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Abstract 2 

Tropical Dry Forests (TDFs) are ecosystems with long drought periods, a mean temperature 3 

of 25oC, a mean annual precipitation that ranges from 900 to 2000 mm, and that possess a 4 

high abundance of deciduous species (trees and lianas). What remains of the original extent 5 

of TDFs in the Americas remains highly fragmented and at different levels of ecological 6 

succession. It is estimated that one of the main fingerprints left by global environmental and 7 

climate change in tropical environments is an increase in liana coverage. Lianas are non-8 

structural elements of the forest canopy that eventually kill their host trees. In this paper we 9 

evaluate the use of a Terrestrial Laser Scanner (TLS) in combination with hemispherical 10 

photographs (HPs) to characterize changes in forest structure as a function of ecological 11 

succession and liana abundance. We deployed a TLS and HP system in 28 plots throughout 12 

secondary forests of different ages and with different levels of liana abundance. Using a 13 

canonical correspondence analysis, we addressed how the VEGNET and HPs could predict 14 

TDF structure. Likewise, using univariate analysis of correlations we show how the liana 15 

abundance could affect the prediction of the forest structure. Our results suggest that TLS 16 

and HPs can predict differences in the forest structure at different successional stages, but 17 

that these differences disappear as liana abundance increases. Therefore, in well-known 18 

ecosystems such as the tropical dry forest of Costa Rica, these biases of prediction could be 19 

considered as structural effects of liana presence. This research contributes to the 20 

understanding of the potential effects of lianas in secondary dry forests and highlights the 21 

role of TLS combined with HPs to monitor structural changes in secondary TDFs. 22 
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1 Introduction  24 

Lianas, woody vines, are a key structural component of tropical forests; they account 25 

for 25−40% of the woody stems and more than 25% of the woody species (Schnitzer and 26 

Bongers, 2011). Lianas are structural parasites that use trees to ascend to the forest canopies 27 

and move from tree to tree. Lianas have been defined as hyper-dynamic elements of the 28 

canopy structure (Phillips et al. 2005, Sánchez-Azofeifa and Castro, 2006).  Lianas can be 29 

detrimental to host trees by competing with them for above- and belowground resources 30 

(Chen et al., 2008), reducing tree growth rates, and increasing tree mortality (Schnitzer and 31 

Carson 2010, van der Heijden et al., 2013).  32 

In the last two decades lianas have increased in density and biomass in old-growth 33 

forests (Phillips et al., 2002; Schnitzer and Bongers, 2011), and this increment is considered 34 

to be one of the major structural changes in tropical forests (Phillips and Lewis, 2014). 35 

These structural changes mentioned above may have potential negative effects on carbon 36 

stocks since they tend to reduce carbon storage and uptake in old-growth tropical forests 37 

(Durán and Gianoli, 2013; van der Heijden et al., 2015). Liana dynamics in secondary 38 

forests and their impact on forest structure, however, are not yet understood despite the fact 39 

that secondary forests are becoming increasingly dominant in tropical regions, and currently 40 

occupy more area than old-growth forests (Durán and Sánchez-Azofeifa, 2015; Wright, 41 

2005). 42 

 Lianas are considered light-loving plants, because they tend to respond positively to 43 

disturbance and show high density in areas of secondary forest succession (Paul and Yavitt, 44 

2011). Furthermore, secondary forests may promote liana abundance because they provide 45 

both high light availability and an abundance of trellises (Schnitzer and Bongers, 2002). As 46 
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tree turnover increased gaps due to mortality, lianas can take advantage of this process and 47 

form dense tangles, which in turn reduce the amount of light reaching the forest understory 48 

(Paul and Yavitt, 2011; Schnitzer et al., 2000). These liana tangles can persist for long 49 

periods (up to 13 years) and alter the successional pathway stalled by liana abundance by 50 

inhibiting the regeneration, growth, and density of late successional species (Schnitzer et al., 51 

2000). 52 

As of today, it is still unknown whether lianas can alter successional trajectories in 53 

secondary forests resulting from anthropogenic disturbance (Durán and Sánchez-Azofeifa, 54 

2015). Two studies in secondary wet forests have found an increment in liana density in the 55 

first 20 years of regeneration (age since land abandonment), with a subsequent decline 56 

(DeWalt et al., 2000; Letcher and Chazdon, 2009). This decline of lianas in wet forests 57 

appears to be related with reductions in light availability due to greater tree and shrub 58 

biomass at later stages of succession (Letcher and Chazdon, 2009). Nonetheless, it remains 59 

unclear whether this pattern holds true with more open forest types, and whether other 60 

factors such as structure, canopy openness, plant density and the volume of forest stands can 61 

also influence successional trajectories of lianas (Durán and Sánchez-Azofeifa, 2015; 62 

Sánchez et al., 2009). 63 

 Despite the fact of the important effect of lianas on the biomass distribution within 64 

tropical forests (Schnitzer and Bongers, 2011; Ledo et al. 2016), and their potential role as 65 

fingerprints of climate change (Phillips et al. 2005), remote sensing tools aimed to measure 66 

their presence/absence as well as their distribution within tropical forests are limited (Foster 67 

et al., 2008, Kalacksa et al. 2007a & b, Zhang et al. 2006). Current knowledge based on leaf 68 

spectroscopy approaches provides two key messages regarding liana extent mapping: first 69 
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that lianas in tropical rainforests tend to confuse the spectral reflectance of their host trees 70 

making it in many cases impossible to use remote sensing to create species maps (Castro-71 

Esau et al., 2004), and second that there is a higher degree of probability of success for 72 

efforts aimed to map liana coverage in tropical dry forests than on rain forests environments 73 

(Sanchez-Azofeifa et al., 2009b; Kalacska et al. 2007b). Moreover, studying the impact of 74 

lianas on tropical dry forest structure, Sanchez-Azofeifa et al. (2009) used hemispherical 75 

photography over a succession of tropical dry forests in Mexico, Costa Rica and Brazil, 76 

found that lianas infested sites were significantly different in both canopy openness and 77 

Woody Area Index (WAI). 78 

Initial attempts aimed to start untangling the effects that lianas have on remote 79 

sensing observations may require data fusion techniques on which hyperspectral remote 80 

sensing approaches (leaf spectroscopy finding) are mergered with ground based forest 81 

structure information derived from terrestrial laser scanners and hemispherical photography 82 

(e.g. LAI, WAI and PAI). Terrestrial Laser Scanners (TLS) have demonstrated their 83 

capability to measure canopy properties such as height and cover (Ramírez et al., 2013) and 84 

tree architecture (Lefsky et al., 2008), (Dassot et al., 2011; Richardson et al., 2014). In the 85 

last decade, there has been a rapid development in portable TLS (Dassot et al., 2011; 86 

Richardson et al., 2014). When laser pulses emitted in the visible or near-infrared come into 87 

contact with an object, part of that energy is reflected back toward the instrument which 88 

triggers the recording of its distance and intensity (Beland et al., 2014). TLS systems 89 

typically employ vertical and horizontal scanning around a fixed point of observation, 90 

providing a hemispherical representation of biomass distribution in the forest -leaves, 91 
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branches and trunks- which allows for the exploration of foliage angle distributions and 92 

clumping (Clawges et al., 2007; Jupp et al., 2009; Strahler et al., 2008). 93 

 Until today, there has been no concrete evidence about how liana abundance can 94 

affect the prediction of the forest structure by TLS or hemispherical photographs (HPs), 95 

which in turn can drive the development of better remote sensing techniques for mapping 96 

their extent. Because of this, the objective of this study was to evaluate the feasibility of a 97 

TLS named VEGNET in combination with HPs to assess changes in forest structure in 98 

secondary TDFs with different levels of lianas abundance. The VEGNET is a TLS that 99 

automatically scans a forest plot producing a vertical foliage density profile. Given its 100 

automated mode of operation and semi-permanent installation, the VEGNET instrument is 101 

described as an in situ Monitoring LiDAR (IML) (Culvernor et al., 2014; Portillo-Quintero 102 

et al., 2014).  103 

As such, in this paper we first assess the changes  of tropical dry forests structure due 104 

to liana presence and forest succession. Second, we analyze the potential of VEGNET and 105 

HPs to detect the vertical structure of forest stands at different successional stages. Finally, 106 

we examine how liana abundance could affect the bias of prediction of VEGNET and HPs to 107 

detect the level of succession of a given forest stand. Therefore, in well-known ecosystems 108 

such as the tropical dry forest of Costa Rica, this bias of prediction could be considered as 109 

the effect of liana presence on forest structure. 110 

 111 

2 Methods 112 

2.1 Study Area  113 
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The study area is located in the Santa Rosa National Park Environmental Monitoring Super 114 

Site (SRNP-EMSS), which is a part of the Guanacaste Conservation Area in Costa Rica 115 

(10°48” N, 85°36” W) (Figure 1). This site covers an area of 50,000 ha, receives 1720 mm 116 

of annual rainfall, has a mean annual temperature of 25°C and a 6-month dry season 117 

(Dec−May) (Kalácska et al.,2004). The SRNP-EMSS site has suffered intense deforestation 118 

in the past 200 years due to the expansion of pasturelands (Calvo-Alvarado et al., 2009). 119 

Original land management practices in the park included pasture rotation between different 120 

large corrals surrounded by life fences that can still be identified today. More recently (early 121 

1970’s) with the creation of Santa Rosa National Park, a process of secondary regeneration 122 

has become the dominant land cover change force in the region. Today and after the creation 123 

of SRNP, the uplands of the park are a mosaic of secondary forest in various stages of 124 

regeneration and with different land use histories related with anthropogenic fires, intense 125 

deforestation, and clearing for pasture lands (Kalácska et al., 2004; Arroyo-Mora et al., 126 

2005a, Cao et al, 2015).  127 

 128 

2.2 Definition of forest cover and plot age. 129 

 A map of forest cover and forest cover ages was generated using aerial photographs 130 

collected by the US Army in 1956 (Scale 1:24,000), a Multispectral Scanner (MSS) image 131 

from 1979 (80 m spatial resolution); 4 Landsat Thematic Mapper [TM] images from 1986, 132 

1997, 2000 and 2005 (28.5 m spatial resolution); one Spot Multispectral image from 2010 133 

(20 m spatial resolution); and a Landsat 8 image from 2015. All images had less than 10% 134 

cloud cover. 135 
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 The 1986 image was georeferenced to 1:50,000 topographic maps from the Costa Rica 136 

National Geographic Institute with a Root Mean Square Error (RSME) of 0.5 pixels or 14.25 137 

m. We defined this as our master image in order to georeference all of the other images, as 138 

such all other images were then geo-referenced to the 1986 image seeking a RMSE close to 139 

0.5 pixels between the master and the target image. All images where then classified using a 140 

supervised classification. Image accuracy was conducted for the 1997, 2000, 2005 and 2010 141 

satellite images as part of independent validation efforts conducted by the Costa Rica’s 142 

National Forest Financing Fund (FONAFIFO). Overall accuracy for the forest/non-forest 143 

images was 90%. Further information on image processing can be found in Sánchez-144 

Azofeifa et al. (2001).  145 

 Final quality controlled forest cover maps (forest non-forest) for 1956, 1979, 1986, 1997, 146 

2000, 2005, 2010 and 2015 were cross referenced to produce a tropical dry forest age map. 147 

Specifically, forest coverage with 60 years old correspond to woodlands which were being 148 

observed in images since 1956; forests that were 40 years old were not detected in 1956 but 149 

have been recognizing as forests since 1979; on the other hand, woodlands that were referred 150 

to as being 10 years old have a minimum of 10 years as a discriminable forest coverage. 151 

Based on Arroyo-Mora et al. (2005b) and Kalascka et. al’s (2005a) studies the following 152 

successional classification was developed: Ages 10 to 40 years (Early), and ages 40 to 60 153 

(Intermediate). Figure 1 presents the final land cover and forest age map for our study area.  154 

 155 

2.3 Plots selection and description 156 

 Based on Figure 1, twenty-eight randomly stratified 0.1ha plots were selected. The number 157 

of plots chosen for each forest successional stage was based upon each stages total forest cover 158 
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area. Plot sizes of 0.1 ha follows convention used in tropical forest studies at this site (Kalascka 159 

et al. 2005a). Fieldwork conducted in July 2016 was conducted in order to characterize 160 

diameter at breast height (DBH), tree height, total biomass, VEGNET observations (canopy 161 

vertical profiles) and hemispherical photos (Canopy openness and Leaf Area Index). 162 

 The characterization of successional stages was performed following previous approaches 163 

for seasonally dry forests of Costa Rica (Arroyo-Mora et al., 2005b; Kalácska et al., 2005) and 164 

adjusted according to the estimated forest ages (Figure 1). These approaches categorized the 165 

secondary regeneration in different successional stages such as early and intermediate 166 

successional stages (E and I, respectively) (Arroyo-Mora et al., 2005a). The E stage is a 167 

forest area with patches of sparse woody vegetation composed of shrubs, small trees, and 168 

saplings, with a thick herbaceous understory, and with a single stratum of tree crowns with a 169 

maximum height of less than 10 m (Castillo et al., 2012). Some of the common species that 170 

are characteristic of this early stage of succession includes Genipa americana, 171 

Cochlospermum vitifolium, Gliricidia sepium, Randia monantha (Hilje et al., 2015; 172 

Kalácska et al., 2004). In contrast, the I stage has two vegetation strata composed of 173 

deciduous species of woody plants. The first strata is comprised of fast-growing deciduous 174 

tree species that reach a maximum height of 10−15 m (e.g., Cydista aequinoctialis) and the 175 

second stratum is represented by lianas and vines, adults of shade-tolerant and slow-growing 176 

evergreen species as well as the juveniles of many species such as Annona reticulata, 177 

Ocotea veraguensis, and Hirtella racemosa (Arroyo-Mora et al., 2005a; Kalácska et al., 178 

2004). No lianas were present in the early successional stage plots. Lianas abundance tends 179 

to increase in early forests during their transition to intermediate stages. We did not select 180 

“late forests” at our study site since they tend to reflect structural characteristics (DBH, three 181 
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height and species composition) associated with tropical moist forest (Tosi, personal 182 

communication). 183 

 On the other hand, the characterization of the plots according to the liana abundance was 184 

based on the structure of plants that compose the tropical dry forest of SRNP-EMSS. In this 185 

way, we classified the 28 plots according to the relative abundance of stems of lianas over 186 

total number of stems, where plots with a relative abundance greater than 0.1 were 187 

categorized as plots having high liana abundance (HL), while plots with a relative 188 

abundance lower than 0.1 were categorized as having a low liana abundance (LL). Although 189 

this classification seems to be in-deterministic, this kind of classification represents an 190 

important ecological component which is very difficult to study as a continuum due to its 191 

spatial and temporal variation, and its categorization can help to improve the understanding 192 

of ecological processes as many other ecological categories. 193 

 At the end of this characterization, ours plots for the study consisted of 5 E-LL plots, 6 194 

E-HL plots, 7 I-LL plots, and 10 I-HL plots. In each of these plots we extracted all the 195 

information available to describe the dry forest according to its structure, but at the same 196 

time deployed the ground LiDAR and hemispherical photograph measurements to predict 197 

and describe that structure. Information about the parameters used and estimated according 198 

to the forest structure, ground LiDAR, and hemispherical photographs is described below. 199 

 200 

2.4 Forest structure 201 

Four parameters that characterize the forest structure were used in this study. These 202 

parameters were selected because these are easily obtained in any forest inventory, which 203 

could help in the applicability of this study in other regions. Specifically, we selected the 204 
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stem density (stems/ha) as a parameter to describe the number of individuals per plot, the 205 

mean diameter at breast height (1.3 m) (DBHmean, cm) as a parameter that can describe the 206 

mean size of the individuals, the total basal area (TBA, m2) as a parameter that can describe 207 

the biomass of each plot, and the ratio of liana basal area to TBA (L/TBA) as a parameter 208 

that can describe the contribution of lianas biomass to the total biomass of each plot. Each of 209 

these parameters was extracted from DBH measurements for lianas (>2.5 cm) and trees (>5 210 

cm). 211 

 212 

2.5 Ground LiDAR measurements 213 

The VEGNET ground LiDAR system was deployed in the middle of each of the selected 214 

plots, in which a single successful scan was performed between June 12th to June 27th, 2016. 215 

The VEGNET IML instrument uses a phase-based laser rangefinder with a wavelength of 216 

635 nm, in which a laser beam is directed at a rotating prism that reflects the laser at a fixed 217 

angle of 57.5° zenith or the “hinge angle” (Jupp et al., 2009). The prism is designed to 218 

perform full 360° azimuth rotations at this fixed zenith angle (no vertical scanning motion) 219 

and has the capability to be programmed to obtain up to 7360 range measurements for a full 220 

azimuth scan (an average of 20.6 measurements per azimuth degree) (Culvenor et al., 2014). 221 

Because sunlight irradiance may cause interference with the VEGNET laser at the same 222 

wavelength (Culvenor et al., 2014, Portilllo-Quintero et al., 2014), measurements for the 223 

VEGNET were conducted at night. Some tests of the measurement process by VEGNET at 224 

night time indicated that at distances greater than 60 m or in areas larger than 3600 m2 (0.36 225 

ha) the laser beam does not provide reliable measurements (Culvenor et al., 2014). In a 226 

tropical forest setting, data analysis and interpretation may be restrained to the footprint, 227 
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which is dependent on forest height at each site. Based on the forest heights of our study 228 

sites, the effective footprint of LiDAR measurements was within 0.1ha of our original 229 

sampling area. 230 

From these measurements at night six parameters were estimated: the maximum tree 231 

height (Hmax), the plant area index (PAI), plant area volume density (PAVD), the centroid of 232 

x (Cx) and y (Cy), and the radius of gyration (RG). To estimate these parameters, the height 233 

(h) was initially calculated as the cosine of the laser zenith angle (57.5°) multiplied by the 234 

laser distance measurement (d) assuming that the terrain is flat as describe Culvenor et al. 235 

(2014).  236 

On the other hand, canopy “hits” and “gaps” were recorded to enable the calculation 237 

of angular gap fraction or gap probability (Pgap) at each h where a leaf, trunk or branch was 238 

hit by the laser (Lovell et al., 2003). Pgap at a given h is the ratio of the number of valid 239 

returns below z (#zi < h) to the total number of laser shots (N) (Culvenor et al., 2014): 240 

 241 

Pgap(z) = [#zi < h ] / N      (1)  242 

 243 

Consequently, the estimation of cumulative plant area index (PAI) by the conversion of 244 

Pgap(z) was performed using the following the equation (Culvenor et al., 2014):  245 

 246 

PAI(z) = -1.1 × ln(Pgap(z))     (2) 247 

 248 
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From this calculation, the density of vegetation components at any level of z was 249 

computed as the derivative of PAI with respect to h. This calculation is commonly referred 250 

to as the plant area volume density (PAVD) (Culvenor et al., 2014) described by: 251 

 252 

PAVD(z) = δ PAI(z) / δz     (3) 253 

 254 

It is important to note that these calculations represent tridimensional variations (x, y, 255 

z) of the forest structure (Culvenor et al., 2014), because of this, in our statistical analysis 256 

we used the maximum h estimated by the LiDAR per plot (Hmax), the cumulative PAI as a 257 

function of the canopy height (PAI), and the mean PAVD at different heights (PAVDmean). 258 

These calculations were extracted using the “VEGNET Data Display and Export Version 259 

2.5” software developed by Environmental Sensing Systems Inc (Melbourne, Australia). 260 

 Likewise, from the LiDAR measurements we also used shape metrics such as the 261 

centroid (C) and radius of gyration (RG) to understand how the vertical profile of the forest 262 

could change according to successional stages and liana abundance. The RG and the C are 263 

metrics that are mainly used in LiDAR waveforms to describe the motion of objects and the 264 

manner in which material is distributed around an axis (Muss et al., 2013). We used a 265 

similar approach by calculating the C and the RG for the PAVD vertical profile of each plot. 266 

Specifically, C represents the geometric center of a two-dimensional (x and y) region (e.g., 267 

the arithmetic mean position) of all the points (n) in the shape of the PAVD profile and it 268 

could, specially, be interpreted as the variability of PAI with height and it will change as a 269 

function of understory changes along the path of succession (grasses to shrubs to short 270 



 
 
 

13 
 

trees). On the other hand, RG is the root mean square of the sum of the distances for all 271 

points on the PAVD vertical profile, which is described as: 272 

 273 

𝑅𝐺 = !!!!! !! !!!!!
!

!
                                            (4) 274 

 275 

This parameter can be visualized as the relationship between the total length of the PAVD 276 

vertical profile and its shape and position, which are determined using the sum of x or y 277 

coordinates divided by the total length of the profile (Muss et al., 2013). In general, the RG 278 

captures the manner in which the PAVD profile is distributed around the centroid, making it 279 

a better descriptor of the vertical profile shape than just the centroid itself, and thus, more 280 

suitable for relating VEGNET measurements to forest structure (Muss et al., 2013; Culvenor 281 

et al., 2014). Therefore, we used the RG to relate the shape of the PAVD profile to forest 282 

biomass at the footprint level For a more detailed explanation on the functioning of the 283 

VEGNET in the field please refer to Portillo-Quintero et al. (2014) as well as Culvenor et 284 

al. (2014). A single successful scan was performed during the wet season using the 285 

VEGNET instrument at each site on clear nights.  286 

 287 

2.6 Hemispherical photographs 288 

Hemispherical photographs (HPs) were taken during the early morning in the middle of each 289 

plot, using a digital camera (E4500, Nikon, Tokio, Japan) equipped with a fisheye lens of 35 290 

mm focal length. The camera was leveled at 1.50 m by a tripod and orientated towards 291 

magnetic north, in order to ensure photographic standardization. The resulting pictures were 292 

analyzed using the software Gap Light Analyzer version 2.0.4 (Frazer et al., 1999). This 293 
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analysis was performed by creating 340 sky sectors (36 azimuth classes and 9 elevation 294 

angle classes) with a time series of 2 min along the solar track. The leaf area index (LAI) 295 

and the canopy openness were subsequently extracted by this analysis; however, the LAI 296 

was extracted using the “4 ring” (with a zenith angle between 0 to 60º) which is a more 297 

accurate depiction of the site than using “5 rings” because the latter takes into account trees 298 

that are not immediately surrounding the site, and which are found outside of the plot 299 

footprint. 300 

 301 

2.7 Statistical analysis 302 

This study compared the effect of the successional stages, the abundance of lianas, and their 303 

interaction on the parameters of forest structure as well as VEGNET-HPs parameters using a 304 

multivariate analysis of variance (MANOVA), in order to demonstrate that this study had 305 

been conducted in contrasting environments. For each MANOVA we extracted the 306 

univariate analysis of variance (ANOVA) to describe the multivariate effects of each 307 

parameter. To show the potential of the VEGNET and HPs to predict variations in the 308 

structure of the dry forest, we applied a canonical correlation analysis (CCA) using the 309 

VEGNET-HPs parameters as independent variables and the features of the forest stand as 310 

dependent variables. Due to the CCAs sensitivity to the collinearity among variables (Quinn 311 

and Keought, 2002), we only used RG, PAI, PAVDmean, Hmax, LAI, and canopy openness as 312 

independent parameters. Specifically, the CCA was used to extract the canonical correlation 313 

between VEGNET-HPs and forest structure (eigenvalues), the correlation between the 314 

canonical variates and each matrix (eigenvectors), and the scores that describe the 315 

multidimensional variation of each plot according to its correlation. To extract the statistical 316 
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significance of the canonical correlation coefficients, we computed an asymptotic test on the 317 

first canonical dimensions to extract the F-approximations of Wilks' Lambda along with its 318 

significance. This statistical significance was subsequently validated using a permutation 319 

test on each dimension by 10000 iterations. 320 

 After describing the potential of the VEGNET-HPs parameters to predict variations 321 

in the structure of the dry forest, we were interested in demonstrating how the relative 322 

abundance of lianas could affect the bias of prediction extracted from these sensors. In 323 

ecological terms, it is a perceived expectation that during successional transitions increases 324 

in basal area, height and vertical strata of the vegetation should be observed; consequently, 325 

these transitions could be translated into increases in VEGNET-HPs parameters (except 326 

canopy openness which is inverse). However, from hypothesis derived from previous 327 

studies, it is possible that the abundance of lianas may actually arrest the forest succession 328 

and reduce the biomass accumulation of woody vegetation (Paul and Yavitt 2011; Schnitzer 329 

et al., 2000). If the above is true, correlations between descriptors of forest structure and 330 

parameters extracted from VEGNET and HPs could be diffuse or stochastic in the dry forest, 331 

and their application under the presence of lianas could prove ineffective. Under this 332 

reasoning, we compare the parametric correlations of four parameters according to the 333 

successional stages and the liana abundance, separately. The four parameters selected were 334 

those with the two highest correlation values for the VEGNET-HPs matrix and the two 335 

parameters with the highest correlation values for forest structure, determined by the first 336 

two canonical dimensions described by the CCA. This comparison was conducted using an 337 

ordinary resampling method to replicate the correlation 5000 times, in which the resampled 338 
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values were used to build density plots to describe the bias of prediction according to its 339 

overlap. 340 

The previous analyses were conducted in R software version 3.3.1 (R Development 341 

Core Team, 2016) using the “CCA” package (González and Déjean, 2015) to extract the 342 

canonical correlations, the “CCP” package (Menzel, 2009) to extract the significance of the 343 

CCA and its permutation, and the “boot” package (Canty and Ripley, 2016) to extract the 344 

resampled values. When the normality of the data was not reached, each parameter was 345 

previously transformed using the Box-Cox transformation for the analysis. 346 

 347 

3 Results 348 

3.1 Changes on forest structure along the path of succession and liana abundance 349 

According to the MANOVA, the forest structure of our plots differed between successional 350 

stages (Wilk’s Lambda(4,21) = 0.51; p < 0.01) and liana abundance (Wilk’s Lambda (4,21) = 351 

0.58; p < 0.05), but without interaction between these categories (Wilk’s Lambda(4,21) = 352 

0.76; p = 0.20). This analysis suggests that the DBHmean and TBA were the only parameters 353 

affected by the interaction between successional stages and liana abundance, where E 354 

successional plots with LL and I plots with HL showed lower values of DBHmean and TBA 355 

than E and I plots with HL and LL, respectively (Table 1). In terms of the effect of the liana 356 

abundance, the univariate analysis suggests that plots with LL showed lower values of 357 

L/TBA in comparison with HL plots. 358 

 359 

3.2 VEGNET-Hemispherical Photographs (HPs), forest succession, and liana 360 

abundance 361 
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The multivariate comparisons of the VEGNET-HPs parameters showed that the sensor 362 

estimations did not differ between successional stages (Wilk’s Lambda(8,17) = 0.58; p = 363 

0.21), liana abundance (Wilk’s Lambda(8,17) = 0.62; p = 0.29), and these categories did not 364 

show an interaction (Wilk’s Lambda(8,17) = 0.53; p = 0.14). Despite the absence of a 365 

multivariate effect of the liana abundance, the univariate responses extracted from this 366 

comparison suggest that the LAI and canopy openness differs between plots with HL and 367 

LL, where LL plots showed lower values of LAI and higher values of canopy openness in 368 

comparison with HL plots (Table 2). On the other hand, the univariate responses showed 369 

that the canopy openness was affected by the successional stages, where E successional plots 370 

showed higher values of canopy openness than I plots. Likewise, the univariate comparisons 371 

suggest that Cx, PAI, and PAVDmean are affected by the interaction of the successional stages 372 

and liana abundance, where E successional plots with LL and I plots with HL showed higher 373 

values of Cx, PAI, and PAVDmean in comparison with E and I successional plots with HL and 374 

LL, respectively.  375 

 376 

3.3 Canonical correspondence analysis and trends of forest structure 377 

The CCA showed that sensor parameters are strongly associated with the trends in forest 378 

structure (Fig 2). In general, the first and second canonical dimension showed correlations of 379 

0.81 (Wilk’s Lambda(24,64.01) = 0.13; p < 0.01) and 0.72 (Wilk’s Lambda(15,52.85) = 1.46; p = 380 

0.16) between our sensors and forest structure. Specifically, the correlation between the 381 

canonical variates in the first canonical dimension suggested that canopy openness and the 382 

LAI have a great weight in the sensor matrix, while L/TBA and stem density had an 383 

important effect on the forest structure (Fig 2a). Likewise, the correlation between the 384 
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canonical variates in the second canonical dimension showed that Hmax and PAVDmean had a 385 

strong correlation with the sensor parameters, while TBA and steam density had a strong 386 

correlation on the forest structure. The scores that described the multidimensional variation 387 

of each plot did not reflect a visual aggregation according to the successional stages and 388 

liana abundance (Fig. 2b). In terms of the validation of the significance of the canonical 389 

correlation coefficients, the permutations test showed that there is an important increase in 390 

the significance of the first two canonical dimensions (Fig. 2c, 1d), where the first 391 

dimension presented an increase of 0.21 points for the Wilks’s statistic, while the second 392 

dimension showed an increase of 0.25 points, which results in a significant effect. 393 

 394 

3.4 Comparison of correlations between successional stages and liana abundance 395 

The different trends of correlation showed that the successional stages and mainly the liana 396 

abundance have an important effect in the prediction of the forest structure using VEGNET-397 

HPs parameters (Figure 3), but at the same time, these trends showed that some of these 398 

parameters have the potential to predict the implication of the liana abundance on the forest 399 

structure. Specifically, variation in the correlations of canopy openness on L/TBA (Figures 400 

3a, b, c) and Hmax on TBA (Figures 3g, h, i) showed that the correlation trends between 401 

successional stages are overlapped, while the correlations trends between liana abundance 402 

are separated, in where low values of canopy openness and Hmax are associated with high 403 

values of L/TBA and TBA, and consequently with the discrimination of HL plots. Likewise, 404 

variation in the correlation between LAI and L/TBA showed that the trends might not be 405 

used to separate successional stages or liana abundance (Figures 3d, e, f). However, the 406 

correlation between Hmax and TBA suggest that Hmax can not discriminate between different 407 
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successional stages, but can discriminate different liana abundance since lower values of 408 

correlation are associated with HL plots (Figures 3j, k, l). 409 

 410 

4 Discussion 411 

4.1 Potential of VEGNET and HPs to detect the vertical structure of forest stands at 412 

different successional stages 413 

Woody vines or lianas tend to proliferate in disturbed forest stands such as regenerating 414 

forests (Paul and Yavitt, 2010). Much research on liana ecology, however, has focused on 415 

old-growth forests despite that secondary forests currently cover a larger area than old-416 

growth forests and may become the dominant ecosystem in tropical regions (Wright, 2005). 417 

Due to shorter stature and a higher variability of light in secondary forests, lianas may be 418 

particularly abundant in these ecosystems, but little is understood about the role of lianas in 419 

forest succession (Letcher and Chazdon, 2009). In this study, we used the VEGNET, a 420 

terrestrial LiDAR system combined with HPs, to assess the impact of liana abundance on 421 

forest succession. Our overall analysis indicated that VEGNET parameters, in combination 422 

with HPs derived information, were able to characterize changes in forest structure at 423 

different successional stages with and without lianas. Changes observed using HP, along the 424 

successional gradient, we similar to those observed in other tropical dry forests 425 

environments where parameters such as biomass, LAI, canopy openness and Hmax changed 426 

as trees grow (Sanchez-Azofeifa et al. 2009). Our work using the TLS suggested also that 427 

this technology can be also used to detect differences along the forest succession trajectory 428 

when lianas are integrated into the analysis. In terms of the comparison of VEGNET 429 

parameters between our categories, probably the effect of the interaction of the successional 430 
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stages and liana abundance on Cx, PAI and PAVDmean are some of the most reveling. As 431 

lianas emerge along the path of succession they create a more heterogeneous space which is 432 

captured by the variability on Cx. Cx is affected by PAI and PAVDmean as function of 433 

understory components (shrubs, grasses and also liana tangles). A higher value of Cx may be 434 

interpreted on an E-LL as a high dominance of shrubs, tall grasses and short trees; while a 435 

high value of Cx on a E-HL will mean a high density at low height of tangles combined with 436 

shrubs which makes accessibility impossible to some sites due to a high density of 437 

understory liana tangles. 438 

 439 

4.2 How liana abundance could affect the bias of prediction of VEGNET and HPs to 440 

detect the level of succession of a given forest stand? 441 

When we consider the bias of correlations between the forest structure and the parameters 442 

extracted from our two sensors at different successional stages, as well as liana abundance, 443 

our results suggest that this latter variable has an important effect on the bias of prediction 444 

for a given forest structure. The main reason is probably a result of lianas introducing 445 

random tangles into the 3-dimensional space that is occupied by all forest biomass at a given 446 

plot. In other words, lianas tend to randomize or reduce the degree of organization of the 447 

natural space which is typically utilized by trees. This randomization of the 3D space 448 

occupied by trees and lianas is an element that has not been considered as of today; since 449 

most studies do not consider the space occupied by lianas because of a lack of TLS 450 

information. 451 

This change in deterministic patterns of the forest structure is probably due to 452 

competition between lianas and trees in forest stands within a random 3D space. In disturbed 453 
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sites, such as secondary forests, lianas deploy leaves in the canopy and create large amounts 454 

of tangles in both the ground and mid canopy, this high density of tangles contribute to a 455 

reduction on the amount of available transmitted incoming solar radiation available for 456 

photosynthesis at the understory (Sanchez-Azofeifa et al. 2009, Graham et al., 2013).  457 

Moreover, in regenerating stands within forests (e.g., treefall gaps), high densities of lianas 458 

can inhibit the regeneration of tree species and reduce the abundance of shade-tolerant trees 459 

(Schnitzer et al., 2000), which in turn can affect the 3D arrangement of species within a 460 

given area. These ecological processes may cause a shift in forest structure, which is 461 

detected as a shift in the vertical structure signature by TLS or even HPs in sites with high 462 

liana abundance. These differences in structures have been confirmed in a recent study, 463 

which found that a liana-infested forest had a more irregular canopy with canopy heights 464 

between 10 and 20 m, while the surrounding forests had a significantly taller canopy 465 

between 25 and 35m along with a denser canopy (Tymen et al., 2016). Together, our results 466 

and Tymen et al. (2016) observations could highlight the potential of entropy analysis of the 467 

forests to detect the presence and the effect of lianas on the forest structure and the pathways 468 

of succession.  469 

 470 

4.3 A cautionary tale associated to emergent TLS and HPs monitoring technologies 471 

applied to liana-infested sites 472 

Our observations from changes on DBHmean, TBA, PAI, PAVDmean, LAI and canopy 473 

openness as function of liana abundance provide evidence that these variables can be used to 474 

estimate the impact of lianas on forest structure along the path of succession, although not 475 

all of parameters, such as stem density and L/TBA, were significant. In other words, there is 476 
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a strong need to carefully select which parameters should be considered if we want to 477 

estimate changes in the forest structure as function of liana abundance. One key example is 478 

the use of PAI (PAI= LAI + Woody Area Index (WAI)) as tool to evaluate the impact of 479 

liana abundance on forest succession. PAI as a single measurement theoretically could 480 

provide insights on the impact of liana abundance on successional stages; as such we could 481 

expect that PAI will increase as leaf and wood biomass increases during succession (Quesada 482 

et al., 2009).  Furthermore, PAI could be better understood if specific measurements of TLS 483 

can be done during the dry season to quantify the real value of WAI to PAI, tropical dry forests 484 

in contrast to tropical rainforests can provide significant advantage on better understanding PAI 485 

(Kalascka et al. 2005b). It is surprising that we did not find differences in the PAI values 486 

between stands that did and did not have lianas. It is possible that PAI is not the best 487 

parameter to differentiate between plots with and without liana presence, instead variables 488 

more related with leaf components, such as LAI and WAI may be more suitable for finding 489 

differences in liana signature across sites, especially when the contribution of lianas to the 490 

WAI to overall plot PAI is relatively small in comparison to the allocation of WAI from 491 

trees (Kalascka et al. 2005b, Sanchez-Azofeifa et al., 2009). 492 

 A recent study assessing the role of lianas on forest dynamics in the Amazon, 493 

indicated that a liana-infested forest appeared to be in an arrested stage of ecological 494 

succession, due to the evidence provided by LiDAR surveys from 2007 to 2012 which 495 

showed that the overall extent of forest area had remained stable, with no notable net gain or 496 

loss over the surrounding forest (Tymen et al., 2016). It is possible that studying forest 497 

dynamics in forest stands across successional stages, with different levels of liana abundance 498 

integrated into the TLS and HPs parameters, may allow us in the future to provide stronger 499 
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evidence as to whether lianas can arrest succession in dry forests as it appears to occur in 500 

humid forests (Schnitzer et al., 2000; Tymen et al., 2016). 501 

Moreover, our work seeks to strength the argument for the inclusion of lianas on 502 

global terrestrial vegetation models (Verbeek & Kearsley, 2016). We argue here that the first 503 

step on the development of such models is to have a clear understanding of how lianas affect 504 

ecosystem structure and composition, which in turn, will affect tree mortality/recruitment, 505 

and carbon storage aboveground and belowground (Poulsen et al. 2016, Schnitzer et al. 506 

2014). Furthermore, lianas because of their impact on the 3D structure of a given forest 507 

space, may have the possibility of changing faunal diversity (e.g. birds) an impact that has 508 

not fully documented as today.  As such, our study also supports the arguments by Schnitzer 509 

et al (2016) that calls for the need for developing a network of observational and 510 

experimental sites that can provide insights on the impact of lianas at different ecological 511 

levels.  512 

We extend the previous argument to remote sensing studies as well. Since lianas 513 

represent a significant ecological component of tropical ecosystems (with stronger presence 514 

on intermediate stages than early or late successional stages), we also argue that the 515 

development of more robust global vegetation models must start from understanding liana 516 

impact of forest structure which in turn will drive other components of those models.  517 

 518 

5 Conclusions 519 

This study evaluated the potential for TLS and hemispherical photos to observe differences 520 

between successional stages of a tropical dry forest chrono-sequence and liana abundance. 521 

Our work provided five main conclusions: (1) that TLS data combined with hemispherical 522 
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photography data can help to predict the forest structure of the tropical dry forest as 523 

demonstrated before, (2) that these predictions get blurry when liana abundance is 524 

considered, (3) that variations in TLS and HPs parameters can be used to predict the effect 525 

of liana abundance on the successional path, (4) that not all the parameters could address the 526 

effect of the presence or impact of lianas along a successional gradient, and (5) we suggest 527 

that the impact of lianas on successional stages changes the deterministic nature of forest 528 

structure, by randomizing the 3D space where they grow at given plot; the higher the 529 

abundance of lianas the higher the randomization. 530 

Our study provides important insights on the contributions of lianas to the 531 

successional process, and highlights the potential that TLS and HPs have in monitoring liana 532 

presence in tropical dry forests environments. Lianas are increasing in density and biomass 533 

in tropical forests, but it is unknown whether this pattern is also found in secondary forests, 534 

which are suitable for liana proliferation. TLS systems, and to a lesser extent HPs are 535 

capable of providing unbiased estimations for the vertical structure of a given site, and thus 536 

constitute  powerful tools to monitor the increases in liana density and biomass. Although, 537 

our study is limited to one single site in Costa Rica, this is a first step on the development of 538 

more comprehensive approaches, which take advantage of advanced technology to 539 

understand the effects of liana abundance on tropical dry forest structure. The approach 540 

presented in this paper, presents important contributions to efforts directed to estimate the 541 

potential effects of lianas on forest carbon in secondary forests (Durán and Sanchez-542 

Azofeifa, 2015), elements that seems not fully considered yet in the tropical literature. 543 
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Table 1. Mean (± SD) of parameters of forest structure extracted from plots with 722 

different successional stages and different relative abundance of lianas in the dry forest 723 

at Santa Rosa National Park, Costa Rica. Significant differences (F-values and their p-724 

values) according to the successional stages, relative abundance of lianas and their 725 

interaction are represented by a posteriori ANOVA text extracted from MANOVA. Stem 726 

density (stems/ha); DBHmean, mean stem diameter at breast height (cm); TBA, total basal 727 

area (m2); L/TBA, ratio of liana basal area to TBA. 728 

Parameters	 Early	 Intermediate	 ANOVA	
LL HL LL HL Stage Condition Interaction 

Stem 
density 

1054 ± 
370.72 

1218.33 
± 

603.24 

1027.14 
± 379.02 

1021 ± 
331.54 0.55 0.15 0.27 

DBHmean 
10.91 ± 

2.36 
11.83 ± 

1.57 
14.17 ± 

1.85 
11.56 ± 

1.89 2.72 2.73 5.65* 

TBA 1.44 ± 
0.90 

2.08 ± 
1.01 

2.61 ± 
0.80 

1.84 ± 
0.61 1.39 0.48 5.15* 

L/TBA 
(10-2) 

0.38 ± 
0.35 

1.48 ± 
0.84 

0.35 ± 
0.32 

2.93 ± 
2.14 2.76 14.11*** 1.86 

*, p < 0.05; ***, p < 0.01729 
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 730 

Table 2. Mean (± SD) of parameters calculated by VEGNET system and HPs in plots 731 

with different successional stages and different relative abundance of lianas in the dry 732 

forest at Santa Rosa National Park, Costa Rica. Significant differences (F-values and 733 

their p-values) according to the successional stages, relative abundance of lianas and 734 

their interaction are represented by a posteriori ANOVA text extracted from MANOVA. 735 

RG, radius of gyration; PAI, plant area index; PAVDmean, plant area volume density; 736 

Hmax, maximum tree height (m); LAI, leaf area index. 737 

Parameters 
Early Intermediate ANOVA 

LL HL LL HL Stage Condition Interaction 

RG 
4.21 ± 

1.42 

4.85 ± 

0.92 

4.69 ± 

1.11 

4.34 ± 

0.91 
0.03 0.01 1.41 

Cx 
0.19 ± 

0.06 

0.13 ± 

0.04 

0.14 ± 

0.03 

0.16 ± 

0.04 
0.12 0.14 5.95* 

Cy 
7.56 ± 

2.96 

8.43 ± 

1.63 

8.22 ± 

2.07 

7.56 ± 

1.59 
0.07 0.01 0.96 

PAI 
2.45 ± 

0.28 

2.10 ± 

0.28 

2.13 ± 

0.34 

2.31 ± 

0.33 
0.06 0.05 4.75* 

PAVDmean 
0.19 ± 

0.05 

0.13 ± 

0.04 

0.14 ± 

0.03 

0.16 ± 

0.04 
0.14 0.22 7.26* 

Hmax 
17.42 ± 

5.51 

18.17 ± 

3.90 

23.26 ± 

7.73 

18.01 ± 

6.00 
0.99 1.53 1.61 

LAI 
2.30 ± 

0.32 

2.46 ± 

0.64 

2.34 ± 

0.46 

2.92 ± 

0.39 
2.97 6.91* 1.32 

Canopy 

openness 

13.90 ± 

3.94 

12.59 ± 

5.89 

12.74 ± 

5.27 

8.67 ± 

1.47 
5.77* 6.78* 0.79 

*, p < 0.05  738 
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 740 

 741 
 742 

Figure 1. Location of the sampled forest plots at the Santa Rosa National Park 743 

Environmental Monitoring Super Site, Guanacaste, Costa Rica. Where E-HL indicates 744 

Early successional stage with a high relative abundance of lianas; E-LL Early successional 745 

stage with a low relative abundance of lianas; I-HL, Intermediate successional stage with a 746 

high relative abundance of lianas; I-LL, Intermediate successional stage with a low relative 747 

abundance of lianas. In addition, forests ages refer to: 60, forests detected since 1956; 40, 748 

forests detected since 1979; 30, forests detected since 1986; 20, forests detected since 1997; 749 

10 forests detected since 2005, and no forest correspond to non-related to woodlands. 750 

  751 



 
 
 

36 
 

 752 

Figure 2. Canonical correspondence analysis to describe the association between the 753 

parameters estimated by VEGNET system-hemispherical photographs (HPs) and the 754 

forest structure. a) VEGNET-HPs coefficients are represented by red points, while forest 755 

structure coefficients are represented by blue points. b) Individual scores of each plot of 756 

the canonical variates are represented according to successional stages (E, early; I, 757 

intermediate) and relative liana abundance (LL, low liana abundance; HL, high liana 758 

abundance). C and d represent the permutation distribution of the Wilks' Lambda test to 759 



 
 
 

37 
 

assign the statistical significance of canonical correlation coefficients considering 4 and 760 

3 canonical correlations, respectively; the red line represent the original value Wilks' 761 

Lambda, while the blue line represent the mean value permutated. The p values next to 762 

each line represent the significance of the Wilks' Lambda test. 763 

  764 
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 765 
Figure 3. Density distribution of the bootstrapped correlation coefficients without and 766 

with distinction between successional stages (E, early; I, intermediate) and relative liana 767 

abundance (LL, low liana abundance; HL, high liana abundance). a, b, and c correspond 768 

to the correlation of canopy openness and the ratio of liana basal area to total basal area 769 

(L/TBA); d, e, f correspond to leaf area index-L/TBA correlation; g, h, and i correspond 770 

to the maximum tree height-TBA correlation; j, k, and l correspond to plant area volume 771 



 
 
 

39 
 

density-TBA correlation. Each dotted line represents the mean value of the bootstrapped 772 

correlation. 773 


