

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production

A.-K. Almén^{1,2}, A. Vehmaa³, A. Brutemark^{2,3,a}, L. Bach⁴, S. Lischka⁴, A. Stuhr⁴, S. Furuhagen⁵, A. Paul⁴, R. Bermúdez^{4,6}, U. Riebesell⁴, and J. Engström-Öst^{1,2}

Discussion Paper

Discussion Paper

Discussion

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Introduction **Abstract**

Conclusions References

> **Figures Tables**

Close

Full Screen / Esc

Printer-friendly Version

¹Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6, 20500 Åbo, Finland

²Aronia Research and Development Institute, Novia University of Applied Sciences and Abo Akademi University, Raseborgsvägen 9, 10600, Ekenäs, Finland

³Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland

⁴GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany

Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden

⁶Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador

anow at: Calluna AB, Torsgatan 30, 11321 Stockholm, Sweden

Published by Copernicus Publications on behalf of the European Geosciences Union.

BGD

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close
Full Screen / Esc

Printer-friendly Version

Interactive Discussion

17094

Ocean acidification is caused by increasing amounts of carbon dioxide dissolving in the oceans leading to lower seawater pH. We studied the effects of lowered pH on the calanoid copepod Eurytemora affinis during a mesocosm experiment conducted in a coastal area of the Baltic Sea. We measured copepod reproductive success as a function of pH, chlorophyll a concentration, diatom and dinoflagellate biomass, carbon to nitrogen (C:N) ratio of suspended particulate organic matter, as well as copepod fatty acid composition. The laboratory-based experiment was repeated four times during four consecutive weeks, with water and copepods sampled from pelagic mesocosms enriched with different CO₂ concentrations. In addition, oxygen radical absorbance capacity (ORAC) of animals from the mesocosms was measured weekly to test whether the copepod's defence against oxidative stress was affected by pH. We found no effect of pH on offspring production. Phytoplankton biomass, as indicated by chlorophyll a concentration, had a strong positive effect. The concentration of polyunsaturated fatty acids in the females were reflected in the eggs and had a positive effect on offspring production, whereas monounsaturated fatty acids of the females were reflected in their eggs but had no significant effect. ORAC was not affected by pH. From these experiments we conclude that E. affinis seems robust against direct exposure to ocean acidification on a physiological level, for the variables covered in the study. E. affinis may not have faced acute pH stress in the treatments as the species naturally face large pH fluctuations.

1 Introduction

The concentration of carbon dioxide (CO₂) in the atmosphere is rising at a ten times faster rate than during the past 55 million years. The oceans absorb CO₂ from the atmosphere leading to lower seawater pH and reduction in carbonate concentration. Since pre-industrial times the ocean acidity has increased by 28% (IPCC, 2013). The fast

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Discussion Paper

Discussion Paper

Discussion

Paper

Abstract Introduction

Conclusions References

Tables Figures

I4 ►I

Close

•

Full Screen / Esc

Back

Printer-friendly Version

Discussion

Paper

Back

increase in CO₂ and change in seawater chemistry will have adverse effects on many marine species and ecosystems (Fabry et al., 2008; Kroeker et al., 2010). Due to lower buffering capacity of brackish water, the Baltic Sea is especially sensitive to elevated CO₂ (Havenhand, 2012). Modelling suggests a decrease of 0.26–0.40 pH units for the Baltic Sea by the year 2100 (BACC II, 2015). In addition, high CO₂ levels interact with other climate change related factors that may have negative effects on marine organisms (Kroeker et al., 2013; Talmage and Gobler, 2012). Especially the coastal zones are under heavy pressure from anthropogenically driven ocean acidification due to eutrophication and oxygen minimum zones (Fabry et al., 2008; Melzner et al., 2013; Wallace et al., 2014).

Copepods are the most abundant zooplankton in the oceans. They constitute major parts of the diet of juvenile fish, and are hence an important part of the food web. Lowered pH may disturb the acid-base balance, thereby altering the reproduction, hatching, and development (Kurihara et al., 2004; Mayor et al., 2007; Weydmann et al., 2012). Besides the direct effects of acidification, rising CO₂ can adversely affect consumers and food webs due to changed nutritional value of prey (Rossoll et al., 2012). Polyunsaturated fatty acids (PUFA) are essential metabolites for copepods and need to be obtained from the diet. Certain PUFA have specific roles in central processes of copepod reproduction including egg production (20:5\omega SPA), egg hatching (22:6\omega DHA), and development (18:3\omega3 and 18:5\omega3) (J\u00f3nasd\u00f3ttir et al., 2009). Important \u00fa3 fatty acids decreased significantly in the diatom Thalassiosira pseudonana grown at high CO₂ with lower levels of PUFA with following decreased egg production in the copepod Acartia tonsa (Rossoll et al., 2012). Further, CO₂-related changes in the fatty acid composition and content of several primary producers have been reported (Bermúdez et al., 2015, and references therein). Furthermore, ocean acidification induced changes in phytoplankton species composition can have an indirect effect on food quantity and quality for heterotrophic consumers. Elevated CO2 levels can increase C:N ratios of primary producers, which alter their nutritional value and can adversely affect the growth and reproduction of copepods (Riebesell and Tortell, 2011).

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ≻l

•

Close

Full Screen / Esc

Printer-friendly Version

Ocean acidification can induce oxidative stress in marine organisms (Tomanek et al., 2011; Kaniewska et al., 2012). Hence, biochemical responses to low pH conditions, such as changed activity of antioxidants and enzymes may show higher sensitivity than for example survival and reproduction (Gorokhova et al., 2010; Zhang et al., 2012). An enhanced antioxidant defence in response to increased reactive oxygen species (ROS) concentration may occur at the expense of reduced investment in other metabolic processes, such as growth and reproduction. The defence capacity against oxidative stress can be assessed by measuring the capacity to quench ROS (see review by Monaghan et al., 2009).

E. affinis is a common copepod in the Baltic Sea and dominates the zooplankton community together with *Acartia bifilosa* in the study area during summer. *E. affinis* is an egg-bearing copepod that produces subitaneous eggs during summer and diapause eggs in autumn. The copepods recruit from small overwintering populations, and by hatching from the sediment (Katajisto et al., 1998). Previous studies on the effects of ocean acidification on *A. bifilosa* from the Baltic Sea have shown adverse effects in combination with warming (Vehmaa et al., 2012a, 2013). The increase in egg production with warmer temperature was lower when copepods were simultaneously exposed to warmer temperature and lowered pH (Vehmaa et al., 2012a).

The main objectives of this study were to examine effects of ocean acidification on reproductive success and antioxidant defence of the copepod E. affinis, as well as measuring the effects of food quality and quantity on offspring production. We studied how lowered pH, phytoplankton biomass (indicated as chlorophyll a), biomass of diatoms and autotrophic dinoflagellates and the C:N ratio of particulate organic matter (POM) affect the offspring, i.e., nauplii production in E. affinis. In addition, we looked at the effect of pH on essential fatty acids of incubated egg-bearing females to reveal indirect effects via the food. We also tested whether the fatty acid levels of the females were reflected in their eggs under a range of fCO_2 values representative for the future ocean (IPCC, 2013).

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract

Conclusions References

Tables Figures

l∢ ≯l

Close

•

Full Screen / Esc

Back

Printer-friendly Version

2.1 Experimental set-up

The study was conducted using KOSMOS mesocosms (Riebesell et al., 2013) within the framework of the SOPRAN project (Paul et al., 2015). The mesocosms were located at Storfjärden, an offshore pelagic area in the vicinity of Tvärminne Zoological Station (University of Helsinki) Baltic Sea (59°51′20″ N, 23°15′42″ E) from the beginning of June until the middle of August 2012. Storfjärden has a maximum depth of 34 m. The water is brackish with mean salinity 6. The area receives inflow of freshwater from the river Svartån, and periodical inflows of cold water from the open Baltic Sea with higher salinity (Niemi, 1976). Six mesocosms, consisting of 17 m deep bags made of thermoplastic urethane, each enclosing ~ 55 m³, were moored on site on 12 June. The mesocosms were covered by a net (mesh size 3 mm) at the top and the bottom during filling and left open for four days before the net was removed and the top was pulled up 1.5 m above the water surface and closed at the bottom (see Riebesell et al. (2013) and Paul et al. (2015) for details on the experimental design) to enclose the natural plankton community. The water column was mixed at the beginning of the experiment in order to avoid a salinity stratification. Four of the mesocosms were stepwise manipulated with CO₂ enriched seawater, during three consecutive days. Two bags were untreated and used as controls. Due to outgassing, CO2 was also added on day 15 of the experiment to the upper 7 m of the high CO₂ mesocosms to maintain the treatment levels. No nutrients were added. The average fCO₂ levels during the period of our incubation experiments (t1-t30) were 346, 348, 494, 868, 1075 and 1333 µatm (Paul et al., 2015).

2.2 Sampling and incubations

Our copepod experiment was conducted during a four-week period with weekly incubations. We sampled water and copepods from the mesocosms on days t3, t10, t17 and t24 (t0 being the day of first addition of CO_2 into the bags). Zooplankton was

Discussion F

ssion Pape

Discussion Paper

Discussion Paper

Discussion F

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I∢ ⊳I

•

Back Close

Full Screen / Esc

Printer-friendly Version

Discussion

Back

sampled with a 300 µm net (Ø 17 cm) from 17 m depth to the surface from all mesocosms and transferred to containers pre-filled with 4 L of seawater from a depth of 9 m from the respective mesocosm. On the same day, unfiltered water samples were taken from each mesocosm with depth-integrated water samplers (IWS, HYDRO-BIOS, Kiel) which take equal amount of seawater from every depth (0-17 m), and directly transferred into airtight 1.2 L Duran bottles to be used for incubations. Water samples and zooplankton were transported to a light- and temperature controlled room at Tvärminne Zoological Station. Egg-bearing females of E. affinis (n = 10 per treatment bottle) were incubated in the 1.2 L Duran glass bottles which contained mesocosm water. Temperature and pH were measured before adding the copepods to the bottles. Bottles were filled up and sealed without airspace, ensuring no air bubbles were present, to prevent CO₂-outgassing. The bottles were slowly inverted after sealing and incubated in a 16:8h light-dark cycle at in situ temperature, as an attempt to match the natural environment. A light source was installed above the incubation bottles, yielding 7 μmol m⁻² s⁻¹ (LI-COR LI-1000). All pH and temperature measurements were conducted with an Ecosense pH10 pH/temperature Pen directly from the bottles before closing and directly after opening (Table 1). The pen was calibrated with standard buffer solutions (Centipur, Titripac pH 4.00, 7.00 and 10.00) every second day. The bottles were inverted three times a day and their location on the shelf was randomly changed.

Each incubation lasted four days. Copepods and nauplii were gently filtered once daily onto a 250 µm and 30 µm mesh, respectively. The status of the adult copepods was checked under a dissecting microscope by submerging the sieve in a petri dish filled with water from respective mesocosm, before returning the copepods to bottles containing new unfiltered seawater sampled the same day from respective mesocosm. The nauplii were preserved in acid Lugol's solution and counted under a dissecting microscope (Nikon SMZ800, 25× magnification). As we could not follow individual copepods, we counted the nauplii produced daily, and the number of live females in the incubation bottles (survival > 95 %) when filtering out the nauplii. Only first stage nauplii were included in the analyses. The number of nauplii produced per female was cal**BGD**

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

> **Tables Figures**

Close

Full Screen / Esc

Printer-friendly Version

12, 17093–17123, 2015

Negligible effects of ocean acidification

BGD

A.-K. Almén et al.

Title Page **Abstract** Introduction Conclusions References **Tables Figures**

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

culated from the daily nauplius count divided by the number of females in the bottles. The bottles with new water was temperature-adjusted in the climate chamber before transferring the copepods. When changing the water we checked for oxygen depletion every second day with a hand held oxygen probe (YSI Environmental ProODO) in the 5 old water used in the incubation bottles.

At the end of each weekly incubation (t7, t14, t21, t28) the copepods were counted and checked for eggs and survival. Egg sacs were cut off from incubated egg-bearing females, with a thin needle and transferred to pre-weighted tin cups. The females were then stored separately. The samples were frozen in an ultra-freezer (-80°C) until fatty acids were measured by gas chromatography as fatty acid methyl esters (FAMEs) following instructions in Klein Breteler et al. (1999). Fatty acids were separated into three groups that were used in the analyses; polyunsaturated (PUFA), monounsaturated (MUFA) and saturated fatty acids (SAFA) and were expressed as ng mg dry weight⁻¹.

With each start of the weekly, sub-experiments, female E. affinis with egg sacs were picked from the mesocosms for analyses of oxygen radical absorbance capacity (ORAC). The animals $(n = 30 \pm 2)$ were carefully moved with tweezers onto a piece of plankton net gauze and stored in Eppendorf tubes in -80°C until they were homogenised in 150 µL Tris-EDTA buffer containing 1 % sarcosyl. The antioxidative capacity was assayed as ORAC according to Ou et al. (2001). As a source of peroxyl radicals, we used 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) (152.66 mM) and fluorescein was used as a fluorescent probe (106 nM). We used trolox (218 µM, Sigma-Aldrich) as a standard and the assay was performed on a 96-well microplate and to each well, 20 µL sample, 30 µL AAPH and 150 µL fluorescein were added. ORAC values were normalized to protein concentration and expressed as mg Trolox equivalents mg protein⁻¹. Protein concentration was measured with NanoOrange[®] (Life Technologies).

Phytoplankton was sampled every second day, fixed with acidic Lugol's iodine (2% final concentration) and counted with the inverted microscope method (Utermöhl, 1958) at a 100-400 fold magnification with a Zeiss Axiovert 100 and a Zeiss IM 405. Samples

for chlorophyll a (Chl a) measurements were collected onto GF/F filters (Whatman) with a nominal pore size of $0.7 \,\mu m$ using gentle vacuum filtration (< 200 mbar) and then stored for 3 h at $-20\,^{\circ}$ C until fluorometric measurement as described by Welschmeyer (1994).

Samples for carbon (C) and nitrogen (N) concentrations were collected as for Chl a and stored in glass petri dishes at $-20\,^{\circ}$ C until analyses. GF/F filters and petri dishes were combusted at $450\,^{\circ}$ C for 6 h before use. Gauze pre-filters were used to separate the size fraction < $55\,\mu m$. Filters were not acidified to remove inorganic carbon, therefore total particulate carbon is used. C and N concentrations were determined on an elemental analyser (EuroEA) following Sharp (1974), coupled by a Conflo II to a Finnigan Delta Plus mass spectrometer and were used to calculate C:N ratios in mol:mol. For further details on sampling and analyses, please refer to Paul et al. (2015).

2.3 Statistical analyses

2.3.1 Nauplii production

A linear mixed effects model (LMM) was applied to test if pH or food quantity and quality affected the nauplii production of *E. affinis*. Collinearity between all explanatory variables was checked (Pearson's product-moment correlation). Chl *a* concentration and the abundance of filamentous cyanobacteria correlated. As these correlating variables explain partly the same thing, the variable that explained the variation in nauplii production the best (Chl *a*) was included in the model. In the model the average number of nauplii produced female day for each treatment was set as response variable. Incubation pH (calculated as weekly mean values from daily measurements from incubation bottles), Chl *a* concentration, biomass of diatoms (*Chaetoceros* sp. *Skeletonema marinoi* and pennate diatoms, total μ g C L⁻¹), C:N < 55 μ m fraction of POM, biomass of autotrophic dinoflagellates (total μ g C L⁻¹) and incubation temperature were used as fixed effects (Table 2). We used only the most abundant diatoms as the other species had a very scarce and inconsistent abundance in the samples. The main groups of di-

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract

Conclusions References

Tables Figures

l∢ ≯l

Close

•

Full Screen / Esc

Back

Printer-friendly Version

atoms were present in all mesocosms. The smaller fraction of C:N < 55 μ m was used instead of total C:N as the total fraction may have included large zooplankton such as copepods which could affect the results. The explanatory variables used included data of each mesocosm of the corresponding day of sampled water used fort the incubations. When sampling days were missing, the average values (of total μ g C L⁻¹ for diatoms and dinoflagellates, and mol:mol of C:N) for the previous and the next day were used. Day nested within week, nested within mesocosm, was used as random intercept as nauplii production of the same animals was measured four times per week and as weekly incubations were dependent on each other, and they were repeatedly sampled from the same mesocosms. The model simplifications were done manually in backward stepwise manner by removing the non-significant effects and by using Akaike's information criterion (AIC) to achieve the minimum adequate model for the data. We report t statistics of the retained variables for the LMMs (Table 3). Bonferroni correction was applied (α 0.025) where the same dataset for nauplii production was used in two separate models.

2.3.2 Fatty acids

Linear mixed effects models were applied to test if pH has a direct effect on the fatty acid content of female copepods. EPA, DHA, and their precursor 18:3@3 autocorrelated strongly with each other, and with total PUFA (Pearson's product-moment correlation); therefore we decided to use PUFA in the LMM. Separate models were made for each fatty acid group, which was set as response variable, with pH as fixed effect and mesocosm as random effect. To test the effects of essential fatty acids on weekly nauplii production, another LMM was constructed. In the model, PUFA, MUFA and SAFA were used as fixed effects and mesocosm was tested as random factor (Table 2).

To test whether female fatty acid content are reflected in the fatty acid content of eggs, each fatty acid group (PUFA, MUFA and SAFA) was tested separately in a LMM. In the model, fatty acids of eggs was set as response variable and female fatty acid content as fixed effect; mesocosm was used as random factor. Not all females had egg

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ≯l

Close

→

Full Screen / Esc

Back

Printer-friendly Version

sacs left at the end of weeks 3 and 4 and therefore not enough material (egg sacs) was obtained for all treatments. The variables of corresponding samples that were missing the egg data were therefore removed.

2.3.3 Antioxidative capacity

We tested whether there was an effect of pH on the copepods' antioxidant capacity (ORAC) with a LMM. ORAC was set as response variable, pH (measured the same day from water samples taken for incubations) as fixed factor and mesocosm was set as random factor. In addition, to test for potential correlation between ORAC and nauplii production, a Pearson's product-moment correlation was performed. In the ORAC data, values for mesocosms 5 (control) and 6 (868 μatm) were missing.

For all models, model validation was done by plotting the standardised residuals. All statistical analyses were performed with R 2.15.2 and the nlme-package (Pinheiro et al., 2012) was used for the LMM analyses (R Development Core Team, 2012).

3 Results

The oxygen saturation was continuously high (> 93.8 %) in all incubations (Table 1). Temperature in the climate-controlled room followed the in situ temperature except during the fourth weekly incubation (t24-t28) when the room was not adjusted to the sudden in situ drop in temperature that occurred. Temperature in the treatment bottles increased from around 10 °C in the first week to 15 °C during the fourth week (Table 1). The pH remained stable in the bottles (SD < 0.08 within a week based on daily measurements, (Table 1) and matched the in situ pH and CO₂ treatments. ChI *a* concentration was relatively stable at ~ 2 μ g L⁻¹ in all mesocosms but then decreased to ~ 1 μ g L⁻¹ on t17. A significant positive effect of CO₂ on ChI *a* was observed after t17 (Paul et al., 2015).

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

15 PI

Back Close

Full Screen / Esc

Printer-friendly Version

Nauplii production in incubations was highest in water from M3, 1075 μ atm (pH 7.6) with on average 12.6 ± 9.6 nauplii produced per female per day during the whole study period. For clarity and easier comparison between studies within this mesocosm project, average fCO_2 levels (t1-t30) are included in Fig. 1 to describe the treatments. The effect of pH on nauplii production was not statistically significant. Autotrophic dinoflagellates biomass and particulate matter C:N (< 55 μ m) had no effect. Chl μ concentration, as an indicator of total food availability had a strong positive effect (LMM; μ = 6.120, μ = < 0.001, Fig. 2a), whereas diatom biomass (LMM; μ = -2.670, μ = 0.009, Fig. 2b) had an adverse effect on the nauplii production. Incubation temperature had a significant positive effect (μ = 2.948, μ = < 0.01) (Table 3).

The fatty acid contents (ng mg dry weight⁻¹) of the females were not affected by pH (LMM p => 0.5). Female MUFA and PUFA content significantly affected the MUFA and PUFA content of the eggs (LMM MUFA; t = 2.922, p = 0.012, LMM PUFA; t = 2.864, p = 0.013), whereas female SAFA did not (Fig. 3a–c, LMM; t = -1.497, p = 0.158). Female PUFA concentration had a significant positive effect on nauplii production (LMM; t = 4.309, p = < 0.001; Bonferroni α 0.025), MUFA content a negative effect, although not significant (LMM; t = -2.364, p = 0.032; Bonferroni α 0.025), whereas SAFA content had no statistically significant effect (LMM; t = -0.813, p = 0.429; Bonferroni α 0.025, Fig. 4a–c, Table 3).

ORAC was not affected by pH (LMM; t = -0.057, p = 0.580) and there was no correlation between female ORAC and nauplii production (p = 0.297, p = 0.180) (Fig. 5).

4 Discussion

4.1 Effects of lowered pH

Experimental CO₂ concentrations did not affect the nauplii production of *E. affinis* in the current study. However, nauplii production in our incubations corresponded well with patterns of nauplii abundance observed in the mesocosm bags. The total number of

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions

Tables Figures

→

•

Back Close

Full Screen / Esc

Printer-friendly Version

Discussion Paper

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back

Full Screen / Esc

Close

Printer-friendly Version

Interactive Discussion

copepods in the mesocosms showed no significant relation with CO_2 either (Lischka et al., 2015). This is also in line with findings of Niehoff et al. (2013), who found no effect of CO_2 on zooplankton community development or abundance of single taxa in a similar mesocosm study in Kongsfjorden, Svalbard.

The physicochemical conditions in the research area is naturally fluctuating, therefore the plankton community may be adapted to large variability in CO₂ concentration and pH. In addition, organisms such as copepods are exposed to daily variation in pH and there is evidence that species performing vertical migration may be more robust to changes in CO₂ (Lewis et al., 2013). E. affinis undertakes diel vertical migration and particularly ovigerous E. affinis females stay below 20 m depth and experience lower pH on a daily basis in the area (Almén et al., 2014), where our mesocosm study was conducted. Thus, this could partially explain why E. affinis reproduction did not show sensitivity to lowered pH. Cripps et al. (2014), on the other hand, found severely reduced nauplii survival for Acartia tonsa kept at a pCO₂ of 1000 µatm, while other life stages were less affected. There appears to be a large variation in CO₂ sensitivity between species, even for organisms from the same study area. During this KOSMOS study, Vehmaa et al. (2015) found a negative effect of increased fCO₂ on body size and development index for A. bifilosa, another common copepod in the Baltic Sea. The increasing hatching rate of E. affinis with higher temperature reported by Andersen and Nielsen (1997) is also reflected in our results with higher incubation temperatures, affecting the nauplii production positively.

4.2 Effects of food

We found that nauplii production was positively affected by food availability (Chl a concentration, Fig. 2a). Our results are in agreement with Zervoudaki et al. (2014) who neither found discernible effects of lowered pH, whereas both higher temperature and food concentration (Chl a) positively affected egg production in A. clausi in a low nutrient Mediterranean system. According to fractionated Chl a measurements during the mesocosm campaign (Paul et al., 2015) > 90 % of the Chl a consisted of nanophyto-

plankton (< 20 µm), which possibly constituted an important food source for the filterfeeding E. affinis (Motwani and Gorokhova, 2013).

Although nauplii production of E. affinis was negatively affected by diatoms, no effect of CO₂ on diatom abundance was found. The abundance of diatoms was high during the first days but then declined rapidly. Low hatching frequency has, however, previously been observed for E. affinis during the diatom spring bloom in the same area (Ask et al., 2006). Some diatoms contain inhibitory compounds or lack essential nutrients that may be crucial for copepod reproduction (Lee et al., 1999). In the current study, diatoms consisted of Chaetoceros spp., Skeletonema marinoi and pennate diatoms. Vehmaa et al. (2012b) reported low egg production for E. affinis on a S. marinoi dominated diet in the study area. Skeletonema can produce potentially harmful aldehydes affecting copepod egg production (lanora and Miralto, 2010). Significant negative correlation between Chaetoceros spp. and E. affinis hatching frequency has also been reported (Ask et al., 2006). However, the natural peak in copepod biomass may co-occur with the decline of the diatom bloom and the relationship is not necessarily causal (Ask et al., 2006).

We realize that some copepods and nauplii probably were introduced with the unfiltered water to the incubation bottles. We assume that it did not have a major effect on the results as the copepod nauplii abundance did not vary between the mesocosms (Lischka et al., 2015). We observed a lot of epibionts (Vorticella) attached to adult copepods in the mesocosms during the third week. This was probably due to ageing (Jamieson and Santer, 2003), or the lack of predators that would otherwise have removed the infested individuals which are more visible due to the epibionts and have impaired escape abilities (Souissi et al., 2013). The higher age structure of the E. affinis present in the mesocosms, as well as the decreasing Chl a levels could partly explain the decreased nauplii production in the third and fourth week of the experiment. Decreasing levels of PUFA towards the fourth week (Bermúdez et al., 2015), could also have affected copepod nauplii production.

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

> **Tables Figures**

Back Close

Full Screen / Esc

Printer-friendly Version

Our results suggest that the oxidative balance was maintained in the copepods in all treatments regardless of pH, as we did not observe any change in ORAC. As noted by Vehmaa et al. (2013), ORAC is affected by lowered pH, rather in combination with warmer temperatures, but not by moderately lowered pH alone. An oxidative imbalance, favouring ROS production can result in oxidative stress, as ROS can attack biomolecules, such as lipids, proteins and DNA (Monaghan et al., 2009). Developmental stage (Fanjul-Moles and Gonsebatt, 2012), environmental condition (Lushchak, 2011), as well as feeding activity (Furuhagen et al., 2014) can affect levels of oxidative stress, suggesting the importance of measuring several biomarkers (Monaghan et al., 2009). We conclude that *E. affinis* did not face pronounced pH stress and therefore seems fairly robust to future ocean acidification, at least based on results in the present manuscript.

Analyses of fatty acid concentration in *E. affinis* females from our incubations revealed that PUFA in females was transferred to the eggs and stimulated nauplii production significantly, whereas no significant effect of pH on FA content in females was revealed. Despite the fact that Rossoll et al. (2012) found CO₂ induced changes in fatty acid content of phytoplankton in laboratory-based experiments, no CO₂ induced changes on phytoplankton or copepod fatty acid composition were found during the current mesocosm study (Bermúdez et al., 2015). In the current study, the natural phytoplankton composition in the mesocosms did not change significantly due to CO₂ (Bermúdez et al., 2015; Annegret Stuhr, personal communication). Bermúdez et al. (2015) and Rossoll et al. (2013) suggest that a dampening of CO₂-effects can be expected for coastal communities adapted to strong natural fluctuations (cf. Waldbusser and Salisbury, 2014), as proposed. Rossoll et al. (2013) found no changes in phytoplankton community composition and no direct effect of lowered pH or indirect CO₂ effect via changed food quality on *A. tonsa* reproduction in a mesocosm study (Kiel Firth, Baltic Sea) with similar treatment levels as in the present study. Additionally,

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Discussion Paper

Discussion Paper

Discussion Pape

Conclusions References

Tables Figures

I4 ► FI

■ Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

17107

Bermúdez et al. (2015) suggest that phosphorus limitation, being homogeneous in all mesocosms as nutrient addition was not practised, may have a stronger influence on community composition and their associated fatty acid profile. Isari et al. (2015) found neither direct effects on copepod vital rates, nor indirect effects, via phytoplankton fatty acid composition, in two copepods *Acartia granii* and *Oithona davisae*. However, most PUFA showed a positive correlation with pCO₂ during part of a mesocosm study in Svalbard, which the authors attribute to taxonomical changes due to rising dinoflagellate abundances (Leu et al., 2013). In the present study female MUFA were reflected in their eggs, whereas SAFA were not, and none of them had a significant effect on nauplii production. These fatty acids, at least MUFA, are rather used for metabolism and storage (McMeans et al., 2012).

5 Conclusions

From our results we conclude that E. affinis is not sensitive to near future levels of ocean acidification on a physiological level for the variables measured in the study. Offspring production was not affected after one generation. Higher PUFA stimulated nauplii production, but we observed no significant difference in fatty acid composition due to lowered pH. We neither observed an effect on ORAC. In the study area E. affinis is probably adapted to high pH variability and may, therefore, not have faced pronounced pH stress from the treatment levels used in this study. The possible pH stress E. affinis experienced in this study was rather via food. We found that the effects of food quantity had an impact on nauplii production of E. affinis. For the time we conducted the laboratory based experiments, we, however, did not observe an indirect CO_2 effect via phytoplankton biomass. Chl a concentration correlated positively with CO_2 , but only clearly discernible for picophytoplankton from t25 onwards (Paul et al., 2015) and we sampled no longer than t27. How the indirect effect of CO_2 , (via the food) would affect the copepods on a longer time scale remains unclear.

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page
Abstract Into

Introduction

Close

Conclusions References

Tables Figures

I∢ ⊳I

•

Full Screen / Esc

Back

Printer-friendly Version

Discussion Paper

Author contributions. A-K. Almén, A. Vehmaa, A. Brutemark, and J. Engström-Öst designed and conducted the laboratory experiment. A-K. Almén counted the nauplii samples, S. Lischka counted mesozooplankton and ciliates from the mesocosms and A. Stuhr counted phytoplankton. S. Furuhagen analysed ORAC, A. Paul analysed C:N samples, R. Bermúdez analysed fatty acids and L. Bach analysed Chl a. A-K. Almén and A. Vehmaa performed the statistical analyses and A-K. Almén wrote the manuscript with contributions from all co-authors. Project coordinator: U. Riebesell.

Acknowledgement. We like to thank the staff of Tvärminne Zoological Station for providing working facilities during the experiment. We also thank the entire KOSMOS team for the joint sampling effort. We thank Michael Sswat for his attribution to the C:N analyses. The study was funded by Walter and Andrée de Nottbeck Foundation, Victoriastiftelsen, Academy of Finland (project nr. 276947), the Onni Talas foundation, L.T. Bach received funding from the BIOACID project (W. P. 1.3) and A. J. Paul from Excellence Cluster "The Future Ocean" (Project CP1141). The KOSMOS experiment was carried out as part the SOPRAN project funded by the German Ministry of Education and Research (BMBF).

References

- Almén, A.-K., Vehmaa, A., Brutemark, A., and Engström-Öst, J.: Coping with climate change? Copepods experience variation in their physicochemical environment on a diurnal basis, J. Exp. Mar. Biol. Ecol., 460, 120–128, 2014.
- Andersen, C. M. and Nielsen, T. G.: Hatching rate of the egg-carrying estuarine copepod *Eury-temora affinis*, Mar. Ecol.-Prog. Ser., 160, 283–289, 1997.
- Ask, J., Reinikainen, M., and Båmstedt, U.: Variation in hatching success and egg production of *Eurytemora affinis* (Calanoida, Copepoda) from the Gulf of Bothnia, Baltic Sea, in relation to abundance and clonal differences of diatoms, J. Plankton Res., 29, 683–694, 2006.
- The BACC II Author Team: BACC II, Second Assessment of Climate Change for the Baltic Sea Basin, Springer Verlag, Berlin, 477 pp., 2015.
- Bermúdez, R., Almén, A.-K., Engström-Öst, J., Winder, M., and Riebesell, U.: Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea, Biogeosciences, in preparation, 2015.

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l≼ ≯l

Back Close

Full Screen / Esc

Printer-friendly Version

Discussion Pape

Bermúdez, R., Feng, Y., Roleda, M. Y., Tatters, A. O., Hutchins, D. A., Larsen, T., Boyd, P. W., Hurd, C. L., Riebesell, U., and Winder, M.: Long-term conditioning to elevated *p*CO₂ and warming influences the fatty and amino acid composition of the diatom *Cylindrotheca fusiformis*, PLoS ONE, 10, e0123945, doi:10.1371/journal.pone.0123945, 2015.

⁵ Cripps, G., Lindeque, P., and Flynn, K. J.: Have we been underestimating the effects of ocean acidification in zooplankton?, Glob. Change Biol., 20, 3377–3385, 2014.

Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci., 65, 414–432, 2008.

Fanjul-Moles, M. L. and Gonsebatt, M. E.: Oxidative stress and antioxidant systems in crustacean life cycles, in: Oxidative Stress in Aquatic Ecosystems, edited by: Abele, D., Vázquez-Medina, J. P., Zenteno-Savín, T., 1st edn. Blackwell Publishing, Oxford, 208–223, 2012.

Furuhagen, S., Liewenborg, B., Breitholtz, M., and Gorokhova, E.: Feeding activity and xenobiotics modulate oxidative status in *Daphnia magna*: implications for ecotoxicological testing, Environ. Sci. Technol., 48, 12886–12892, 2014.

Gorokhova, E., Löf, M., Halldorsson, H. P., Tjärnlund, U., and Lindström, M.: Single and combined effects of hypoxia and contaminated sediments on the amphipod *Monoporeia affinis* in laboratory toxicity bioassays based on multiple biomarkers, Aquat. Toxicol., 99, 263–274, 2010.

Havenhand, J. N.: How will ocean acidification affect Baltic Sea ecosystems? An assessment of plausible impacts on key functional groups, AMBIO, 41, 637–644, 2012.

lanora, A. and Miralto, A.: Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review, Ecotoxicology, 19, 493–511, 2010.

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp., 2013.

Isari, S., Zervoudaki, S., Saiz, E., Pelejero, C., and Peters, J.: Copepod vital rates under CO₂-induced acidification: a calanoid species and a cyclopoid species under short term exposures. J. Plankton. Res., 37, 912–922, 2015.

Jamieson, C. D. and Santer, B.: Maternal aging in the univoltine freshwater copepod *Cyclops kolensis*: variation in egg sizes, egg development times, and naupliar development times, Hydrobiologia, 510, 75–81, 2003.

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

•

Back Close

Full Screen / Esc

Printer-friendly Version

Paper

Jónasdóttir, S. H., Visser, A. W., and Jespersen, C.: Assessing the role of food quality in the production and hatching of Temora longicornis eggs, Mar. Ecol.-Prog. Ser., 382, 139-150, 2009.

Katajisto, T., Viitasalo, M., and Koski, M.: Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea, Mar. Ecol.-Prog. Ser., 163, 133-143, 1998.

Kaniewska, P., Campbell, P. R., Kline, D. I., Rodriguez-Lanetty, M., Miller, D. J., Dove, S., and Hoegh-Guldberg, O.: Major cellular and physiological impacts of ocean acidification on a reef building coral, PLoS ONE, 7, e34659, doi:10.1371/journal.pone.0034659, 2012.

Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S., and Kraay, G. W.: Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids, Mar. Biol., 135, 191-198, 1999.

Kroeker, K. J, Kordas, R. L, Crim, R. N., and Singh, G. G.: Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecol. Lett., 13, 1419-1434, 2010.

15 Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramaio, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, 2013.

Kurihara, H., Shimode, S., and Shirayama, Y.: Effects of CO₂ concentration on the egg production rate and early development of two marine copepods (Acartia Stueri and Acartia erythraea), Mar. Pollut. Bull., 49, 721-727, 2004.

Lee, H- W., Ban, S., Ando, Y., Ota, T., and Ikeda, T.: Deleterious effect of diatom diets on egg production and hatching success in the marine copepod *Pseudocalanus newmani*, Plankton Biol. Ecol., 46, 104-112, 1999.

Leu, E., Daase, M., Schulz, K. G., Stuhr, A., and Riebesell, U.: Effect of ocean acidification on the fatty acid composition of a natural plankton community, Biogeosciences, 10, 1143-1153, doi:10.5194/bg-10-1143-2013, 2013.

Lewis, C. N., Kristina, A. B., Edwards, L. A., Cooper, G., and Findlay, H. S.: Sensitivity to ocean acidification parallels natural pCO₂ gradients experienced by arctic copepods under winter sea ice, Proc. Natl. Acad. Sci. USA, 110, E4960-E4967, 2013.

Lischka, S., ., Bach, L. T., Schulz, K.-G., and Riebesell, U.: . Micro- and mesozooplankton community response to increasing levels of CO2 in the Baltic Sea: insights from a largescale mesocosm experiment, Biogeosciences, in preparation, 2015.

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page Introduction **Abstract**

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page Introduction **Abstract** Conclusions References **Tables Figures**

Back

Full Screen / Esc Printer-friendly Version

Close

- Interactive Discussion

- Lushchak, V. I.: Environmentally induced oxidative stress in aquatic animals, Aquat. Toxicol., 101, 13–30, 2011.
- Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F., and Hay, S.: CO₂-induced acidification affects hatching success in Calanus finmarchicus, Mar. Ecol.-Prog. Ser., 350, 91-97, 2007.
- 5 McMeans, B. C., Arts, M. T., Rush, A. A., and Fisk, A. T.: Seasonal patterns in fatty acids of Calanus hyperboreus (Copepoda, Calanoida) from Cumberland Sound, Baffin Island, Nunavut. Mar. Biol., 159, 1095-1105, 2012.
 - Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M., Bange, H., Hansen, H., and Kortzinger, A.: Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar. Biol., 160, 1875-1888, 2013.
 - Monaghan, P., Metcalfe, N. B., and Torres, R.: Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation, Ecol. Lett., 12, 75–92, 2009.
 - Motwani, N. M. and Gorokhova, E.: Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis. PLoS One, 8, e79230, doi:10.1371/journal.pone.0079230, 2013.
 - Niehoff, B., Schmithüsen, T., Knüppel, N., Daase, M., Czerny, J., and Boxhammer, T.: Mesozooplankton community development at elevated CO₂ concentrations: results from a mesocosm experiment in an Arctic fjord, Biogeosciences, 10, 1391-1406, doi:10.5194/bg-10-1391-2013, 2013.
- Niemi, Å.: Växtplanktonets ekologi och miljö i Tvärminneområdet, Helsingfors universitets botaniska publikationer 2, Helsingin Yliopiston monistuspalvelu, Helsinki, Finland, 21 p., 1976 (in Swedish).
 - Ou, B. X., Hampsch-Woodill, M., and Prior, M.: Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe, J. Agr. Food. Chem., 49, 4619-4626, 2001.
 - Paul, A. J, Bach, L. T., Schulz, K.-G., Boxhammer, T., Czerny, J., Achterberg, E. P., Hellemann, D., Trense, Y. Nausch, M. Sswat, M., and Riebesell, U.: Effect of elevated CO2 on organic matter pools and fluxes in a summer, post spring-bloom Baltic Sea plankton community, Biogeosciences, 12, 6863-6927, 2015,
 - http://www.biogeosciences.net/12/6863/2015/.
 - Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and the R Development Core Team: NLME: Linear and Nonlinear Mixed Effects Models. R package version 3.1–105, 2012.

Paper

- n-
- **BGD**12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

Back

Full Screen / Esc

Close

- Printer-friendly Version
- Interactive Discussion
 - © BY

- R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012.
- Riebesell, U. and Tortell, P. D.: Effects of ocean acidification on pelagic organisms and ecosystems, in: Ocean Acidification, edited by: Gattuso, J.-P. and Hansson, L., Oxford University press, New York, USA, 99–117, 2011.
- Riebesell, U., Czerny, J., von Bröckel, K., Boxhammer, T., Büdenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D., Krug, S. A., Lentz, U., Ludwig, A., Muche, R., and Schulz, K. G.: Technical Note: A mobile sea-going mesocosm system new opportunities for ocean change research, Biogeosciences, 10, 1835–1847, doi:10.5194/bg-10-1835-2013, 2013.
- Rossoll, D., Bermúdez, R., Hauss, H., Schultz, K. G., Riebesell, U., Sommer, U., and Winder, M.: Ocean acidification-induced food quality deterioration constrains trophic transfer, PLoS One, 7, e34737, doi:10.1371/journal.pone.0034737, 2012.
 - Rossoll, D., Sommer, U., and Winder, M.: Community interactions dampen acidification effects in a coastal plankton system, Mar. Ecol.-Prog. Ser., 486, 37–46, 2013.
- Sharp, J.: Improved analysis for particulate organic carbon and nitrogen from seawater, Limnol. Oceanogr., 19, 984–989, 1974.
 - Souissi, A., Souissi, S., and Hwang, J- S.: The effect of epibiont ciliates on the behavior and mating success of the copepod *Eurytemora affinis*, J. Exp. Mar. Biol. Ecol., 445, 38–43, 2013.
- Talmage, S. C. and Gobler, C. J.: Effects of CO₂ and the harmful alga Aureococcus anophagefferens on growth and survival of oyster and scallop larvae, Mar. Ecol.-Prog. Ser., 464, 121–147, 2012.
 - Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E., and Sokolova, I. M.: Proteomic response to elevated *p*CO₂ level in eastern oysters, *Crassostera virginica*: evidence for oxidative stress, J. Exp. Biol., 214, 1836–1844, 2011.
 - Utermöhl, H.: Zur Vervollkommnung der qualitativen Phytoplankton-Methodik, Int. Ver. The., 9, 1–38, 1958.
 - Vehmaa, A., Almén, A.-K., Brutemark, A., Paul, A., Riebesell, U., Furuhagen, S., and Engström-Öst, J.: Ocean acidification challenges copepod reproductive plasticity, Biogeosciences, in preparation, 2015.
 - Vehmaa, A., Brutemark, A., and Engström-Öst, J.: Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes, PLoS One 7, e48538, doi:10.1371/journal.pone.0048538, 2012a.

Discussion Paper

Discussion Paper

Discussion Paper

Interactive Discussion

- Vehmaa, A., Kremp, A., Tamminen, T., Hogfors, H., Spilling, K., and Engström-Öst, J.: Copepod reproductive success in spring-bloom communities with modified diatom and dinoflagellate dominance, ICES J. Mar. Sci., 69, 351-357, 2012b.
- Vehmaa, A., Hogfors, H., Gorokhova, E., Brutemark, A., Holmborn, T., and Engström-Öst, J.: Projected marine climate change: effects on copepod oxidative status and reproduction, Ecol. Evol., 13, 4548-4557, 2013.
- Waldbusser, G. G. and Salisbury, J. E.: Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats, Annu. Rev. Mar. Sci., 6, 221-247, 2014.
- Wallace, R. B., Baumann, H., Grear, J. S., and Aller, R. C.: Coastal ocean acidification: the other eutrophication problem, Estuar. Coast. Shelf S., 148, 1–13, 2014.
 - Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments, Limnol. Oceanogr., 29, 1985-1992, 1994.
- Weydmann, A., Soreide, J. E., Kwasniewski, S., and Widdicombe, S.: Influence of CO₂-induced acidification on the reproduction of a key arctic copepod Calanus glacialis, J. Exp. Mar. Biol. Ecol., 428, 39-42, 2012.
- Zervoudaki, S., Frangoulis, C., Giannoudi, L., and Krasakopoulou, E.: Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (Acartia clausi) under oligotrophic conditions, Mediterr. Mar. Sci., 15, 74-83, 2014.
- Zhang, D., Li, S., Wang, G., Guo, D., Xing, K., and Zhang, S.: Biochemical responses of the copepod Centropages tenuiremis to CO₂-driven acidified seawater, Wa. Sci. Technol., 65, 30-37, 2012.

20

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page Abstract Introduction

Conclusions References

> **Tables Figures**

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 1. fCO_2 values (t1-t30), average weekly pH, temperature and dissolved oxygen (DO) and saturation in incubation bottles.

fCO ₂ treatment (µatm)	Mesocosm	week	рН	temp. (C°)	DO mgL ⁻¹	DO%
346	1	1	8.12	11.21	10.61	96.0
	1	2	8.24	14.51	10.30	98.7
	1	3	8.12	15.08	8.71	99.5
	1	4	8.03	15.80	9.42	93.8
348	5	1	8.14	10.00	10.94	96.7
	5	2	8.20	13.37	10.64	98.3
	5	3	8.07	14.99	9.88	99.8
	5	4	8.02	15.10	9.61	98.9
494	7	1	7.93	9.98	10.87	96.2
	7	2	8.02	13.31	10.62	97.7
	7	3	7.90	15.00	9.96	100.6
	7	4	7.91	14.96	9.60	98.7
868	6	1	7.68	10.24	10.83	95.2
	6	2	7.80	13.33	10.56	97.3
	6	3	7.74	15.01	9.85	99.6
	6	4	7.76	15.13	9.65	98.9
1075	3	1	7.59	10.23	10.85	96.4
	3	2	7.72	13.63	10.61	98.3
	3	3	7.67	14.60	10.00	101.4
	3	4	7.71	15.29	9.57	98.5
1333	8	1	7.52	9.96	10.07	96.0
	8	2	7.63	13.35	10.65	98.0
	8	3	7.59	14.76	9.98	100.5
	8	4	7.62	15.14	9.72	99.7

BGD

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title I	Title Page		
Abstract	Introd		
Conclusions	Refer		
Tables	Figu		
14	•		
-			

Back

Full Screen / Esc

Close

Printer-friendly Version

Discussion Paper

| Discussion Paper

Discussion Paper

Discussion Paper

Table 2. Variables that were used in the full LMM models (numbers indicate separate models). Repeated measures were used as random effects in the models, as samples from the same enclosures are dependent on each other.

LMM	Fixed effects	Definition	Response variable
1	pH Chl a Diatoms C: N< 55μm Autotrophic dinoflagellates Incubation temp.	The ocean acidification effect The food quantity effect The food quality effect	Nauplii production
2 3 4	Incubation pH	The ocean acidification effect	Fatty acids in females: PUFA MUFA SAFA
5 6 7	Fatty acids in females: PUFA MUFA SAFA	Relationship between female fatty acids and their eggs	Fatty acids in eggs: PUFA MUFA SAFA
8	Fatty acids in females: PUFA MUFA SAFA		Nauplii production
9	рН		ORAC

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page Abstract Introduction Conclusions References Tables Figures ▶I

Back

Full Screen / Esc

Close

Printer-friendly Version

Table 3. T statistics of the retained fixed effects in the LMM.

LMM	Response variable	Variable	value	df	t	р
1	Nauplii production	Chl <i>a</i> Diatoms Incubation temp.	11.896 ± 1.94 -17.92 ± 6.72 1.35 ± 0.46	70 70 17	6.120 -2.670 2.948	< 0.001 0.009 < 0.01
2 3 4	Fatty acids in females: PUFA MUFA SAFA	Incubation pH	75.99 ± 112.8 -7.70 ± 34.60 -135.27 ± 325.21	16 16 16	0.673 -0.223 -0.416	0.51* 0.83* 0.68*
5 6 7	Fatty acids in eggs: PUFA MUFA SAFA	Fatty acids in females: PUFA MUFA SAFA	1.15 ± 0.40 1.08 ± 0.37 -2.51 ± 1.68	13 13 13	2.864 2.922 -1.497	0.013 0.012 0.158
8	Nauplii production	Fatty acids in females: PUFA MUFA SAFA	0.18 ± 0.04 -0.31 ± 0.13 -0.06 ± 7.73	15 15 15	4.309 -2.364 -0.813	< 0.001* 0.032* 0.429*
9	ORAC	Incubation pH	-0.02 ± 0.04	15	-0.057	0.580

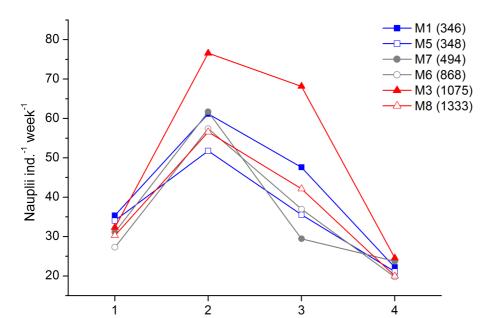
^{*} Bonferroni α 0.025.

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page **Abstract** Introduction Conclusions References **Tables Figures** 14


Back Close

►I

Full Screen / Esc

Printer-friendly Version

Figure 1. Weekly nauplii production for all mesocosms (treatment target fCO_2 in brackets, as averages of t1-t30). Time point 1 is the average weekly nauplii production t3-t7, 2=t10-t14, 3=t17-t21, and 4=t24-t28.

Time

BGD

12, 17093-17123, 2015

Negligible effects of ocean acidification

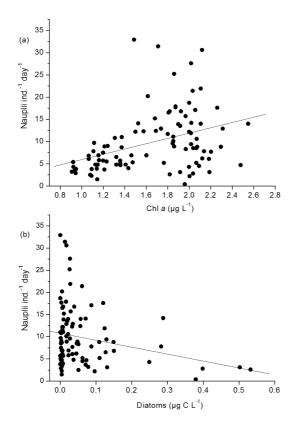
A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures


I◀ ▶I

■ Back Close

Full Screen / Esc

Printer-friendly Version

Figure 2. Daily nauplii production of *E. affinis* as a function of **(a)** Chl *a* concentration, and **(b)** diatom biomass.

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I◀ ►I

■ Eack Close

Full Screen / Esc

Printer-friendly Version

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I₫

Back Close

Þ١

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Figure 3. Fatty acids; **(a)** PUFA, **(b)** MUFA and **(c)** SAFA content of females and eggs. Lines are added if the explanatory variable was significant in the LMM.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

12, 17093–17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

►I

14

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

17121

12, 17093-17123, 2015

Negligible effects of ocean acidification

BGD

A.-K. Almén et al.

Title Page **Abstract** Introduction Conclusions References **Tables Figures** Þ١ 14 Back Close Full Screen / Esc

Printer-friendly Version

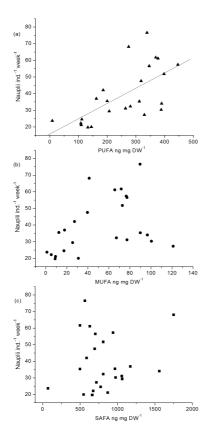


Figure 4. Relationship between nauplii production and female (a) PUFA, (b) MUFA and (c) SAFA content. Lines are added if the explanatory variable was significant in the LMM.

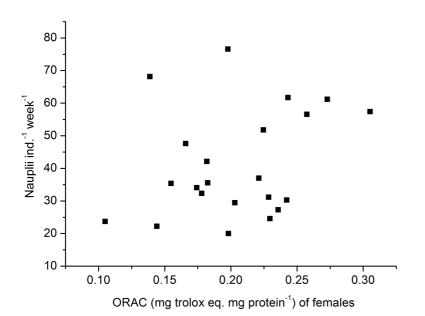


Figure 5. Correlation between weekly ORAC of *E. affinis* females and nauplii production.

12, 17093-17123, 2015

Negligible effects of ocean acidification

A.-K. Almén et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I⊀ ≯I

Back Close

Full Screen / Esc

Printer-friendly Version

