs. At the tropical evergreen forest location

the local and combination models show a similar fit, whilst the PFT model cannot capture any sea-

sonal cycle. At the dry tropical (savanna) location, the local model shows a good fit, but both the290
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combined and PFT model predict a much higher LAI. For the temperate deciduous forest, all models

capture the timing of the seasonal cycle, but the PFT model predicts a lower amplitude than that

observed in the MODIS data. For the boreal evergreen forest, both the PFT and combination model

predict a higher LAI than that observed by MODIS.

Figure 6 shows the relationship between model error and grid cell heterogeneity
::::::
within

:::
the

::::
PFT295

:::::
model in terms of fraction of cell occupied by the dominant PFT for model RMSE, bias in LAI mean

and bias in LAI amplitude. All three metrics show no correlation with grid cell heterogeneity, with

an R2 of less than 0.01, indicating that there is no systematic bias in errors caused by the chosen PFT

map.

To further investigate the observed differences arising from the model parametrisation, we can300

analyse the parameter values for each different model. Figures 7 and 8 show parameter distributions

for the light compensation point and leaf age limit parameters for six selected PFTs. Figure 9 shows

global distributions of the local parameters in the combined model. The PFT model fitted parameters

are in most cases capturing the mean values of the local parameter distributions, but the discrepancy

is higher in PFTs where the distribution has a long tail or multiple modes, especially in the grass305

PFTs (Fig. 8). In the evergreen tropical forest the discrepancy between the one value estimated by

the PFT model and the wide range of both the local and combination parameters is particularly

large, as, according to the model, phenology in these areas is limited by leaf age (Caldararu et al.,

2014) and the different modes observed in the parameter distribution are essential for representing

the leaf cycles caused by species with long but varied lifespans. The discrepancy in leaf age values310

between the different model parametrisations for the temperate PFT does not have such a profound

effect on predicted LAI as phenology in these regions is limited by temperature and light and the

age parameters are often poorly constrained even for the local model. Other large differences in

parameter values are observed in the grass PFTs which, as discussed above, have some of the highest

errors.315

Overall, all metrics show that the PFT model performs poorly across the globe, while the combi-

nation model, which has only two location specific parameters, shows a good fit to the data.

5 Discussion

::
In

:::
this

:::::
paper

:::
we

::::
have

::::::::::
investigated

:::
the

:::::::
capacity

::
of

:
a
::::::
global

:::::::::
phenology

:::::
model

:::::::::::
parametrised

::
at

:::
the

::::
PFT

::::
level

::
to

:::::::
represent

::::::::
observed

:::::::::::
phenological

:::::::::
behaviour.

:::
We

::::
show

:::
that

:::
the

::::
PFT

::::::
model

:::::
cannot

::::
fully

:::::::
capture320

:::::
spatial

:::::::::
variations

::
in

::::
LAI

:::::
mean

:::
and

:::::::::
amplitude.

::
In

::::::::
contrast,

:
a
::::::
model

::::
with

::::
local

::::::::::
parameters

::::::
results

::
in

:
a
:::::
better

::::::
model

:::
fit,

:::
but

:::
has

::
a

::::
very

::::
large

:::::::
number

::
of

::::::::::
parameters,

::::::
which

:::::
make

::
it

::::
very

:::::::
difficult

::
to

::::
use.

::::::::
However,

:
a
:::::::::::
combination

::::::
model,

:::::
where

::::
two

::
of

:::
the

::::::
model

:::::::::
parameters

:::
are

:::::
local

:::::
while

:::
the

::::::
others

:::
are

::::
fitted

::
at

:::
the

::::
PFT

:::::
scale.

::::::::
performs

::::
well

::::
with

:
a
:::::::
reduced

::::::
number

::
of
::::::::::
parameters.

::::
Our

:::::::
analysis

:::::
shows

::::
that

:::
two

:::::::
specific

:::::::::
parameters

::::
need

::
to

::::
have

:::::
local

::::::
values,

:::
the

:::::
direct

:::::::::::
compensation

:::::
point

::::::
Cdirect::::::::::

(henceforth325
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::::::
referred

::
to
:::

as
::::::::::::
compensation

:::::
point)

:::
and

:::
the

::::
leaf

:::
age

:::::
limit

:::::::
agecrit.::::::

Below,
:::
we

:::::
focus

::
on

:::
the

::::::::
possible

::::::::
biological

::::::::::
significance

:::
of

:::
the

::::::::
combined

::::::
model

:::
and

:::
the

:::::::::
possibility

:::
of

:::::
using

:::
this

:::::::
concept

::
in
::

a
:::::
more

::::::
general

::::::
setting.

:

5.1 Plant traits in the combined model

The most straightforward biological explanation for the observed results of the combined model is330

that the two local parameters - the light compensation point and leaf age limit - are location spe-

cific plant traits that vary within a PFT sufficiently to affect model performance. Previous studies

which have included traits as a replacement for the PFT concept have done so starting from biolog-

ical principles, either based on trait databases (Verheijen et al., 2013) or by evolving traits through

plant competition (Sakschewski et al., 2015). In contrast, in the current study we include no prior335

knowledge of which parameters correspond to known plant traits and the local parameters in the

combination model are inferred from the fitted model. The question that arises is if the resulting

parameters and parameter values provide any biological insights or if this is just a mathematical

artefact, resulting either from the data used or the model structure.

The light compensation point is not a trait commonly used in models or included in trait data, but340

it is closely related to leaf photosynthetic parameters such as Vcmax and Jmax and could easily be

derived in terms of these if our model included a biochemical description of photosynthesis. There

is one other parameter in our model, the photosynthetic efficiency, ϕ, that is perhaps closer to the

commonly used traits but did not emerge as the most important parameter in the PCA (Table A1) or

was able to explain the spatial variability in LAI (Table A2). In contrast to the compensation point345

parameter which drives leaf gain across the globe, ϕ mainly determines leaf loss in temperate and

boreal regions which are light and temperature limited (Caldararu et al., 2014). This result shows

that leaf loss within a given PFT across temperate and boreal forests can be predicted well from

environmental factors alone, without any inherent trait variation within a PFT. This could result either

from the real trait variation being low, or, the real trait variation having such a strong correlation with350

environmental factors that the effects of the trait variation cannot be separated from the effects of the

environment. More ground measurements could resolve between these two possibilities.
:::
The

::::::
model

:::
also

::::::::
contains

:
a
:::::::::
parameter

:::
for

::::::
diffuse

:::::
light

:::::::::::
compensation

::::::
point,

::::::::
Cdiffuse,

::::::::::
introduced

::
as

::
a

::::::
simple

:::
way

:::
of

::::::::::
representing

::::
light

::
in

:::
the

:::::::
canopy.

::::
This

:::::::::
parameter

::
is

::::::::
expressed

::::::
relative

::
to
:::

the
:::::::
Cdirect:::::

value
::
at

::::
each

:::::::
location

::::
even

::::::
though

:::
the

::::::::
parameter

::::
acts

::
as

:
a
::::
PFT

::::
level

:::::::::
parameter,

:::
the

:::::::
absolute

:::::
value

:::
for

::::::
diffuse355

:::::::::::
compensation

:::::
point

:::
will

::::
vary

::::::::
spatially.

:::::
While

:::
the

::::
light

::::::::::::
compensation

:::::
point

::
is

:::
not

:
a
::::::::
common

::::::::
parameter

:::
in

:::::::::
vegetation

::::::
models,

:::::::::
measured

:::::
values

::::
cam

::
be

::::::::
obtained

::::
from

::::
light

::::::::
response

::::::
curves

::::::::
measured

:::
for

::::::::
individual

:::::
plant

:::::::
species.

::::::::
Reported

:::::
values

:::::
range

:::::
from

:::
0.5

::
to

::::
16.2

::::::
Wm−2

:::
for

::::
tree

:::::::
species,

:::::::
varying

::::
with

::::::
species

::::
and

::::
light

:::::::::::
environment

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Riddoch et al., 1991; Lewis et al., 2000; Givnish et al., 2004; Baltzer and Thomas, 2007) .

:::
The

::::::::::::
compensation360

::::
point

::::::
values

:::
for

::
the

:::::::::
combined

:::::
model

:::::
agree

:::::::
broadly

::::
with

:::::
these

:::::
values

:::::
(Fig.

::
7),

::::
with

:::
the

::::::::
exception

:::
of
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:::::
values

:::
for

::::::
boreal

::::::
forests,

:::::
where

::::::
values

:::
can

:::
be

:::::
much

::::::
higher,

::
of

:::
up

::
to

:::
60

::::::
Wm−2,

:::
an

::::
error

::::::
which

:::
we

:::::::
attribute

::
to

:::
the

::::
poor

::::::
quality

::
of

:::::::
MODIS

::::
data

::
in

:::
this

::::::
region.

:

Leaf longevity is one of the main parameters used in vegetation models which employ plant traits

(e.g. Sakschewski et al., 2015) as well as in the analysis of the leaf trait spectrum (Wright et al.,365

2004). The second local parameter used in the combination model, the leaf age limit agecrit does

not have the same meaning as leaf lifespan, as in high latitude systems it is never reached and in

tropical systems it
::::::
mainly

:::::::
because

:::
leaf

::::::
ageing

::
is
::::
only

::::
one

::
of

:::
the

:::::
three

:::
leaf

::::
loss

::::::::::
mechanisms

::
in
::::

our

::::::
model,

:::::::::
alongside

::::::::::
temperature

:::
and

::::
light

::::
and

:::::
water

:::::::::
limitation.

:::::
Thus,

::
in

::::::
regions

::::::
where

:::
leaf

::::
loss

::
is

:::
not

:::
age

:::::::
limited,

:::
for

:::::::
example

::
in

:::::::::
temperate

:::::
areas,

:::
the

:::::::::
parameter

::
is

:::::
poorly

::::::::::
constrained

::::
and

::
its

::::
age

:::::
value370

::::
never

::::::::
reached,

::
as

::::
leaf

::::
loss

::::::
occurs

:::::
much

::::::
sooner.

:::
In

:::
wet

:::::::
tropical

:::::::
systems

::::::
where

:::
leaf

::::::
ageing

:::
is

:::
the

::::
main

:::::
driver

:::
for

::::
leaf

::::
loss,

:::
this

::::
age

::::::::
parameter

:
is the critical age where leaves start ageing so that the

effective lifespan can be much larger. However, according to our model, it is the main driver of leaf

loss in tropical systems and thus a proxy for determining leaf lifespan
:::
(see

::::::::::::::::::::::
Caldararu et al. (2014) for

:
a
:::::::
detailed

:::::::::
discussion

::
of

:::
the

:::::::
physical

:::::::::::
interpretation

::
of

::::
this

:::::::::
parameter).375

5.2 Model structure

Our results show that allowing two critical traits to vary within a PFT among locations, provides

a superior model performance. It is likely that such traits vary due to underlying factors that are

not explicitly included in our model. Two likely candidates for such hidden factors are nutrient

availability and canopy structure. If the effects of these factors on traits could be understood and380

modelled explicitly, this could dramatically reduce the number of parameters required by the model,

without making the assumption that the traits are constant within any PFT.

Leaf photosynthetic capacity is a function of leaf nitrogen content (Farquhar et al., 1980; dePury and Farquhar,

1997; Hikosaka, 2003), a factor which has not been included in our model. According to current pho-

tosynthetic models, a higher leaf nitrogen content would lead to a higher light limited photosynthetic385

rate and hence lower compensation point. Figure 9 shows the spatial distribution of the compensation

point parameter as fitted in the combination model. The highest values are observed in grasslands,

especially in the tropical region. In forest PFTs, the highest compensation point occurs over tropical

forests, followed by temperate deciduous regions. This is supported by field studies, as higher lati-

tude forests are generally more nitrogen limited while tropical and temperate grasslands are one of390

the most nutrient poor systems in terms of phosphorus (Bustamante et al., 2006; Elser et al., 2007).

To explore the intra-PFT distribution of nitrogen availability and fully explain the locality of our

compensation point parameter we would need either a global data set of nitrogen availability such as

the nutrient limitation index derived as a function of evapotranspiration and ecosystem production

(Fisher et al., 2012) or coupling the phenology model with a full scale vegetation model with an395

explicit representation of the nitrogen cycle (e.g. Zaehle and Friend, 2010).
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Canopy structure determines the light environment in the canopy and controls the actual amount

of light that reaches the leaves for a given light intensity above the canopy. This means it can be an

important value in determining the compensation point, both through model structure and long term

impact on plant behaviour. Within the model used in this study, we assume a homogeneous canopy,400

with a random distribution of leaf angles and no clumping, assumptions which can be considered

valid at very large scales, but can potentially introduce errors for certain forest structure types. It has

been shown (Chen et al., 2012) that including leaf clumping in a carbon assimilation model has a

major impact on resulting global gross primary productivity values. A leaf clumping factor would be

used to adjust the attenuation coefficient α (Eq. 2) to improve the description of light transmission405

through the canopy. It is possible that the compensation point parameter Cdirect artificially accounts

for this variation in canopy structure, which explains its observed spatial variability. Further infor-

mation such as the leaf clumping index map developed by Chen et al. (2005) would be needed to

distinguish between the actual compensation point and canopy structure. This relationship is further

complicated by the fact that plants adapt to their light environment, so that leaves in closed canopies410

will be better adapted to shaded conditions and will have lower compensation points so that tropical

forests, which are highly stratified, have a much lower compensation point than other systems. The

question is further complicated as canopy structure itself can be an adaptation to the available re-

sources such as light, water or nitrogen making it difficult to distinguish between all possible factors

in the absence of further data.415

5.3 Model parametrisation

One of the main possible sources of error in our conclusion is the way we have parametrised the PFT

model. In most models which use the PFT concept, grid cells are represented as a mix of PFTs, with

PFT specific parameters assigned to each fraction (e.g. Stockli et al., 2008), while we have chosen,

in order to reduce the computational effort necessary for a global data constrained model, to only420

use the dominant PFT in each grid cell. This approach, together with the low resolution that the

model is run at could mean that the poor fit shown by the PFT model is due to a poor representation

of PFTs rather than the unsuitability of the concept in vegetation models. If this was the case, we

would expect high model errors in grid cells with a larger mix of vegetation types. However, the high

errors in the PFT model are consistent throughout and do not show a significant correlation with the425

grid cell PFT heterogeneity (Figure 6), indicating that the mix of vegetation types within grid cells

cannot be the only explanatory factor. For a more robust conclusion, we would need to re-run the

analysis with either a higher spatial resolution or with a PFT mix in each grid cell.
::::
Given

::::
the

::::
high

:::::::::::
computational

:::::::
demand

:::
of

:::
the

:::::
fitting

:::::::::
procedure,

:::
this

::::::
would

::::::
ideally

::
be

:::::
done

:::
for

:
a
:::::::
smaller

::::::
number

:::
of

::::
PFTs

:::::
rather

::::
than

::
at
::::::
global

::::::
scales.430

We use space borne vegetation data from the MODIS Terra sensor, as satellite measurements

are one of the only sources of data for constraining global level vegetation models, but does suffer
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from instrument error and atmospheric contamination. We have attempted to filter the data robustly

using data quality flags, as discussed in section 2.1 and previous studies (Caldararu et al., 2012,

2014) and the fitting procedure contains a parameter σx which accounts for error in the observations435

(Section 3.2). The largest possible source of error is the seasonality shown by the MODIS data in the

Amazon basin and other tropical regions, which is most likely to determine the spatial distribution

of the agecrit parameter. Initial studies have shown that there is an increase in satellite observed LAI

during the dry season over the Amazon (Myneni et al., 2007; Huete et al., 2006), but more recent

studies have argued that the observed change in LAI is due to sun-sensor geometry (Morton et al.,440

2014). This finding has been contradicted by subsequent papers (Bi et al., 2015) and we do not

attempt to give an answer to this debate. For the purpose of this study, we assume that this observed

change in LAI is a reflection of actual changes in leaf cover, an assumption backed by observed

changes in gross primary productivity (GPP) and litterfall (da Rocha et al., 2004; Goulden et al.,

2004; Hutyra et al., 2007).445

5.4 Method generality

As more studies begin to acknowledge that the PFT concept is not necessarily the best approach to

vegetation modelling, we need to quantify the extent to which the inclusion of spatially distributed

parameters or plant traits improve our predictive capability and to identify the optimal number of

parameters that both give a good model fit and minimise computational cost. In this study we have450

attempted to not only build a model with locally distributed parameters but also to quantify the extent

to which a model with local parameters and one with PFT level parameters can capture the spatial

variability in global LAI observations. Furthermore, we quantitatively identified which parameters

need to be local to improve model performance with a view to reduce data and computational needs.

We believe that the method used here for investigating the use of PFT level parameters has a high455

degree of generality and can be applied to a large variety of models and input datasets.

:::
One

::
of
:::
the

::::::::::
advantages

::
of

:::
the

::::
PFT

::::::
concept

::
is
:::
its

:::::::
capacity

::
to

::::::::
represent

:::::
future

:::::::
chnages

::
in

:::::::::
vegetation

:::::::::
distribution

::::::
within

::::::::
DGVMs.

::::::
Given

::
a

::::::::
predicted

::::::
change

:::
in

:::::::
climate,

:::::::
models

:::::
using

:::::
PFTs

:::
can

:::::
then

::::::
predict

:
a
::::::
change

::
in

::::
PFT

::::::::::
distribution,

:::::
using

:::::
either

:::::::::
predefined

::::::
climate

::::::::
envelopes

::::::::::::::::::
(Sitch et al., 2003) or

::::::::
predefined

:::::
plant

::::::::::
competition

:::::
rules

::::::::::::::::::::
(Arora and Boer, 2006) .

:::::::
Models

::::::
which

:::
use

:::::
plant

::::
traits

:::::::
instead460

::
do

:::
not

:::::
offer

::::
such

:
a
:::::::::::::
straightforward

::::::::
solution,

:::
but

::::
have

::
a

::::::
number

:::
of

:::::::::
advantages.

::::
The

::
P

:::
FT

::::::::
approach

::::
only

:::::
allows

::::::
abrupt

:::::::
changes

::
in

:::::::::
vegetation

:::
and

::::::
cannot

:::::::
capture

:::
any

:::::
plant

:::::::::
adaptation

::
to

:::::::
climate,

:::::
while

:
a
::::
trait

::::::::
approach

:::
can

::::::::
represent

:::::::
gradual

:::::::
changes.

:::::::::
However,

::::::::::
representing

::::::::
changing

:::::
traits

::
in

::::::::
response

::
to

::::::
climate

::
is

::::
more

:::::::
difficult,

::::
both

:::::::::::
conceptually

:::
and

::::::::::::::
computationally.

::::::
Recent

::::::
studies

::::
have

::::::::
proposed

:::
the

:::
use

::
of

::::
plant

::::::::::
competition

:::
and

::::::::
emergent

::::
traits

::
to
::::::
predict

:::::::::
vegetation

::::::::::
distribution

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(van Bodegom et al., 2014; Wullschleger et al., 2014; Fisher et al., 2015) .465

::::::::
Therefore,

::
a
::::::
logical

:::
next

::::
step

::
to

:::
our

:::::::
analysis

::::::
would

::
be

::
to

:::::::
identify

:::
the

:::::::::::
environmental

:::::::::
responses

::
of

:::
the

:::
two

::::::::
combined

::::::::::
parameters

:::
and

::::
their

:::::::::::
relationships

::::
with

:::::
plant

:::::::::
physiology

::::::::
responses

:::
so

:::
that

:::::::::
parameter
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:::::
values

:::
can

:::
be

::::::::
estimated

::::::::::
independent

:::
of

:::
data

::::::::::
constraints

:::
for

:::
the

::::::
purpose

:::
of

:::::
model

::::::::::
predictions

:::::
under

:::::
future

::::::
climate

:::::::
change.

6 Conclusions470

In this paper we explored the extent to which plants within the same PFT exhibit the same phenologi-

cal characteristics using a process-based global phenology model. We showed that a model with PFT

wide parameters cannot explain the observed spatial variation in seasonal cycles, but that an interme-

diate model with two location specific parameters gives a good overall model fit and can reliably be

used for phenological studies. The spatial patterns of these local parameters, the light compensation475

point and leaf age limit, might be explained by species adaptation to the local climate or nutrient

and water availability and further data is needed to fully understand the observed distribution. The

modelling approach used to determine the validity of PFT level models can provide further insight

for global vegetation models which use plant functional types as a basis for upscaling measured or

fitted parameter values and can hence improve global simulations of ecosystem processes.480

Appendix A: Preliminary analysisfor the combination model parametrisation

Table A1 shows results from the principal component analysis (PCA) performed to identify pa-

rameters in the combination model and table A2 shows fits for the preliminary analysis for the

combination model.

:::::
Figure

:::
A1

::::::
shows

:::::::
relative

::::::
RMSE

:::
and

:::::
error

::
in

::::
LAI

:::::
mean

::::
and

:::::::::
amplitude

:::
for

:::
the

:::::::
regional

::::::
model485

:::::::
analysis.
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Figure 1. Root mean squared error (RMSE) of predicted LAI over the model study period for the local, PFT

and combined models. All values have been normalised to the mean observed LAI at all locations.
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Figure 2. Difference between predicted and observed annual mean LAI (left) and seasonal amplitude (right) for

the local, PFT and combined models. All values have been normalised to the mean observed LAI at all locations
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Table 1. Model parameters for leaf gain and loss processes.

Symbol Units Description

Cdirect Wm−2 Leaf level light compensation point for direct PAR

Cdiffuse Wm−2 Leaf level light compensation point for diffuse PAR

p days Lag in response to incoming light

gainmax m2m−2 Maximum gain

ϕ µmol s−1 W−1 Photosynthetic efficiency

q µmol m−2 s−1 Canopy level compensation point

s1 - Plant water uptake parameter

s2 - Plant water uptake parameter

ϵ mm Evapotranspiration per unit leaf area

u mm Plant water use per unit leaf area

acrit years Age after which leaves start ageing

µ years−1 Decay constant of photosynthesis with age

Amin µmol m−2 s−1 Assimilation rate equal to leaf maintenance costs

Table 2. Goodness of fit metrics for all five model parametrisations: root mean square error (RMSE) normalised

by mean LAI value, difference in observed and predicted mean LAI and difference in observed and predicted

annual amplitude. All metrics here are median values across the globe and the two difference values are shown

as absolute values.

Model RMSE Mean difference Amplitude difference

Global 1.21 0.73 1.01

PFT 0.52 0.45 0.51

Regional 0.46 0.38 0.31

Combined 0.39 0.23 0.33

Local 0.24 0.12 0.16
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Table A1. Results of principal component analysis performed for parameters obtained from the local model.

The table shows correlation coefficients between the two principal axes of variation and each parameter. The

first two axes of variation explain 95% of the spatial variation in parameters.

First axis R2 Second axis R2

Cdirect 0.869 0.131

Cdiffuse 0.046 0.010

p 0.005 0.011

gainmax 0.016 0.102

ϕ 0.004 0.006

q 0.004 0.001

Amin 0.000 0.008

s1 0.002 0.010

s2 0.000 0.017

ϵ 0.011 0.000

u 0.004 0.003

acrit 0.216 0.784

µ 0.016 0.012

Table A2. Model goodness of fit for preliminary model runs. The parameter name shows which parameter was

made local for that particular run.

RMSE Mean difference Amplitude difference Mean R2 Amplitude R2

Cdirect 0.85 0.17 0.32 0.57 0.49

Cdiffuse 0.80 0.30 0.36 0.04 -0.01

p 0.75 0.28 0.28 0.09 0.17

gainmax 0.98 0.18 0.32 0.50 0.33

ϕ 0.73 0.27 0.57 0.57 -0.01

q 0.71 0.24 0.33 0.39 0.01

s1 1.00 0.17 0.25 0.58 0.33

s2 0.75 0.27 0.33 0.01 0.06

ϵ 0.76 0.26 0.39 0.26 0.03

u 0.78 0.23 0.37 0.38 0.07

acrit 0.72 0.20 0.21 0.56 0.58

µ 0.73 1.00 1.00 0.31 0.04

Amin 0.86 0.10 0.36 0.60 0.35
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