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Abstract 17 

Tropical Dry Forests (TDFs) are ecosystems with long drought periods, a mean temperature 18 

of 25oC, a mean annual precipitation that ranges from 900 to 2000 mm, and that possess a 19 

high abundance of deciduous species (trees and lianas). What remains of the original extent 20 

of TDFs in the Americas remains highly fragmented and at different levels of ecological 21 

succession. It is estimated that one of the main fingerprints left by global environmental and 22 

climate change in tropical environments is an increase in liana coverage. Lianas are non-23 

structural elements of the forest canopy that eventually kill their host trees. In this paper we 24 

evaluate the use of a Terrestrial Laser Scanner (TLS) in combination with hemispherical 25 

photographs (HPs) to characterize changes in forest structure as a function of ecological 26 

succession and liana abundance. We deployed a TLS and HP system in 28 plots throughout 27 

secondary forests of different ages and with different levels of liana abundance. Using a 28 

canonical correspondence analysis, we addressed how the VEGNET and HPs could predict 29 

TDF structure. Likewise, using univariate analysis of correlations we show how the liana 30 

abundance could affect the prediction of the forest structure. Our results suggest that TLS 31 

and HPs can predict differences in the forest structure at different successional stages, but 32 

that these differences disappear as liana abundance increases. Therefore, in well-known 33 

ecosystems such as the tropical dry forest of Costa Rica, these biases of prediction could be 34 

considered as structural effects of liana presence. This research contributes to the 35 

understanding of the potential effects of lianas in secondary dry forests and highlights the 36 

role of TLS combined with HPs to monitor structural changes in secondary TDFs. 37 

38 
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1 Introduction  39 

Lianas, woody vines, are a key structural component of tropical forests; they account 40 

for 25−40% of the woody stems and more than 25% of the woody species (Schnitzer and 41 

Bongers, 2011). Lianas are structural parasites that use trees to ascend to the forest canopies, 42 

and as such can be detrimental to host trees by competing with them for above- and 43 

belowground resources (Chen et al., 2008), reducing tree growth rates, and increasing tree 44 

mortality (van der Heijden et al., 2013). Thus, lianas are able to reduce carbon storage and 45 

uptake in old-growth tropical forests (Durán and Gianoli, 2013; van der Heijden et al., 46 

2015).  47 

Lianas have been defined as hyper-dynamic elements of the canopy structure 48 

(Sanchez-Azofeifa and Castro, 2006). In the last two decades lianas have increased in 49 

density and biomass in old-growth forests (Phillips et al., 2002; Schnitzer and Bongers, 50 

2011), and this increment is considered to be one of the major structural changes in tropical 51 

forests (Phillips and Lewis, 2014), because it can have potential negative effects on carbon 52 

stocks. Liana dynamics in secondary forests, however, are not yet understood despite the 53 

fact that secondary forests are becoming increasingly dominant in tropical regions, and 54 

currently occupy more area than old-growth forests (Durán and Sánchez-Azofeifa, 2015; 55 

Wright, 2005). 56 

 Lianas are considered light-loving plants, because they tend to respond positively to 57 

disturbance and show high density in areas of secondary forest succession (Paul and Yavitt, 58 

2011). Secondary forests may promote liana abundance because they provide both high light 59 

availability and an abundance of trellises (Schnitzer and Bongers, 2002). In treefall gaps, 60 

lianas can form dense tangles and reduce the amount of light reaching the forest understory 61 
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(Paul and Yavitt, 2011; Schnitzer et al., 2000). These liana tangles can persist for long 62 

periods (up to 13 years) and alter the successional pathway to one(?) stalled by liana 63 

abundance by inhibiting the regeneration, growth, and density of late successional species 64 

(Schnitzer et al., 2000). 65 

As of today, it is still unknown whether lianas can alter successional trajectories in 66 

secondary forests resulting from anthropogenic disturbance (Durán and Sánchez-Azofeifa, 67 

2015). Two studies in secondary wet forests have found an increment in liana density in the 68 

first 20 years of regeneration (age since land abandonment), with a subsequent decline 69 

(DeWalt et al., 2000; Letcher and Chazdon, 2009). This decline of lianas in wet forests 70 

appears to be related with reductions in light availability due to greater tree and shrub 71 

biomass at later stages of succession (Letcher and Chazdon, 2009). Nonetheless, it remains 72 

unclear whether this pattern holds true with more open forest types, and whether other 73 

factors such as structure, canopy openness, plant density and the volume of forest stands can 74 

also influence successional trajectories of lianas (Durán and Sánchez-Azofeifa, 2015; 75 

Sánchez et al., 2009). 76 

 Assessments of forest structure in different stands are often constrained by 77 

accessibility, and the cost of personnel and equipment. Remote sensing offers an efficient 78 

alternative to detect changes in vegetation and examine how lianas may change across stands 79 

with different structures. Nonetheless, few studies have assessed the potential of remote 80 

sensing (space-borne or airborne) to detect the presence of lianas in tropical forests with the 81 

objective of providing tools to map their extent from local to landscape level, and measure 82 

their ecological footprint (Foster et al., 2008). Sanchez-Azofeifa et al. (2009) used 83 

hemispherical photography over a succession of tropical dry forests and found that lianas 84 
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contributed substantially to forest-level Wood Area Index (WAI). Other studies found 85 

differences between the biochemical, structural and hyperspectral properties of lianas and 86 

trees in tropical dry forests (Castro-Esau et al., 2004; Sanchez-Azofeifa et al., 2009). These 87 

studies emphasized the potential of using remote sensing to map liana abundance at regional 88 

scales. However, given the important effect of lianas on the biomass distribution within 89 

tropical forests (Schnitzer and Bongers, 2011), remote sensing tools capable of measuring 90 

the vertical distribution of biomass within tropical forests are probably more adequate for 91 

detecting the presence and variation of liana density across forest stands.  92 

Terrestrial Laser Scanners (TLS) have demonstrated their capability to measure canopy 93 

properties such as height and cover (Ramírez et al., 2013) and tree architecture (Lefsky et al., 94 

2008), (Dassot et al., 2011; Richardson et al., 2014). In the last decade, there has been a rapid 95 

development in portable TLS (Dassot et al., 2011; Richardson et al., 2014). When laser 96 

pulses emitted in the visible or near-infrared come into contact with an object, part of that 97 

energy is reflected back toward the instrument which triggers the recording of its distance 98 

and intensity (Beland et al., 2014). TLS systems typically employ vertical and horizontal 99 

scanning around a fixed point of observation, providing a hemispherical representation of 100 

biomass distribution in the forest -leaves, branches and trunks- which allows for the 101 

exploration of foliage angle distributions and clumping (Clawges et al., 2007; Jupp et al., 102 

2009; Strahler et al., 2008). 103 

 Until today, there has been no concrete evidence about how  liana abundance can 104 

affect the prediction of the forest structure by TLS or HPs (HPs). Because of this, the 105 

objective of this study was to evaluate the feasibility of a TLS named VEGNET in 106 

combination with HPs to assess changes in forest structure in secondary TDFs with different 107 
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levels of lianas abundance. The VEGNET is a TLS that automatically scans a forest plot 108 

producing a vertical foliage density profile. Given its automated mode of operation and 109 

semi-permanent installation, the VEGNET instrument is described as an in situ Monitoring 110 

LiDAR (IML) (Culvernor et al., 2014; Portillo-Quintero et al., 2014).  111 

As such, in this paper we first  assess the potential of VEGNET and HPs to detect the 112 

vertical structure of forest stands at different successional stages. Second, we examine how 113 

liana abundance could affect the bias of prediction of VEGNET and HPs to detect the level 114 

of succession of a given forest stand. Therefore, in well-known ecosystems such as the 115 

tropical dry forest of Costa Rica, this bias of prediction could be considered as the effect of 116 

liana presence on forest structure.  117 

 118 

2 Methods 119 

2.1 Study Area  120 

The study area is located in the Santa Rosa National Park Environmental Monitoring Super 121 

Site (SRNP-EMSS), which is a part of the Guanacaste Conservation Area in Costa Rica 122 

(10°48” N, 85°36” W) (Figure 1). This site covers an area of 50,000 ha, receives 1720 mm 123 

of annual rainfall, has a mean annual temperature of 25°C and a 6-month dry season 124 

(Dec−May) 125 

(Kalácska et al.,2004). The SRNP-EMSS site has suffered intense deforestation in the past 126 

200 years due to the expansion of pasturelands (Calvo-Alvarado et al., 2009). Original land 127 

management practices in the park included pasture rotation between different large corrals 128 

surrounded by life fences that can still be identified today. More recently (early 1970’s) with 129 

the creation of  Santa Rosa National Park, a process of secondary regeneration has become 130 
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the dominant land cover change force in the region. Today and after the creation of SRNP, 131 

the uplands of the park are a mosaic of secondary forest in various stages of regeneration 132 

and with different land use histories related to anthropogenic fires, intense deforestation, and 133 

clearing for pasture lands (Kalácska et al., 2004; Arroyo-Mora et al., 2005a, Sen et al, 134 

2015).  135 

 136 

2.2 Definition of forest cover and plot age. 137 

 A map of forest cover and forest cover ages was generated using aerial photographs 138 

collected by the US Army in 1956 (Scale 1:24,000), a Multispectral Scanner (MSS) image 139 

from 1979 (80 m spatial resolution); 4 Landsat Thematic Mapper [TM] images from 1986, 140 

1997, 2000 and 2005 (28.5 m spatial resolution); one Spot Multispectral image from 2010 141 

(20 m spatial resolution); and a Landsat 8 image from 2015. All images had less than 10% 142 

cloud cover. 143 

 The 1986 image was georeferenced to 1:50,000 topographic maps from the Costa Rica 144 

National Geographic Institute with a Root Mean Square Error (RSME) of 0.5 pixels or 14.25 145 

m. We defined this as our master image in order to  georeference  all of the other images, as 146 

such all other images were then geo-referenced to the 1986 image seeking a RMSE close to 147 

0.5 pixels between the master and the target image. All images where then classified using a 148 

supervised classification. Image accuracy was conducted for the 1997, 2000, 2005 and 2010 149 

satellite images as part of independent validation efforts conducted by the Costa Rica’s 150 

National Forest Financing Fund (FONAFIFO). Overall accuracy for the forest/non-forest 151 

images was 90%.  Further information on image processing can be found in Sanchez-152 

Azofeifa et al. (2001).  153 
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 Final quality controlled forest cover maps (forest non-forest) for 1956, 1979, 1986, 1997, 154 

2000, 2005, 2010 and 2015 were cross referenced to produce a tropical dry forest age map. 155 

Specifically, forest coverage with 60 years old correspond to woodlands which were being 156 

observed  in images since 1956; forests that were 40 years old were not detected in 1956 but 157 

have been recognizing as forests since 1979; on the other hand, woodlands that were referred 158 

to as being 10 years old  have a minimum of 10 years as a discriminable forest coverage. 159 

Based on Arroyo-Mora et al (2005) and Kalascka et. al’s (2005) studies the following 160 

successional classification was developed: Ages 10 to 40 years (Early), and ages 40 to 60 161 

(Intermediate). Figure 1 presents the final land cover and forest age map for our study area. 162 

Figure 1 presents the final land cover and forest age map for our study area.  163 

 164 

2.3 Plots selection and description 165 

 Based on Figure 1, twenty-eight randomly stratified 0.1ha plots were selected. The number 166 

of plots chosen for each forest successional stage was based upon each stages total forest cover 167 

area. Plot sizes of 0.1 ha follows convention used in tropical forest studies at this site (Kalascka 168 

et al. 2005). Fieldwork conducted in July 2016 was conducted in order to characterize diameter 169 

at breast height (DBH), tree height, total biomass, VEGNET observations (canopy vertical 170 

profiles) and hemispherical photos (Canopy openness and Leaf Area Index).    171 

 The characterization of successional stages was performed following previous approaches 172 

for seasonally dry forests of Costa Rica (Arroyo-Mora et al., 2005b; Kalácska et al., 2005) and 173 

adjusted according to the estimated forest ages (Figure 1). These approaches categorized the 174 

secondary regeneration in different successional stages such as early and intermediate 175 

successional stages (E and I, respectively) (Arroyo-Mora et al., 2005a). The E stage is a 176 
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forest area with patches of sparse woody vegetation composed of shrubs, small trees, and 177 

saplings, with a thick herbaceous understory, and with a single stratum of tree crowns with a 178 

maximum height of less than 10 m (Castillo et al., 2012). Some of the common species that 179 

are characteristic of this early stage of succession includes Genipa americana, 180 

Cochlospermum vitifolium, Gliricidia sepium, Randia monantha (Hilje et al., 2015; 181 

Kalácska et al., 2004). In contrast, the I stage has two vegetation strata composed of 182 

deciduous species of woody plants. The first strata is comprised of fast-growing deciduous 183 

tree species that reach a maximum height of 10−15 m (e.g., Cydista aequinoctialis) and the 184 

second stratum is represented by lianas and vines, adults of shade-tolerant and slow-growing 185 

evergreen species as well as the juveniles of many species such as Annona reticulata, 186 

Ocotea veraguensis, and Hirtella racemosa (Arroyo-Mora et al., 2005a; Kalácska et al., 187 

2004). No lianas were present in the early successional stage plots.  Lianas in early forests 188 

tend to be present more later in the succession, specifically in the transition from early to 189 

intermediate stages. We did not select “late forests” since they tend to reflect the 190 

characteristics of  tropical moist forests with significant structural characteristics very 191 

different from true late tropical dry forests sites (Tosi, personal communication).  192 

 On the other hand, the characterization of the plots according to the liana abundance was 193 

based on the structure of plants that compose the tropical dry forest of SRNP-EMSS. In this 194 

way, we classified the 28 plots according to the relative abundance of stems of lianas, where 195 

plots with a relative abundance greater than 0.1 were categorized as plots having high liana 196 

abundance (HL), while plots with a relative abundance lower than 0.1 were categorized as 197 

having a low liana abundance (LL). Although this classification seems to be in-198 

deterministic, this kind of classification represents an important ecological component which 199 
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is very difficult to study as a continuum due to its spatial and temporal variation, and its 200 

categorization can help to improve the understanding of ecological processes as many other 201 

ecological categories. 202 

 At the end of this characterization, we used 11 E plots and 17 I plots, with 12 of those 203 

plots being  LL and the other 16 plots being HL. Altogether, ours plots for the study  204 

consisted of 5 E-LL plots, 6 E-HL plots, 7 I-LL plots, and 10 I-HL plots. In each of these 205 

plots we extracted the available information that described the complexity of the dry forest 206 

according to its structure, but at the same time deployed the ground LiDAR and 207 

hemispherical photograph measurements to predict and describe that complexity. 208 

Information about the parameters used and estimated according to the forest structure, 209 

ground LiDAR, and hemispherical photographs is described below. 210 

 211 

2.4 Forest structure 212 

Four parameters that characterize the forest structure were used in this study. These 213 

parameters were selected because these are easily obtained in any forest inventory, which 214 

could help in the applicability of this study in other regions. Specifically, we selected the 215 

stem density (stems/ha) as a parameter to describe the number of individuals per plot, the 216 

mean diameter at breast height (1.3 m) (DBHmean, cm) as a parameter that can describe the 217 

mean size of the individuals, the total basal area (TBA, m2) as a parameter that can describe 218 

the biomass of each plot, and the ratio of liana basal area to TBA (L/TBA) as a parameter 219 

that can describe the contribution of lianas biomass  to the total biomass of each plot. Each 220 

of these parameters was extracted from DBH measurements for lianas (>2.5 cm) and trees 221 

(>5 cm). 222 
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 223 

2.5 Ground LiDAR measurements 224 

The VEGNET ground LiDAR system was deployed in the middle of each of the selected 225 

plots, in which a single successful scan was performed between June 12th to June 27th, 2016. 226 

The VEGNET IML instrument uses a phase-based laser rangefinder with a wavelength of 227 

635 nm, in which a laser beam is directed at a rotating prism that reflects the laser at a fixed 228 

angle of 57.5° zenith or the “hinge angle” (Jupp et al., 2009). The prism is designed to 229 

perform full 360° azimuth rotations at this fixed zenith angle (no vertical scanning motion) 230 

and has the capability to  be programmed to obtain up to 7360 range measurements for a full 231 

azimuth scan (an average of 20.6 measurements per azimuth degree) (Culvenor et al., 2014). 232 

Because sunlight irradiance may cause interference with the VEGNET laser at the same 233 

wavelength (Culvenor et al., 2014, Portilllo-Quintero et al., 2014), measurements for the 234 

VEGNET were conducted at night. Some tests of the measurement process by VEGNET at 235 

night time indicated that at distances greater than 60 m or in areas larger than 3600 m2 (0.36 236 

ha) the laser beam does not provide reliable measurements (Culvenor et al., 2014). In a 237 

tropical forest setting, data analysis and interpretation may be restrained to the footprint, 238 

which is dependent on forest height at each site. Based on the forest heights of our study 239 

sites, the effective footprint of LiDAR measurements was within 0.1ha of our original 240 

sampling area. 241 

From these measurements at night six parameters were estimated: the maximum tree 242 

height (Hmax), the plant area index (PAI), plant area volume density (PAVD), the centroid of 243 

x (Cx) and y (Cy), and the radius of gyration (RG). To estimate these parameters, the height 244 

(h) was initially calculated as the cosine of the laser zenith angle (57.5°) multiplied by the 245 
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laser distance measurement (d) assuming that the terrain is flat as describe Culvenor et al. 246 

(2014).  247 

On the other hand, canopy “hits” and “gaps” were recorded to enable the calculation 248 

of angular gap fraction or gap probability (Pgap) at each h where a leaf, trunk or branch was 249 

hit by the laser (Lovell et al., 2003). Pgap at a given h is the ratio of the number of valid 250 

returns below z (#zi < h) to the total number of laser shots (N) (Culvenor et al., 2014): 251 

Pgap(z) = [#zi < h ] / N      (1)  252 

Consequently, the estimation of cumulative plant area index (PAI) by the conversion of 253 

Pgap(z) was performed using the following the equation (Culvenor et al., 2014):  254 

 255 

PAI(z) = -1.1 × ln(Pgap(z))     (2) 256 

 257 

From this calculation, the density of vegetation components at any level of z  was 258 

computed as the derivative of PAI with respect to h. This calculation is commonly referred 259 

to as the plant area volume density (PAVD) (Culvenor et al., 201) described by: 260 

 261 

PAVD(z) = δ PAI(z) / δz     (3) 262 

 263 

It is important to note that these calculations represent tridimensional variations (x, y, 264 

z) of the forest structure (Culvenor et al., 2014), because of this, in our statistical analysis 265 

we used the maximum h estimated by the LiDAR per  plot (Hmax), the cumulative PAI as a 266 

function of the canopy height (PAI), and the mean PAVD at different heights  (PAVDmean). 267 
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These calculations were extracted using the “VEGNET Data Display and Export Version 268 

2.5” software developed by Environmental Sensing Systems Inc (Melbourne, Australia). 269 

 Likewise, from the LiDAR measurements we also used shape metrics such as the 270 

centroid (C) and radius of gyration (RG) to understand how the vertical profile of the forest  271 

could change according to successional stages and liana abundance. The RG and the C are 272 

metrics that are mainly used in LiDAR waveforms to describe the motion of objects and the 273 

manner in which material is distributed around an axis (Muss et al., 2013). We used a 274 

similar approach by calculating the C and the RG for the PAVD vertical profile of each plot. 275 

Specifically, C represents the geometric center of a two-dimensional (x and y) region (e.g., 276 

the arithmetic mean position) of all the points (n) in the shape of the PAVD profile, while 277 

RG is the root mean square of the sum of the distances for all points on the PAVD vertical 278 

profile, which is described as: 279 

𝑅𝐺 !!!!! !! !!!!!
!

!
                                            (4) 280 

 281 

This parameter can be visualized as the relationship between the total length of the 282 

PAVD vertical profile and its shape and position, which are determined using the sum of x 283 

or y coordinates divided by the total length of the profile (Muss et al., 2013). In general, the 284 

RG captures the manner in which the PAVD profile is distributed around the centroid, 285 

making it a better descriptor of the vertical profile shape than just the centroid itself, and 286 

thus, more suitable for relating VEGNET measurements to forest structure (Muss et al., 287 

2013; Culvenor et al., 2014). Therefore, we used the RG to relate the shape of the PAVD 288 

profile to forest biomass at the footprint level For a more detailed explanation on the 289 

functioning of the VEGNET in the field please refer to Portillo-Quintero et al. (2014) as 290 
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well as  Culvenor et al. (2014).  A single successful scan was performed during the wet 291 

season using the VEGNET instrument at each site on clear nights.  292 

 293 

2.6 Hemispherical photographs 294 

Hemispherical photographs (HPs) were taken during the early morning in the middle of each 295 

plot, using a digital camera (E4500, Nikon, Tokio, Japan) equipped with a fisheye lens of 35 296 

mm focal length. The camera was leveled at 1.50 m by a tripod and orientated towards 297 

magnetic north, in order to ensure photographic standardization.. The resulting pictures were 298 

analyzed using the software Gap Light Analyzer version 2.0.4 (Frazer et al., 1999). This 299 

analysis was performed by creating 340 sky sectors (36 azimuth classes and 9 elevation 300 

angle classes) with a time series of 2 min along the solar track. The leaf area index (LAI) 301 

and the canopy openness were subsequently extracted by this analysis; however, the LAI 302 

was extracted using the “4 ring” which is a more accurate depiction of the site than using “5 303 

rings” because the latter takes into account trees that are not immediately surrounding the 304 

site, and which are found outside of the plot footprint. 305 

 306 

2.7 Statistical analysis 307 

This study compared the effect of the successional stages, the abundance of lianas, and their 308 

interaction on the parameters of forest structure as well as VEGNET-HPs parameters using a 309 

multivariate analysis of variance (MANOVA), in order to demonstrate that this study had 310 

been conducted in contrasting environments. For each MANOVA we extracted the 311 

univariate analysis of variance (ANOVA) to describe the multivariate effects of each 312 

parameter. To show the potential of the VEGNET and HPs to predict variations in the 313 
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structure of the dry forest, we applied a canonical correlation analysis (CCA) using the 314 

VEGNET-HPs parameters as independent variables and the features of the forest stand as 315 

dependent variables. Due to the CCAs sensitivity to the collinearity among variables (Quinn 316 

and Keought, 2002), we only used RG, PAI, PAVDmean, Hmax, LAI, and canopy openness as 317 

independent parameters. Specifically, the CCA was used to extract the canonical correlation 318 

between VEGNET-HPs and forest structure (eigenvalues), the correlation between the 319 

canonical variates and each matrix (eigenvectors), and the scores that describe the 320 

multidimensional variation of each plot according to its correlation. To extract the statistical 321 

significance of the canonical correlation coefficients, we computed an asymptotic test on the 322 

first  canonical dimensions to extract the F-approximations of Wilks' Lambda along with its 323 

significance. This statistical significance was subsequently validated using a permutation 324 

test on each dimension by 10000 iterations. 325 

 After describing the potential of the VEGNET-HPs parameters to predict variations 326 

in the structure of the dry forest, we were interested in demonstrating how the relative 327 

abundance of lianas could affect the bias of prediction extracted from these sensors. In 328 

ecological terms, it is a perceived expectation that during successional transitions increases 329 

in basal area, height and vertical strata of the vegetation should be observed; consequently, 330 

these transitions could be translated into increases in VEGNET-HPs parameters (except 331 

canopy openness which is inverse). However, from hypothesis derived from previous 332 

studies, it is possible that the abundance of lianas may actually arrest the forest succession 333 

and reduce the biomass accumulation of woody vegetation (Paul and Yavitt 2011; Schnitzer 334 

et al., 2000). If the above is true, correlations between descriptors of forest structure and 335 

parameters extracted from VEGNET and HPs could be diffuse or stochastic in the dry forest, 336 
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and their application  under the presence of lianas could prove ineffective. Under this 337 

reasoning, we compare the parametric correlations of four parameters according to the 338 

successional stages and the liana abundance, separately. The four parameters selected were 339 

those with the two highest  eigenvalues for the VEGNET-HPs matrix and the two parameters 340 

with the highest eigenvalue for forest structure, determined by the first two canonical 341 

dimensions described by the CCA. This comparison was conducted using an ordinary 342 

resampling method to replicate the correlation 5000 times, in which the resampled values 343 

were used to build density plots to describe the bias of prediction according to its overlap. 344 

The previous analyses were conducted in R software version 3.3.1 (R Development 345 

Core Team, 2016) using the “CCA” package (González and Déjean, 2015) to extract the 346 

canonical correlations, the “CCP” package (Menzel, 2009) to extract the significance of the 347 

CCA and its permutation, and the “boot” package (Canty and Ripley, 2016) to extract the 348 

resampled values. When the normality of the data was not reached, each parameter was 349 

previously transformed using the Box-Cox transformation for the analysis. 350 

 351 

3 Results 352 

3.1 Forest structure 353 

According to the MANOVA the forest structure of the plots differed between successional 354 

stages (Wilk’s Lambda(4,21) = 0.51; p < 0.01) and liana abundance (Wilk’s Lambda (4,21) = 355 

0.58; p < 0.05), but without interaction between these categories (Wilk’s Lambda(4,21) = 356 

0.76; p = 0.20) (Table 1). This analysis suggests that the DBHmean and TBA were the only 357 

parameters affected by the interaction between successional stages and liana abundance, 358 

where E successional plots with LL and I plots with HL showed lower values of DBHmean 359 



 
 
 

17 
 

and TBA than E and I plots with HL and LL, respectively. In terms of the effect of the liana 360 

abundance, the univariate analysis suggests that plots with LL showed lower values of 361 

L/TBA in comparison with HL plots. 362 

 363 

3.2 VEGNET-Hemispherical Photographs (HPs) 364 

The multivariate comparisons of the VEGNET-HPs parameters showed that the sensor 365 

estimations did not differ between successional stages (Wilk’s Lambda(8,17) = 0.58; p = 366 

0.21), liana abundance (Wilk’s Lambda(8,17) = 0.62; p = 0.29), and these categories did not 367 

show an interaction (Wilk’s Lambda(8,17) = 0.53; p = 0.14) (Table 2). Despite the absence of 368 

a multivariate effect of the liana abundance, the univariate responses extracted from this 369 

comparison suggest that the LAI and canopy openness differs between plots with HL and 370 

LL, where LL plots showed lower values of LAI and higher values of canopy openness in 371 

comparison with HL plots (Table 1). On the other hand, the univariate responses showed 372 

that the canopy openness was affected by the successional stages, where E successional plots 373 

showed higher values of canopy openness than I plots. Likewise, the univariate comparisons 374 

suggest that Cx, PAI, and PAVDmean are affected by the interaction of the successional stages 375 

and liana abundance, where E successional plots with LL and I plots with HL showed higher 376 

values of Cx, PAI, and PAVDmean in comparison with E and I successional plots with HL and 377 

LL, respectively. 378 

 379 

3.3 Canonical correspondence analysis 380 

The CCA showed that sensor parameters are strongly associated with the trends in forest 381 

structure (Fig 2). In general, the first and second canonical dimension showed correlations of 382 
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0.81 (Wilk’s Lambda(24,64.01) = 0.13; p < 0.01) and 0.72 (Wilk’s Lambda(15,52.85) = 1.46; p = 383 

0.16) between our sensors and forest structure. Specifically, the correlation between the 384 

canonical variates in the first canonical dimension suggested that canopy openness and the 385 

LAI have a great weight in the sensor matrix, while L/TBA and stem density had an 386 

important effect on the forest structure (Fig 2a). Likewise, the correlation between the 387 

canonical variates in the second canonical dimension showed that Hmax and PAVDmean had a 388 

strong correlation with the sensor parameters, while TBA and steam density had a strong 389 

correlation on the forest structure. The scores that described the multidimensional variation 390 

of each plot did not reflect a visual aggregation according to the successional stages and 391 

liana abundance (Fig. 2b). In terms of the validation of the significance of the canonical 392 

correlation coefficients, the permutations test showed that there is an important increase in 393 

the significance of the first two canonical dimensions (Fig. 2c, 1d), where the first 394 

dimension presented an increase of 0.21 points for the Wilks’s statistic, while the second 395 

dimension showed an increase of 0.25 points, which results in a significant effect. 396 

 397 

3.4 Comparison of correlations between successional stages and liana abundance 398 

The different trends of correlation showed that the successional stages and mainly the liana 399 

abundance have an important effect in the prediction of the forest structure using VEGNET-400 

HPs parameters (Figure 3), but at the same time, these trends showed that some of these 401 

parameters have the potential to predict the implication of the liana abundance on the forest 402 

structure. Specifically, variation in the correlations of canopy openness on L/TBA (Figures 403 

3a, b, c) and Hmax on TBA (Figures 3g, h, i) showed that the correlation trends between 404 

successional stages are overlapped, while the correlations trends between liana abundance 405 
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are separated, in where low values of canopy openness and Hmax are associated with high 406 

values of L/TBA and TBA, and consequently with the discrimination of HL plots. Likewise, 407 

variation in the correlation between LAI and L/TBA showed that the trends might not be 408 

used to separate successional stages or liana abundance (Figures 3d, e, f). However, the 409 

correlation between Hmax and TBA suggest that Hmax can not discriminate between different 410 

successional stages, but can discriminate with different liana abundance (Figures 3j, k, l), 411 

where high values of correlation are associated with intermediated and HL plots. 412 

 413 

4 Discussion  414 

Woody vines or lianas tend to proliferate in disturbed forest stands such as 415 

regenerating forests (Paul and Yavitt, 2010). Much research on liana ecology, however, has 416 

focused on old-growth forests despite that secondary forests currently cover a larger area 417 

than old-growth forests and may become the dominant ecosystem in tropical regions 418 

(Wright, 2005). Due to shorter stature and a higher varilability of light in secondary forests, 419 

lianas may be particularly abundant in these ecosystems, but little is understood about the 420 

role of lianas in forest succession (Letcher and Chazdon, 2009). In this study, we used the 421 

VEGNET, a terrestrial LiDAR system combined with HPs, to assess the impact of liana 422 

abundance on forest succession. Our overall analysis first indicated that VEGNET 423 

parameters in combination with HPs derived information was able to characterize changes in 424 

forest structure at different successional stages. This finding in fact is not new, and it has 425 

been demonstrated previously in the literature for other TDFs across the Americas including 426 

the SRNP-EMSS (Sanchez-Azofeifa et al, 2009) when the effect of lianas is ignored. In fact, 427 

it should be normal to expect some sort of correlation between forest succession and changes 428 
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on structural parameters since many parameters such as biomass, LAI, Canopy Openess and 429 

Hmax will change as trees grow during the successional process. The fundamental difference 430 

occurs when lianas are integrated into the successional system.  431 

When we consider the bias of correlations between the forest structure and the 432 

parameters extracted from our two sensors at different successional stages, as well as liana 433 

abundance, our results suggest that this late variable has an important effect on the bias of 434 

prediction for a given forest structure. The main reason is probably  a result of lianas 435 

introducing random tangles into the 3-dimensional space that is occupied by all forest 436 

biomass at a given plot. In other words, lianas tend to randomize a space typically utilized 437 

by trees, which in the absence of lianas would be occupied deterministically by trees.   This 438 

randomization of the 3D space occupied by trees and lianas is an element that has not been 439 

considered as of today; since most studies do not consider the space occupied by lianas 440 

because of a lack of TLS information.   441 

This change in deterministic patterns of the forest structure is probably due to 442 

competition between lianas and trees in forest stands within a random 3D space. In disturbed 443 

sites, such as secondary forests, lianas deploy leaves in the canopy and create large amounts 444 

of tangles in both the ground and mid canopy, in order to reduce the amount of light 445 

available as well as the amount of incoming solar radiation available for photosynthesis for 446 

other plant species (Graham et al., 2013). Moreover, in regenerating stands within forests 447 

(e.g., treefall gaps), high densities of lianas can inhibit the regeneration of tree species and 448 

reduce the abundance of shade-tolerant trees (Schnitzer et al., 2000), which in turn can affect 449 

the 3D arrangement of species within a given area. These ecological processes may cause a 450 

shift in forest structure, which is detected as a shift in the vertical structure signature by TLS 451 
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in sites with high liana abundance. These differences in structures have been confirmed in a 452 

recent study, which found that a liana-infested forest had a more irregular canopy with 453 

canopy heights between 10 and 20 m, while the surrounding forests had a significantly taller 454 

canopy between 25 and 35m along with a denser canopy (Tymen et al., 2016). 455 

The information provided in this paper is clear in the sense that some variations in 456 

the TLS and hemispherical camera parameters can be used to estimate the impact of lianas 457 

on forest structure along the path of succession, although not all of parameters were 458 

significant. In other words, there is a strong need to carefully select which parameters should 459 

be considered if we want to estimate changes in the forest structure as function of liana 460 

abundance. One key example is the use of PAI as tool to evaluate the impact of liana 461 

abundance on forest succession. PAI as a single measurement  theoretically could provide 462 

insights on the impact of liana abundance on successional stages.  Theoretically we could 463 

expect that PAI will increase as leaf and wood biomass increase during succession (Quesada 464 

et al., 2009). It is surprising that we did not find differences in the PAI values between 465 

stands that did and did not have. It is possible that PAI is not the best parameter to 466 

differentiate between plots with and without liana presence,  instead variables more related 467 

with leaf components, such as leaf area index (LAI) may be more suitable for finding 468 

differences in liana signature across sites, especially when the contribution of lianas to the 469 

woody area index (WAI) to overall plot PAI is relatively small in comparison to the 470 

allocation of WAI from trees (Sanchez-Azofeifa et al., 2009). 471 

 A recent study assessing the role of lianas on forest dynamics in the Amazon, 472 

indicated that a liana-infested forest appeared to be in an arrested stage of ecological 473 

succession, due to the evidence provided by LiDAR surveys from 2007 to 2012 which 474 
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showed that the overall extent of forest area had remained stable, with no notable net gain or 475 

loss over the surrounding forest (Tymen et al., 2016). It is possible that studying forest 476 

dynamics in forest stands across successional stages, with different levels of liana abundance 477 

integrated into the TLS and HPs parameters, may allow us in the future to provide stronger 478 

evidence as to whether lianas can arrest succession in dry forests as it appears to occur in 479 

humid forests (Schnitzer et al., 2000; Tymen et al., 2016).  480 

 481 

5 Conclusions 482 

This study evaluated the potential for TLS and hemispherical photos to observe 483 

differences between successional stages of a tropical dry forest chrono-sequence and liana 484 

abundance. Our work provided five main conclusions: (1) that TLS data combined with 485 

hemispherical photography data can help to predict the forest structure of the tropical dry 486 

forest as demonstrated before, (2) that these predictions get blurry when liana abundance is 487 

considered, (3) that variations in TLS and HPs parameters can be used to predict the effect 488 

of liana abundance on the successional path, (4) that not all the parameters could address the 489 

effect of the presence or impact of lianas along a successional gradient, and (5) we suggest 490 

that the impact of lianas on successional stages changes the deterministic nature of forest 491 

structure, by randomizing the 3D space where they grow at given plot; the higher the 492 

abundance of lianas the higher the randomization.   493 

Our study provides important insights on the contributions of lianas to the 494 

successional process, and highlights the potential that TLS has in  monitoring liana presence 495 

in tropical dry forests environments. Lianas are increasing in density and biomass in tropical 496 

forests, but it is unknown whether this pattern is also found in secondary forests, which are 497 
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suitable for liana proliferation. TLS systems are capable of providing unbiased estimations 498 

for the vertical structure of a given site, and thus constitute a powerful tool to monitor the 499 

increases in liana density and biomass. Although, our study is limited to one single site in 500 

Costa Rica, this is a first step on the development of more comprehensive approaches, which 501 

take advantage of advanced technology to understand the effects of liana abundance on 502 

tropical dry forest structure. The approach presented in this paper, presents important 503 

contributions to efforts directed to estimate the potential effects of lianas on forest carbon in 504 

secondary forests (Durán and Sanchez-Azofeifa, 2015), elements that seems not fully 505 

considered yet in the tropical literature. 506 
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 658 

 659 

Table 1. Mean (± SD) of parameters of forest structure extracted from plots with 660 

different successional stages and different relative abundance of lianas in the dry forest 661 

at Santa Rosa National Park, Costa Rica. Significant differences (F-values and their p-662 

values) according to the successional stages, relative abundance of lianas and their 663 

interaction are represented by a posteriori ANOVA text extracted from MANOVA. 664 

DBHmean, mean stem diameter at breast height (cm); TBA, total basal area (m2); L/TBA, 665 

ratio of liana basal area to TBA. 666 

Parameters 
Early Intermediate ANOVA 

LL HL LL HL Stage Condition Interaction 

Stem 

density 

1054 ± 

370.72 

1218.33 ± 

603.24 

1027.14 ± 

379.02 

1021 ± 

331.54 
0.55 0.15 0.27 

DBHmean 
10.91 ± 

2.36 

11.83 ± 

1.57 

14.17 ± 

1.85 

11.56 ± 

1.89 
2.72 2.73 5.65* 

TBA 
1.44 ± 

0.90 

2.08 ± 

1.01 

2.61 ± 

0.80 

1.84 ± 

0.61 
1.39 0.48 5.15* 

L/TBA (10-

2) 

0.38 ± 

0.35 

1.48 ± 

0.84 

0.35 ± 

0.32 

2.93 ± 

2.14 
2.76 14.11*** 1.86 

*, p < 0.05; ***, p < 0.01667 
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 668 

Table 2. Mean (± SD) of parameters calculated by VEGNET system and HPs in plots 669 

with different successional stages and different relative abundance of lianas in the dry 670 

forest at Santa Rosa National Park, Costa Rica. Significant differences (F-values and 671 

their p-values) according to the successional stages, relative abundance of lianas and 672 

their interaction are represented by a posteriori ANOVA text extracted from MANOVA. 673 

RG, radius of gyration; PAI, plant area index; PAVDmean, plant area volume density; 674 

Hmax, maximum tree height (m); LAI, leaf area index. 675 

Parameters 
Early Intermediate ANOVA 

LL HL LL HL Stage Condition Interaction 

RG 
4.21 ± 

1.42 

4.85 ± 

0.92 

4.69 ± 

1.11 

4.34 ± 

0.91 
0.03 0.01 1.41 

Cx 
0.19 ± 

0.06 

0.13 ± 

0.04 

0.14 ± 

0.03 

0.16 ± 

0.04 
0.12 0.14 5.95* 

Cy 
7.56 ± 

2.96 

8.43 ± 

1.63 

8.22 ± 

2.07 

7.56 ± 

1.59 
0.07 0.01 0.96 

PAI 
2.45 ± 

0.28 

2.10 ± 

0.28 

2.13 ± 

0.34 

2.31 ± 

0.33 
0.06 0.05 4.75* 

PAVDmean 
0.19 ± 

0.05 

0.13 ± 

0.04 

0.14 ± 

0.03 

0.16 ± 

0.04 
0.14 0.22 7.26* 

Hmax 
17.42 ± 

5.51 

18.17 ± 

3.90 

23.26 ± 

7.73 

18.01 ± 

6.00 
0.99 1.53 1.61 

LAI 
2.30 ± 

0.32 

2.46 ± 

0.64 

2.34 ± 

0.46 

2.92 ± 

0.39 
2.97 6.91* 1.32 

Canopy 

openness 

13.90 ± 

3.94 

12.59 ± 

5.89 

12.74 ± 

5.27 

8.67 ± 

1.47 
5.77* 6.78* 0.79 

*, p < 0.05  676 
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 677 
 678 

 679 

Figure 1. Localization of the sampled forest stands in Santa Rosa National Park 680 
Environmental Monitoring Super Site, Guanacaste, Costa Rica. Where E-HL indicate Early 681 
successional stage with a high relative abundance of lianas; E-LL Early successional stage 682 
with a low relative abundance of lianas; I-HL, Intermediate successional stage with a high 683 
relative abundance of lianas; I-LL, Intermediate successional stage with a low relative 684 
abundance of lianas. In addition, forests ages refer to: 60, forests detected since 1956; 40, 685 
forests detected since 1979; 30, forests detected since 1986; 20, forests detected since 1997; 686 
10 forests detected since 2005, and no forest correspond to non-related to woodlands. 687 
  688 
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 689 

Figure 2. Canonical correspondence analysis to describe the association between the 690 

parameters estimated by VEGNET system and the forest structure. a) VEGNET 691 

coefficients are represented by red points, while forest structure coefficients are 692 

represented by blue points. b) Individual scores of each plot of the canonical variates are 693 

represented according to successional stages (E, early; I, intermediate) and relative liana 694 

abundance (LL, low liana abundance; HL, high liana abundance). C and d represent the 695 

permutation distribution of the Wilks' Lambda test to assign the statistical significance of 696 
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canonical correlation coefficients considering 4 and 3 canonical correlations, 697 

respectively; the red line represent the original value Wilks' Lambda, while the blue line 698 

represent the mean value permutated. 699 

  700 
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 701 
Figure 3. Density distribution of the bootstrapped correlation coefficients without and 702 

with distinction between successional stages (E, early; I, intermediate) and relative liana 703 

abundance (LL, low liana abundance; HL, high liana abundance). a, b, and c correspond 704 

to the correlation of canopy openness and the ratio of liana basal area (L) to total basal 705 

area (TBA); d, e, f correspond to leaf area index-L/TBA correlation; g, h, and i 706 
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correspond to the maximum tree height-TBA correlation; j, k, and l correspond to plant 707 

area volume density-TBA correlation. 708 
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