Editorial Board
Biogeosciences Editorial Office
European Geosciences Union
Munich, Germany
Dear editor,
First of all we want to thank you for the extra time provided to us in order to complete this paper, it has been a very intense few months with a large field campaign in order to satisfy the requests of the reviewers. We hope now that the manuscript is acceptable. As such, we resubmit for your consideration the manuscript entitled "Can Terrestrial Laser Scanner (TLS) and hemispherical photographs predict Tropical Dry Forest Succession with liana abundance?", please notice the change of title as requested by reviewer No. 1. This article has significantly evolved from our first submission given the request for additional data and explanations from the reviewers. This request, led us to:

1. Increase our sampling scheme from 9 plots to 28 plots.
2. Conduct a full set of field measurements on all new plots, specifically DBH and hemispherical photographs (June 2016)
3. Conduct additional ground LiDAR measurements at all sites (June 2016).
4. We have conducted an analysis to map the extent of tropical dry forests at our study area since 1950 , which is allowing us to approximately date our plots more accurately than before.

Furthermore, we have extended our analysis using univariate techniques; this novel field study addresses how the forest structure of the tropical dry forest is correlated with measures from ground LiDAR and hemispherical photography. Then, we show how the abundance of lianas affects the bias of correlation in regards to the ground LiDAR and the hemispherical photographs. Therefore, in well-known ecosystems such as the tropical dry forest of Costa Rica, these biases of prediction could be considered as artifacts from the structural effects of liana presence. In the next pages, we enclose an explanation of how we dealt with the reviewers' or editor's comments.

We want to also thank the reviewers for their positive comments. We hope that now the paper is satisfactory.

Sincerely,
Arturo Sánchez-Azofeifa,

Explanation of how we dealt with the reviewers' or editor's comments

REVIEWER \#1

General

In their revised version the authors made some efforts to respond to the comments of both reviewers, which I appreciate. Additional information was provided on the methods and analysis. However, with this additional information included, it became even more clear to me that the analysis is too weak and the assumptions are too shaky to support the conclusions (see my major comments). I can therefore not recommend this manuscript for publication in Biogeosciences.

R: In order to satisfy the reviewer concerns we have spend a significant amount of time in both the laboratory and the field.

In my opinion the authors have to make a choice: or (1) they make an assessment of VEGNET to detect differences in tropical forest structure, (2) or they use VEGNET to study the impact of liana's on forest structure, or (3) they combine both. In their response letter the authors state that the actual purpose of the paper is to assess whether TLS (but you are actually testing VEGNET, which is due to the fixed zenith angle quite different from most other TLS approaches) can detect differences in aboveground structure across plots. This is actually option (1), but this is not what is presented in the paper.
$R /$. We agree with the reviewer comment. Our final goal is to combine both methods to describe the forest structure using VEGNET and then predict the effect of the presence of lianas. Currently, there is a substantial change in terms of how we present our results and our background. In this manuscript, we applied a canonical correspondent analysis to make an assessment about how VEGNET detects differences in tropical dry forest structure and then we applied individual correlations between VEGENET parameters and forest structure using categories of liana abundance to study the impact of lianas on forest structure.

For each option more data is needed:
(1) To assess the potential of VEGNET to study differences in the structure of tropical forests, you need another quantitative method to observe forest structure, to compare VEGNET to. Now the VEGNET is just applied on rather arbitrarily chosen plots, for which you assume they have a different structure, but no quantitative comparison is made with other data. You could compare the vegnet information with inventory data, hemispherical photo's, tree height measurements, other type of TLS... etc... some of this information is apparently available (page 8 line 168-176 in the manuscript) but not included in a quantitative analysis.
(2) To study the impact of lianas on forest structure you need more information on the plots. (and the plots probably need to be larger to do a decent study). You need background information on the plots to be sure that you are looking toat the effects of lianas and not to at the effects of other factors (species composition, soil, hydrology, topography, disturbance). Some of this info might be in the other studies whichere the authors refer to, but in that case that information should be integrated in this manuscript. Apparently the authors do have access to
some information on the number of lianas per hectare (see response to reviewer 2), this information should really be integrated in the paper. In addition you really need young plots with lianas to study the impact of lianas along a successional gradient.
(3) To study both in one paper, you need all the info of 1 and 2.

I hope the authors can use my comments to improve their work in the future, by adding new data and doing a different analysis.
$R /$. We agree, more data and samples were included. In this manuscript, we added tables that describe the forest structure and the VEGNET parameters according to successional stages and liana abundance. Likewise, we compared the effect of the successional stage and liana abundance on all of these parameters to show that this study was conducted in contrasting environments.

Major comments:

1. It became clear for me that the VEGNET approach is different from other TLS approaches in the sense that it scans at a fixed zenith angle. This really limits the info that you can extract from the scans compared to other TLS approaches that can produce full 3D point clouds. This needs to be mentioned in the discussion.
$R /$. We agree with the reviewer on the fixed zenith angle issue when compared with other more expensive instrument, but the VEGNET has the advantage over other $3 D$ instruments that is more versatile and significantly cheaper that any other TLS in the market. Therefore, albeit of their limitations, the information provided is very unique, and we have mentioned this in the discussion. Sometimes more data, as those provided by 3D scanners, is fundamentally overkill for some applications as the one presented in this paper.
2. The authors added some information to show that the plots are randomly selected. However, I still doubt that the setup is sufficient to study the selected research questions. The plots are probably independent replicate (yes I meant replicates) samples of 'the forest', but are they replicate samples of the categories that you define? (in terms of succession and in terms of liana presence?). I doubt. In addition, the plots are very small in size. Only 0.1 ha, means that the plots are very prone to edge effects. You might have 0 rooting liana stems in such a small plots, but the crowns might be full of lianas due to lateral ingrowth.
$R /$. To address this comment we want to mention first that we increased our sample size from 9 plots to 28 plots in our study site. We partially disagree with the comment because this is making a classical perception of the pseudoreplication and independence of samples in study sites that need to be considered as unique in the world. This topic is widely and well discussed by Hurlbert (1984), when he started to explain that the replication of the number of experimental units (in our case the plots) in mensurative experiments needs to be randomly selected when very largescale systems are studied (like our study) and when the study site is unique (there are no similar systems); Hurlbert (1984) concluded that the independence of these experimental units depends mainly on the number of samples, more than the remote chance (yes we meant chance) of proximity or aggregation. In addition, we consider that the distribution of forest patches, the ages of these patches, the remaining history in these patches (fires, management, distance to major highways), and the number of samples can produce independence in our plots and
treatments. The comment of the reviewer could be valid if the plots of each treatment are aggregated in a single patch of forest, but this is not our case as you can see in Figure 1.

Furthermore, our selection of plot size (0.1 ha) is typical of tropical environments, and this has been used constantly across the tropics (See Kalascka et al. 2005 as an example for dry forests).
3. An additional weak point is for me the fact that only 1 scan per plot is performed. In combination with the fact that VEGNET is scanning at 1 fixed azimuth angle, I suspect that the observed structure is really depending on the scanning location. Did you do any tests by scanning at different locations within the plot? Moreover, no information is give on the actual location of the scanning position within the plot.
$R /$. This is not a weak point, and we did not test different locations because this is not necessary. A scan of VEGNET can cover ~ 0.1 ha of forest, which means that we do not need to make multiplies measurements. If we perform a measure in the edge of the plot we can extract information outside of the plot which could produce noise in our correlations. Likewise, we performed our measures in the middle of each plot, this information was included. In addition, conducting one single measurement using the VEGNET takes between 2-3 hours every night. The argument that the structure will depend on the scanning location is a logical one but the area measured by the instrument covers our plot completely, so we do not see a reason to conduct additional measurements.
4. The authors state that they want to test the impact of lianas on canopy structure, but due to the lack of information about the plots and the rather weak set-up, the resulting patterns seen in the VEGNET data might not be caused by lianas at all.

R/. As we explained above, information about the forest structure and abundance of lianas was included. Currently, using bias of correlation the resulting patterns can be attributed to liana abundance.
5. It is now more clear for me what the RG parameter actually means. The authors use this index to explore if successional trajectories could be altered by lianas, by assuming that if they don't see a change in vertical structural complexity, this would mean that lianas are altering the successional pathway. I really don't understand this assumption. Why would an altered succession be reflected in a none-change in vertical structure? In addition the authors assume that if they don't find an RG trend along the successional gradient for the plots with lianas, that this would indicate an arrested succession by lianas... But on the other hand the late successional plots are selected based on their structure. I really think this a weak setup. Also on page 13 (line 278) the authors write that "a change or no significant increase in PAI as a function of RG would suggest that lianas are altering the successional trajectory of vertical structure". This sentence is very confusing. "a change" is contradicting "no significant increase". I agree that VEGNET might be used to make observations of canopy structure of tropical forest, but even this probably needs to be tested. But to test if lianas are altering successional trajectories, you really need to present more information on the plots, come up with a setup that really allows you to study lianas of successional gradients, make scans in plots that are large enough, make multiple scans per plot, ...
$R /$. In this new submission, we correct the above framework. Currently, using a canonical correspondent analysis we are showing how the forest structure could be predicted by VEGNET measurements, but at the same time, using univariate analysis of correlations we show how the presence of lianas affects the bias of prediction. Therefore, variations in the parameters of correlations could be used to describe that the successional trajectories are altered by the liana abundance.
6. The answer of the authors to my comment 8 , is not sufficient. The authors provide indeed some more information on the trends they found in fig 3. However this does not answer the key point of my comment: the fact that you find a significant positive relation for plots without lianas is mainly driven by the fact that you have observation in early successional plots. You don't have observations in early plots with lianas, leading to a non-significant trend for the plots with lianas. Try to fit a curve through the plots without lianas, but only considering the intermediate and late successional plots, the trend will probably be lost...
$R /$. We have removed this from the analysis but we need to make a clarification to the reviewer regarding the ecological succession of tropical dry forests and the presence of lianas. In general, lianas are never present in young early successional forest in the dry forest, in fact during our long term work in Mexico, Costa Rica and Brazil, we have never observed lianas in early successional stages ($<\sim 20$ years). They are present, and more dominant, in old early or intermediate stages (> ~30 years) with a reduction within late succession. So the fact that we did not use young early successional stages is (1) because they do not have lianas, (2) they are a combination of grasses, scrubs, and short trees. Thus, our original graph was correct, but given the new focus we have made the decision to drop it from the paper. In this new manuscript, we used the term early successional plots to make a reference to forest with less than 35 years of succession, while we used the term intermediate plots to make a reference of forest with more than 35 years of succession. The trend in fact exists, given the fact that no lianas are present in the young early forests.

Specific comments

1. Depending on which option the authors choose, the title of a future study should be adapted: if they chose option (1), the title should be adapted: e.g. 'the potential of VEGNET to observe canopy structure in tropical forests'.
$R /$. We agree with this comment because we are not looking the effect of liana abundance on the forest structure, we are looking how the prediction of forest structure by VEGNET-hemispherical photographs could be affected by the liana abundance, and therefore in well-known ecosystems, these biases of prediction could be considered the structural effects of liana presence. However, we have made the decision to use the suggested title.
2. Line 25: vegetation 'components', I guess you mean 'indices'?

R/. We agree, this was corrected.
3. Line 206: PAVD is estimated based on the derivative of LAI, but how is LAI estimated?
4. Line 245: ' RG is a measured that has..' something is wrong with this sentence.
$R /$. We agree, this was corrected.
5. Line 286: 'liana treatments' here and elsewhere this is confusing terminology, because a lot of readers will interpret it as if you experimentally added or removed lianas.
$R /$. We agree, this was corrected. In this version, we use the terminology of "liana abundance".
6. Table 1: units of variables are missing: $\mathrm{Cx}, \mathrm{cy}, \mathrm{RG}, \mathrm{PAI}$
$R /$. We agree, but the Table 1 was replaced by a new Table 1 .
7. Table 1: the plots are $20 \times 50 \mathrm{~m}$. I assume that the centroid coorindates Cx and Cy are in meters. Does this mean that the Cy coordinates which are close to 10 are located really at the edge of the plot? What about edge effects?

R/. We agree, but the Table 1 was replaced by a new Table 1 .
8. Fig 3, y axis, units are missing. Are these boxplots based on only 3 observations per boxplot? Probably not the best way to represent the data.

$R /$. We agree, but the Table 1 was deleted

REVIEWER \#2

General comment
The author addresses the very interesting question of the effect of liana presence on secondary forest regeneration. The use of terrestrial LiDAR is interesting and has high potential in forest structure studies. However the study takes place in an area where forest inventory data are available according to them and they don't use it. Moreover, the structure of the article needs to be improved. The study setup and the hypothesis still need to be explained more clearly. The result section is not structured enough and the discussion should be enriched by quantitative rather than qualitative comparisons. The article does currently not appear suitable for a publication in Biogeoscience and I suggest major revision.

Comments will re-address comment already made by previous referee but not well enough answered in my opinion. I grouped the major comments in 4 sections.

Major Comments

1. Site selection and succession stages: A better description of site selection is needed. What forest structure data are used in quantitative terms to distinguish different forest categories? What are their specific land use history? What remote sensing data (airplane photography, satellite optical measures) are used and at which resolution?

R: We have conducted a new land use history of the site, providing probably the first comprehensive study of forest succession for the Santa Rosa National Park. This study involved aerial photography (Scale 1:24,000) from the US Army produced in 1950 which was scanned and resampled to 80 m resolution. This provided us with the initial forest class to detect potential old growth at the park. Second we use 1979 MSS interpreted data (80 m resolution); 1986, 1997, 2000, 2005 TM data (28 m resampled to 80 m), 2010 SPOT (10 m resolution resampled to 80 m), and finally 2015 Landsat 8 data resampled as well to 80 m . For each one of these images a forest/non-forest map was produced using a supervised classification. In order to compare the different maps to the 1979 MSS data, which is a key image since the Park was created in 1971 the rest of the data was resampled to 80 m resolution.. With the 1950, 1979, 1986, 1997, 2000, 2005, 2010, and 2015 data we were able to produce Figure 1 which presents information about forest age and allows us to better define the differences between early, intermediate and late forests found within the park.

Spectral reflectance may change with liana abundance (Castro-Esau, Sánchez-Azofeifa, and Caelli 2004; Kalácska et al. 2007; Asner and Martin 2012), as well as other parameters used to distinguish forest age (canopy height, stem diameter...). As pointed out by previous referees, this might reduce the strength of your conclusions. I think it has to be discussed.

R: Indeed this is a good point and an element that we are continuing to work on in our research group since it seems that the impact of lianas is totally ignored by researchers working on the remote sensing of tropical environments (Foster et al. 2008 is one of the few examples that bring the importance of lianas into the light of correct remote sensing processes). Having said that we have made the decision not to bring the concept of remote sensing identification of lianas from trees in the discussion of our paper since it is not part of our main goals. Our work on this paper is strictly on forest structure and succession and the impact of liana abundance; adding a new dimension associated to remote sensing will be out of context.

The best option would be to select forest site based on their age. Can you approximate the ages of forest stands selected? The first mention of the forest stand age is line 395. It would be good to have this information in the Table 1.

R: This is an excellent suggestion and we appreciate the reviewer to move us in that direction. Figure 1 now presents the requested information.

Are the plots the same as in (Kalácska et al. 2004)?
R:/ No they are not. We are using a different sampling scheme. Kalacska et al. (2004) plots (9 of then) are our long term monitoring plots in Santa Rosa and where not used in this paper.

The PAI values are very low compared to Kalácska et al.'s LAI estimate, especially for late succession. I think it should be discussed because it might explain the weakness of the result concerning PAI alteration by liana presence.
$R /$. We agree and in this new version of our manuscript, we included in Table 1 a quantitative description of forest structure using two categories: early and intermediate successional stages. In addition, we include a new Figure 2 that was created by integrating interpreted aerial photographs for the ages of forest patches in our study site which were estimated and included in this version using a Figure. These ages were used to describe the successional stages for our plots.

Unfortunately, in this new version, we cannot make a direct comparison with Kalacska's plots because we increased our number of samples. However, the method implemented by Kalascska et al. is different in comparison with our method. They used LAI-2000 Plant Canopy Analyzer and we used hemispherical photographs. The trend that you described could be an effect of the method implemented which has been documented previously by other researchers that suggest that hemispherical photographs tend to underestimate LAI when compared with other techniques.
2. Description of liana presence, explanation of its quantification.

How where selected stands with and without lianas?
$R /$. please refer to our new section 2 which provides detail information about out sample selection.

Citations made are not enough in my opinion, you should mention in the method what has been measured. Is it a number of lianas bigger than 5 cm dbh? What about the basal area of lianas and the crown occupancy index (G. M. F. van der Heijden et al. 2010)? What is a stand with liana? I guess it means a liana presence above certain threshold (1per stand?). liana presence measures of each stand could be added to the Table 1.

The signification of liana densities should also be discussed? They seems to be quite variable, is it relevant to consider in the same category a stand with more than 30 lianas (or whatever is the measure) and another one with 11 (or even less I suppose if you wrote the result in the form mean \pm standard error).
$R /$ We agree, a better explanation about the liana abundance was included in methods under the description of plots. We hope that our new section 2, which has been significantly expanded covers your concerns.
3. Relation between measures issued from terrestrial LiDAR point cloud and ecologically relevant features

Structural features issued from forest inventory data should be related more rigorously to terrestrial LiDAR measurement (RG and PAI). You mention line 243 "we used RG to relate the shape of the PAVD profile to forest biomass". I don't see any relation between RG and biomass in the article. I think it would be a great thing to do so, you should at least explain briefly Muss et al's results (2013). If RG is related to biomass, can you evaluate biomass from RG? Several articles hypothesize a reduction of biomass accumulation due to liana presence. Why not testing this hypothesis and showing the ability of terrestrial LiDAR in doing so? Tree $>5 \mathrm{~cm}$ are
measured since 2003 you should also find some trends tree growth which could differ according to liana presence or not. Finally quantifying biomass or basal area would allow a better interpretation of PAI increase. PAI in stands with a lot of liana is supposed to be mainly due to branches while contribution of trunks and Branches is expected to be higher in stands with no lianas.
The comparison of the relation $\mathrm{PAI}=\mathrm{f}(\mathrm{RG})$ between liana-infested and free of liana patches should be explained more clearly. Hypothesis about PAI evolution in forest stands with liana should also be explained more clearly.
The discussion on the different component of the PAI (wood vs leaves) is interesting and should be more precise. The use of biomass estimation in the different stand as well as carbon turnover would probably feed interestingly the discussion.
$R /$. We agree, but in this version, we change dramatically this perspective of association of VEGNET and biomass. Currently, our central focus is the relation of VEGNET - hemispherical photographs with forest structure, and the effect of the presence of liana abundance on this relationship. Notice that we use the term liana abundance which we think is a term that covers more our main goals.
4. Forest dynamic

Line 173 You mention the quantification of litterfall. There is no more mention of litterfall in the article! it would be interesting to use litterfall data and forest inventory data to have a proxy of carbon turnover/residence time (Chave et al. 2010). Carbon residence time is expected to be lower in liana presence (van der Heijden et al. 2013; Tymen et al. 2016). Moreover it may be interesting to discuss the relative contribution of leaves and woody parts to the PAI in the different forest stands.
$R /$. We agree; we correct that in this version. In this version, we do not include information about litterfall, and do not discuss the relative contribution of leaves and woody parts to the PAI in different forest stands as this could be very far from our goals; therefore this was not discussed.

Minor comments

Abstract

Line 15 the potential consequences of liana presence on forest dynamic is not completely unknown see at least Tymen et al. (2016).
$R /$. Fully agree and even more in tropical dry forests where studies on liana abundance and their impact on forests dynamics are close to none. In fact, it seems that our paper helps to confirm the same argument presented by Tymen at al. (2016) but for dry forests using a totally different methodological approach.

Introduction
Line 114 Why making the hypothesis that increase in structural complexity would indicate no effect of lianas? A comparison between forest stands with and without liana should be enough to show a relation between liana and forest development.
$R /$. We thank the reviewer for his/her suggestion. This is not the goal of the paper as indicated by the following: "As such in this paper we first, we assess the potential of VEGNET and HPs to detect the vertical structure of forest stands at different successional stages. Second, we examine how liana abundance could affect the bias of prediction of VEGNET and HPs to detect the level of succession of a given forest stand. Therefore, in well-known ecosystems such as the tropical dry forest of Costa Rica, this bias of prediction could be considered as the effect of liana presence on forest structure." We hope that the goals of the paper are better defined now.

Line $155-159$ Forest structure description is not really clear for me.
$R /$. We agree, a better description of the measures of forest structure was included under the section of "Forest structure".

Methods

Line195 Is the ground really flat? If topography is known, it would be a good thing to add elevation lines to the Fig.1. A better option would be to compute the canopy height as a distance to a terrain model (i.e adding to the current calculation the point of measurement height from the ground situated vertically to the focal point).
$R /$. We have been tried to select all our plots on flat sites, but we fail to see how this can contribute to the outcome of our paper. Although, we appreciate very much the suggestion from the reviewer we have not implemented it.

Line 245-249 I don't' really get this paragraph.
$R /$. We have significantly changed that section thus the paragraph is no longer present.

Results

Line 287: I wouldn't say five treatments since there is no experimental manipulation in your study.
$R /$. We agree, this was corrected.
Line 291 I disagree with the interpretation of high PAVD as a zone of high biomass. In old growth forest typically, most of the biomass is situated in tree trunk while PAVD is highly driven by leaf repartition and maximal PAVD will thus be at the crown level.
$R /$. We agree, but the results were rewritten.
Line 300 When you say PAVD was higher do you mean sum of the PAVD (which is PAI if I well understood)? This result should be shown in Table 1.
$R /$. We agree, but the results were rewritten.

Line 304-307 Reformulate sentence. What are PAI treatments? Consider moving this part at the beginning of the result section where PAI along forest succession is described. In my opinion, comparison of PAI values between liana and non liana stands should be clearly exposed at the beginning of the result section. It be interesting to discuss this point in comparison it to biomass accumulation (as well as carbon turnover) differences?
$R /$. We agree, but the results were rewritten.
Line 317 Liana density unit?
$R /$. We agree, but the results were rewritten.

Discussion

Line 359 Are you able to detect horizontal variations in canopy structure such as canopy height irregularity you mention. They could explain the blurry signal you get.

R/. No, with the VEGNET we cannot detect horizontal variations. We have been conducting work in the same plots with a different TLS (Leica C10) and we are observing those variations but mostly because of the nature of the 3D cloud obtained by the Leica C10.

Line 364 The increase of basal area, vegetation material and biomass accumulation could be shown and quantified thanks to forest inventory data.
$R /$. This is correct and it is observed on our new plots.
Line 378 You could also cite Foster, Townsend, and Zganjar (2008) and Tymen et al. (2016).
R:/ Thanks for the suggestions, we have include them in the references.
Line 386 A reference would be welcome
$R /$ We have added a new one.

Line 390 Putz (1984) can also be an interesting reference

$R /$. Indeed, very good point.

Line 390-392 You showed in the result that decrease in liana density was not significant. You should discuss this point. Pinard, Putz, and Licona (1999) could be interesting to read for the discussion.
$R /$. We agree but since our data and objectives (driven by Reviewer No. 1 comments) significantly changed, our new results no longer cover this section.

REFERENCES

Hurlbert, S. H. 1984. Pseudoreplication and the Design of Ecological Field Experiments. Ecological Monographs. 54:187-211.

9 Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

[^0]Can Terrestrial Laser Scanner (TLS) and hemispherical photographs predict Tropical

Dry Forest Succession with liana abundance?
G. Arturo Sánchez-Azofeifa ${ }^{\mathrm{a}^{*}}$, Mauricio Vega-Araya ${ }^{\text {b }}$, J. Antonio Guzmáná, Carlos Campos-Vargas ${ }^{\text {a }}$, Sandra M. Durán ${ }_{e}^{\text {a }}$ Nikhil D'Souza ${ }^{\text {a }}$, Thomas Gianoliia, Carlos Portillo-Quintero ${ }^{\text {c }}$, Iain Sharp ${ }^{\text {a }}$ \qquad
${ }^{a}$ Center for Earth Observation Sciences (CEOS), Department of Earth and Atmospheric
${ }^{\text {b }}$ Laboratorio de Teledetección de Ecosistemas (LabTEc), INISEFOR-Universidad Nacional
de Costa Rica, Heredia, Costa Rica, Central America
${ }^{c}$ Department of Natural Resources Management, Texas Tech University, Lubbock, Texas,

Arturo Sanchez 2016-11-2 10:28 AM
Style Definition

...[1]

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: Structural effects of liana presence in secondary tropical dry forests using ground LiDAR.

Abstract
Tropical Dry Forests (TDFs) are ecosystems with long drought periods, a mean temperature of $25^{\circ} \mathrm{C}$, a mean annual precipitation that ranges from 900 to 2000 mm , and that possess a $\underline{\text { high abundance of deciduous species (trees and lianas). What remains of the original extent }}$ of TDFs in the Americas remains highly fragmented and at different levels of ecological succession. It is estimated that one of the main fingerprints left by global environmental and climate change in tropical environments is an increase in liana coverage. Lianas are nonstructural elements of the forest canopy that eventually kill their host trees. In this paper we evaluate the use of a Terrestrial Laser Scanner (TLS) in combination with hemispherical photographs (HPs) to characterize changes in forest structure as a function of ecological succession and liana abundance. We deployed a TLS and HP system in 28 plots throughout secondary forests of different ages and with different levels of liana abundance. Using a canonical correspondence analysis, we addressed how the VEGNET and HPs could predict

TDF structure. Likewise, using univariate analysis of correlations we show how the liana abundance could affect the prediction of the forest structure. Our results suggest that TLS and HPs can predict differences in the forest structure at different successional stages, but that these differences disappear as liana abundance increases. Therefore, in well-known ecosystems such as the tropical dry forest of Costa Rica, these biases of prediction could be considered as structural effects of liana presence. This research contributes to the understanding of the potential effects of lianas in secondary dry forests and highlights the role of TLS combined with HPs to monitor structural changes in secondary TDFs.

Arturo Sanchez 2016-11-2 10:28 AM

Deleted: Lianas, woody vines, are a key component of tropical forest because they may reduce carbon storage potential. Lianas are increasing in density and biomass in tropical forests, but it is unknown what the potential consequences of these increases are for forest dynamics. Lianas may proliferate in disturbed areas, such as regenerating forests, but little is known about the role of lianas in secondary succession. In this study, we evaluated the potential of ground LiDAR to detect differences in the vertical structure of stands of different ages with and without lianas in a tropical dry forest. Specifically, we used a terrestrial laser scanner called VEGNET to assess whether liana presence influences the vertical signature of stands of different ages, and whether successional trajectories as detected by the VEGNET could be altered by liana presence. We deployed the VEGNET ground LiDAR system in 15 secondary forests of different ages early (21 years old since land abandonment), intermediate ($32-35$ years old) and late stages (>80 years old) with and without lianas. We compared laser-derived vegetation components such as Plant Area Index (PAI), plant area volume density (PAVD), and the radius of gyration (RG) across forest stands between liana and no-liana treatments. In general forest stands without lianas show a clearer distinction of vertical strata and the canopy height. A significant increase of PAI was found from intermediate to late stages in stands without lianas, but in stands where lianas were present there was not a significant trend. This suggests that lianas may be influencing successional trajectories in secondary forests from a structural point of view, and these effects can be captured by terrestrial laser scanners such as the VEGNET. This research contributes to estimate the potential effects of lianas in secondary dry forests and highlight the role of ground LiDAR to monitor structural changes in tropical dry forests due to liana presence. [4]

1 Introduction

Lianas, woody vines, are a key structural component of tropical forests; they account for $25-40 \%$ of the woody stems and more than 25% of the woody species (Schnitzer and Bongers, 2011). Lianas are structural parasites that use trees to ascend to the forest canopies, and as such can be detrimental to host trees by competing with them for above- and belowground resources (Chen et al., 2008), reducing tree growth rates, and increasing tree mortality (van der Heijden et al., 2013). Thus, lianas are able to reduce carbon storage and uptake in old-growth tropical forests (Durán and Gianoli, 2013; van der Heijden et al., 2015). \qquad
Lianas have been defined as hyper-dynamic elements of the canopy structure (Sanchez-Azofeifa and Castro, 2006). In the last two decades lianas have increased in density and biomass in old-growth forests (Phillips et al., 2002; Schnitzer and Bongers, 2011), and this increment is considered to be one of the major structural changes in tropical forests (Phillips and Lewis, 2014), because it can have potential negative effects on carbon stocks. Liana dynamics in secondary forests, however, are not yet understood despite the fact that secondary forests are becoming increasingly dominant in tropical regions, and currently occupy more area than old-growth forests (Durán and Sánchez-Azofeifa, 2015; Wright, 2005).

Lianas are considered light-loving plants, because they tend to respond positively to disturbance and show high density in areas of secondary forest succession (Paul and Yavitt, 2011). Secondary forests may promote liana abundance because they provide both high light availability and an abundance of trellises (Schnitzer and Bongers, 2002). In treefall gaps, lianas can form dense tangles and reduce the amount of light reaching the forest understory

Arturo Sanchez 2016-11-2 10:28 AM
Deleted:

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: ,

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: In the context of remote sensing, lianas
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Indent: First line: 0.49"

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: becomingly

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (CAN)

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: abundant
Arturo Sanchez 2016-11-2 10:28 AM Deleted: 22
(Paul and Yavitt, 2011; Schnitzer et al., 2000). These liana tangles can persist for long periods (up to 13 years) and alter the successional pathway to one(?) stalled by liana abundance by inhibiting the regeneration, growth, and density of late successional species (Schnitzer et al., 2000).

As of today, it is still unknown whether lianas can alter successional trajectories in secondary forests resulting from anthropogenic disturbance (Durán and Sánchez-Azofeifa, 2015). Two studies in secondary wet forests have found an increment in liana density in the first 20 years of regeneration (age since land abandonment), with a subsequent decline (DeWalt et al., 2000; Letcher and Chazdon, 2009). This decline of lianas in wet forests appears to be related with reductions in light availability due to greater tree and shrub biomass at later stages of succession (Letcher and Chazdon, 2009). Nonetheless, it remains unclear whether this pattern holds true with more open forest types, and whether other factors such as structure, canopy openness, plant density and the volume of forest stands can also influence successional trajectories of lianas (Durán and Sánchez-Azofeifa, 2015; Sánchez et al., 2009).

Assessments of forest structure in different stands are often constrained by accessibility, and the cost of personnel and equipment. Remote sensing offers an efficient alternative to detect changes in vegetation and examine how lianas may change across stands with different structures. Nonetheless, few studies have assessed the potential of remote sensing (space-borne or airborne) to detect the presence of lianas in tropical forests with the objective of providing tools to map their extent from local to landscape level, and measure their ecological footprint (Foster et al., 2008). Sanchez-Azofeifa et al. (2009) used hemispherical photography over a succession of tropical dry forests and found that lianas
\qquad

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: liana
Arturo Sanchez 2016-11-2 10:28 AM Deleted: 22
contributed substantially to forest-level Wood Area Index (WAI). Other studies found differences between the biochemical, structural and hyperspectral properties of lianas and trees in tropical dry forests (Castro-Esau et al., 2004; Sanchez-Azofeifa et al., 2009). These studies emphasized the potential of using remote sensing to map liana abundance at regional scales. However, given the important effect of lianas on the biomass distribution within tropical forests (Schnitzer and Bongers, 2011), remote sensing tools capable of measuring the vertical distribution of biomass within tropical forests are probably more adequate for detecting the presence and variation of liana density across forest stands.

Terrestrial Laser Scanners (TLS) have demonstrated their capability to measure canopy properties such as height and cover (Ramirez et al., 2013) and tree architecture (Lefsky et al., 2008), (Dassot et al., 2011; Richardson et al., 2014). In the last decade, there has been a rapid development in portable TLS $_{\text {r }}$ (Dassot et al., 2011; Richardson et al., 2014). When laser pulses emitted in the visible or near-infrared come into contact with an object, part of that energy is reflected back toward the instrument which triggers the recording of its distance and intensity (Beland et al., 2014). TLS systems typically employ vertical and horizontal scanning around a fixed point of observation, providing a hemispherical representation of biomass distribution in the forest -leaves, branches and trunks- which allows for the exploration of foliage angle distributions and clumping (Clawges et al., 2007; Jupp et al., 2009; Strahler et al., 2008)

Until today, there has been no concrete evidence about how liana abundance can ${ }^{4}$ affect the prediction of the forest structure by TLS or HPs (HPs). Because of this, the objective of this study was to evaluate the feasibility of a TLS named VEGNET in combination with HPs to assess changes in forest structure in secondary TDFs with different
levels of lianas abundance. The VEGNET is a TLS that automatically scans a forest plot producing a vertical foliage density profile. Given its automated mode of operation and semi-permanent installation, the VEGNET instrument is described as an in situ Monitoring LiDAR (IML) (Culvernor et al., 2014; Portillo-Quintero et al., 2014).

As such, in this paper we first assess the potential of VEGNET and HPs to detect the vertical structure of forest stands at different successional stages. Second, we examine how liana abundance could affect the bias of prediction of VEGNET and HPs to detect the level of succession of a given forest stand. Therefore, in well-known ecosystems such as the tropical dry forest of Costa Rica, this bias of prediction could be considered as the effect of liana presence on forest structure.
2. Methods

2.1 Study Area

The study area is located in the Santa Rosa National Park Environmental Monitoring Super
Site (SRNP-EMSS), which is a part of the Guanacaste Conservation Area in Costa Rica
$\left(10^{\circ} 48^{\prime \prime} \mathrm{N}, 85^{\circ} 36^{\prime \prime} \mathrm{W}\right)$ (Figure 1). This site covers an area of $50,000 \mathrm{ha}$ receives 1720 mm of annual rainfall, has a mean annual temperature of $25^{\circ} \mathrm{C}$ and a 6-month dry season
(Dec-May)
(Kalácska et al.,2004). The SRNP-EMSS site has suffered intense deforestation in the past
200 years due to the expansion of pasturelands (Calvo-Alvarado et al., 2009). Original land management practices in the park included pasture rotation between different large corrals surrounded by life fences that can still be identified today. More recently (early 1970's) with
the creation of Santa Rosa National Park, a process of secondary regeneration has become

Arturo Sanchez 2016-11-2 10:28 AM Deleted: Lidar
Arturo Sanchez 2016-11-2 10:28 AM

Deleted:

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: The objective of this study was to assess changes in forest stands in secondary dry forests with and without the presence of lianas. To this end, we used the VEGNET instrument to assess changes in the vertical vegetation profile across stands of different ages with and without lianas. First, we assess the potential of the VEGNET to detect differences in the vertical structure of forest stands of different ages. Second, we examine whether the differences in vertical structure are influenced by liana presence. Third, we explore whether successional trajectories as captured by VEGNET could be altered by liana presence. Significant increases in structural complexity with stand age (e.g., as a result of increases in basal area, height and volume with stand age) would indicate that lianas are not influencing successional trajectories, while no significant increases or no change in vertical structure would suggest that lianas may be altering successional pathway ... [5] Arturo Sanchez 2016-11-2 10:28 AM Deleted:

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: and

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -
Arturo Sanchez 2016-11-2 10:28 AM Deleted:

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: lands since the
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 1600s.
Arturo Sanchez 2016-11-2 10:28 AM Deleted: 22
the dominant land cover change force in the region. Today and after the creation of SRNP ${ }_{p}$ the uplands of the park are a mosaic of secondary forest in various stages of regeneration and with different land use histories related to anthropogenic fires, intense deforestation, and clearing for pasture lands (Kalácska et al., 2004; Arroyo-Mora et al., 2005a, Sen et al, 2015).
-
2.2 Definition of forest cover and plot age.

A map of forest cover and forest cover ages was generated using aerial photographs collected by the US Army in 1956 (Scale 1:24,000), a Multispectral Scanner (MSS) image from 1979 (80 m spatial resolution); 4 Landsat Thematic Mapper [TM] images from 1986, 1997, 2000 and 2005 (28.5 m spatial resolution); one Spot Multispectral image from 2010 (20 m spatial resolution); and a Landsat 8 image from 2015. All images had less than 10% cloud cover.

The 1986 image was georeferenced to $1: 50,000$ topographic maps from the Costa Rica National Geographic Institute with a Root Mean Square Error (RSME) of 0.5 pixels or 14.25 \underline{m}. We defined this as our master image in order to georeference all of the other images, as such all other images were then geo-referenced to the 1986 image seeking a RMSE close to 0.5 pixels between the master and the target image. All images where then classified using a supervised classification. Image accuracy, was conducted for the 1997, 2000, 2005 and 2010 satellite images as part of independent validation efforts conducted by the Costa Rica's National Forest Financing Fund (FONAFIFO). Overall accuracy for the forest/non-forest images was 90%. Further information on image processing can be found in Sanchez-

Azofeifa et al. (2001).

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -EMSS

Arturo Sanchez 2016-11-2 10:28 AM

Deleted: 2005

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: \rightarrow Forest inventories have been conducted in the study area since 2003 to evaluate the influence of previous land use on woody species structure and composition on standardized plots of $50 \times 20 \mathrm{~m}$ (0.1 ha) (Arroyo-Mora et al., 2005; Kalácska et al. 2004; Kalácska et al., 2005). Site selection in the study area was conducted using a combination of forest structure data (e.g., number of vertical strata), land use history, and remote sensing data (e.g., reflectance signatures of forest stands with known age). To avoid spatial autocorrelation of plot location, the Ripley's K function was used to verify that the plots were randomly distributed rather than clustered or dispersed (Freeman and Ford, 2002). Previous analysis indicated that the selected plots have a random spatial distribution at scales between 0 and 5000 m (Kalácska et al. 2004), as such we consider our samples statistically independent. ... [6]

Arturo Sanchez 2016-11-2 10:28 AM

Formatted: English (CAN), Pattern: Clear

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 22

Final quality controlled forest cover maps (forest non-forest) for 1956, 1979, 1986, 1997, 2000, 2005, 2010 and 2015 were cross referenced to produce a tropical dry forest age map. Specifically, forest coverage with 60 years old correspond to woodlands which were being observed in images since 1956; forests that were 40 years old were not detected in 1956 but have been recognizing as forests since 1979; on the other hand, woodlands that were referred to as being 10 years old have a minimum of 10 years as a discriminable forest coverage. Based on Arroyo-Mora et al (2005) and Kalascka et. al's (2005) studies the following successional classification was developed: Ages 10 to 40 years (Early), and ages 40 to 60 (Intermediate). Figure 1 presents the final land cover and forest age map for our study area. Figure 1 presents the final land cover and forest age map for our study area.

2.3 Plots selection and description

Based on Figure 1, twenty-eight randomly stratified 0.1 ha plots were selected. The number of plots chosen for each forest successional stage was based upon each stages total forest cover area. Plot sizes of 0.1 ha follows convention used in tropical forest studies at this site (Kalascka et al. 2005). Fieldwork conducted in July 2016 was conducted in order to characterize diameter at breast height (DBH), tree height, total biomass, VEGNET observations (canopy vertical profiles) and hemispherical photos (Canopy openness and Leaf Area Index).

The characterization of successional stages was performed following previous approaches
for seasonally dry forests of Costa Rica (Arroyo-Mora et al., 2005b; Kalácska et al., 2005) and adjusted according to the estimated forest ages (Figure 1). These approaches categorized the secondary regeneration in different successional stages such as early and intermediate successional stages (E and I, respectively) (Arroyo-Mora et al., 2005a). The E stage is a

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
Color(RGB(0,0,10)), Not Expanded by /
Condensed by
:---
Deleted: 2005
Arturo Sanchez 2016-11-2 10:28 AM
Formatte: Font color: Custom Color(RGB(0,0,10)), Not Expanded by / Cordensed by
Arturo Sanchez 2016-11-2 10:28 AM Formatted: Font color: Custom Color(RGB(0,0,10)), Not Expanded by / Condensed by
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 2005).
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
Color(RGB(0,0,10)), Not Expanded by /
Condensed by
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: succession,
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: succession, and late sucession or old growth Arturo Sanchez 2016-11-2 10:28 AM Deleted: 2005 Arturo Sanchez 2016-11-2 10:28 AM Deleted: early successional Arturo Sanchez 2016-11-2 10:28 AM Formatted: Font:Italic Arturo Sanchez 2016-11-2 10:28 AM Deleted: 22

forest area with patches of sparse woody vegetation composed of shrubs, small trees ${ }_{2}$ and saplings, with a thick herbaceous understory, and with a single stratum of tree crowns with a maximum height of less than 10 m (Castillo et al., 2012). Some of the common species that are characteristic of this early stage of succession includes Genipa americana, Cochlospermum vitifolium, Gliricidia sepium, Randia monantha (Hilje et al., 2015; Kalácska et al., 2004). In contrast the J stage has two vegetation strata composed of deciduous species of woody plants. The first strata is comprised of fast-growing deciduous tree species that reach a maximum height of $10-15 \mathrm{~m}$ (e.g., Cydista aequinoctialis) and the second stratum is represented by lianas and vines, adults of shade-tolerant and slow-growing evergreen species as well as the juveniles of many species such as Annona reticulata, Ocotea veraguensis, and Hirtella racemosa (Arroyo-Mora et al., 2005a; Kalácska et al., 2004). No lianas were present in the early successional stage plots. Lianas in early forests tend to be present more later in the succession, specifically in the transition from early to intermediate stages. We did not select "late forests" since they tend to reflect the characteristics of tropical moist forests with significant structural characteristics very different from true late tropical dry forests sites (Tosi, personal communication). . . On the other hand, the characterization of the plots according to the liana abundance was based on the structure of plants that compose the tropical dry forest of SRNP-EMSS. In this way, we classified the 28 plots according to the relative abundance of stems of lianas, where plots with a relative abundance greater than 0.1 were categorized as plots having high liana abundance (HL), while plots with a relative abundance lower than 0.1 were categorized as having a low liana abundance (LL). Although this classification seems to be indeterministic, this kind of classification represents an important ecological component which

Arturo Sanchez 2016-11-2 10:28 AM

Deleted: regeneration
 Arturo Sanchez 2016-11-2 10:28 AM

Deleted: The intermediate successional stage, in Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (CAN), Pattern: Clear Arturo Sanchez 2016-11-2 10:28 AM

Deleted: to

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (CAN), Pattern: Clear
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: early one,
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: one comprises
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:). The
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: and
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 2005; Kalácska et al., 2004). The late successional stage is characterized by three layers of vegetation: the upper layer consists of trees
$15-30 \mathrm{~m}$ height; the second layer is composed of juveniles of all ages and heights, and the understory species; the third layer is represented by a dense canopy composed by deciduous and evergreen species, with the latter ones accounting for $50-90$ percent of the canopy composition (Arroyo-Mora et al., 2005
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (CAN), Pattern: Clear Arturo Sanchez 2016-11-2 10:28 AM
Deleted: \rightarrow The spectral reflectance of the three successional stages show differences based on plant structure and composition. The reflectance in the early stage is the result of pasture remnants with shrubs and high canopy openness, in the
intermediate stage the reflectance is the result of green leafy canopy, woody leafless material, and some crown shadows, and in the late successional state the reflectance reaches saturation, thus it is the result of a combination of the mixed reflectance of shadows with the canopy leaves and branches (Arroyo-Mora et al., 2005; Castillo et al., 2012; Kalácska et al., 2005; Sanchez-Azofeifa et al., 2009) \ldots To compare the vegetation structure in plots with and without lianas, we relied on thre data sets collected in the field from previous studies: (i) long-term inventory of all woody plants (e.g., shrubs, lianas and trees) $\geq 5 \mathrm{~cm}$ in diameter at breast height (DBH) (Hilje et al., 2015; Kalácska et al. 2004; (ii) quantification of liana presence in the study plots using hemispherical photographs taken in the dry season and field observations (SanchezAzofeifa et al., 2009); (iii) quantification of 1 ... [7]
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 22
is very difficult to study as a continuum due to its spatial and temporal variation, and its categorization can help to improve the understanding of ecological processes as many other ecological categories.

At the end of this characterization, we used $11 E$ plots and $17 I$ plots, with 12 of those plots being LL and the other 16 plots being HL. Altogether, ours plots for the study consisted of 5 E-LL plots, $6 E$-HL plots, $7 I$-LL plots, and $10 I$-HL plots. In each of these plots we extracted the available information that described the complexity of the dry forest according to its structure, but at the same time deployed the ground LiDAR and hemispherical photograph measurements to predict and describe that complexity. Information about the parameters used and estimated according to the forest structure, ground LiDAR, and hemispherical photographs is described below.

2.4 Forest structure

Four parameters that characterize the forest structure were used in this study. These parameters were selected because these are easily obtained in any forest inventory, which could help in the applicability of this study in other regions. Specifically, we selected the stem density (stems/ha) as a parameter to describe the number of individuals per plot, the mean diameter at breast height $(1.3 \mathrm{~m})\left(\mathrm{DBH}_{\text {mean }}, \mathrm{cm}\right)$ as a parameter that can describe the mean size of the individuals, the total basal area $\left(\mathrm{TBA}, \mathrm{m}^{2}\right)$ as a parameter that can describe the biomass of each plot, and the ratio of liana basal area to TBA (L/TBA) as a parameter that can describe the contribution of lianas biomass to the total biomass of each plot. Each of these parameters was extracted from DBH measurements for lianas ($>2.5 \mathrm{~cm}$) and trees $(>5 \mathrm{~cm})$.
2.5 Ground LiDAR measurements

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font:Not Bold
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Left, Tabs: 0.25", Left
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Indent: First line: $0^{\prime \prime}$
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
\ldots... [8]
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: . The ... in which a laser beam is ... [9]

Arturo Sanchez 2016-11-2 10:28 AM	
Moved down [1]: 2014):	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted:	
Arturo Sanchez 2016-11-2 10:28 AM	
Moved down [2]:	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted: English (US)	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: $(z)=\delta($ LAI $z) / ~$	

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (US)
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: compared against height in order to construct a graph showing the vertical distribution of plant area (Figure 2). Tests
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: dependant of
Arturo Sanchez 2016-11-2 10:28 AM
Formatted [13]

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: in
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
Color(RGB($0,0,10)$)
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: study range from 0.04 ha (early succession) to 0.2 ha (late succession) approximately
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
Color(RGB($0,0,10)$)
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 22
laser distance measurement (d) assuming that the terrain is flat as describe Culvenor et al. (2014).

On the other hand, canopy "hits" and "gaps" were recorded to enable the calculation of angular gap fraction or gap probability ($P_{\text {gap }}$) at each h where a leaf, trunk or branch was hit by the laser (Lovell et al., 2003). $P_{\text {gap }}$ at a given h is the ratio of the number of valid returns below $z\left(\# z_{i}<h\right)$ to the total number of laser shots (N) (Culvenor et al., 2014):

$$
\begin{equation*}
\underline{P}_{\operatorname{gap}(z)}=\left[\# z_{\underline{i}}<h\right] / N \tag{1}
\end{equation*}
$$

Consequently, the estimation of cumulative plant area index (PAI) by the conversion of $\underline{P}_{\operatorname{gap}(z)}$ was performed using the following the equation (Culvenor et al., 2014):

$$
\begin{equation*}
\underline{\operatorname{PAI}}_{(\underline{z})}=-1.1 \times \ln \left(P_{\operatorname{gap}(z)}\right) \tag{2}
\end{equation*}
$$

From this calculation, the density of vegetation components at any level of z was computed as the derivative of PAI with respect to h. This calculation is commonly referred to as the plant area volume density (PAVD) (Culvenor et al., 201) described by:

Arturo Sanchez 2016-11-2 10:28 AM

Deleted: 22

These calculations were extracted using the "VEGNET Data Display and Export Version 2.5" software developed by Environmental Sensing Systems Inc (Melbourne, Australia).

Likewise, from the LiDAR measurements we also used shape metrics such as the centroid (C) and radius of gyration (RG) to understand how the vertical profile of the forest could change according to successional stages and liana abundance. The RG and the ${ }_{\wedge} C$ are metrics that are mainly used in LiDAR waveforms to describe the motion of objects and the manner in which material is distributed around an axis (Muss et al., 2013). We used a similar approach by calculating the C_{2} and the RG for the PAVD vertical profile of each plot. Specifically, C_{\star} represents the geometric center of a two-dimensional $(x$ and $y)$ region (e.g., the arithmetic mean position) of all the points (n) in the shape of the PAVD profile, while RG is the root mean square of the sum of the distances for all points on the PAVD vertical profile which is described as:

πn

This parameter can be visualized as the relationship between the total length of the PAVD vertical profile and its shape and position, which are determined using the sum of x or y coordinates divided by the total length of the profile (Muss et al., 2013). In general, the RG captures the manner in which the PAVD profile is distributed around the centroid, making it a better descriptor of the vertical profile shape than just the centroid itself, and thus, more suitable for relating VEGNET measurements to forest structure (Muss et al., 2013; Culvenor et al., 2014). Therefore, we used the RG to relate the shape of the PAVD profile to forest biomass at the footprint level For a more detailed explanation on the
functioning of the VEGNET in the field please refer to Portillo-Quintero et al. (2014) as

Formatted	... [15]
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [14]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: vegetation changes across	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: presence	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: centroid	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [16]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: with	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted[17]
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted	... [18]
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [19]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: centroid	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [20]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: The centroid then	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted	…[21]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: The	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [22]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: that	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted	... [23]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: are from its centroid:	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [24]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: $\sqrt{\frac{\Sigma\left(x_{i}-c_{x}\right)^{2}+\sum\left(v_{i}-c_{y}\right)^{2}}{n}}$	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: The centroid ($\mathrm{C} x, \mathrm{Cy}$)	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [25]
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted	...[26]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: The	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [27]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: ($3600 \mathrm{~m}^{2}$ or 0.36 ha).[28]
Arturo Sanchez 2016-11-2 10:28 AM	
ed: 22	

well as Culvenor et al. (2014). A single successful scan was performed during the wet season using the VEGNET instrument at each site on clear nights,

2.6 Hemispherical photographs

Hemispherical photographs (HPs) were taken during the early morning in the middle of each plot, using a digital camera (E4500, Nikon, Tokio, Japan) equipped with a fisheye lens of 35 mm focal length. The camera was leveled at 1.50 m by a tripod and orientated towards magnetic north, in order to ensure photographic standardization.. The resulting pictures were analyzed using the software Gap Light Analyzer version 2.0.4 (Frazer et al., 1999). This analysis was performed by creating 340 sky sectors (36 azimuth classes and 9 elevation angle classes) with a time series of 2 min along the solar track. The leaf area index (LAI) and the canopy openness were subsequently extracted by this analysis; however, the LAI was extracted using the " 4 ring" which is a more accurate depiction of the site than using " 5 rings" because the latter takes into account trees that are not immediately surrounding the site, and which are found outside of the plot footprint.

2.7 Statistical analysis

This study compared the effect of the successional stages, the abundance of lianas, and their interaction on the parameters of forest structure as well as VEGNET-HPs parameters using a multivariate analysis of variance (MANOVA), in order to demonstrate that this study had been conducted in contrasting environments. For each MANOVA we extracted the univariate analysis of variance (ANOVA) to describe the multivariate effects of each parameter. To show the potential of the VEGNET and HPs to predict variations in the

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (US)
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: between March $29^{\text {th }}$ and April $10^{\text {th }}$,
2014
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (CAN)
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 3.3.Data analysis .
... [29]
structure of the dry forest, we applied a canonical correlation analysis (CCA) using the VEGNET-HPs parameters as independent variables and the features of the forest stand as dependent variables. Due to the CCAs sensitivity to the collinearity among variables (Quinn and Keought, 2002), we only used RG, PAI, PAVD mean $_{2} H_{\underline{m a x}^{2}}$ LAI, and canopy openness as independent parameters. Specifically, the CCA was used to extract the canonical correlation between VEGNET-HPs and forest structure (eigenvalues), the correlation between the canonical variates and each matrix (eigenvectors), and the scores that describe the multidimensional variation of each plot according to its correlation. To extract the statistical significance of the canonical correlation coefficients, we computed an asymptotic test on the first canonical dimensions to extract the F-approximations of Wilks' Lambda along with its significance. This statistical significance was subsequently validated using a permutation test on each dimension by 10000 iterations.

After describing the potential of the VEGNET-HPs parameters to predict variations in the structure of the dry forest, we were interested in demonstrating how the relative abundance of lianas could affect the bias of prediction extracted from these sensors. In ecological terms, it is a perceived expectation that during successional transitions increases in basal area, height and vertical strata of the vegetation should be observed; consequently, these transitions could be translated into increases in VEGNET-HPs parameters (except canopy openness which is inverse). However, from hypothesis derived from previous studies, it is possible that the abundance of lianas may actually arrest the forest succession and reduce the biomass accumulation of woody vegetation (Paul and Yavitt 2011; Schnitzer et al., 2000). If the above is true, correlations between descriptors of forest structure and parameters extracted from VEGNET and HPs could be diffuse or stochastic in the dry forest,
and their application under the presence of lianas could prove ineffective. Under this reasoning, we compare the parametric correlations of four parameters according to the successional stages and the liana abundance, separately. The four parameters selected were those with the two highest eigenvalues for the VEGNET-HPs matrix and the two parameters with the highest eigenvalue for forest structure, determined by the first two canonical dimensions described by the CCA. This comparison was conducted using an ordinary resampling method to replicate the correlation 5000 times, in which the resampled values were used to build density plots to describe the bias of prediction according to its overlap.

The previous analyses were conducted in R software version 3.3.1 (R Development Core Team, 2016) using the "CCA" package (González and Déjean, 2015) to extract the canonical correlations, the "CCP" package (Menzel, 2009) to extract the significance of the CCA and its permutation, and the "boot" package (Canty and Ripley, 2016) to extract the resampled values. When the normality of the data was not reached, each parameter was previously transformed using the Box-Cox transformation for the analysis.

3 Results

3.1 Forest structure

According to the MANOVA the forest structure of the plots differed between successional
 $0.58 ; p<0.05$), but without interaction between these categories (Wilk's Lambda $(4,21)=$ $0.76 ; p=0.20)\left(\right.$ Table 1). This analysis suggests that the $\mathrm{DBH}_{\text {mean }}$ and TBA were the only parameters affected by the interaction between successional stages and liana abundance, where E successional plots with LL and I plots with HL showed lower values of $\mathrm{DBH}_{\text {mean }}$
and TBA than E and I plots with HL and LL, respectively. In terms of the effect of the liana abundance, the univariate analysis suggests that plots with LL showed lower values of L/TBA in comparison with HL plots.

3.2 VEGNET-Hemispherical Photographs (HPs)

The multivariate comparisons of the VEGNET-HPs parameters showed that the sensor ${\text { estimations did not differ between successional stages (Wilk's } \operatorname{Lambda}_{(8,17)}=0.58 ; p=}=$ $\underline{0.21}$), liana abundance (Wilk's $\left.\operatorname{Lambda}_{(8,17)}=0.62 ; p=0.29\right)$, and these categories did not show an interaction (Wilk's $\left.\operatorname{Lambda}_{(8,17)}=0.53 ; p=0.14\right)($ Table 2). Despite the absence of a multivariate effect of the liana abundance, the univariate responses extracted from this comparison suggest that the LAI and canopy openness differs between plots with HL and LL, where LL plots showed lower values of LAI and higher values of canopy openness in comparison with HL plots (Table 1). On the other hand, the univariate responses showed that the canopy openness was affected by the successional stages, where E successional plots showed higher values of canopy openness than I plots. Likewise, the univariate comparisons suggest that $C_{\underline{x}}$, PAI, and PAVD $\underline{m}_{\text {mean }}$ are affected by the interaction of the successional stages and liana abundance, where E successional plots with LL and I plots with HL showed higher values of $C_{\underline{x}}, \mathrm{PAI}$, and $\mathrm{PAVD}_{\text {mean }}$ in comparison with E and I successional plots with HL and LL, respectively.

3.3 Canonical correspondence analysis

The CCA showed that sensor parameters are strongly associated with the trends in forest structure (Fig 2). In general, the first and second canonical dimension showed correlations of
$0.81\left(\right.$ Wilk's $\left.^{\operatorname{Lambda}}{ }_{(24,64.01)}=0.13 ; p<0.01\right)$ and $0.72($ Wilk's Lambda $(15,52.85)=1.46 ; p=$ 0.16) between our sensors and forest structure. Specifically, the correlation between the canonical variates in the first canonical dimension suggested that canopy openness and the LAI have a great weight in the sensor matrix, while L/TBA and stem density had an important effect on the forest structure (Fig 2a). Likewise, the correlation between the canonical variates in the second canonical dimension showed that $H_{\text {max }}$ and $\mathrm{PAVD}_{\text {mean }} \frac{\text { had a }}{}$ strong correlation with the sensor parameters, while TBA and steam density had a strong correlation on the forest structure. The scores that described the multidimensional variation of each plot did not reflect a visual aggregation according to the successional stages and liana abundance (Fig. 2b). In terms of the validation of the significance of the canonical correlation coefficients, the permutations test showed that there is an important increase in the significance of the first two canonical dimensions (Fig. 2c, 1d), where the first dimension presented an increase of 0.21 points for the Wilks's statistic, while the second dimension showed an increase of 0.25 points, which results in a significant effect.

3.4 Comparison of correlations between successional stages and liana abundance

The different trends of correlation showed that the successional stages and mainly the liana abundance have an important effect in the prediction of the forest structure using VEGNET-

HPs parameters (Figure 3), but at the same time, these trends showed that some of these parameters have the potential to predict the implication of the liana abundance on the forest structure. Specifically, variation in the correlations of canopy openness on L/TBA (Figures 3a, b, c) and $H_{\text {max }}$ on TBA (Figures $3 \mathrm{~g}, \mathrm{~h}, \mathrm{i}$) showed that the correlation trends between successional stages are overlapped, while the correlations trends between liana abundance
are separated, in where low values of canopy openness and $H_{\max }$ are associated with high values of L/TBA and TBA, and consequently with the discrimination of HL plots. Likewise, variation in the correlation between LAI and L/TBA showed that the trends might not be used to separate successional stages or liana abundance (Figures 3d, e, f). However, the correlation between $H_{\max }$ and TBA suggest that $H_{\max }$ can not discriminate between different successional stages, but can discriminate with different liana abundance (Figures 3j, k, 1), where high values of correlation are associated with intermediated and HL plots.

4 Discussion

Woody vines or lianas tend to proliferate in disturbed forest stands such as regenerating forests (Paul and Yavitt, 2010). Much research on liana ecology, however, has focused on old-growth forests despite that secondary forests currently cover a larger area than old-growth forests and may become the dominant ecosystem in tropical regions (Wright 2005). Due to shorter stature and a higher varilability of light in secondary forests,
lianas may be particularly abundant in these ecosystems, but little is understood about the role of lianas in forest succession (Letcher and Chazdon 2009). In this study, we used the VEGNET, a terrestrial LiDAR system combined with HPs, to assess the impact of liana abundance on forest succession. Our overall analysis first indicated that VEGNET parameters in combination with HPs derived information was able to characterize changes in
forest structure at different successional stages. This finding in fact is not new, and it has
been demonstrated previously in the literature for other TDFs across the Americas including
the SRNP-EMSS (Sanchez-Azofeifa et al, 2009) when the effect of lianas is ignored. In fact,
it should be normal to expect some sort of correlation between forest succession and changes

Moved down [3]: Intermediate
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: successional stage with lianas, d) Late successional stage with no lianas and e) Late successional stage with lianas. At the early site PAVD concentrates between 2-8 meters from the ground, with the highest biomass between 2-4 meters as measured by the VEGNET system (Figure 2). At the intermediate site (no lianas) PAVD is lower in the first 2-5 meters from the ground and reaches higher values between 6-12 meters, which corresponds, as expected, to the vertical distribution of canopy and subcanopy leaves and branches (Figure 2). On the other hand, at the intermediate site (with lianas) PAVD values in the lower forest strata are as high as the
subcanopy and canopy layers (Figure 2). At the late successional stages (no lianas) PAVD values show two distinctive peaks (canopy and understory, one occurring at the first 5 meters from the ground and the other one between 8 and 14 meters. At the late successional sites (with lianas, Figure 2), most PAVD is concentrated between 2-10 meters with no clear distinction between forest strata. PAVD was significantly higher ($H=7.2, P=0.02$,) in the late stages (1.64 ± 0.17) compared to the early stages
(0.88 ± 0.5) in stands without lianas.[30]
Arturo Sanchez 2016-11-2 10:28 AM
Moved down [4]: 0.12
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: , Table 2, Figure 3). Moreover, when PAI and RG are plotted against each other (Figure 4), a significant progressive increase of RG and PAI as a function of succession is evident when lianas
are not present ($R^{2}=0.71$, Figure 3, 4). In contrast,
accumulation of PAI as a function of RG in ... [31]
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
$\operatorname{Color}(\operatorname{RGB}(0,0,10))$, Spanish
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font:Not Bold, English (CAN) Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Indent: First line: 0.49"
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
Color(RGB($0,0,10)$)
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
Color(RGB(0,0,10))
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: high amount
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 2009). In this study, we used the VEGNET, a terrestrial LiDAR system, to assess the differences in vertical structure of secondar.... [32]
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 22
on structural parameters since many parameters such as biomass, LAI, Canopy Openess and $\underline{H}_{\text {max }}$ will change as trees grow during the successional process. The fundamental difference occurs when lianas are integrated into the successional system.

When we consider the bias of correlations between the forest structure and the parameters extracted from our two sensors at different successional stages, as well as liana abundance, our results suggest that this late variable has an important effect on the bias of prediction for a given forest structure. The main reason is probably a result of lianas introducing random tangles into the 3-dimensional space that is occupied by all forest biomass at a given plot. In other words, lianas tend to randomize a space typically utilized by trees, which in the absence of lianas would be occupied deterministically by trees. This randomization of the 3D space occupied by trees and lianas is an element that has not been considered as of today; since most studies do not consider the space occupied by lianas because of a lack of TLS information.

This change in deterministic patterns of the forest structure is probably due to
competition between lianas and trees in forest stands within a random 3D space. In disturbed sites, such as secondary forests, lianas deploy leaves in the canopy and create large amounts of tangles in both the ground and mid canopy, in order to reduce the amount of light available as well as the amount of incoming solar radiation available for photosynthesis for other plant species (Graham et al., 2013). Moreover, in regenerating stands within forests (e.g., treefall gaps), high densities of lianas can inhibit the regeneration of tree species and reduce the abundance of shade-tolerant trees (Schnitzer et al., 2000), which in turn can affect the 3D arrangement of species within a given area. These ecological processes may cause a shift in forest structure, which is detected as a shift in the vertical

Deleted: The PAI as a single measurement per plot does not seem sensitive to changes in liana, neither to changes between intermediate and late successional stages, but values of PAI showed increases across all successional stages, which is expected from leaf and wood biomass increase in forest chronosequences (Quesada et al.,
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Indent: First line: 0.49", Adjust space between Latin and Asian text, Adjust space between Asian text and Arturo Sanchez 2016-11-2 10:28 AM
Moved down [5]: 2009).
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom Color(RGB(0,0,10))
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: The PAI was able to detect differences from early succession, but intermediate and late stages were similar in PAI values. This coincides with comparisons within the study area between intermediate and late stages in structural parameters (e.g., tree density, basal area) using forests inventory data (Kalacska et al., 2004). It is surprising that we did not find differences in stands with and without lianas on the PAI values. It is possible that PAI is not the best parameter to differentiate plots with liana presence, and instead variables more related with leaf components, such as leaf area index (LAI) may be more suitable for finding differences in liana signature across sites, especially when the contribution of lianas to the woody area index (WAI) to overall plot PAI is relatively small when compared with the allocation to
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: The PAVD and RG appears more sensitive to detect changes in forest structu ... [33] Arturo Sanchez 2016-11-2 10:28 AM
Moved down [6]: WAI from trees (SanchezAzofeifa et al., 2009).
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: on
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: , reducing
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: availability and
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: by
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: density
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 2000).
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 22
structure signature by TLS in sites with high liana abundance. These differences in structures have been confirmed in a recent study, which found that a liana-infested forest had a more irregular canopy with canopy heights between 10 and 20 m , while the surrounding forests had a significantly taller canopy between 25 and 35 m along with a denser canopy (Tymen et al., 2016).

The information provided in this paper is clear in the sense that some variations in the TLS and hemispherical camera parameters can be used to estimate the impact of lianas on forest structure along the path of succession, although not all of parameters were significant. In other words, there is a strong need to carefully select which parameters should
be considered if we want to estimate changes in the forest structure as function of liana abundance. One key example is the use of PAI as tool to evaluate the impact of liana abundance on forest succession. PAI as a single measurement theoretically could provide insights on the impact of liana abundance on successional stages. Theoretically we could expect that PAI will increase as leaf and wood biomass increase during succession (Quesada et al., 2009). It is surprising that we did not find differences in the PAI values between stands that did and did not have. It is possible that PAI is not the best parameter to differentiate between plots with and without liana presence, instead variables more related with leaf components, such as leaf area index (LAI) may be more suitable for finding differences in liana signature across sites, especially when the contribution of lianas to the woody area index (WAI) to overall plot PAI is relatively small in comparison to the allocation of WAI from trees (Sanchez-Azofeifa et al., 2009).

A recent study assessing the role of lianas on forest dynamics in the Amazon, \qquad indicated that a liana-infested forest appeared to be in an arrested stage of ecological

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: the ground LiDAR
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: and without lianas
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: height
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 35 and
succession $_{e}$ due to the evidence provided by LiDAR surveys from 2007 to 2012 which showed that the overall extent of forest area had remained stable, with no notable net gain or loss over the surrounding forest (Tymen et al., 2016). It is possible that studying forest dynamics in forest stands across successional stages, with different levels of liana abundance integrated into the TLS and HPs parameters, may allow us in the future to provide stronger evidence as to whether lianas can arrest succession in dry forests as it appears to occur in humid forests (Schnitzer et al., 2000; Tymen et al., 2016). \qquad -

5 Conclusions

This study evaluated the potential for TLS and hemispherical photos to observe differences between successional stages of a tropical dry forest chrono-sequence and liana abundance. Our work provided five main conclusions: (1) that TLS data combined with hemispherical photography data can help to predict the forest structure of the tropical dry forest as demonstrated before, (2) that these predictions get blurry when liana abundance is considered, (3) that variations in TLS and HPs parameters can be used to predict the effect of liana abundance on the successional path, (4) that not all the parameters could address the effect of the presence or impact of lianas along a successional gradient, and (5) we suggest
that the impact of lianas on successional stages changes the deterministic nature of forest
structure, by randomizing the 3D space where they grow at given plot; the higher the
abundance of lianas the higher the randomization.
Our study provides important insights on the contributions of lianas to the successional process, and highlights the potential that TLS has in monitoring liana presence in tropical dry forests environments. Lianas are increasing in density and biomass in tropical

Deleted: because
Arturo Sanchez 2016-11-2 10:28 A
Deleted: has
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: succession with and without lianas
Arturo Sanchez 2016-11-2 10:28 A
Formatted: Pattern: Clear, Highlight
Arturo Sanchez 2016-11-2 10:28 A
Deleted: In treefall gaps, lianas can interrupt the successional sequence and change the trajectory to a pathway dominated by lianas and stalled in a low canopy state for many years (Schnitzer et al., 2000) This interruption in the successional sequence is due to a variety of causes, including plant competition for light, reduction in recruitment and growth rates of trees due to liana infestation, and belowground competition (Schnitzer et al., 2000; Schnitzer and Carson, 2010). This could explain the differences in vertical signature in the accumulation of the PAVD between intermediate and late. Further research is necessary to determine whether the mechanisms explaining changes in the vertical profile of vegetation in secondary dry forests are similar to what it has been found in treefall ... [34]
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: of ground LiDAR
Arturo Sanchez 2016-11-2 10:28 A
Deleted: detect
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: in stands of different ages with and without liana presence in secondary
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: forests. We found that stands with lianas have different vertical
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: signature than stands without lianas
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: detected by the ground LiDAR system. The radius of gyration (RG), estimated from the Plant Area Volume Density (PAVD) showed differences in the vertical signature of forest stands under liana presence, specifically in the nur ... [35]
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: trajectories of vegetation accumulation over time.
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Indent: First line: 0.49 M
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: of LidAR systems to monitor
Arturo Sanchez 2016-11-2 10:28 AM

forests, but it is unknown whether this pattern is also found in secondary forests, which are suitable for liana proliferation. TLS systems are capable of providing unbiased estimations for the vertical structure of a given site, and thus constitute a powerful tool to monitor the jncreases in liana density and biomass. Although, our study is limited to one single site in Costa Rica, this is a first step on the development of more comprehensive approaches, which take advantage of advanced technology to understand the effects of liana abundance on tropical dry forest structure. The approach presented in this paper, presents important contributions to efforts directed to estimate the potential effects of lianas on forest carbon in secondary forests (Durán and Sanchez-Azofeifa, 2015), elements that seems not fully considered yet in the tropical literature.
acknowledged. We thank Ericka James her help during the process of data analysis. We thank also Dr. Stefan Schnitzer for comments on earlier versions of the manuscript.

References

> Arroyo-Mora, J.P., Sánchez Azofeifa, G.A. Kalacska, M, Rivard, B., Calvo, Alvarado, Jo and Janzen, D.: Secondary forest detection in a Neotropical dry forest landscape using Landsat 7 ETM + and IKONOS Imagery. Biotropica, 37 (4), 497-507, 2005

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Pattern: Clear, Highlight
nchez 2016-11-2 10
Deleted: We thank Branko Hilje and Ana Julieta Calvo for their contribution to their field work.
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom Color(RGB(0,0,10)), English (CAN), Pattern: Clear (White)
Arturo Sanchez 2016-11-2 10:28 AM
eleted
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom $\operatorname{Color}(\operatorname{RGB}(0,0,10))$, English (CAN), Pattern: Clear (White)
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: Sanchez-Asofeifa
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: ,,
Arturo Sanchez 2016-11-2 10:28 AM
Formatted ...]
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: . E. R
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -
Arturo Sanchez 2016-11-2 10:28 AM
Formatted ...[
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: . C. and Janzen, D. H.: Seconda ... [43]
Arturo Sanchez 2016-11-2 10:28 AM
Formatted ...
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:
Arturo Sanchez 2016-11-2 10:28 AM
Formatted ...[
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:
Arturo Sanchez 2016-11-2 10:28 AM

Arroyo-Mora, J. P., Sanchez-Asofeifa, G.A, Rivard, B., Calvo-Alvarado, J. C. and Janzen, D. H.: Dynamics in landscape structure and composition for the Chorotega region, Costa Rica from 1960 to 2000, Agriculture, Ecosystems \& Environment, 106(1), 27 39, 2005.

Beland, M., Baldocchi, D. D., Widlowski, J.-L., Fournier, R. A. and Verstraete, M. M.: On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR, Agriculture and Forest Meteorology, 184, 82-97, 2014.

Calvo-Alvarado, J., B McLennan, GA Sánchez-Azofeifa, and T Garvin. Deforestation and forest restoration in Guanacaste, Costa Rica: Putting conservation policies in context. Forest Ecology and Management. 258(6), 931-940, 2009.

Canty, A. and Ripley B.: boot: bootstrap functions, available at: https://cran.r-
project.org/web/packages/boot/ (last access: September 30, 2016), 2016.
Castillo, M., Rivard, B., Sánchez-Azofeifa, A., Calvo-Alvarado, J. and Dubayah, R.: LIDAR remote sensing for secondary Tropical Dry Forest identification, Remote Sens. Environ., 121, 132-143, 2012.

Castro-Esau, K., Sánchez-Azofeifa, G.A. and Caelli, T.: Discrimination of lianas and trees with leaf-level hyperspectral data, Remote Sens. Environ., 90 (3), 353-372, 2004.

Chen, Y.-J., Bongers, F., Cao, K.-F. and Cai, Z.-Q.: Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia. J. Trop. Ecol., 24, 517-524, 2008.

Clawges, R., Vierling, L., Calhoon, M. and Toomey, M.: Use of a ground-based scanning lidar for estimation of biophysical properties of western larch (Larix occidentalis),

Culvenor, D., Newnham, G., Mellor, A., Sims, N. and Haywood, A.: Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index, Sensors, 14(8), 14994-15008, 2014.

Dassot, M., Constant, T. and Fournier, M.: The use of terrestrial LiDAR technology in forest science.: Application fields, benefits and challenges, Ann. For. Sci., 68(5), 959-974, 2011.

Dewalt, S. J., Schnitzer, S. A. and Denslow, J. S.: Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest, J. Trop. Ecol., 16(1), 1-19, 2000.

Durán, S.M. and Gianoli, E.: Carbon stocks in tropical forests decrease with liana density, Biol. Lett., 3-6, 2013.

Durán, S. M. and Sánchez-Azofeifa.: Liana effects on carbon storage and uptake in mature and secondary tropical forests, in: Biodiversity of lianas, edited by: Parthasarathy, N., pp. 43-55. Springer-Verlag, 2015.

Frazer, G.W., Canham, C.D., and Lertzman, K.P.: Gap light analyzer (GLA), Version 2.0:
Imaging software to extract canopy structure and gap light transmission indices from
true-colour fisheye photographs, users manual and program documentation. Simon
Fraser University, BC and the Institute of Ecosystem Studies, NY, 1999.
Foster, J. R., Townsend, P. A. and Zganjar, C. E.: Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper, Remote Sens. Environ., 112 (5), 2104-2117, 2008.

Freeman, E. A. and Ford, E.D.: Effects of data quality on analysis of ecological pattern

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Indent: Left: 0", Hanging: 0.49"

Arturo Sanchez 2016-11-2 10:28 AM
Deleted:

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font color: Custom
Color(RGB(0,0,10))
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Font:Italic

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 22
using the $K(d)$ statistical function. Ecology 83, 35-46.

González, I. and Déjean S.: CCA: canonical correlation analysis, available at: https://cran.r- * project.org/web/packages/CCA/ (last access: September 30, 2016), 2015.Graham, E. A., Mulkey, S. S., Kitajima, K., Phillips, N. G. and Wright, S. J.: Cloud cover limits net CO 2 uptake and growth of a rainforest tree during tropical rainy seasons., Proc. Natl. Acad. Sci. U. S. A., 100(2), 572-576, 2003.
van der Heijden, G.M.F, Schnitzer, S.A., Powers, J.S. and Phillips, O.L.: Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests. Biotropica 45, 682692, 2013.
van der Heijden, Powers, J.S., and Schnitzer, S.A.: Lianas reduce carbon accumulation and storage in tropical forests. PNAS 112, 13267-13271, 2015.

Hilje, B., Calvo-alvarado, J., Jiménez-rodríguez, C., Sánchez-azofeifa, A., José, S., Rica, C., Forestal, E. D. I., Rica, T. D. C. and Rica, C.: Tree species composition, breeding systems, and pollination and dispersal syndromes in three forest successional stages in a tropical dry forest in Mesoamerica, Trop. Conserv. Sci., 8(1), 76-94, 2015.

Jupp, D. L. B., Culvenor, D. S., Lovell, J. L., Newnham, G. J., Strahler, A. H. and Woodcock, C. E.: Estimating forest LAI profiles and structural parameters using a ground-based laser called "Echidna"., Tree Physiol., 29(2), 171-81, 2009.

Kalacska, M.: Leaf area index measurements in a tropical moist forest: A case study from Costa Rica, Remote Sens. Environ., 91(2), 134-152, 2004.

Kalacska, M. E. R., Sánchez-Azofeifa, G. A., Calvo-Alvarado, J. C., Rivard, B. and Quesada, M.: Effects of season and successional stage on leaf area index and spectral vegetation indices in three mesoamerican tropical dry forests, Biotropica, 37(4), 486-

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: Graham, E.
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Indent: Left: 0", Hanging:
Arturo Sanchez 2016-11-2 10:28 AM
Formatted: English (CAN)

496, 2005.
Kalacska, M., Arroyo-Mora, JP., Soffer, R., Leblanc, G.: Quality control assessment of the Mission Airborne Carbon 13 (MAC-13) hyperspectral imagery from Costa Rica. Canadian Journal of Remote Sensing, 42, 85-105. 2016

Lefsky M., and McHale M..: Volumes estimates of trees with complex architecture from terrestrial laser scanning. J Appl Remote Sens., 2, 023521, 2008.

Letcher, S. G. and Chazdon, R. L.: Lianas and self-supporting plants during tropical forest succession, For. Ecol. Manage., 257 (10), 2150-2156, 2009.

Lovell, J. L., Jupp, D. L. B., Culvenor, D. S. and Coops, N. C.: Using airborne and groundbased ranging lidar to measure canopy structure in Australian forests, Can. J. Remote Sens., 29 (5), 607-622, 2014.

McGarigal, K.: Landscape pattern metrics, in Encyclopedia of environmetrics, vol 2. pp. 1135-1142, Wiley, Chichester,

Menzel, U.: CCP: Significance tests for canonical correlation analysis (CCA), available at: https://cran.r-project.org/web/packages/CCP/ (last access: September 30, 2016), 2012.

Muss, J. D., Aguilar-Amuchastegui, N., Mladenoff, D. J. and Henebry, G. M.: Analysis of Waveform Lidar Data Using Shape-Based Metrics, IEEE Geosci. Remote Sens. Lett., 10 (1), 106-110, 2013.

Paul, G. S. and Yavitt, J. B.: Tropical Vine Growth and the Effects on Forest Succession: A Review of the Ecology and Management of Tropical Climbing Plants, Bot. Rev., 77 (1), 11-30, 2010.

Phillips, O., Martínez, R., Arroyo, L. and Baker, T.: Increasing dominance of large lianas in Amazonian forests, Nature, 418, 770-774, 2002.

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: -

Sánchez-Azofeifa, RC Harris, and DL Skole. Deforestation in Costa Rica: A quantitative analysis using remote sensing imagery. Biotropica. 33(3), 378-384, 2001.

Sánchez-Azofeifa, G. A. and Castro-Esau, K.: Canopy observations on the hyperspectral properties of a community of tropical dry forest lianas and their host trees, Int. J. Remote Sens., 27 (10), 2101-2109, 2006.

Sánchez-Azofeifa, G. A., Kalácska, M., Espírito-Santo, M. M. Do, Fernandes, G. W. and Schnitzer, S.: Tropical dry forest succession and the contribution of lianas to wood area index (WAI), For. Ecol. Manage., 258 (6), 941-948, 2009.

Schnitzer, S. A and Bongers, F.: Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms., Ecol. Lett., 14 (4), 2011.

Schnitzer, S. A and Carson, W. P.: Lianas suppress tree regeneration and diversity in treefall gaps., Ecol. Lett., 13 (7), 849-57, 2010.

Schnitzer, S. A., Dalling, J. W. and Carson, W. P.: The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration, J. Ecol., 88 (4), 655-666, 2000.

Strahler, A. H., Jupp, D. L. ., Woodcock, C. E., Schaaf, C. B., Yao, T., Zhao, F., Yang, X., Lovell, J., Culvenor, D., Newnham, G., Ni-Miester, W. and Boykin-Morris, W.: Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna ${ }^{\circledR}$), Can. J. Remote Sens., 34 (sup2), S426-S440, 2014.

Tymen, B., Réjou-Méchain, M., Dalling, J. W., Fauset, S., Feldpausch, T. R., Norden, N., Phillips, O. L., Turner, B. L., Viers, J. and Chave, J. Evidence for arrested succession in a liana-infested Amazonian forest. J. Ecol. 104 (1), 149-159. 2016

Arturo Sanchez 2016-11-2 10:28 AM
Formatted: Pattern: Clear, Highlight Arturo Sanchez 2016-11-2 10:28 AM Formatted: Pattern: Clear, Highlight Arturo Sanchez 2016-11-2 10:28 AM Formatted: Pattern: Clear, Highlight Arturo Sanchez 2016-11-2 10:28 AM Deleted: 22

1172 Wright, S. J.: Tropical forests in a changing environment, Trends Ecol. Evol., 20(10), 553-
1173
560, 2005.
Arturo Sanchez 2016-11-2 10:28 AM
Deleted:

Table 2. Mean ($\pm \mathrm{SD}$) of parameters calculated by VEGNET system and HPs in plots with different successional stages and different relative abundance of lianas in the dry forest at Santa Rosa National Park, Costa Rica. Significant differences (F-values and their p-values) according to the successional stages, relative abundance of lianas and their interaction are represented by a posteriori ANOVA text extracted from MANOVA. $\underline{R G}$, radius of gyration; PAI, plant area index; PAVD $_{\text {mean }}$, plant area volume density; $\underline{H}_{\text {max }_{2}}$ maximum tree height (m); LAI, leaf area index.

Parameters			Early		Intermediate		ANOVA		
V			\ldots L	HL	\ldots L	HL	Stage	Conditio	Interactio
								\underline{n}	\underline{n}
RG			$4.21 \pm$	$4.85 \pm$	$4.69 \pm$	$4.34 \pm$			
			1.42	0.92	1.11	0,91	0.03	0.01	1.41
$\underline{C}_{\underline{\mathrm{x}}}$			$0.19 \pm$	$0.13 \pm$	$0.14 \pm$	$0.16 \pm$			
			0.06	0.04	0.03	0.04	0.12	0.14	5.95
$\underline{C_{y}}$			$7.56 \pm$	$8.43 \pm$	$8.22 \pm$	$7.56 \pm$	0.07	001	0.96
			2.96	1.63	2.07	1.59	0.0	0.0	0.9
PAI				$2.10 \pm$	$\underline{2.13 \pm}$	$\underline{2.31 \pm}$	0.06	0.05	4.75*
			0.28	0.28	0.34	0.33			
$\text { PAVD }_{\text {mea }}$			$0.19 \pm$	$0.13 \pm$	$0.14 \pm$	$0.16 \pm$			
			0.05	0.04	0.03	0.04	0.14	0.22	7.26
$\underline{H}_{\text {max }}$			$17.42 \pm$	$18.17 \pm$	$23.26 \pm$	18.01			
			5.51	3.90	7.73	± 6.00	0.99	$\underline{1.53}$	1.61
LAI			$2.30 \pm$	$2.46 \pm$	$2.34 \pm$	$2.92 \pm$			
			0.32	0.64	0.46	0.39	2.91	$\underline{0.91}$	1.32
Canopy openness			$13.90 \pm$	$12.59 \pm$	$\underline{12.74 \pm}$	$8.67 \pm$			
			3.94	5.89	5.27	1.47	5.77*	6.78*	0.79

*, $p<0.05$

Deleted: Variable
Formatted ... [72]

Deleted: P-value
Arturo Sanchez 2016-11-2 10:28 AM

| Merged Cells \ldots [69] |
| :--- | :--- |
| Arturo Sanchez 2016-11-2 10:28 AM |

Arturo Sanchez 2016-11-2 10:28 AM
Formatted Table ... [70]

Arturo Sanchez 2016-11-2 10:28 AM
Inserted Cells \ldots [75]

| Arturo Sanchez 2016-11-2 10:28 AM |
| :--- | :--- |
| Inserted Cells $\ldots . .[76]$ |

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: E-NL vs. I-NL, L-NL
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 3.857
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: <0.05

| Arturo Sanchez 2016-11-2 10:28 AM |
| :--- | :--- |
| Inserted Cells $\quad \ldots$ [73] |
| Arturo Sanchez 2016-11-2 10:28 AM |
| Inserted Cells $\quad \ldots[74]$ |

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: PAI
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: I-NL vs. L-NL
Arturo Sanchez 2016-11-2 10:28 AM
Inserted Cells ...[78]
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
... [77]
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 04762
Arturo Sanchez 2016-11-2 10:28 AM

| Formatted |
| :--- | :--- |
| Arturo Sanchez 2016-11-2 10:28 AM |

Deleted: 82
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: I-NL vs. I-L
Arturo Sanchez 2016-11-2 10:28 AM

Formatted \ldots [80]
Arturo Sanchez 2016-11-2 10:28 AM

Deleted: 4286

| Arturo Sanchez 2016-11-2 10:28 AM |
| :--- | :--- |
| Formatted $\ldots . .[81]$ |

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: 51
Arturo Sanchez 2016-11-2 10:28 AM
Inserted Cells
Arturo Sanchez 2016-11-2 10:28 AM
Moved (insertion) [4]
... [83]
Arturo Sanchez 2016-11-2 10:28 AM
Deleted: L-NL vs L-L
Arturo Sanchez 2016-11-2 10:28 AM
Inserted Cells
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
... [86]
Arturo Sanchez 2016-11-2 10:28 AM
Arturo Sanchez 2016-11-2 10:28 AM
Formatted
... [84]
Arturo Sanchez 2016-11-2 10:28 AM

Arturo Sanchez 2016-11-2 10:28 AM

Arturo Sanchez 2016-11-2 10:28 AM
Inserted Cells
\ldots... [87]

Figure 1. Localization of the sampled forest stands in Santa Rosa National Park Environmental Monitoring Super Site, Guanacaste, Costa Rica., Where E-HL indicate Early successional stage with a high relative abundance of lianas; E-LL Early successional stage with a low relative abundance of lianas; I-HL, Intermediate successional stage with a high relative abundance of lianas; I-LL, Intermediate successional stage with a low relative abundance of lianas. In addition, forests ages refer to: 60, forests detected since 1956; 40, forests detected since 1979; 30, forests detected since 1986; 20, forests detected since 1997; 10 forests detected since 2005, and no forest correspond to non-related to woodlands.

Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: forests	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted: Font:Times, Not Bold, Font color: Auto, English (CAN), Not Expanded by / Condensed by	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted:	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted:	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted: Font:Times, Font color: Auto, English (CAN), Not Expanded by / Condensed by	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted: Font:Times, Font color: Auto, English (CAN), Not Expanded by / Condensed by	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted: Font:Times, Font color: Auto, English (CAN), Not Expanded by / Condensed by	
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: in	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [97]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: Color symbols represent locations where lianas are present (1) or absent (0).\qquad	
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted	... [99]
Arturo Sanchez 2016-11-2 10:28 AM	
Deleted: liana presence.	...[100]
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted ${ }^{\text {[101] }}$
Arturo Sanchez 2016-11-2 10:28 AM	
Formatted [102]
Arturo Sanchez 2016-11-	

Deleted: (L) and without lianas (NL) in ... [103]

| Arturo Sanchez 2016-11-2 10:28 AM |
| :--- | :--- |
| Formatted \ldots [104] |

Arturo Sanchez 2016-11-2 10:28 AM
Deleted:) and late (L) years
Arturo Sanchez 2016-11-2 10:28 AM
Formatted \ldots [105]

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: land abandonment for forest ... [106]

Arturo Sanchez 2016-11-2 10:28 AM	
Formatted	$\ldots[107]$

Arturo Sanchez 2016-11-2 10:28 AM
Deleted: lianas, and asterisks represent ... [108]

canonical correlation coefficients considering 4 and 3 canonical correlations, respectively; the red line represent the original value Wilks' Lambda, while the blue line represent the mean value permutated.

Figure 3. Density distribution of the bootstrapped correlation coefficients without and with distinction between successional stages (E, early; I, intermediate) and relative liana abundance (LL, low liana abundance; HL, high liana abundance). a, b, and c correspond to the correlation of canopy openness and the ratio of liana basal area (L) to total basal area (TBA); d, e, f correspond to leaf area index-L/TBA correlation; g, h, and i

1410
1411
1412

1417
correspond to the maximum tree height-TBA correlation; j, k, and 1 correspond to plant area volume density-TBA correlation.

[^0]: * Corresponding author. Tel. +1-780-4921822; E-mail address:gasanche@ualberta.ca

