

1 Disruption of metal ion homeostasis in soils is associated with nitrogen
2 deposition-induced species loss in an Inner Mongolia steppe

3

4 Qiu-Ying Tian^{1#}, Na-Na Liu^{1,2#}, Wen-Ming Bai¹, Ling-Hao Li¹, Wen-Hao Zhang^{1,3}

5

6 ¹State Key Laboratory of Vegetation and Environmental Change, Institute of Botany,
7 Chinese Academy of Sciences, Beijing 100093, China.

8 ²University of Chinese Academy of Sciences, Beijing 100049, China.

9 ³Research Network of Global Change Biology, Beijing Institutes of Life Science,
10 Chinese Academy of Sciences, Beijing, China.

11 #These authors contributed equally

12

13

14

15

16 Corresponding author: Wen-Hao Zhang
17 86-10-6283 6697
18 86-10-2659 2430
19 E-mail: whzhang@ibcas.ac.cn

20

21

22

23

24

25

26

27 **Abstract**

28

29 Enhanced deposition of atmospheric nitrogen (N) resulting from anthropogenic
30 activities has negative impacts on plant diversity in ecosystems. Several mechanisms
31 have been proposed to explain the species loss. Ion toxicity due to N
32 deposition-induced soil acidification has been suggested to be responsible for species
33 loss in acidic grasslands, while few studies have evaluated the role of soil-mediated
34 homeostasis of ions in species loss under elevated N deposition in grasslands with
35 neutral or alkaline soils. To determine whether soil-mediated processes are involved
36 in changes in biodiversity induced by N deposition, the effects of 9-year N addition
37 on soil properties, aboveground biomass (AGB) and species richness were
38 investigated in an Inner Mongolia steppe. Low to moderate N addition rate (2, 4, 8 g
39 $N\ m^{-2}\ yr^{-1}$) significantly enhanced AGB of graminoids, while high N addition rate
40 ($\geq 16\ g\ N\ m^{-2}\ yr^{-1}$) reduced AGB of forbs, leading to an overall increase in AGB of the
41 community under low to moderate N addition rates. Forb richness was significantly
42 reduced by N addition at rates greater than $8\ g\ N\ m^{-2}\ yr^{-1}$, while no effect of N
43 addition on graminoid richness was observed, resulting in decline in total species
44 richness. N addition reduced soil pH, depleted base cations (Ca^{2+} , Mg^{2+} and K^+) and
45 mobilized Mn^{2+} , Fe^{3+} , Cu^{2+} and Al^{3+} ions in soils. Soil inorganic-N concentration was
46 negatively correlated with forb richness and biomass, explaining 23.59% variation of
47 forb biomass. The concentrations of base cations (Ca^{2+} and Mg^{2+}) and metal ions
48 (Mn^{2+} , Cu^{2+} and, Fe^{3+}) showed positively and negatively linear correlation with forb
49 richness, respectively. Changes in the metal ion concentrations accounted for 42.77%

50 variation of forb richness, while reduction of base cations was not associated with the
51 reduction in forb richness. These results reveal that patterns of plant biodiversity in
52 the temperate steppe of Inner Mongolia are primarily driven by increases in metal ion
53 availability, particularly enhanced release of soil Mn²⁺.

54

55 1 Introduction

56

57 Nitrogen (N) is an essential nutrient for plant growth and development, and many
58 terrestrial ecosystems are adapted to conditions of low N availability (Bobbink et al.,
59 1998). Since the agricultural and industrial revolution, atmospheric deposition of
60 biologically reactive N has increased drastically due to N fertilization and combustion
61 of fossil fuels across the globe (Galloway et al., 2008; Canfield et al., 2010; Sutton &
62 Bleeker, 2013), resulting in a large impact on community composition and function of
63 ecosystem (De Schrijver. et al., 2008; Cardinale et al., 2012; Yang et al., 2012a).
64 Elevated atmospheric N deposition generally has positive effects on productivity for
65 the N limited ecosystems (Smith et al., 1999; Galloway et al., 2008), while it imposes
66 a great threat to biodiversity of the terrestrial ecosystems (Stevens et al., 2004; Clark
67 & Tilman, 2008; Bobbink et al., 2010; Jiang et al., 2010; Kim et al., 2011). Both large
68 scale field survey and manipulated experiments to simulate N deposition have shown
69 that N deposition has driven significant reductions in plant species richness in
70 different grassland ecosystems (Stevens et al., 2004; Suding et al., 2005; Bai et al.,
71 2010; Clark & Tilman; 2008, Dupre et al., 2010; Van Den Berg et al., 2011). Along
72 with the time of N deposition or with the increase of N addittion rate, the decline in
73 species richness by N deposition consequently results in changes of community
74 composition and reduction in ecosystem productivity (Isbell et al., 2013).

75

76 Several hypotheses have been proposed to explain the N deposition-induced species

77 loss in grassland ecosystems, such as NH_4^+ toxicity to plants (van den Berg et al.,
78 2005; Stevens et al. 2006; Zhang et al., 2014), soil acidification (van der Putten et al.,
79 2013), mobilization of toxic metals in soils (Bowman et al., 2008; Horswill et al.,
80 2008; Stevens et al., 2009; Chen et al., 2013) and changes in soil microbial activity
81 and biodiversity (Dean et al., 2014). Competitive exclusion driven by enhanced
82 resource uptake by dominant species and preemption of light or space has been
83 widely invoked as a key mechanism for species loss under elevated N regimes (Clark
84 & Tilman, 2008; Hautier et al., 2009; Suding et al., 2005; Borer et al., 2014). For
85 instance, it has been suggested that chronic N deposition shifts grassland towards
86 grass-dominated vegetation due to higher productivity of grasses at elevated N
87 concentrations, which are thought to outcompete forbs and shrubs (Heil & Diemont,
88 1983; Bobbink et al., 1998; Stevens et al., 2006). However, N addition-induced
89 reductions in plant biodiversity cannot simply be explained by competitive exclusion,
90 because many species had already disappeared before grasses became dominant
91 (Houdijk et al., 1993) and fertilization also reduces plant biodiversity of grassland
92 even when light is not limiting (Dickson & Foster, 2011). Although extensive research
93 has demonstrated that N deposition reduces biodiversity, the primary mechanism
94 underlying the N deposition-induced changes in community composition remains
95 largely unknown (Stevens et al., 2006; Phoenix et al., 2003; Bowman et al., 2008;
96 Clark & Tilman, 2008; Hautier et al., 2009; Suding et al., 2005; Borer et al., 2014).
97
98 N deposition often concurs with soil acidification (Stevens et al., 2004; Bobbink et

99 al., 2010; Fang et al., 2012; Horswill et al. 2008; Yang et al. 2012b). Soil acidification
100 subsequently mobilizes some metal ions, thus rendering phytotoxicity to plants at high
101 concentrations (Kochian, 1995; Marschner, 1995). For instance, release of toxic
102 aluminum (Al^{3+}) ions due to soil acidification has been suggested to be a driving force
103 for N deposition-induced species loss in grasslands (Carnol et al., 1997; Horswill et
104 al., 2008; Chen et al., 2013). In addition to Al^{3+} , homeostasis of other ions in soil is
105 also closely determined by soil pH, such that reduction in soil pH would enhance
106 release of those metal ions of Fe^{3+} , Mn^{2+} and Cu^{2+} (Marchner, 1995; Bowman et al.,
107 2008). The involvement of soil acidification-mediated processes in species loss under
108 elevated N deposition has been extensively evaluated in acidic grasslands (Stevens et
109 al., 2006; Bowman et al., 2008; Horswill et al., 2008). Whether this mechanism is also
110 responsible for N deposition-induced changes in plant biodiversity in other type's
111 grassland remains largely unknown. A major difference between acidic grasslands and
112 temperate steppe used in the present study lies in their basic properties of soils, such
113 as soil pH, ion contents and acid buffering systems. In acidic grasslands, soil pH is
114 usually <5.0 , and availabilities of metal ions, such as Al^{3+} , Fe^{3+} , Mn^{2+} are high
115 compared to those in the alkaline soils, and acid buffering is mainly dependent on
116 aluminium, leading to lower acid buffering capacity (Bowman et al., 2008). However,
117 soils in neutral or alkaline grasslands have more base cations, higher acid buffering
118 capacity and low availabilities of metal ions (Al^{3+} , Fe^{3+} , Mn^{2+}). In addition to the
119 differences in soil traits, plants grown in acidic and alkaline grasslands may also have
120 evolved adaptative strategies to their edaphic conditions. Plants in the alkaline

121 temperate steppe would be imposed to high levels of metal concentrations due to N
122 deposition-driven soil acidification, rendering them metal toxicity. Therefore, plants
123 in the alkaline grasslands and acid grasslands may differ in their sensitivity to N
124 deposition-induced changes in soil traits

125

126 Inner Mongolia grassland is an important part of widely distributed grasslands across
127 the Eurasian Steppe with typical calcareous soil distinguished by high pH and
128 buffering capacity due to abundant base cations (Chen et al., 2013). These differences
129 in soil traits between the temperate steppes and acid grasslands may render the two
130 types of grasslands differing in their sensitivity to N deposition. N deposition rate in
131 China has increased dramatically in recent decades (Liu et al., 2013; Jia et al., 2014),
132 thus imposing great threats to plant biodiversti in grassland ecosystems. Moreover, a
133 significant soil acidification in grasslands across northern China over the past two
134 decades has been reported (Yang et al., 2012b). In contrast to acidic grasslands, few
135 studies have investigated the role of soil acidification-driven metal mobilization in
136 species richness in calcareous and alkaline grasslands under conditions of elevated N
137 deposition. To evaluate the role of soil-mediated chemical processes in N
138 deposition-induced changes in species richness, the chronic effects of N addition,
139 which simulates N deposition, on soil pH, nutrient availability and species
140 composition were investigated in a temperate steppe of Inner Mongolia.

141

142 **2 Materials and methods**

143

144 **2.1 Study site**

145 The field experiment was carried out in Duolun County ($116^{\circ}17'E$, $42^{\circ}02'N$), Inner
146 Mongolia, China. The experiment site is located in a semiarid temperate steppe with
147 mean annual temperature of $2.1^{\circ}C$. Mean annual precipitation is 382.2 mm with
148 approximately 60–80% falling from May to August. Soil in the site is classified as
149 chestnut type according to China's soil classification system (Hou, 1982) and
150 Calcic-orthic Aridisol based on ISSS Working Group RB, 1998. The main
151 characteristics of the soil include chestnut color humus layer in topsoil, calccrust
152 within one meter on soil profile and soil pH between 7.0 and 9.0. Soil in the study is
153 composed of $62.75 \pm 0.04\%$ sand, $20.30 \pm 0.01\%$ silt and $16.95 \pm 0.01\%$ clay. Mean soil
154 bulk density and soil pH is 1.31 g cm^{-3} and 6.84 respectively. The net N
155 mineralization rates in this area were -0.04 to $0.52 \mu\text{g N}^{-1} \text{ g}^{-1}$ during the growing
156 seasons (Zhang *et al.*, 2012). The ambient total N deposition in this region was about
157 $1.6 \text{ g N m}^{-2} \text{ yr}^{-1}$ for recent two decades (Zhang *et al.*, 2008). The community in this
158 area is co-dominated by perennial forbs and graminoids, including *Stipa krylovii*,
159 *Artemisia frigida*, *Potentilla acaulis*, *Potentilla tanacetifolia*, *Dianthus chinensis*,
160 *Heteropappus altaicus*, *Cleistogenes squarrosa*, *Allium bidentatum*, *Leymus chinensis*,
161 *Carex korshinskyi*, *Melilotoides ruthenica*, *Agropyron cristatum*, *Potentilla bifurca*,
162 *Allium tenuissimum*, *Poa pratensis* and *Koeleria cristata*, in which the aboveground
163 biomass (AGB) of forbs or grasses is about half of the total biomass. The detailed
164 species characteristics of the vegetation were listed in Table A3.

165 **2.2 Experiment design**

166

167 The experiment site was fenced to exclude livestock grazing in July, 2003. A total of
168 64 plots (15 m \times 10 m) were established and each of them was spaced by a 4-m-width
169 buffer strip. Eight levels of N addition (0, 1, 2, 4, 8, 16, 32, 64 g N m⁻²) were added as
170 urea (N, 46%) with eight replicates by evenly spreading with hand in July every year
171 since 2003. In our study, soil and plant samples were collected from 48 plots
172 supplemented with six levels of N addition (0, 2, 4, 8, 16, 32 g N m⁻²) in 2012.

173

174 **2.3 Determination of community biomass and composition, and soil sampling**

175

176 Aboveground biomass (AGB) of forbs and graminoids was separately determined at
177 the peak biomass time in the middle of August in 2012 using a randomly selected
178 quadrat (1 m \times 1 m) of each plot. The graminoids included *S. krylovii*, *C. squarrosa*, *L.*
179 *chinesis*, *A. cristatum*, *C. korshinskyi*, *P. pratensis*, and *K. cristata*. The forbs included
180 *A. frigida*, *P. acaulis*, *P. tanacetifolia*, *D. chinensis*, *H. altaicus*, *A. bidentatum*, *M.*
181 *ruthenica*, *P. bifurca*, and *A. tenuissimum*. Aboveground biomass was harvested by
182 clipping every quadrat completely above the soil surface, and both of living and dead
183 parts were separated. Biomass was measured separately after samples were
184 oven-dried at 75 °C for 48 h.

185

186 Soil samples were collected from each quadrat. Topsoil samples (0-10 cm below the

187 litter layer) and subsoil samples (20-30 cm deep) were taken randomly using a 10 cm
188 diameter soil auger. Three-core soils were combined to one sample per quadrat. In this
189 study, only soil samples from 0-10 cm layers were used. All soil samples were kept
190 cool during transit and air dried in the laboratory. Soil samples were thoroughly mixed
191 and sieved through a 2 mm mesh for laboratory analysis of soil pH and exchangeable
192 ion concentrations.

193

194 **2.4 Measurements of soil pH and electrical conductivity (EC)**

195

196 For determination of soil pH, 6 grams of air-dried soil was shaken with 15 mL
197 CO₂-free deionized water for a minute, and equilibrated for an hour to determinate pH
198 with a pH meter (HANNA, PH211, Italy). Water soluble salts in the soil solution are
199 strong electrolytes to be electrical. The performance of electric conduction can be
200 expressed as electrical conductivity (EC). The content of salts in the solution is
201 positively correlated with EC, and EC can be determined by a conduct meter to
202 represent the content of ions in soil. For determination of soil EC, 10 grams of
203 air-dried soil was shaken with 50 mL CO₂-free deionized water for three minutes, and
204 filtered to get clear leachate for determination with the conduct meter (METTLER
205 TOLEDO, FE30, Switzerland). EC was calculated with the following formula:

206 $L=C f_t K$

207 L indicates electrical conductivity with 1:5 soil leachate at 25⁰C;

208 C indicates displayed electrical conductivity on the conduct meter;

209 f_t indicates correction coefficient of temperature;

210 K indicates electrode constant.

211

212 **2.5 Determination of Available soil P and inorganic N concentrations**

213

214 Available P (Olsen-P) in soil was determinate by extracting 10 grams of air-dried soil
215 with 50 mL 0.5 M NaHCO₃ (pH 8.5) for 30 minutes at 25°C, and analyzed after
216 filtering by molybdenum blue-ascorbic acid method (Olsen et al., 1954) with a
217 UV-visible spectrophotometer (UV-2550, SHIMADZU Corporation, China).

218

219 Soil inorganic N (NH₄⁺-N and NO₃⁻-N) using fresh soil was analyzed calorimetrically
220 using a continuous-flow analyzer (Seal XY-2, Australia) after extraction of 2 M KCl
221 at the ratio of 1:5 (w/v) (Mulvaney, 1996; Wendt, 1999).

222

223 **2.6 Determination of soil Fe³⁺, Mn²⁺, Cu²⁺, Zn²⁺ and Al³⁺**

224

225 The exchangeable Mn²⁺, Fe³⁺, Cu²⁺, Zn²⁺ in the soil were extracted with a extracting
226 agent (pH 7.3) consisted of 5 mM diethylenetriamine pentaacetic acid (DTPA), 10
227 mM CaCl₂ and 0.1 M triethanolamine (TEA) in 1:2 ratio (w/v) for 2h (Lindsay &
228 Norvell, 1978). Exchangeable Al³⁺ in the soil was extracted by 0.1 M BaCl₂ (pH 5.3)
229 at the ratio 1:5 (w/v) for 30 min (Bowman *et al.*, 2008). After filtering, samples were
230 stored frozen prior to analysis by ICP-OES (Thermo Electron Corporation, USA).

231

232 **2.7 Measurements of soil exchangeable Ca²⁺, Mg²⁺, K⁺**

233

234 Base cations (Ca²⁺, Mg²⁺, K⁺) in the soil were extracted by 1 M NH₄OAc (pH 7.0) at
235 a 1:10 ratio (w/v) for 30 min. The extraction solution was filtered to determinate the
236 concentration of Ca²⁺, Mg²⁺, K⁺ by ICP-OES.

237

238 **2.8 Statistical analysis**

239

240 One-way ANOVA (Duncan's test) was used to evaluate the difference in species
241 richness, AGB, soil pH and soil EC among six levels of N addition. Linear regression
242 was used to identify the significance of the correlation among soil exchangeable ions
243 and N addition, soil pH, species richness and AGB (SPSS 17.0). Principal component
244 analysis (PCA) was used to extract the principal components of variables of the metal
245 cations and to group them in terms of their high loading on principal axis (R. i386 3. 0.
246 3). Multiple regression model (GLM) was used to explore to what extent that species
247 richness and AGB can be explained by ion changes in soils and which variables are
248 responsible for N addition-induced changes in AGB and species richness (SPSS 17.0).

249

250

251 **3 Results**

252

253 **3.1 N addition enhanced aboveground biomass and reduced species richness**

254

255 At the community level, N addition at low rates stimulated plant growth and increased
256 aboveground biomass (AGB) of the steppe, and total AGB peaked 425.8 g m^{-2} at N
257 addition rate of $2 \text{ g m}^{-2} \text{ yr}^{-1}$ ($P=0.007$), and further increases in N addition rates led to
258 a decline in AGB, such that values of AGB in plots added with 16 ($P=0.236$) and 32 g
259 $\text{N m}^{-2} \text{ yr}^{-1}$ ($P=0.695$) were comparable to those in control plots (Fig. 1a). A similar
260 pattern of N addition-induced increase in AGB of grasses was found (Fig. 1c). N
261 addition at low rates ($2-8 \text{ g N m}^{-2} \text{ yr}^{-1}$) had no effect on AGB of forbs, while it
262 significantly reduced AGB of forbs at $16 \text{ g N m}^{-2} \text{ yr}^{-1}$ ($P=0.027$, Fig. 1c). Therefore,
263 the increase in total AGB was driven entirely by the increase of graminoids biomass.
264 In contrast to AGB, total species richness was significantly reduced at N addition rates
265 of greater than $8 \text{ g N m}^{-2} \text{ yr}^{-1}$ ($P=0.025$, Fig. 1b). Moreover, graminoid richness was
266 relatively insensitive to N addition, while a decline in forb richness was detected at N
267 addition rate of $8 \text{ g N m}^{-2} \text{ yr}^{-1}$, and the decline became stronger with increase of N
268 addition rate ($P=0.018$, Fig. 1d). These results indicate that the reduction in total
269 species richness by N addition is mainly accounted for by loss of forb species.

270

271 **3.2 N addition acidified soil and increased inorganic N and P availability**

272

273 Soil pH was significantly reduced with increase of N addition rates, such that N
274 addition rate at 16 ($P<0.0001$) and 32 g N m⁻² yr⁻¹ ($P<0.0001$) reduced soil pH from
275 6.82 to 6.29 and 5.37, respectively (Fig. 2). Soil inorganic N concentrations were
276 significantly increased by N addition rate greater than 8 g N m⁻² yr⁻¹ ($P=0.006$, Fig.
277 3a). There was a significantly positive correlation ($r=0.86$, $P<0.001$) between
278 inorganic N (IN) and N addition rate (Table A1). A significant increase ($P=0.030$) in
279 soil available P (Olsen-P) was detected at high doses of N addition (>16 g N m⁻² yr⁻¹),
280 whereas soil Olsen-P was not affected by low doses of N addition (Fig. 3a). The
281 results of linear regression showed that inorganic N and Olsen-P in soil were linearly
282 correlated with AGB (IN: $r= -0.486$, $P<0.0001$; Olsen-P: $r= -0.435$, $P=0.002$) and
283 forb species richness (IN: $r= -0.521$, $P<0.0001$; Olsen-P: $r= -0.338$, $P=0.019$) (Table
284 A2). Soil pH was also linearly correlated with AGB ($r=0.437$, $P=0.002$), forb
285 richness ($r=0.699$, $P<0.0001$) and graminoid richness ($r=0.415$, $P=0.003$) (Table
286 A2). These results indicate that soil pH, Olsen-P and inorganic N concentrations play
287 important roles in the N addition-induced changes in AGB and species richness.

288

289 **3.3 N addition-induced soil acidification altered availabilities of metal elements**

290 Electrical conductivity (EC) of soil is an indicator to reflect exchangeable ion
291 concentrations in soil (Friedman, 2005). N addition caused a significant increase in
292 soil EC (Fig A1), indicating that N addition may lead to solubilization of some ions
293 from soil minerals. Calcium (Ca²⁺), magnesium (Mg²⁺) and potassium (K⁺) are main
294 base cations in soils of calcareous and alkaline grasslands. N addition across the rates

295 used in the present study generally led to significant decline in these cation
296 concentrations (Fig. 3b). A negatively significant correlation existed between N
297 addition rates and concentrations of Ca^{2+} and Mg^{2+} (Table A1). The positive
298 correlation of Ca^{2+} and Mg^{2+} with soil pH indicates that soil acidification is likely to
299 be a key cause for the reduction in soil Ca^{2+} and Mg^{2+} . In contrast to the base cations,
300 N addition resulted in significant increases in availabilities of several metal ions, such
301 as iron (Fe^{3+}), manganese (Mn^{2+}), copper (Cu^{2+}) and aluminum (Al^{3+}) (Fig. 3c). N
302 addition-induced increases in soil Fe^{3+} and Mn^{2+} concentrations were most evident
303 compared to other metal ions (Fig. 3c). Moreover, concentrations of Fe^{3+} , Mn^{2+} , Cu^{2+}
304 and Al^{3+} showed positive and negative response to N addition and soil pH,
305 respectively (Table A1). These results suggest that N addition-induced soil
306 acidification is a driver for mobilization of these metal cations. Concentrations of K^+
307 and Zn^{2+} exhibited no significant correlation with N addition rates and soil pH (Table
308 A1). These results rule out the possibility that changes in soil K^+ and Zn^{2+}
309 concentrations may contribute to the decline in plant species richness induced by N
310 deposition. Therefore, concentrations of K^+ and Zn^{2+} were not included in the
311 following linear regression and principle components analysis (PCA).

312

313 **3.4 Concentrations of metal ions in soil were correlated with AGB and species**
314 **richness**

315

316 To test whether the soil acidification-driven changes in soil metal ions are involved in

317 decline in species richness under N-added regimes, correlations among element
318 availabilities, aboveground biomass and species richness of forbs and graminoids
319 were explored. A negatively linear relationship between four soil nutrients (Fe^{3+} , Mn^{2+} ,
320 Cu^{2+} , Al^{3+}) and forb aboveground biomass (Fe^{3+} : $R^2=0.13$, $P=0.0111$; Mn^{2+} : $R^2=0.21$,
321 $P=0.0010$; Cu^{2+} : $R^2=0.16$, $P=0.0044$; Al^{3+} : $R^2=0.22$, $P=0.0007$) and species richness
322 (Fe^{3+} : $R^2=0.32$, $P<0.0001$; Mn^{2+} : $R^2=0.41$, $P<0.0001$; Cu^{2+} : $R^2=0.27$, $P=0.0002$; Al^{3+} :
323 $R^2=0.30$, $P<0.0001$) was observed (Figs. 4, 5). Soil Ca^{2+} ($R^2=0.26$, $P=0.0002$) and
324 Mg^{2+} ($R^2=0.17$, $P=0.0038$) only exhibited positive correlation with forb species
325 richness (Fig. 5). In contrast, both richness and aboveground biomass for graminoids
326 were not affected by the majority of metal ions, with their AGB showing no
327 significant correlation with these ions and their species richness exhibiting negative
328 correlation with Mn^{2+} , Cu^{2+} and Al^{3+} concentrations (Figs. 4, 5).

329

330 **3.5 Principle component analysis**

331

332 Based on the results of linear regression (Table A1), the six metal cations (Ca^{2+} , Mg^{2+} ,
333 Mn^{2+} , Fe^{3+} , Cu^{2+} , Al^{3+}) that were significantly correlated with soil pH were used for
334 the PCA analysis. Principle components analysis gave two axes of variation with
335 eigenvalues greater than one, accounting for total 88.28% of the variation in six metal
336 ions variables (Fig. 6). The first principal component (PC1) based on strong positive
337 loadings on axis 1 (Table 1) included Mn^{2+} , Cu^{2+} , Fe^{3+} and Al^{3+} which explained
338 66.7% of the variation (eigenvalues=4.004). Linear regression showed that this group

339 had significant correlation with soil pH ($P<0.001$), indicating that PC1 is mainly
340 pH-dependent metal ions (Table A1). PC1 reflected the release potential of
341 microelements (Table 1). Due to higher loadings on the axis 2, Ca^{2+} and Mg^{2+} were
342 clustered into the second principal component (PC2), accounting for 21.6% of the
343 variation (eigenvalues=1.293) (Fig. 6). Ca^{2+} and Mg^{2+} were the fundamental
344 constitutes of alkaline soils and play an important role in acid-buffering, thus the PC2
345 reflected the basic soil properties.

346

347 Multiple regression model (GLM) was used to further assess the extent to which
348 significant species richness and aboveground biomass are affected by principal soil
349 ions (Table 2). Given that concentrations of inorganic N, Olsen-P and metal cations
350 driven by soil acidification exhibited significant correlation with AGB and species
351 richness of forbs (Table A3 and Figs. 4, 5), inorganic N, Olsen-P and two PCA axes
352 (F1 and F2) were included in the GLM analysis. As shown in Table 2, F1 axe that
353 reflected the release of metal ions (Mn^{2+} , Fe^{3+} , Cu^{2+} and Al^{3+}) accounted for 42.77%
354 of the variation in forb richness, while inorganic-N accounted for 23.59% variation in
355 aboveground biomass of forbs. Variation in graminoid species richness and
356 aboveground biomass was not explained by F1 axe and inorganic-N. Changes in the
357 base cations (F2 PCA axe) and P availability did not contribute to AGB and species
358 richness of forbs. Compared with inorganic N availability, patterns in forb richness
359 were primarily driven by changes in the heavy metal ion availabilities.

360

361 **4 Discussion**

362 Nitrogen deposition has multiple impacts on grassland ecosystems, including changes
363 in productivity, reductions in species richness and soil acidification (Smith et al., 1999;
364 Stevens et al., 2004; Galloway et al., 2008; Clark & Tilman 2008; Bobbink et al.,
365 2010). Elevated N deposition resulting from human activities in the past decades has
366 negative impacts on growth and development of certain plant species, leading to
367 reduction in plant diversity (Isbell et al., 2013; Maskell et al., 2010; Stevens et al.,
368 2006). To evaluate the effects of N deposition on temperate grassland ecosystems,
369 long-term N fertilization experiments were conducted in Inner Mongolia steppes by
370 applying urea. The applied urea can be hydrolyzed to ammonia/ammonium, by the
371 enzyme urease, and ammonium is further converted into nitrate by ammonia oxidizing
372 bacteria (AOB) and ammonia oxidizing archaea (AOA), leading to an increase in
373 inorganic N in soils and concurrent reduction in soil pH (Zhang et al., 2012). Previous
374 studies showed that the application of urea led to significant increases in soil nitrate
375 concentrations and soil acidification (Fang et al., 2012), which are consistent with this
376 proposition. Despite of potential differences in natural N deposition and application of
377 urea in terms of soil acidification and enrichment of soil N, our N addition
378 experiments can simulate the natural N deposition. In the present study, we found that
379 low and moderate rate of N addition for consecutive 9 years led to an enhanced total
380 AGB (Fig. 1a). More specifically, we found that AGB of graminoids and forbs
381 displayed different responses to N addition, such that AGB of grasses and forbs was
382 increased and relatively unchanged by moderate N addition, respectively (Fig. 1c).

383 Species richness of graminoids and forbs also differed in their responses to N
384 addition. N addition significantly reduced forb species richness, while graminoid
385 species richness was relatively unchanged in response to the N addition (Fig. 1d).

386 These findings that forbs were more sensitive to N deposition than graminoids in
387 terms of species richness are consistent with the results obtained in semi-natural
388 European grasslands (Stevens et al., 2006).

389

390 Species loss induced by N deposition on grasslands has been suggested to result from
391 competition due to increase growth of grasses in response to N enrichment (Stevens et
392 al., 2006). Although moderate rate of N addition, *i.e.* 2 and 4 g m⁻² yr⁻¹, stimulated
393 grass growth, the total species richness and forb species richness under these N
394 addition rates were relatively constant (Fig. 1). Moreover, at higher rates of N
395 addition (16 and 32 g m⁻² yr⁻¹), AGB of graminoids was not enhanced, but species
396 richness of forbs was dramatically reduced (Fig. 1). These results may suggest that
397 loss of forbs is not simply be caused by competitive exclusion driven by increased
398 growth of graminoids, rather these findings may highlight the involvement of other
399 processes associated with N addition in inhibition of forb growth.

400

401 Enhanced N deposition may decrease plant diversity by enrichment of nitrogen
402 nutrient (van den Berg et al., 2005; Stevens et al., 2006; Zhang et al., 2014). In our
403 study, N addition led to significant increases in inorganic-N in soils (Fig. 3a). Forb
404 species richness and aboveground biomass was negatively correlated to soil

405 inorganic-N concentration (Table A2). Moreover, inorganic-N in soil accounted for
406 23.59 of the variation in forb aboveground biomass (Table 2). These results suggest
407 that an increase in N availability due to N addition may contribute to N
408 deposition-induced loss of forb species. Stevens et al. (2006) and Zhang et al. (2014)
409 demonstrated that species richness is negatively correlated with soil NH_4^+ -N
410 concentrations in acidic grasslands and alkaline grasslands, respectively. Processes
411 associated with N transformation in soils, including mineralization and nitrification,
412 depend on soil pH, which determine homeostasis of NH_4^+ -N and NO_3^- -N (Dorland et
413 al., 2004). Although it has been reported that species from acidic and alkaline soils
414 usually prefer different forms of nitrogen (Falkengren-Grerup &
415 Lakkenborg-Kristensen, 1994; van den Berg et al., 2005), both high NO_3^- -N
416 concentration and high NH_4^+ -N concentration can suppress root elongation (Britto &
417 Kronzucher, 2002; Tian et al., 2005; 2009; Zhao et al., 2007). Therefore, it is necessary
418 to further dynamically monitor changes in N forms in soils after N addition and to
419 evaluate the different response of forbs and grasses to different N forms. In addition to
420 enrichment of N, an increase in soil P availability has been implicated in the reduction
421 of species richness of grasslands (Ceulemans et al., 2013). In the present study, N
422 addition significantly increased Olsen-P concentration in soils (Fig. 3). The increase
423 in P availability may result from N addition-induced soil acidification because P is
424 mainly precipitated as calcium phosphate in calcareous and alkalinous soil, its
425 solubility would be enhanced by reduced soil pH. Although Olsen-P concentration in
426 soils exhibited negative correlation with forb species richness (Table A3), multiple

427 regression showed that P availability did not contribute to the N-induced changes in
428 forb species richness and biomass (Table 2). These results discount the involvement of
429 P availability in the N-induced changes in species richness.

430

431 Soil acidification often concurs with N deposition due to the formation of hydrogen
432 ions during ammonia oxidation (Guo et al., 2010; Yang et al., 2012b). Numerous
433 studies across N deposition gradients (Maskell et al., 2010; Stevens *et al.*, 2004) and
434 field fertilization experiments (Bowman et al., 2008; Lan and Bai, 2012; Zhang et al.,
435 2014) have demonstrated that N deposition leads to soil acidification. In the present
436 study, we found a significant soil acidification by 9-year N addition in the calcareous
437 temperate grassland (Fig. 2). A positive correlation between soil pH and the species
438 richness was found in this study (Table A2). However, Chytrý *et al.* (2007) reported
439 that in tundra and forest with low soil pH, species richness is increased with soil pH,
440 while in steppe with soil pH >6.0, the species richness appears to be negatively
441 dependent on soil pH. The differences between our results and those of Chytrý *et al.*
442 (2007) may be accounted for by the differences in soil traits because the relationship
443 between species richness and soil pH is dependent upon vegetation types, soil traits
444 and climatic conditions (Chytrý *et al.* 2007). Soil pH in our study was reduced from
445 6.82 to 5.37 by the N addition (Fig. 2). This pH range is comparable to that of forest
446 surveyed by Chytrý *et al.* (2007). In this range of soil pH, they also discovered that
447 species richness showed positive correlation with soil pH (Chytrý *et al.* 2007). Species
448 richness showed positive correlation between soil pH suggests that soil pH is an

449 important factor in determination of species richness in Inner Mongolia steppe.

450

451 Soil acidification would disturb ion homeostasis in soil, including depletion of base
452 cations and mobilization of metal cations (Bowman et al. 2008; Horswill et al., 2008).

453 Ca^{2+} , Mg^{2+} and K^+ are dominant base cations in calcareous soils. Depletion of these
454 base cations in soils by N addition (Fig. 3b) would render the soil less capable of
455 buffering acid. The insignificant correlation between K^+ concentrations and soil pH,
456 and N addition rates rules out the possibility that soil K^+ may contribute to the decline
457 in plant diversity (Table A1). Multiple regression showed that changes in Ca^{2+} and
458 Mg^{2+} concentrations reflected by F2 contributed little to AGB and species richness of
459 forbs, suggesting that patterns in species richness of forbs are not driven by depletion
460 of Ca^{2+} and Mg^{2+} induced by N addition.

461

462 In addition to depletion of base cations, soil acidification can release some metal ions
463 by increasing their solubility. N addition markedly enhanced concentrations of Mn^{2+} ,
464 Fe^{3+} , Cu^{2+} and Al^{3+} in soils (Fig. 3c), and changes in these metal ions explained more
465 variation on forb species richness than inorganic-N (Table 2). These results suggest
466 that the release of metal cations is a main driving force for N addition-evoked loss of
467 forb species. In contrast to Mn^{2+} , Fe^{3+} and Cu^{2+} , an increase in soil Al^{3+} concentration
468 was not detected with N addition rate $<32 \text{ g m}^{-2} \text{ yr}^{-1}$ (Fig 3c), while loss of forb
469 species had already occurred at moderate N addition rate ($8 \text{ g m}^{-2} \text{ yr}^{-1}$) (Fig 1d)..
470 These results may imply that soil Al^{3+} is unlikely to be a key driving factor for species

loss evoked by N deposition in our experimental systems. Several studies have demonstrated that Al toxicity is involved in N deposition-induced species loss in acidic grasslands with soil pH<5 (Stevens et al., 2009). In our studies, soil pH was greater than 5 even under the highest N addition rates (Fig. 2). Moreover, changes in Al³⁺ concentration had lower partial correlation coefficient ($p-R^2$) with soil pH (Table A3). Given that Al phytoxicity normally occurs at soil pH<5 (Tyler, 1996), the contribution of Al toxicity to species loss can be discounted in our studies. Similar to results reported by Bowman et al. (2008), we found that N addition led to a substantial increase in soil Fe³⁺ concentration. Because forbs can only take up Fe²⁺ after reduction of Fe³⁺ to Fe²⁺ by ferric chelate reductases in roots (Marchner 1995), the N addition-induced increase in soil Fe³⁺ concentration would contribute little to the loss of forb species in the present study. Based on the results of linear regression analyses, compared with Cu²⁺, Mn²⁺ exhibited the closest correlation with soil pH and Mn²⁺ concentrations were most greatly affected by N addition (Fig 3, Table A1). Therefore, mobilization of Mn²⁺ due to soil acidification induced by N addition is expected to be a critical process responsible for forb loss in the Inner Mongolia steppe under elevated N deposition, because availability of ions in soil affects nutrient uptake of plants (Marschner, 1995). Forb species would be more prone to accumulate Mn than graminoid species because of their intrinsic differences in biochemical pathways to regulate metal transport (Marschner, 1995). Therefore, further studies to evaluate the effects of N addition on accumulation of metals in general and Mn in particular by forbs and graminoids would provide a biochemical explanation for loss

493 of forb species in the steppe under elevated N deposition.

494 **Conclusions**

495 We demonstrate that N addition reduced species richness, acidified soil and disturbed
496 nutrient homeostasis in soil in an Inner Mongolia steppe. We further reveal that
497 decline in species richness by N addition was mainly accounted for by loss of forb
498 species as forbs were more sensitive to N addition than graminoids. Our findings also
499 show that N addition resulted in an increase in inorganic-N concentration, depletion
500 of base cations (Ca^{2+} and Mg^{2+}) and mobilization of Mn^{2+} ions. Nitrogen availability
501 and release of Mn^{2+} ions were involved in changes of biomass and diversity in the
502 temperate steppe. These findings highlight that soil acidification-mediated Mn^{2+}
503 mobilization is the key factor driven decline in species richness of forbs under
504 elevated N addition in the alkaline, calcareous grasslands in northern China.

505

506 **Author contribution:** Q.T., L.L, W. B and W.H. Z designed the experiments and Q.T.
507 N.L., W. B and W.H.Z. conducted the experiments. Q. T. and W.H. Z. prepared the
508 manuscript with contributions from all co-authors.

509 **Acknowledgements.** This study is supported by National Natural Science Foundation
510 of China (31272234 & 31470466).

511

512 **References**

513

514 Bai, Y., Wu, J., Clark, C. M.: Tradeoffs and thresholds in the effects of nitrogen
515 addition on biodiversity and ecosystem functioning: evidence from inner
516 Mongolia Grasslands. *Global Change Biol.*, 16, 358-372, 2010..

517 Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M.,
518 Bustamante, M., Cinde, s., Davidson, E., Dentener, F., Emmett, B., Erisman,
519 J.-W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and de Vries, W.: Global
520 assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis.
521 *Ecol. Appl.* 20, 30-59, 2010.

522 Bobbink, R., Hornung, M., and Roelofs, J. G. M.: The effects of air-borne nitrogen
523 pollutants on species diversity in natural and semi-natural European vegetation. *J.*
524 *Ecol.* 86, 717-738, 1998..

525 Borer, E.T., Seabloom, E.W., Gruner, D.S., Harpole, W. S., Hillebrand, H., Lind, E.M.,
526 Adler, P.B., Alberti, J., Anderson, T. M., Bakker, J.D., Biederman, L., Blumenthal,
527 D., Brown, C.S., Brudvig, L. A., Buckley, Y. M., Cadotte, M., Chu, C., Cleland,
528 E.E., Crawley, M.J. Daleo, P., Damschen, E.I., Davies, K.F., DeCrappeo, N.M.,
529 Du, G., Firn, J., Hautier, Y., Heckman, R. W., Hector, A., HilleRisLambers, J.,
530 Iribarne, J., Klein, J. A., Knops, J.M.H., La Pierre, K.J., Leakey, A.D.B., Li, W.,
531 MacDougall, A.S., McCulley, R.L., Melbourne, B.A., Mitchell, C.E., Moore, J.L.,
532 Mortensen, B., O'Halloran, L.R., Orrock, J.L., Pascual, J., Prober, S.M., Pyke,
533 D.A., Risch, A.C., Schuetz, M., Smith, M.D., Stevens, C.J., Sullivan, L.L.,

534 Williams, R.J., Wragg, P.D., Wright, J.P., and Yang, L. H.: Herbivores and
535 nutrients control grassland plant diversity via light limitation. *Nature* 508,
536 517-520, 2014.

537 Bowman, W.D., Cleveland, C.C., Halada, L., Hreško, J., and Baron, J. S.: Negative
538 impact of nitrogen deposition on soil buffering capacity. *Nature Geoscience*, 1,
539 767-770, 2008.

540 Britto, D.T., and Kronzucker, H. J.: NH_4^+ toxicity in higher plants: a critical review. *J.*
541 *Plant Physiol.* 159, 567–584, 2002.

542 Canfield, D.E., Glazer, A.N., and Falkowski, P. G.: The evolution and future of earth's
543 nitrogen cycle. *Science* 330, 192-196, 2010.

544 Cardinale, B.J., Duffy, J.E., Gonzalez, A., Biodiversity loss and its impact on humanity.
545 *Nature*, 486, 59-67 2012.

546 Carnol, M., Ineson, P., and Dickinson, A. L.: Soil solution nitrogen and cations
547 influenced by $(\text{NH}_4)_2\text{SO}_4$ deposition in a coniferous forest. *Environ. Pollu.*
548 97, 1-10, 1997.

549 Ceulemans, T., Merckx, R., Hens, M., and Honnay O.: Plant species loss from
550 European semi-natural grasslands following nutrient enrichment – is it
551 nitrogen or is it phosphorus? *Global Ecol. Biogeogr.* 22, 73-82, 2013.

552 Chen, D., Lan, Z., Bai, X., Grace, J.B., and Bai, Y.: Evidence that
553 acidification-induced declines in plant diversity and productivity are mediated
554 by changes in below-ground communities and soil properties in a semi-arid
555 steppe. *J. Ecol.* 101, 1322-1334, 2013.

556 Chytrý, M., Danihelka, J., Ermakov, N. Hájeket, M., Hájková P., Kočí M., Kubesová
557 S., Lustyk, P., Otypková Z., Popov, D., Roleček, J., Rezníková M., Smarda, P.,
558 and Valachovi, M.: Plant species richness in continental southern Siberia: effects
559 of pH and climate in the context of the species pool hypothesis. *Global Ecol.*
560 *Biogeogr.* 16, 668-678, 2007.

561 Clark, C.M., and Tilman, D.: Loss of plant species after chronic low-level nitrogen
562 deposition to prairie grasslands. *Nature* 451, 712-715, 2008.

563 De Schrijver, A., Verheyen, K., Mertens, J., Staelens, J., Wuyts, K., and Muys, B.:
564 Nitrogen saturation and net ecosystem production. *Nature* 451, E1-E4, 2008.

565 Dean, S.L., Farrer, E.C., Taylor, D.L., Porras-Alfaro, A., Suding, K.N., and
566 Sinsabaugh, R. L.: Nitrogen deposition alters plant-fungal relationships: linking
567 belowground dynamics to aboveground vegetation change. *Mol. Ecol.* 23,
568 1364-1378, 2014.

569 Dickson, T.L., and Foster, B. L.: Fertilization decreases plant biodiversity even when
570 light is not limiting. *Ecol. Lett.* 14, 380-388, 2011.

571 Dorland, E., van den Berg, L.J.L., van den Berg, A.J., Vermeer, M.L., Roelofs, J.G.M.,
572 and Bobbink, R.: The effects of sod cutting and additional liming on potential net
573 nitrification in heathland soils. *Plant Soil* 265, 267–277, 2004.

574 Dupre, C., Stevens, C.J., Ranke, T., Bleeker, A., Peppler-Lisbach, C., Gowing, D.J.G.,
575 Dise, N.B., Dorland, E., Bobbink, R., and Diekmann, M.: Changes in species
576 richness and composition in European acidic grasslands over the past 70 years:
577 the contribution of cumulative atmospheric nitrogen deposition. *Global Change*

578 Biol. 16, 344-357, 2010.

579 Falkengren-Grerup, U., and Lakkenborg-Kristensen, H.: Importance of ammonium
580 and nitrate to the performance of herb-layer species from deciduous forests in
581 southern Sweden. Environ. Exp. Bot. 34, 31–38, 1994.

582 Fang, Y., Xun, F., Bai, W., Zhang, W., and Li, L.: Long-term nitrogen addition leads to
583 loss of species richness due to litter accumulation and soil acidification in a
584 temperate steppe. PLoS One, 7, e47369, 2012.

585 Friedman, S.P.: Soil properties influencing apparent electrical conductivity: a review.
586 *Comput. Electron. Agri.* **46**, 45-70, 2005.

587 Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.
588 R., Martinelli, L.A., Seitzinger, S. P., Sutton, M. A.: Transformation of the
589 nitrogen cycle: recent trends, questions, and potential solutions. Science 320,
590 889-892, 2008.

591 Grime, J.P.: Plant Strategies and Vegetation Processes. John Wiley and Sons,
592 Chichester, UK, 1979.

593 Guo, J.H., Liu, X.J., Zhang, Y., shen, J.L., Han, W.X., Zhang, W. F., Christie, P.,
594 Goulding, K.W.T., Vitousek, P.M., and zhang, F. S.: Significant acidification in
595 major Chinese croplands. Science, 327, 1008-1010, 2010.

596 Hautier, Y., Niklaus, P.A., and Hector, A.: Competition for light causes plant
597 biodiversity loss after eutrophication. Science, 324, 636-638, 2009.

598 Heil, G.W., and Diemont, W.H.: Raised nutrient levels change heathland into
599 grassland. Vegetatio 53, 113–120, 1983.

600 Houdijk, A.L.F.M., Verbeek, P.J.M., Van Dijk, H.F.G., and Roelofs, J. G. M.:
601 Distribution and decline of endangered herbaceous heathland species in relation
602 to the chemical composition of the soil. *Plant Soil*, 148, 137-143, 1993.

603 Horswill, P., O'sullivan, O., Phoenix, G.K., Lee, J.A., and Leake, J.R.: Base cation
604 depletion, eutrophication and acidification of species-rich grasslands in response
605 to long-term simulated nitrogen deposition. *Environ. Pollut.* 155, 336-349, 2008.

606 Hou, X.Y.: *Vegetation Geography of China and Chemical Composition of Dominant*
607 *Species*. Sciense Press, Beijing, 1982.

608 Isbell, F., Reich, P.B., Tilman, D., Hobbie, S.E., Polasky, S., and Binder, S.: Nutrient
609 enrichment, biodiversity loss, and consequent declines in ecosystem productivity.
610 *Proc. Natl. Acad. Sci. U S A*, 110, 11911-11916, 2003.

611 Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., Zuo, Y., Zhang, D., and Wang,
612 Q: Spatial and decadal variations in inorganic nitrogen wet deposition in China
613 induced by human activity. *Sci. Reports*, 4, 3763, 2014.

614 Jiang, C., Yu, G., Fang, H., Cao, G., Li, Y.: Short-term effect of increasing nitrogen
615 deposition on CO₂, CH₄ and N₂O fluxes in an alpine meadow on the
616 Qinghai-Tibetan Plateau, China. *Atmos. Environ.* 44, 2920-2926, 2010.

617 Kim, T.W., Lee, K., Najjar, R.G., Jeong, H.D., Jeong, H.J.: Increasing N abundance in
618 the northwestern Pacific Ocean due to atmospheric nitrogen deposition. *Science*
619 334, 505-509, 2011.

620 Kochian, L.V. Cellular mechanisms of aluminum toxicity and resistance in plants.
621 *Ann. Rev. Plant Physiol. Plant Mol. Biol.* 46, 237-260, 1995.

622 Lan, Z.C., and Bai, Y.F. Testing mechanisms of N-enrichment induced species loss in
623 a semiarid Inner Mongolia grassland: critical thresholds and implications for
624 long-term ecosystem responses. *Phil. Trans. R. Soc. B.* 367, 3125–3134, 2012.

625 Lindsay, W.L., and Norvell, W.A.: Development of a DTPA soil test for zinc, iron,
626 manganese, and copper. *Soil Sci. Soc. Amer. J.* 42, 421-428 (1978).

627 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W.,
628 Goulding, K., Christire, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen
629 deposition over China. *Nature* 494, 459-462, 2013.

630 Marschner, H.: *Mineral Nutrition of Higher Plants*. Second edition. London,
631 Academic Press 1995.

632 Maskell, L.C., Smart, S.M., Bullock, J.M., Thompson, K.E.N., and Stevens, C. J.:
633 Nitrogen deposition causes widespread loss of species richness in British habitats.
634 *Global Change Biol.* 16, 671-679, 2010.

635 Mulvaney, R. L.: Nitrogen:inorganic forms. In: *Methods of Soil Analysis. Part 3.*
636 Chemical Methods (eds Sparks DL, Page AL, Helmke PA, et al.), 1123-1184. Soil
637 Science Society of American and American Society of Agronomy, Madison,
638 WI,USA, 1996.

639 Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L. A.: Estimation of Available
640 Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of
641 Agriculture, Washington, DC, 1-19, 1954.

642 Phoenix, G.K., Booth, R.E., Leake, J.R., Read, D.J., Grime, J.P., and Lee, J.A. Effects
643 of enhanced nitrogen deposition and phosphorus limitation on nitrogen budgets of

644 semi-natural grasslands. *Global Change Biol.* 9, 1309-1321, 2003.

645 Roem, W.J., and Berendse, F. Soil acidity and nutrient supply ratio as possible factors
646 determining changes in plant species diversity in grassland and heathland
647 communities. *Biol. Conserv.* 92, 151-161, 2000.

648 Smith, V.H., Tilman, G.D., and Nekola, J. C.: Eutrophication: impacts of excess
649 nutrient inputs on freshwater, marine, and terrestrial ecosystems. *Environ. Pollu.*
650 100, 179-196, 1999.

651 Stevens, C.J., Dise, N.B., and Gowing, D. J.: Regional trends in soil acidification and
652 exchangeable metal concentrations in relation to acid deposition rates. *Environ.*
653 *Pollu.* 157, 313-319, 2009.

654 Stevens, C.J., Dise, N.B., Gowing, D.J.G., and Mountford, J.O.: Loss of forb diversity
655 in relation to nitrogen deposition in the UK: regional trends and potential controls.
656 *Global Change Biol.* 12, 1823-1833, 2006.

657 Stevens, C.J., Dise, N.B., Mountford, J.O., and Gowing, D. J.: Impact of Nitrogen
658 Deposition on the Species Richness of Grasslands. *Science* 303, 1876-1879,
659 2004.

660 Suding, K.N., Collins, S.L., Gough, L., Clark, C., Cleland, E.E., Gross, K. L.,
661 Milchunas, D.G., and Pennings, S.: Functional- and abundance-based
662 mechanisms explain diversity loss due to N fertilization. *Proc. Natl. Acad. Sci. U*
663 *S A*, 102, 4387-4392, 2005.

664 Sutton, M.A., and Bleeker, A.: 2013 Environmental science: the shape of nitrogen to
665 come. *Nature*, 494, 435-437, 2013.

666 Tian, Q., Chen, F., Zhang, F., Mi, G. Possible Involvement of cytokinin in
667 nitrate-mediated root growth in maize. *Plant Soil* 277, 185-196, 2005.

668 Tian, Q.Y., Sun, P., and Zhang, W. H. Ethylene is involved in nitrate-dependent root
669 growth and branching in *Arabidopsis thaliana*. *New Phytol* 184, 918-931, 2009.

670 Tyler, G. Soil chemistry and plant distributions in rock habitats of southern Sweden.
671 *Nord. J. Bot.* 16, 609–635, 1996.

672 van den Berg, L.J.L., Dorland, E., Vergeer, P., Hart, M.A., Bobbink, R., and Roelofs, J.
673 G: Decline of acid-sensitive plant species in heathland can be attributed to
674 ammonium toxicity in combination with low pH. *New Phytol.* 166, 551-564,
675 2005.

676 van Den Berg, L.J.L., Vergeer, P., Rich, T.C.G., Smart, S.M., Guest, D.A., and
677 Ashmore, M. R.: Direct and indirect effects of nitrogen deposition on species
678 composition change in calcareous grasslands. *Global Change Biol.* 17,
679 1871-1883.

680 van der Putten, W.H., Bardgett, R.D., Bever, J.D. Bezemer, T.M., Casper, B.B.,
681 Fukami, T., Kardol, P., Klironomos, J.N., ; Kulmatiski, A., Schweitzer, J.A.,
682 Suding, K.N., Van de Voorde, T.F.J., and Wardle, D. A.: Plant-soil feedbacks: the
683 past, the present and future challenges. *J. Ecol.* 101, 265-276, 2013.

684 Wendt, K.: QuickChem method 10-107-04-1-A: Determination of nitrate/nitrite in
685 surface and wastewaters by flow injection analysis. In Zellweger
686 Analytics–Lachat Instruments methods manual. Zellweger Analytics, Milwaukee,
687 WI, 1999.

688 Yang, H., Jiang, L., Li, L., Li, A., Wu, M., and Wan, S.: Diversity-dependent stability
689 under mowing and nutrient addition: evidence from a 7-year grassland
690 experiment. *Ecol. Lett.* 15, 619-626, 2012a.

691 Yang, Y., Ji, C., Ma, W., Wang, S., Wang, S., Han, W., Mohammat, A., Robinson, D.,
692 and Smith, P.: Significant soil acidification across northern China's grasslands
693 during 1980s-2000s. *Global Change Biol.* 18, 2292-2300, 2012b.

694 Zhang, LM., Hu, HW., Shen, JP., He, JZ.: Ammonia-oxidizing archaea have more
695 important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly
696 acidic soils. *ISME J.* 6, 1032-1045. 2012.

697 Zhang, X., Wang, Q., Gilliam, F.S., Bai, W., Han, X., and Li, L.: Effect of nitrogen
698 fertilization on net nitrogen mineralization in a grassland soil, northern China.
699 *Grass Forage Sci.* 67, 219-230, 2012.

700 Zhang, Y., Lu, X., Isbell, F. Stevens, C.J., Han, X., He, N., Zhang, G., Yu, Q., Huang, J.,
701 and Han X.: Rapid plant species loss at high rates and at low frequency of N
702 addition in temperate steppe. *Global Change Biol.* doi: 10.1111/gcb., 12611,
703 2014.

704 Zhang, Y., Zheng, L., Liu, X., Jickells, T., Cape, J.N., Gouldng. K., Fangmeier, A.,
705 and Zhang F.: Evidence for organic N deposition and its anthropogenic sources
706 in China. *Atmos. Environ.* 42, 1035-1041, 2008.

707 Zhao, D.Y., Tian, Q.Y., Li, L.H., and Zhang, W.H.: Nitric oxide is involved in
708 nitrate-induced inhibition of root elongation in *Zea mays* L. *Ann.Bot.* 100, 97-103,
709 2007.

710 **Appendices**

711 **Fig. A1** Effect of N addition on soil electrical conductivity. Data are mean \pm SE (n=8).

712 * and ** respectively indicate significant difference between control (no N added) and

713 N-added plots at $P<0.05$ and $P<0.01$.

714

715 **Table A1** Pear correlation coefficients (r) between ion concentrations and N addition

716 rate and soil pH ($r>0$ indicates positive correlations, $r<0$ indicates negative

717 correlations). * , ** and *** indicate the correlation is significant at $P<0.05$, $P<0.01$,

718 and $P<0.001$, respectively.

719

720 **Table A2** Linear regression between inorganic-N, Soil pH and Olsen-P with forb

721 biomass, forb richness, grass biomass and grass richness. Pear correlation coefficient

722 (r), F -value and P -values are given. $r>0$ indicates positive correlations, $r<0$ indicates

723 negative correlations.

724

725 **Table A3.** A list of the species in the study area.

726

727 **Figure legends**

728 **Fig. 1** Effects of N addition on aboveground biomass and species richness of
729 vegetation. Total aboveground biomass (AGB) (a), total species richness (b),
730 graminoid and forb aboveground biomass (c) and species richness of graminoids
731 and forbs (d) in plots with different rates of N addition. Number of species and AGB
732 were determined in quadrats (1 m x 1 m). *, **, and *** indicate significant
733 difference with control plots with no N addition at $P<0.05$, $P <0.01$ and $P <0.001$.

734 Data are mean \pm SE (n=8).

735

736 **Fig. 2** Reduction of soil pH with N addition rate. Soil pH was measured after N
737 addition for 9 years. ANOVA analysis with Duncan's test was used to determine the
738 significance. *** indicates significant difference with control plots at $P<0.001$. Data
739 are mean \pm SE (n=8)

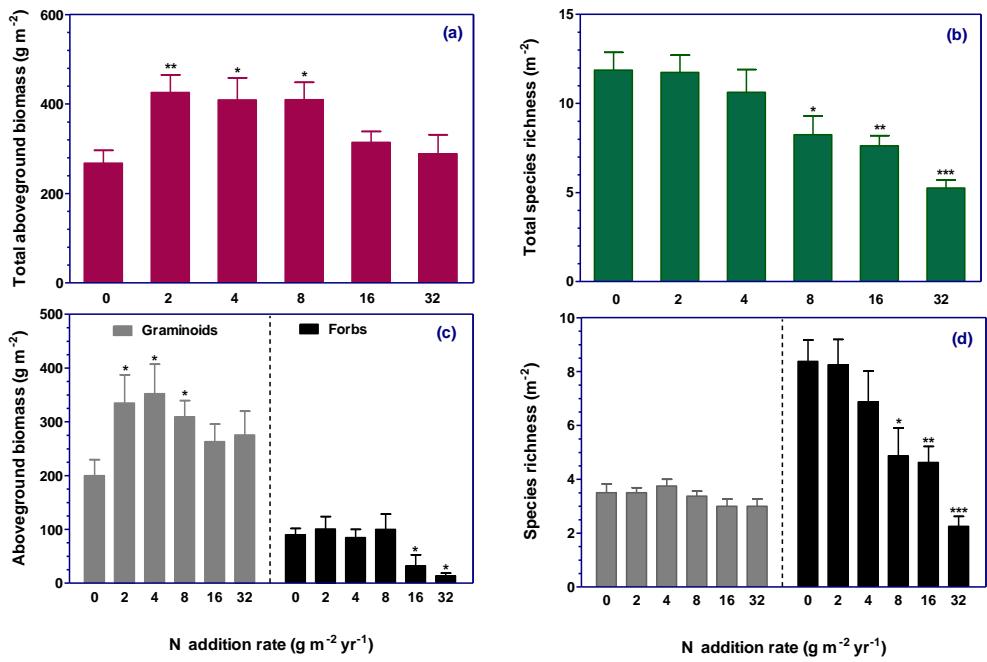
740

741 **Fig. 3** Effect of N addition on exchangeable ion concentrations in soils. Data are
742 mean \pm SE (n=8). *, **, and *** indicate significant difference between control (no N
743 added) and N-added plots at $P<0.05$, $P <0.01$ and $P <0.001$, respectively.

744

745 **Fig. 4** Correlation of metal ion concentrations in soil and aboveground biomass (AGB)
746 of grasses and forbs. Filled circles and open circles respectively corresponded to forbs
747 and graminoids . Linear regression was used to identify the significance of the
748 correlation between soil ions and AGB. Fe^{3+} ($R^2=0.13$, $P =0.0111$), Mn^{2+} ($R^2=0.21$, P

749 $=0.0010$), Cu^{2+} ($R^2=0.16$, $P =0.0044$) and Al^{3+} ($R^2=0.22$, $P =0.0007$) showed linear
750 correlation with AGB of forbs.


751

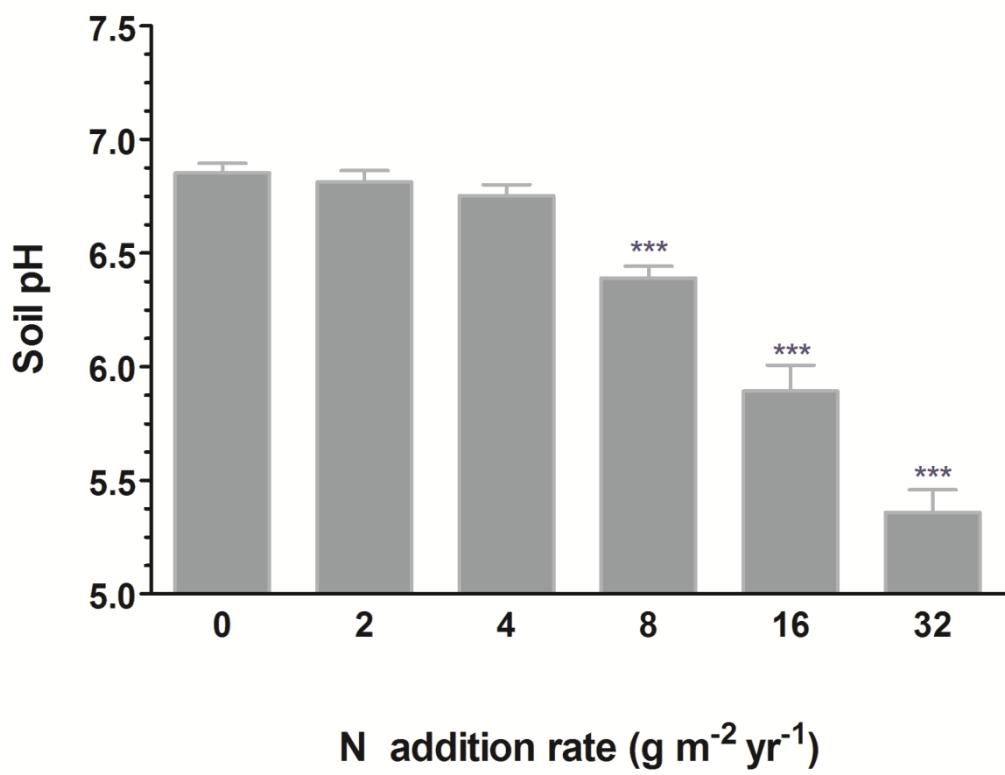
752 **Fig. 5.** Correlation of ion concentrations in soil and species richness of grasses and
753 forbs. Filled circles corresponded to forbs and open circles corresponded to
754 graminoids. Linear regression was used to identify the significance of the correlation
755 between soil ions and species richness. Solid lines and dotted lines are the forbs and
756 graminoids fitt with the model. Ca^{2+} ($R^2=0.26$, $P =0.0002$), Mg^{2+} ($R^2=0.17$, P
757 $=0.0038$), Fe^{3+} ($R^2=0.32$, $P <0.0001$), Mn^{2+} ($R^2=0.41$, $P <0.0001$), Cu^{2+} ($R^2=0.27$, P
758 $=0.0002$) and Al^{3+} ($R^2=0.30$, $P <0.0001$) showed linear correlation with species
759 richness of forbs.

760

761 **Fig. 6** Projection of six elemental variables for principle component analysis factors
762 one and two.

763

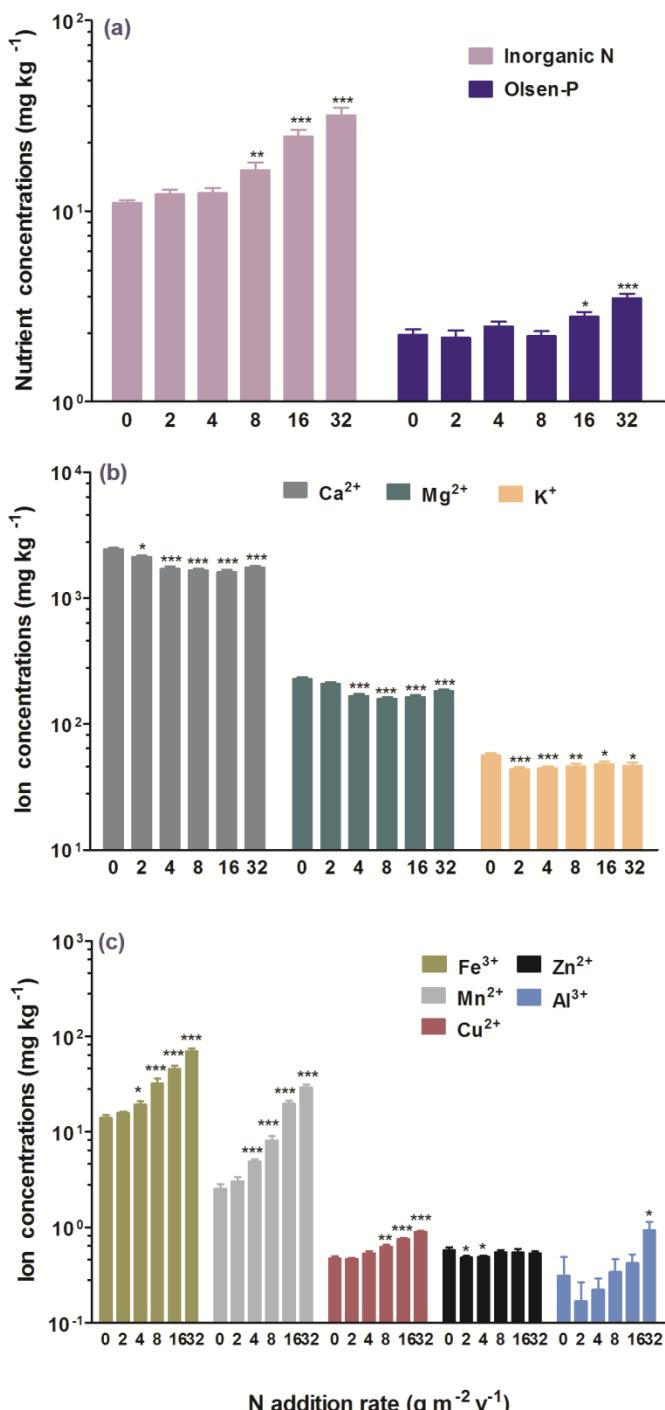
764


765

766 Fig. 1

767

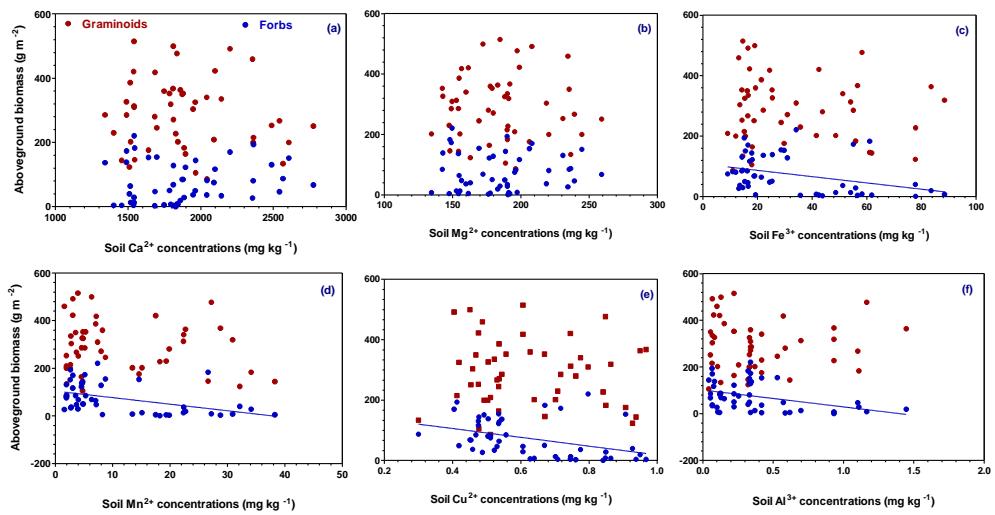
768


769

770

771 Fig. 2

772

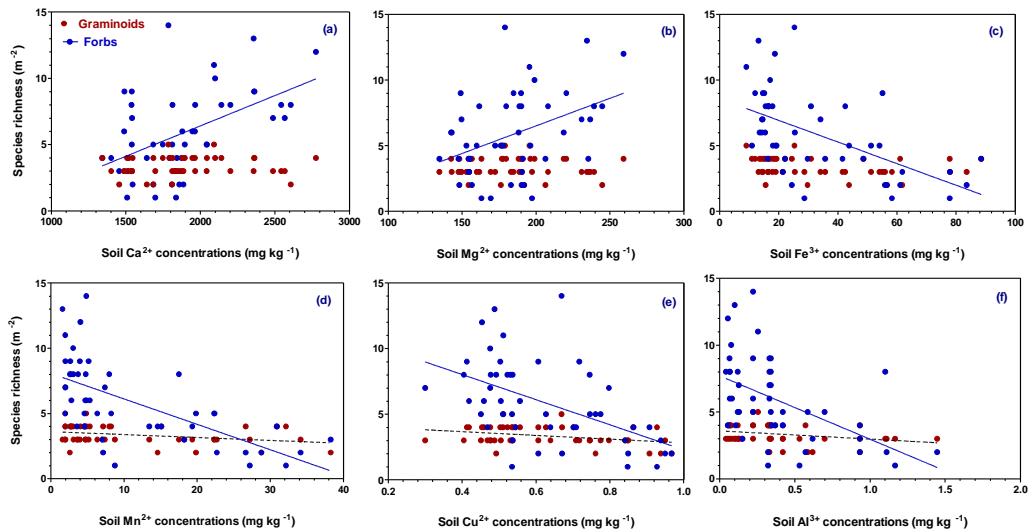


773

774

Fig. 3

775

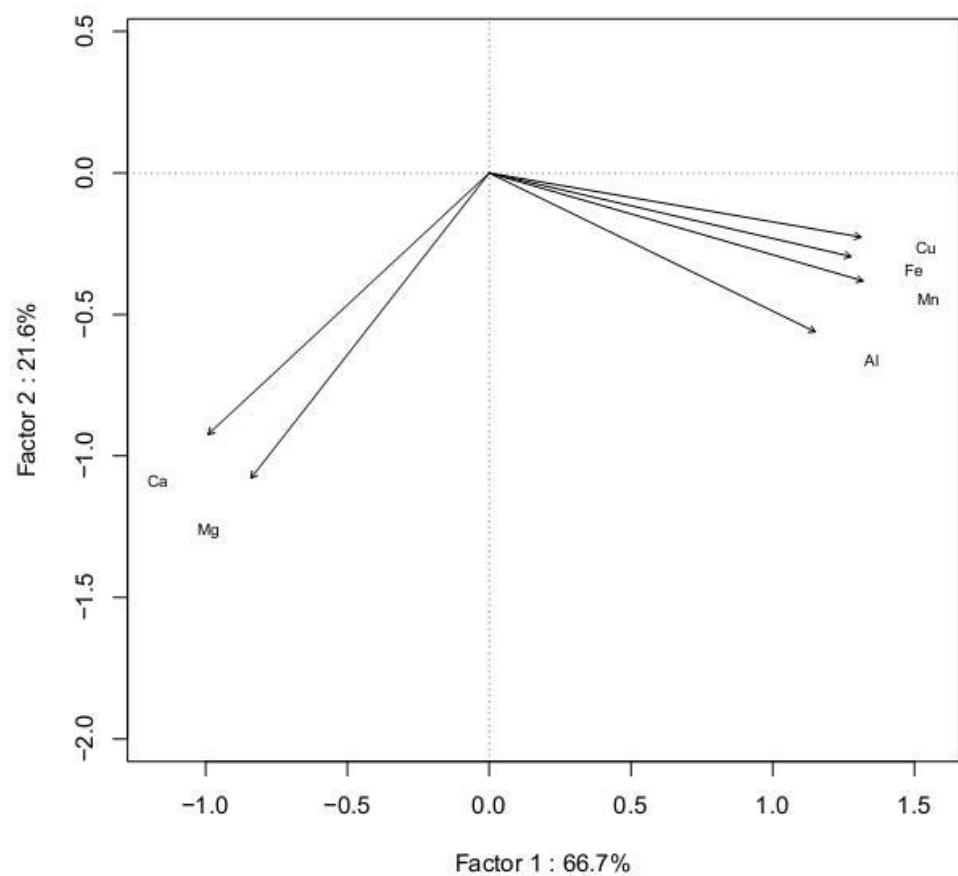


776

777

Fig. 4

778



779

780

Fig. 5

781

782

783

Fig. 6

784

785

786

787 **Table 1** Factor loadings of six mineral nutrient variables on axes 1 and 2 of the
788 principal components analysis.

789

790

Variables	Factor 1	Factor 2
Fe³⁺	0.882	-0.264
Mn²⁺	0.938	-0.227
Cu²⁺	0.880	-0.318
Al³⁺	0.898	-0.058
Ca²⁺	-0.284	0.910
Mg²⁺	-0.137	0.951

791

792

793

794

795

796 **Table 2** Multiple regression testing the effect of the dependent variables on species
 797 richness and biomass of forbs and Graminoids. Partial correlation coefficient, *F*-value
 798 and *P*-values are given. Variables in the regression are: F1 (F1=-0.35*Z Ca²⁺-0.30*Z
 799 Mg²⁺+0.45*Z Fe³⁺+0.46*Z Mn²⁺+0.46*Z Cu²⁺+0.40*Z Al³⁺), F2 (F2=0.57*Z
 800 Ca²⁺+0.67*Z Mg²⁺+0.18*Z Fe³⁺+0.24*Z Mn²⁺+0.14*Z Cu²⁺+0.35*Z Al³⁺),
 801 inorganic-N and Olsen-P. F1 and F2 respectively represent PCA axe 1 and PCA axe 2.
 802
 803

Variables	Forb biomass			Forb richness			Graminoid biomass			Graminoid richness		
	<i>p</i> -R ²	<i>F</i>	<i>P</i>	<i>p</i> -R ²	<i>F</i>	<i>P</i>	<i>p</i> -R ²	<i>F</i>	<i>P</i>	<i>p</i> -R ²	<i>F</i>	<i>P</i>
F1	0.0003	0.02	0.9026	0.4277	34.38	<0.0001	0.0291	1.39	0.2451	0.0768	3.83	0.0565
F2	0.0116	0.72	0.4018	0.0003	0.02	0.8907	0.0124	0.59	0.4478	0.0580	3.01	0.0894
Inorganic-N	0.2359	14.20	0.0005	0.0011	0.08	0.7721	0.0336	1.60	0.2119	0.0000	0.00	0.9891
Olsen-P	0.0381	2.36	0.1312	0.0086	0.69	0.4106	0.0227	1.07	0.3071	0.0004	0.02	0.8918

804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825