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Abstract

Peatland restoration may provide a potential after-use option to mitigate the negative climate
impact of abandoned peat extraction areas; currently, however, knowledge about restoration
effects on the annual balances of carbon (C) and greenhouse gas (GHG) exchanges is still
limited. The aim of this study was to investigate the impact of contrasting water table levels
(WTL) on the annual C and GHG balances of restoration treatments with high (Res-H) and low
(Res-L) WTL relative to an unrestored bare peat (BP) site. Measurements of carbon dioxide
(CO,), methane (CH,4) and nitrous oxide (N2O) fluxes were conducted over a full year using the
closed chamber method and complemented by measurements of abiotic controls and vegetation
cover. Three years following restoration, the difference in the mean WTL resulted in higher
bryophyte and lower vascular plant cover in Res-H relative to Res-L. Consequently, greater gross
primary production and autotrophic respiration associated with greater vascular plant cover were
observed in Res-L compared to Res-H. However, the means of the measured net ecosystem CO,
1
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exchanges (NEE) were not significantly different between Res-H and Res-L. Similarly, no
significant differences were observed in the respective means of CH4 and N,O exchanges in Res-
H and Res-L, respectively. In comparison to the two restored sites, greater net CO,, similar CH,
and greater N,O emissions occurred in BP. On the annual scale, Res-H, Res-L and BP were C
sources of 111, 103 and 268 g C m™ yr™* and had positive GHG balances of 4.1, 3.8 and 10.2 t
CO, eq ha™ yr, respectively. Thus, the different WTLs had a limited impact on the C and GHG
balances in the two restored treatments three years following restoration. However, the C and
GHG balances in Res-H and Res-L were considerably lower than in BP owing to the large
reduction in CO, emissions. This study therefore suggests that restoration may serve as an
effective method to mitigate the negative climate impacts of abandoned peat extraction areas.

1 Introduction

Peatlands are widely distributed across the northern hemisphere covering 5-30% of national land
areas in northern Europe, North-America and Russia and play a key role in the global carbon (C)
cycle (Gorham, 1991; Joosten and Clarke, 2002; Vasander et al., 2003; Charman et al., 2013).
Throughout the Holocene, northern peatlands have accumulated ~270-450 Gt C as peat and
presently store about a third of the global soil C pool (Gorham, 1991; Turunen et al., 2002). They
also provide a small but persistent long-term C sink (between 20 and 30 g C m? yr'") (Gorham,
1991; Vitt et al., 2000; Roulet et al., 2007; Nilsson et al., 2008). Carbon accumulation in peatland
ecosystems occurs mainly due to the slow decomposition rate under the anoxic conditions caused
by high water table levels (Clymo, 1983). Within the past century, a large fraction of peatlands
has been exploited for energy production and horticultural use. Since commercial peat extraction
requires initial vegetation removal and drainage, harvested peatlands are turned into C sources by
eliminating the carbon dioxide (CO;) uptake during plant photosynthesis and increasing CO,
emission due to enhanced aerobic decomposition of organic matter. Thus, following the cessation
of peat extraction activities, after-use alternatives that mitigate the negative climate impacts of
these degraded and abandoned areas are required.

Among different after-use alternatives, re-establishment of peatland vegetation, which is essential

for returning the extracted peatlands back into functional peat-accumulating ecosystems, has been



© 00 N oo o1 b~ w N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30

shown to provide climate benefits (Tuittila et al., 1999, 2000a; Graf and Rochefort, 2009;
Waddington et al., 2010; Strack and Zuback, 2013) as well as high ecological value (Rochefort
and Lode, 2006; Lamers et al., 2015). However, due to the harsh environmental conditions of
bare peat surfaces and the lack of a propagule bank, spontaneous regeneration of self-sustaining
ecosystems rarely occurs and thus, human intervention is necessary to initiate this process. For
instance, active re-introduction of natural peatland vegetation communities (i.e. primarily
fragments of Sphagnum mosses and companion species) combined with rewetting has been
shown to be an effective method to initiate the recovery of Sphagnum-dominated ecosystems

with resumed long-term peat accumulation (Quinty and Rochefort, 2003).

Re-establishment of peatland vegetation and raising the water table level (WTL) affect the
ecosystem C balance and peat accumulation through their impact on the production and
decomposition of organic matter. Specifically, vegetation development results in increased plant
photosynthesis and respiration (i.e. autotrophic respiration) as well as in greater substrate supply
for methanogenesis. In addition, restoring the hydrological regime affects the CO, uptake by
vegetation and the microbial decomposition of organic matter (i.e. heterotrophic respiration) by
increasing water availability and decreasing soil oxygen status of the upper peat layer. Moreover,
an increase in the WTL also reduces the depth of the aerobic peat layer in which methane (CH,)
oxidation may occur. As a consequence, higher WTL following filling or blocking of the
drainage ditches commonly results in decreased CO, emissions (Tuittila et al., 1999; Waddington
and Warner, 2001), while increasing the emissions of CH,4 (Tuittila et al., 2000a; Waddington and
Day, 2007; Vanselow-Algan et al., 2015) relative to the abandoned bare peat area. The depth of
the WTL is therefore in addition to the vegetation biomass recovery a key controlling variable of

the ecosystem CO, and CH,4 exchanges following peatland restoration.

Considering the strong effects of the WTL on plant succession and ecosystem C exchanges,
differences in the depth of the re-established WTL baseline (i.e. the mean WTL) due to the
varying effectiveness of initial restoration activities (e.g. ditch blocking, surface peat stripping)
may have implications for the trajectories of vegetation development and recovery of the C sink
function following restoration. To date, only few studies (e.g. Tuittila et al., 1999, 2004) have
investigated the impact of contrasting WTLs on the subsequent ecosystem C balance within the

same restoration site. Understanding the sensitivity of the C balance to differences in the re-
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established WTL baseline is, however, imperative when evaluating the potential of restoration for
mitigating the negative climate impacts of drained peatlands. Moreover, estimates of the C sink-
source strength of restored and unrestored peatlands have been limited to the growing season
period in most previous studies (Tuittila et al., 1999, 2000a, 2004; Waddington et al., 2010;
Samaritani et al., 2011; Strack et al., 2014). In contrast, data on annual budgets, which are
required to evaluate the full climate benefits of peatland restoration relative to the abandoned peat
extraction area, are currently scarce and to our knowledge only reported in a few studies (e.g. Yli-
Petéys et al., 2007; Strack and Zuback, 2013).

Furthermore, the full ecosystem greenhouse gas balance (GHG) also includes emissions of
nitrous oxide (N,O), a greenhouse gas with an almost 300 times stronger warming effect relative
to CO, (IPCC, 2013). Highly variable N,O emissions ranging from <0.06 to 26 kg N ha™* yr*
have been previously reported for drained organic soils, with highest emissions occurring from
mesic and nutrient rich sites (Martikainen et al., 1993; Regina et al., 1996; Maljanen et al., 2010).
In contrast, NoO emissions are generally low in natural peatlands because environmental
conditions (i.e. uptake of mineral N by the vegetation and anaerobic conditions due to high WTL
favoring the complete reduction of N,O to dinitrogen) diminish the potential for N,O production
(Martikainen et al., 1993; Regina et al., 1996; Silvan et al., 2005; Roobroeck et al., 2010). Thus,
while the focus of most previous studies in restored peatlands has been limited to the CO, and
CH, exchanges, accounting for N,O emissions might be imperative when assessing the climate
benefits of peatland restoration as an after-use option for abandoned peat extraction areas. To our

knowledge, however, N,O fluxes in restored peatlands have not been quantified to date.

This study investigated the GHG fluxes (i.e. CO,, CH, and N2O) and their biotic and abiotic
controls in a restored peat extraction area with high (Res-H) and low (Res-L) WTLs and in an
unrestored bare peat (BP) site. The two main objectives were i) to investigate the impact of
contrasting WTLs on the annual C and GHG balances of a restored peatland and ii) to assess the
potential of peatland restoration for mitigating the C and GHG emissions from abandoned peat
extraction areas. Our hypotheses were that i) the C and GHG balances are improved in Res-H
relative to Res-L since the increased net CO, uptake, as a result of reduced peat mineralization
and greater water availability enhancing gross primary production, outweighs the increase in CH,4

emissions under high WTL conditions and ii) the C and GHG balances of the two restoration
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treatments are ameliorated relative to BP due the decreased CO, emissions from peat
mineralization and lower N,O emissions under more anoxic conditions following rewetting of

drained peatlands.

2 Material and methods

2.1 Experimental area

The study was conducted in the Tdssi peat extraction area located in central Estonia (58° 32° 16’
N; 25° 51° 43”” E). The region has a temperate climate with long-term mean (1981-2010) annual
temperature and precipitation of 5.8 °C and 764 mm, respectively (Estonian Weather Service,
2015). Peat extraction in the peatland started in late 1960’s and today peat is continued to be

harvested for horticultural purposes using the milling technique on about 264 ha.

The current study was carried out on a 4.5 ha area which was set aside from peat extraction in the
early 1980’s. The residual Sphagnum peat layer depth is about 2.5 m. A section approximately
0.24 ha in size within the abandoned site was restored in April 2012. The restoration was done
following a slightly modified protocol of the moss layer transfer technique (Quinty and
Rochefort, 2003) aimed at restoring the growth of Sphagnhum mosses and initiating the
development of a natural bog community. The first restoration steps included stripping the
uppermost oxidized peat layer (20 cm) and flattening the freshly exposed surface. In addition, the
peat along the borders of the restoration area was compressed and the outflow drainage ditch was

dammed with peat material to reduce the lateral water outflow from the experimental site.

To study the impact of water table level on restoration success in terms of vegetation
development and greenhouse gas fluxes, the restoration site was divided into wetter and drier
sections by lowering the peat surface by 10 cm for approximately one third of the area. This
resulted in restoration treatments with high (Res-H) and low (Res-L) water table levels. In
addition, an unrestored bare peat (BP) site was included in the study as a reference. Two replicate

plots (20 x 20 m) were established for each of the Res-H, Res-L and BP treatments.

To enhance vegetation succession, living plant fragments from Sphagnum-dominated hummaocks

were collected from a nearby (10 km) donor site (Soosaare bog) and spread out in the ratio of
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1:10 (i.e. 1 m® of collected plant fragment were spread over 10 m?) in the Res-H and Res-L
treatments. As the last step, straw mulch was applied to protect plant fragments from solar
radiation and to improve moisture conditions. Further details about the restoration procedure at

this study site have been given in Karofeld et al. (2015).

Three years following restoration, the bryophyte species found at the restored site were
dominated primarily by Sphagnum mosses (e.g. S. fuscum, S. rubellum and S. magellanicum).
The common vascular plant species observed post-restoration included shrubs and trees such as
common heather (Calluna vulgaris L.), common cranberry (Oxycoccus palustris Pers.), downy
birch (Betula pubescens Ehrh.), bog-rosemary (Andromeda polifolia L.), scots pine (Pinus
sylvestris L.) with a minor cover of accompanying herbaceous sedge and forb species such as
tussock cottongrass (Eriophorum vaginatum L.) and round-leaved sundew (Drosera rotundifolia
L.) (Karofeld et al., 2015).

2.2 Environmental measurements

A meteorological station to continuously monitor environmental variables was set up on-site in
June 2014. This included measurements of air temperature (Ta; model CS 107, Campbell
Scientific Inc., Logan, UT, USA), photosynthetically active radiation (PAR; model LI-190SL,
LI-COR Inc., Lincoln, NE, USA) and precipitation (PPT; tipping bucket model 52202, R. M.
Young Company, Traverse City, MI, USA) at 1.2 m height above the ground. Soil temperature
(Ts; depths of 5 and 30cm) was measured with CS temperature probes (model CS 107, Campbell
Scientific Inc., Logan, UT, USA) and volumetric soil moisture (VWC; depth 5cm) with CS water
content reflectometers (model CS615, Campbell Scientific Inc., Logan, UT, USA). All automated
abiotic data were collected in 1-min intervals and stored as 10-min averages on a CR1000
datalogger (Campbell Scientific Inc., Logan, UT, USA). In addition, continuous 30-min records
of the WTL relative to the soil surface were obtained with submerged HOBO Water Level
Loggers (Onset Computer Corporation, Bourne, MA, USA) placed inside perforated 1.0 m long
PVC pipes (@ 5 cm; sealed in the lower end).

The on-site meteorological measurements were complemented by Estonian Weather Service data
to obtain complete time series of Ta, PPT and PAR over the entire year. Hourly means of Ta and

daily sums of PPT were obtained from the closest (~20 km away) Viljandi meteorological station.

6
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Global radiation (hourly sums) data from the Tartu meteorological station (~40 km away) was
converted to PAR based on a linear correlation relationship to on-site PAR.

In addition, manual measurements of soil temperature (depths 10, 20, 30 and 40 cm) were
recorded by a handheld temperature logger (Comet Systems Ltd., Roznov pod Radhostém, Czech
Republic) and volumetric soil water content (depth 0-5cm) using a handheld soil moisture sensor
(model GS3, Decagon Devices Inc., Pullman, WA, USA) during each sampling campaign.
Furthermore, groundwater temperature, pH, redox potential, dissolved oxygen content, electrical
conductivity as well as ammonium (NH4") and nitrate (NO3’) concentrations were measured in
observation wells (@ 7.5 cm, 1.0 m long PVC pipes perforated and sealed in the lower end)
installed at each sampling location using YSI Professional Plus handheld instruments (YSI Inc.,
Yellow Springs, OH, USA). In addition, soil samples (0-10 cm depth) in three replicates were
taken from each of the treatments and analyzed for pH as well as total C, total N, P, K, Caand S
contents at the Tartu Laboratory of the Estonian Environmental Research Centre. Three
additional samples were taken from the same depth to determine bulk density in each treatment.

Mean values for these soil properties are summarized in Table 1.

2.3 Vegetation cover estimation

To assess the effect of vegetation development on greenhouse gas fluxes, vegetation cover (%)
and species composition were recorded inside each of the flux measurement collars (see section
2.4) in late spring. In each collar, the cover was estimated visually for each species and rounded
to the nearest 1%. Bryophyte, vascular plant and total vegetation cover were computed as the sum

of their respective individual species coverages.

2.4 Net ecosystem CO, exchange, ecosystem respiration, gross and net primary

production measurements

To evaluate the impact of WTL on the net ecosystem CO, exchange (NEE) in the restored Res-H
and Res-L treatments, flux measurements were conducted biweekly from May to December 2014
at three sampling locations within each replicate plot (i.e. 6 locations per treatment) using the
closed dynamic chamber method. At each sampling location, a collar (@ 50 cm) with a water-

filled ring for air-tight sealing was permanently installed to a soil depth of 10 cm. NEE

7
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measurements were conducted in random plot order (to avoid diurnal effects) using a clear
Plexiglas chamber (95% transparency; h 50 cm, V 65 L) combined with a portable infra-red gas-
analyzer (IRGA; EGM-4, PP Systems, Hitchin, UK). The chamber was equipped with a sensor to
measure photosynthetically active radiation and air temperature (TRP-2, PP Systems, Hitchin,
UK) inside the chamber. Ambient air temperature was also recorded with an additional
temperature sensor placed on the outside of the chamber. Cooling packs placed inside the
chamber were used to avoid a temperature increase inside the chamber during measurements. The
chamber was also equipped with a low-speed fan to ensure constant air circulation. After every
NEE measurement, ecosystem respiration (RE) was determined from a subsequent measurement
during which the transparent chamber was covered with an opaque and light reflective shroud.
CO;, concentrations, PAR, temperature, pressure and relative humidity were recorded by the
IRGA system every 4.8 s over a 4-min or 3-min chamber deployment period for NEE and RE
measurements, respectively. Since the aim of this study was to assess the atmospheric impact of
restoration, all fluxes are expressed following the atmospheric sign convention in which positive

and negative fluxes represent emission to and uptake from the atmosphere, respectively.

Gross primary production (GPP) was derived from the difference between NEE and RE (i.e. GPP
= NEE — RE). In addition, an estimate of net primary production (NPP) was derived from the
difference between NEE and heterotrophic respiration (Rh; see section 2.5) (i.e. NPP = NEE —
Rh).

RE estimates during the non-growing season months of March to April 2014 and January to
February 2015 were determined from closed static chamber measurements (described in section
2.6). Air samples collected during these measurements were analyzed for their CO;
concentrations on a Shimadzu GC-2014 gas chromatograph with an electron capture detector

(ECD). These RE estimates also represented non-growing season NEE for all treatments.

In the BP treatment, RE was determined by measurements using a separate closed dynamic
chamber set-up as described below in section 2.5. Due to the absence of vegetation, GPP as well
as NPP were assumed to be zero and NEE subsequently equaled RE in the BP treatment.
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2.5 Heterotrophic and autotrophic respiration measurements

From May to December 2014, heterotrophic respiration was measured simultaneously with NEE
from separate PVC collars (@ 17.5 cm) inserted to a depth of 10 cm beside each NEE collar. The
soil around the Rh collars was cut with a sharp knife to a depth of 30 cm in April 2014 to exclude
respiration from the roots. The area inside the collars was cleared of living moss and vascular
plants and kept free of vegetation during the remaining year. For Rh measurements, a second set
of instrumentation was used which included an opaque chamber (h 30 cm, V 0.065 L; equipped
with a low-speed fan) combined with an EGM-4 infrared gas analyzer. During each Rh
measurement, CO, concentration and air temperature inside the chamber were recorded every 4.8
s over a period of 3 min. Autotrophic respiration (Ra) was derived from the difference between
the measured RE and Rh fluxes (i.e. Ra = RE — Rh). Due to the absence of vegetation, Ra was not

determined in BP.

2.6 Methane and nitrous oxide flux measurements

To assess the impact of WTL on methane (CH,4) and nitrous oxide (N,O) exchanges in the
restored Res-H and Res-L treatments, flux measurements were conducted with the closed static
chamber method at a biweekly to monthly interval from March 2014 to February 2015 at the
same locations (i.e. same collars) as were used for the NEE measurements (described in section
2.4). During each chamber deployment period, a series of air samples were drawn from the
chamber headspace (h 50 cm, V 65 L; white opaque PVC chambers) into pre-evacuated (0.3
mbar) 50-mL glass bottles 0, 0.33, 0.66 and 1 h after closing the chamber. The air samples were
analyzed for CH, and N,O concentrations with a flame ionization detector (FID) and an electron
capture detector (ECD), respectively, using a Shimadzu GC-2014 gas chromatograph combined

with a Loftfield automatic sample injection system (Loftfield et al., 1997).

2.7 Flux calculation

Fluxes of CO,, CH,4 and N,O were calculated from the linear change in gas concentration in the
chamber headspace over time, adjusted by the ground area enclosed by the collar, volume of
chamber headspace, air density and molar mass of gas at measured chamber air temperature. The

linear slope in case of the dynamic chamber measurements was calculated for a window of 25
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measurement points (i.e. 2 min) moving stepwise (with one-point increments) over the entire
measurement period after discarding the first two measurement points (i.e. applying a 9.6 sec
‘dead band’). The slope of the window with the best coefficient of determination (RZ) was
selected as the final slope for each measurement. In the static chamber method, the linear slope

was calculated over the four available concentration values.

All dynamic chamber CO, fluxes with a R? > 0.90 (p < 0.001) were accepted as good fluxes.
However, since small fluxes generally result in a lower R? (which is especially critical for NEE
measurements), dynamic chamber fluxes with an absolute slope within +£0.15 ppm s were
always accepted. The slope threshold was determined based on a regression relationship between
the slope and respective R? values. For static chamber measurements, the R? threshold for
accepting CO,, CH,; and N,O fluxes was 0.90 (p < 0.05), 0.80 (p < 0.1) and 0.80 (p < 0.1),
respectively, except, if the maximum difference among the four concentration values was less
than the gas-specific GC detection limit (i.e., < 20 ppm for CO,, < 20 ppb for CH4 and < 20 ppb
for N20), in which case no filtering criterion was used. Based on these quality criteria 11% of
NEE, 9% of RE, 21% of Rh, 33% of CH, and 6% of N,O fluxes were discarded from subsequent

data analysis.

2.8 Annual balances

To obtain estimates for the annual CO, fluxes, non-linear regression models were developed
based on the measured CO, flux, PAR, WTL and Ta data following Tuittila et al., (2004). As a
first step, measured GPP fluxes were fitted to PAR inside the chamber using a hyperbolic

function adjusted by a second term which accounted for additional WTL effects (Eq. 1):

GPP = 1)

2
aXAmaxXPAR WTL-WTLopt
—max—_—— xexp|-0.5 X [ ——2) |.
aXPAR+Amax WTLgo)

where GPP is gross primary production (mg C m? h™), PAR is the photosynthetically active
radiation (umol m?s?), ais the light use efficiency of photosynthesis (i.e. the initial slope of the

light response curve; mg C pmol photon™), Ama is maximum photosynthesis at light saturation
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(mg C m? h"), WTL is the water table level (cm), WTLop is the WTL at which maximum
photosynthetic activity occurs and WTL, is the tolerance, i.e. the width of the Gaussian response
curve of GPP to WTL.

Secondly, RE fluxes were fitted to Ta using an exponential function (Eqg. 2):

RE = R, X exp®*Ta), 2)

where RE is ecosystem respiration (mg C m? h), Ta is air temperature (°C), Ry is the soil
respiration (mg C m? h) at 0 °C and b is the sensitivity of respiration to Ta. Both GPP and RE
were modeled with hourly resolution using hourly PAR, WTL and Ta as input variables.
Growing season (May 1 to October 31) GPP and annual RE were then derived from the
cumulative sums of these modeled fluxes. The balance between growing season GPP and annual
RE estimates resulted in the annual NEE in Res-H and Res-L, whereas annual RE represented
annual NEE in BP. The GPP and RE model parameters for the different treatments are

summarized in Table 2.

Annual sums of CH, and N,O fluxes were estimated by scaling their hourly mean and median
flux values, respectively, to annual sums. The median flux was used for N,O to avoid a positive
bias caused by episodic high peak fluxes measured directly after rainfall events. The annual sums
were converted to CO, equivalents (CO, eq) using the global warming potentials (GWP, over a
100-year timeframe including carbon-climate feedbacks) of 34 and 298 for CH4 and NO,
respectively (IPCC, 2013).

2.9 Statistical analysis

Collar flux data were averaged for each plot before conducting further statistical analysis to avoid
pseudoreplication. The non-parametric Friedman one-way analysis of variance (ANOVA) by
ranks test for dependent samples was used to account for repeated measurements in time when
testing for treatment effects (i.e. Res-H, Res-L and BP) on the growing season or annual means
of the various component fluxes. This analysis was followed by a Bonferroni post-hoc

11



o OB W e

10
11
12
13
14

15
16
17
18
19
20
21

22

23
24
25
26
27

comparison to determine significant differences among treatment means. The Mann-Whitney U-
test was used when comparing only the restoration treatments for significant effects (i.e. on GPP,
NPP and Ra fluxes). Pearson’s correlations were used to investigate the effects of vegetation
cover on mean growing season fluxes. The significance level was P < 0.05 unless stated
otherwise. All calculations and statistics were computed using the Matlab software (Matlab
Student version, 2013a, Mathworks, USA).

3 Results

3.1 Environmental conditions

The annual mean Ta and total PPT from March 2014 to February 2015 were 7.2 °C and 784 mm,
respectively, which suggests warmer conditions with normal wetness when compared to the long-
term climate normal (5.8 °C and 764 mm). PAR peaked in the first week of July while the
seasonal Ta curve peaked at around 23 °C in late July (Figure 1a). A prolonged warm and dry
period occurred from early to late July with a mean Ta of 20.0 °C and total rainfall of 43.3 mm.

The WTL ranged from -2 to -52 cm and from -8 to -59 cm in the restored Res-H and Res-L
treatments, respectively, while remaining between -26 and -69 cm in the unrestored BP site
(Figure 1b). The mean WTLs in Res-H and Res-L were -24 and -31 cm, respectively, resulting in
a mean annual difference of 7 cm between the restored treatments. Throughout the year, the WTL
in Res-H was always higher than in Res-L with the difference varying between 3 and 10 cm. The
mean WTL in BP was -46 cm resulting in mean differences of -22 and -15 cm compared to Res-

H and Res-L, respectively.

3.2 Vegetation cover and composition

The total surface cover, i.e. the fraction of re-colonized surface area, inside the flux measurement
collars was higher in the wetter Res-H (63%) than in the drier Res-L (52%) treatment.
Bryophytes were more abundant in Res-H (62%) than in Res-L (44%) (Table 3). The bryophyte
cover consisted primarily of Sphagnum species which contributed 98 and 96% in Res-H and Res-
L, respectively. Vascular plants occurred more frequently in the drier Res-L (14%) than in the

12
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wetter Res-H (4%) treatment and were dominated by woody plants (i.e. shrubs and tree
seedlings) (Table 3). The cover of sedges was <1% in both restored treatments.

3.3 Carbon dioxide fluxes

Daytime NEE was positive indicating CO, emissions during the non-growing season months
(November to April) in all three treatments (Figure 2a). During the early (i.e. June) and late (i.e.
mid-August to September) summer, net CO, uptake occurred in both Res-H and Res-L with
maximum rates of -42 and -41 mg C m™? h, respectively. However, during the warm and dry
mid-summer period, CO, emissions of up to 36 and 27 mg C m™ h™ were observed in Res-H and
Res-L, respectively. In contrast, NEE remained positive in BP throughout the growing season and
followed the seasonal pattern of Ta with maximum emission rates of 104 mg C m™? h™ occurring
in early August. The annual mean midday NEE in Res-H and Res-L were significantly lower than

in BP, but not significantly different between the two restored treatments (Table 4).

Midday RE was similar for all treatments during the non-growing season months (Figure 2b).
During the growing season, however, midday RE differed among treatments with lowest and
highest RE observed in Res-H and BP, respectively. RE in Res-H and Res-L reached maximum
values of 74 and 96 mg C m™ h™* during early July, respectively, whereas RE peaked at 104 mg C
m™ h™ in early August in BP. The annual mean midday RE was significantly lower in Res-H and
Res-L than in BP (Table 4).

From early June to late August, both the daytime GPP and NPP were lower (i.e. representing
greater production) in the drier Res-L than in the wetter Res-H treatment (Figure 2c, d). Greatest
GPP (i.e. most negative values) occurred in late June and mid-August reaching -90 and -98 mg C
m? h in Res-H and Res-L, respectively. GPP temporarily decreased (i.e. resulting in more
positive values) to -14 and -41 mg C m™ h™ during the warm and dry mid-summer period in both
Res-H and Res-L. The seasonal patterns in NPP followed closely those of GPP, reaching -65 and
-68 mg C m™? h™ in Res-H and Res-L, respectively. The growing season mean GPP in Res-H (-
49.3 mg C m? h™) was significantly higher than that in Res-L (-65.5 mg C m? h™) (Table 4). The
difference in the growing season means of NPP in Res-H and Res-L was not statistically

significant.
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Midday Ra was more than two times greater in the drier Res-L than in the wetter Res-H treatment
for most of the growing season sampling dates (Figure 2e). The seasonal pattern of Ra coincided
with that of GPP in both restored treatments with greatest Ra occurring in late June and mid-
August reaching maximum values of up to 27 and 36 mg C m? h™ in Res-H and Res-L,
respectively. The growing season mean Ra was significantly higher (by about two times) in Res-
L than in Res-H (Table 4). The ratio of Ra to Rh was on average 0.21 and 0.42 in Res-H and Res-

L, respectively.

Midday Rh was consistently lower in Res-H and Res-L than in BP throughout the growing
season (Figure 2f). Maximum Rh of up to 61, 73 and 104 mg C m? h™ in Res-H, Res-L and BP,
respectively, were observed in early July (restored treatments) and early August (unrestored BP).
The growing season mean Rh was significantly lower (by about 50%) in Res-H and Res-L than in
BP (Table 4).

3.4 Methane fluxes

Throughout most of the year, CH,4 fluxes were observed in the range of -13 to 60 pg C m?h™ in
all three treatments (Figure 3a). Occasional peak CH4 emission of up to 170 and 92 pg C m? h
occurred in Res-H and Res-L, respectively. During the non-growing season months, CHy,
exchange was variable showing both small uptake as well as large emission (-6 to 138 pg C m™
h™). The mean annual CH,4 exchange was about two times greater in the wetter Res-H than in the
drier Res-L treatment, however, the differences among the three treatments were not statistically
significant (Table 4).

3.5 Nitrous oxide fluxes

N,O fluxes in Res-H and Res-L remained within the range of -2.8 to 25 pg N m? h™* for most of
the year (Figure 3b). In contrast, high N,O emissions of 66 to 133 pg N m? h™* occurred during
July and August in BP. The annual mean N,O exchanges of -0.12 ug N m™? h™' in Res-H and 2.13
pg N m? h? in Res-L were not significantly different (Table 4). Meanwhile, the mean N,O
exchanges in the two restored treatments were significantly lower (by 1-2 magnitudes) compared
to the 27.1 pg N m™? h™t in BP (Table 4).
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3.6 Biotic and abiotic controls of greenhouse gas fluxes

The differences in mean growing season NEE, GPP, NPP and Ra among individual collars (i.e.
the spatial variability) were significantly correlated to bryophyte but not to vascular plant cover
in Res-H (Table 5). In contrast, spatial variations in NEE, GPP, NPP and Ra were significantly
correlated to vascular plant but not to bryophyte cover in Res-L. In addition, RE was significantly
correlated to vascular plant cover in Res-L. Meanwhile, the CH, and N,O exchanges were not

significantly correlated to vegetation cover neither in Res-H nor in Res-L.

Soil temperature measured at 10 cm depth was the abiotic variable that best explained variations
in RE (R? = 0.79, 0.84 and 0.81 in Res-H, Res-L and BP, respectively) in form of an exponential
relationship (Figure 4) with higher temperatures resulting in higher respiration rates. The basal
respiration and temperature sensitivity parameters were lowest in the wetter Res-H treatment and
highest in BP.

N,O fluxes correlated best with volumetric water content measured at 0-5 cm soil depth in Res-L
(R? = 0.60) and in BP (R? = 0.39) (Figure 5). In contrast, N,O fluxes were not correlated to soil
volumetric water content or any other abiotic variable in Res-H. Similarly, the CH,4 exchange did

not show any significant relationships with any abiotic variable for any of the three treatments.

3.7 Annual carbon and greenhouse gas balances

In the restored Res-H and Res-L treatments, the modelled annual RE estimates were 188.6 and
213.2 g C m2 yr?, respectively, whereas in the unrestored BP treatment annual RE was 267.8 g C
m yr* (Table 6). The annual GPP was estimated at -78.0 and -110.5 g C m™ yr™ in Res-H and
Res-L, respectively. This resulted in annual net CO, exchanges of 110.6, 102.7 and 267.8 g C m™
yr' in the wetter Res-H, drier Res-L and BP treatments, respectively. The growing season net
CO; loss (i.e. NEE) represented 45 and 37% of the annual net CO, loss in Res-H and Res-L,
respectively, while it accounted for 67% in BP. The additional carbon losses via CH, emission
were 0.190, 0.117 and 0.137 g C m? yr’ in Res-H, Res-L and BP, respectively. In total, all
treatments acted as carbon sources, however, the annual C balance was lower in the restored Res-
H (110.8 g C m? yr') and Res-L (102.8 g C m™ yr') treatments than in the unrestored BP (268.0

g C m? yr) treatment. The total GHG balance, including the net CO, exchange as well as CH,
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and N,O emissions expressed as CO, eq, was 4.14, 3.83 and 10.21 t CO, eq ha™ yr™ in Res-H,
Res-L and BP, respectively (Table 6). The GHG balance was driven by the net CO, exchange (96
to 98%) in all three treatments. The contribution of CH4 emission was highest (2.1%) in the
wetter Res-H treatment, while the contribution of N,O emission was highest (3.9%) in the

unrestored BP treatment.

4 Discussion

4.1 Greenhouse gas fluxes and their controls in restored and abandoned peat

extraction areas

4.1.1 Coupling of water table level and vegetation dynamics

Three years following restoration, contrasting vegetation communities in Res-H and Res-L had
developed as a result of a mean annual WTL difference of 7 cm. Specifically, a greater cover of
bryophytes (63%) (primarily Sphagnum spp.), which rely on capillary forces for acquiring water
and thus require moist conditions (Rydin, 1985), was present in the wetter Res-H treatment. In
contrast, the lower WTL in Res-L resulted in a lower bryophyte cover (44%) but greater
abundancy of vascular plants, likely due to the extended zone of aeration for plant roots. Apart
from having roots to absorb water and nutrients from the soil, vascular plants also differ from
bryophytes by having leaf stomata to regulate water transport and CO, exchange (Turner et al.,
1985; Schulze et al., 1994). Thus, the establishment of contrasting vegetation communities as a
result of different WTL baselines has potential implications for the biogeochemical cycles and

GHG fluxes following peatland restoration (Weltzin et al., 2000).

4.1.2 Carbon dioxide fluxes

In this study, the significantly higher GPP in Res-L was likely due to the greater vascular plant
cover compared to Res-H, since vascular plants reach higher photosynthesis rates at higher light
levels compared to mosses (Bubier et al., 2003; Riutta et al., 2007a). Similarly, Strack and
Zuback (2013) reported a strong correlation between vascular plant cover and GPP in a restored
peatland in Canada. In return, the greater GPP also explains the higher Ra observed in Res-L
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compared to Res-H. This highlights the implications of hydrological differences and the
associated vegetation development on plant-related CO, fluxes. Furthermore, it has been
suggested that the presence of vascular plants can facilitate greater survival and better growth of
the re-introduced mosses as they can provide shelter from the intense solar radiation and wind
and thus create a more favorable micro-climate (Ferland and Rochefort, 1997; Tuittila et al.,
2000b; McNeil and Waddington, 2003; Pouliot et al., 2012). Since Sphagnum mosses are
generally more sensitive to drought compared to vascular plants, restoration strategies allowing
the development of a diverse vegetation cover (i.e. byrophytes accompanied by vascular plants)
could therefore be considered to have greater potential for limiting CO, loss and regaining the C
sink function (Tuittila et al., 1999). Nevertheless, despite the significant effects of the re-
established WTL baseline on vegetation development and the associated CO, component fluxes
(i.e. RE and GPP), the net CO, exchange of the two restored treatments was similar. Our study
therefore suggests that the greater GPP was partly counterbalanced by greater Ra in Res-L
compared to Res-H. However, while differences in the re-established WTL baseline had no
significant effect on the CO, sink-source strength three years after restoration of the abandoned
peat extraction area, vegetation characteristics are likely to further diverge in the future which
might essentially result in contrasting net CO, balances over longer time spans (Weltzin et al.,
2000; Yli-Petiys et al., 2007; Samaritani et al., 2011; Vanselow-Algan et al., 2015).

Compared to the unrestored BP treatment, growing season Rh, i.e. the decomposition of soil
organic matter, was considerably reduced in the restored treatments which suggests that raising
the WTL effectively mitigated C losses from the ecosystem by reducing the potential for aerobic
peat decomposition (Silvola et al., 1996; Frolking et al., 2001; Whiting and Chanton, 2001).
Furthermore, the significantly lower ecosystem respiration in Res-H and Res-L compared to BP
demonstrates that the additional autotrophic respiration from the growing vegetation was
negligible compared to the large reduction in Rh. Likewise, Strack and Zuback (2013) found a
significantly lower Rh and RE in the restored compared to an unrestored site in Canada 10 years
following peatland restoration. Furthermore, the lower RE in the restored treatments relative to
BP might also result from the lower temperature sensitivity of Rh, i.e. soil organic matter
decomposition, observed in this study which is likely due to greater oxygen limitation in the

restored treatments following the raising of the WTL. Thus, our findings highlight the
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effectiveness of raising the WTL in reducing peat decomposition and CO, emissions from
drained organic soils.

4.1.3 Methane fluxes

Both WTL and vegetation dynamics have been previously highlighted as major controls on the
CH, exchange in natural, restored and drained peatlands (Bubier, 1995; Frenzel and Karofeld,
2000; Tuittila et al., 2000a; Riutta et al., 2007b; Waddington and Day, 2007; Lai, 2009; Strack et
al., 2014). Specifically, the WTL determines the depth of the lower anaerobic and upper aerobic
peat layers and thus the potential for CH4 production and consumption occurring in these
respective layers (Bubier, 1995; Tuittila et al., 2000a). The relatively low mean annual WTLs
(i.e. -24, -31 and -46 cm in Res-H, Res-L and BP, respectively) might therefore explain the
generally low CH, emission rates observed in our study compared to those previously reported in
similar ecosystems (Tuittila et al., 2000a; Basiliko et al., 2007; Waddington and Day, 2007; Lai,
2009; Vanselow-Algan et al., 2015). Nevertheless, high autumn peak emissions were observed in
all treatments that might be caused by a concurrent drop in the WTL during which CH4 may have
been released from the pore water and emitted to the atmosphere as shown in previous studies
(e.g. Windsor et al., 1992; Moore and Dalva, 1993). These episodic emission peaks indicate a
potential for higher annual CH, emissions following peatland restoration than those estimated in
this study.

Vegetation composition affects the CH, production through substrate supply (i.e. quality and
quantity) (Saarnio et al., 2004; Strom et al., 2005) and by offering a direct emission pathway for
CH, from the deeper anaerobic layer to the atmosphere via the aerenchymatic cell tissue of deep
rooting sedge species such as Eriophorum spp. (Thomas et al., 1996; Frenzel and Karofeld, 2000;
Strom et al., 2005; Waddington and Day, 2007). Given the considerable differences in vegetation
composition, the lack of significant effects on CH,; emissions among the restored and BP
treatments in our study was surprising. Most likely, similar CH4 emissions in Res-H and Res-L
were the result of opposing effects counterbalancing the production and consumption of CH,4. For
instance, enhanced anaerobic CH, production due to higher WTL in Res-H could have been
partly compensated by greater CH,4 oxidation within or immediately below the more developed
moss layer (Frenzel and Karofeld, 2000; Basiliko et al., 2004; Larmola et al., 2010). In Res-L on
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the other hand, greater vascular plant substrate supply might have sustained substantial CH,4
production despite a reduction of the anaerobic zone (Tuittila et al., 2000a; Weltzin et al., 2000).
Also noteworthy is that, while very few aerenchymatic sedge species (e.g. Eriophorum
vaginatum) were established at the time of this study, a future increase in the sedge cover is likely
to occur (Tuittila et al., 2000a; Weltzin et al., 2000; Vanselow-Algan et al., 2015) which could
considerably increase the CH, emission in the restored treatments over longer time spans.
Overall, the potential effects from enhanced anaerobic conditions due to the raised WTL, CH,4
oxidation in the moss layer or greater vascular plant substrate supply on the net CH, fluxes were
small, considering that CH, emissions were not significantly different from those in BP which
was characterized by a considerably lower WTL and absence of vegetation. Thus, our study
suggests that in non-flooded conditions WTL changes following peatland restoration have a

limited effect on the CH,4 emissions during the initial few years.

4.1.4 Nitrous oxide fluxes

Soil moisture and WTL effects on the soil oxygen status have been previously identified as the
main control on N,O emissions from pristine and drained peatlands (Firestone and Davidson,
1989; Martikainen et al., 1993; Klemedtsson et al., 2005). Highest N,O emissions commonly
occur in mesic soils with intermediate water table levels, which allows both aerobic and
anaerobic N,O production during nitrification and denitrification, respectively, while avoiding
the anaerobic reduction of N,O to N, (Firestone and Davidson, 1989; Martikainen et al., 1993).
In addition, substrate supply (i.e. C and inorganic N) is a key prerequisite for N,O production
(Firestone and Davidson, 1989). In our study, similar N,O fluxes in the two restored treatments
therefore suggest that the differences in WTL, soil moisture and substrate supply from
mineralization of organic matter were too small to affect the magnitudes of N,O emission three
years following restoration with different WTL baselines. On the other hand, the enhanced
anaerobic conditions due to higher WTL as well as lower soil N concentrations due to reduced
mineralization and enhanced plant N uptake might explain both the reduced N,O emissions and
their lower sensitivity to soil moisture in the restored Res-H and Res-L treatments compared to
BP. Thus, peatland restoration has the potential for reducing the N,O emissions commonly
occurring in drained, abandoned peatlands by altering both soil hydrology and N substrate
supply.
19
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4.2 The carbon and greenhouse gas balances of restored and abandoned peat

extraction areas

Both restored treatments were C sources during the growing season which indicates that the CO,
uptake by the re-established vegetation was not able to compensate for the C losses via
respiration and CH,4 emissions three years following restoration. Several studies have previously
reported estimates for the growing season C sink-source strength of restored peatlands, with
contrasting findings owing to different restoration techniques, environmental conditions during
the study year and time passed since the initiation of the restoration (Tuittila et al., 1999;
Bortoluzzi et al., 2006; Yli-Petdys et al., 2007, Waddington et al., 2010; Samaritani et al., 2011,
Strack et al., 2014). For instance, restored peatlands in Finland (Tuittila et al., 1999) and Canada
(Waddington et al., 2010; Strack et al., 2014) were C sinks during the growing season three to six
years after restoration. In contrast, other studies suggested that several decades may be required
before restored peatlands resume their functioning as C sinks (Yli-Petéys et al., 2007; Samaritani
et al., 2011). However, while growing season studies can provide important information on
processes governing the fluxes, it is necessary to quantify and compare full annual budgets to
better evaluate the climate benefits of peatland restoration relative to abandoned peatland areas

(and other after-use options, e.g. afforestation or energy crop cultivation).

In our study, the annual C source strength of the two restored treatments and the bare peat site
was about 1.5 to 2.5 times greater than on the growing season scale. This highlights the
importance of accounting for the considerable non-growing season emissions when evaluating
the C sink potential of restored peatlands. In comparison, the annual C source strength of the two
restored treatments (111 and 103 g C m™ yr™) was lower than the annual emissions of 148 g C m’
2 yr reported for a restored cutaway peatland in Canada 10 years following restoration (Strack
and Zuback, 2013). Similarly, the C balance of BP (268 g C m™ yr™) in our study was about half
of the 547 g C m™ yr™ emitted at the Canadian unrestored site. However, high emissions in the
study of Strack and Zuback (2013) were partly attributed to the dry conditions during the study
year. Thus, this indicates that restored peatlands are unlikely to provide an annual C sink during
the first decade following restoration of peat extraction sites. However, compared to naturally re-
vegetating peatlands which may require 20-50 years to reach a neutral or negative C balance

(Bortoluzzi et al., 2006; Yli-Petiys et al., 2007; Samaritani et al., 2011), initiating the restoration
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by rewetting in combination with re-introduction of peatland vegetation might reduce the time
required for the ecosystem to return to being a C sink similar to that of a natural peatland (Tuittila
et al., 2004; Roulet et al., 2007; Nilsson et al., 2008).

The similar GHG balances in the two restored treatments Res-H and Res-L suggest that the
differences in the mean WTL had a limited effect on the GHG balance within the few years
following restoration of the peat extraction area. Moreover, the GHG balances in the restored
treatments were driven primarily by the net CO, exchange, while the contribution of CH,4 and
N,O exchanges remained minor in our study. In contrast, 30 years after rewetting of a German
bog, high CH,4 emission were reported as the main component of the GHG balance (Vanselow-
Algan et al., 2015). The same study also reported GHG balances ranging from 25-53 t CO; eq ha’
! yr't which are considerably higher compared to our study. This indicates that the GHG balances
of restored peatlands may vary greatly over longer time spans. Moreover, this also suggests the
GHG balance of peatland restoration with differing WTL baselines is likely to further diverge
over time due to contrasting trajectories in vegetation development and changes in soil

biogeochemistry (e.g. pH, nutrient contents and soil moisture dynamics).

While the two restored treatments had similar GHG balances, the difference between the GHG
balances in restored and BP treatments was considerable. Only three years following restoration,
the GHG balance in the restored treatments was reduced to about half of that in BP. This
reduction was mainly due to lower annual CO, emissions (i.e. lower NEE) in the restored
treatments compared to BP likely as a result of increased WTL and vegetation development. In
addition, annual N,O emissions were also significantly reduced in the restored treatments,
although, compared to the differences in the CO; balance, the impact of the reduction in N,O
emissions on the GHG balance was relatively small. Overall, our study suggests that peatland
restoration may provide an effective method to mitigate the negative climate impacts of
abandoned peat extraction areas in the short-term. However, due to the lack of long-term
observations and recent reports of potential high CH4 emissions occurring several decades after
rewetting (Yli-Petdys et al., 2007; Vanselow-Algan et al., 2015), it remains uncertain whether
restoration of abandoned peat extraction areas may also provide an after-use solution with climate

mitigation potential in the long-term.
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5 Conclusions

We found that differences in the re-established WTL strongly affected the vegetation
communities following restoration of the abandoned peat extraction area. Furthermore, the
difference in vegetation cover and composition was identified as the main control of within- and
between-site variations in GPP, NPP and plant respiration. We therefore conclude that variations
in WTL baselines may have important implications for plant-related CO, fluxes in restored
peatlands. In contrast, differences in the WTL baseline had only small effects on the net CO,
exchange due to the concurrent changes in plant production and respiration in the wet and dry
restoration treatments. Moreover, since CH, and N,O exchanges were also similar in the two
restored treatments, this study suggests that differing water table levels had a limited impact on
the C and GHG balances three years following restoration. Furthermore, we observed a
considerable reduction of heterotrophic respiration in the restored treatments which advocates
rewetting as an effective method to reduce aerobic organic matter decomposition in drained
peatlands. In contrast, our study suggests that the effects of rewetting on CH,; fluxes were
negligible three years following restoration. However, rewetting reduced the N,O emissions by 1-
2 magnitudes which indicates a high potential of peatland restoration in reducing the N,O
emissions commonly occurring in drained peatlands. Three years following restoration, the C and
GHG balances of the restored treatments were reduced by approximately half relative to those of
the abandoned bare peat area. We therefore conclude that peatland restoration may effectively
mitigate the negative climate impacts of abandoned peat extraction areas; however, longer time

spans may be needed to return these sites into net C sinks.
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Table 1. Soil properties in restoration treatments with high (Res-H) and low (Res-L) water table
level and bare peat (BP); numbers in parenthesis indicate standard error.

Soil property Res-H Res-L BP

pH 4.0 (0.07) 3.9 (0.07) 3.9 (0.06)
Bulk density (g cm™) 0.08 (0.002) 0.09 (0.003) 0.13 (0.004)
C (%) 49 (0.6) 50 (0.3) 48 (0.6)

N (%) 0.61 (0.04) 0.76 (0.05) 0.85 (0.04)
CIN 80.3 65.8 56.5
P(mggh) 0.2 (0.03) 0.2 (0.02) 0.4 (0.03)

K (mgg™?) 0.2 (0.007) 0.2 (0.003) 0.1 (0.004)
Ca(mgg™) 2.1(0.07) 2.1(0.07) 3.4 (0.23)

S (mggh) 0.9 (0.12) 1.0 (0.05) 1.4 (0.09)
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Table 2. Parameters for the gross primary production (GPP) and ecosystem respiration (RE)
models in restoration treatments with high (Res-H) and low (Res-L) water table level and bare
peat (BP); a is the quantum use efficiency of photosynthesis (mg C pmol photon™), Anax is the
maximum rate of photosynthesis at light saturation (mg C m™ h™); WTLopt is the WTL at which
maximum photosynthetic activity occurs; WTL Is the tolerance, i.e. the width of the Gaussian
response curve of GPP to WTL; Ry is the soil respiration (mg C m? h™) at 0 °C, b is the

sensitivity of respiration to air temperature; numbers in parenthesis indicate standard error; Adj.

R? = adjusted R?.

Model parameter Res-H Res-L BP

GPP model

a -0.20 (0.07) -0.23 (0.07) n.a.

Anmax -98.0 (39.9) -121.9 (43.4) n.a.
WTLopt -18.7 (8.4) -24.9 (6.4) n.a.
WTLl 16.4 (10.0) 21.0 (9.7) n.a.

Adj. R? 0.58 0.61 n.a.

RE model

Ro 13.0 (1.5) 13.4 (1.5) 18.6 (2.7)
b 0.056 (0.005) 0.064 (0.005) 0.055 (0.005)
Adj. R? 0.62 0.71 0.60

n.a. = not applicable
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Table 3. Vegetation cover (%) inside the collars for greenhouse gas flux measurements in

restoration treatments with high (Res-H) and low (Res-L) water table level. Total surface cover

represents the area of bare peat surface re-colonized by vegetation; numbers in parenthesis

indicate the range among individual collars.

Species Res-H Res-L

Bryophytes 62 (32 to 93) 44 (15to 74)
Sphagnum mosses 61 (31to 91) 43 (12to 70)

Vascular plants 4(2t09) 14 (5to0 22)
Shrubs and tree seedlings 2(0to7) 13 (5to 22)
Sedges <1 <1

Total surface cover 63 (35 to 95) 52 (20 to 85)
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Table 4. Means of measured CO; fluxes (mg C m? h™%) including net ecosystem exchange (NEE),
ecosystem respiration (RE), gross primary production (GPP), net primary production (NPP),
autotrophic respiration (Ra) and heterotrophic respiration (Rh) as well as means of measured
methane (CHs; pg C m? h™) and nitrous oxide (N,O; pg N m? h™) fluxes in restoration
treatments with high (Res-H) and low (Res-L) water table level and bare peat (BP). Negative and
positive fluxes represent uptake and emission, respectively. Numbers in parenthesis indicate

standard error; different letters indicate significant (P < 0.05) differences among treatments.

Component flux Res-H Res-L BP

NEE 0.57 (4.9)° -2.82 (4.9)° 44.9 (8.2)*
RE 29.9 (5.1)° 35.1 (6.4)° 44.9 (8.2)*
GPP” -49.3 (7.4)? -65.5 (7.3)" n.a.

NPP” -41.5 (5.3) -48.1 (4.2) n.a.

Ra’ 7.9 (2.6) 16.2 (3.4)° n.a.

Rh" 37.0 (5.1)° 38.5 (5.9)° 71.2 (8.4)®
CH, 23.0 (10.7) 10.9 (6.1) 14.7 (3.7)
N,O -0.12 (0.25)°  2.13(1.29)°  27.1(9.1)*

" Growing season mean (May 1 to October 31)
n.a. = not applicable
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Table 5. Correlation coefficients of vegetation (bryophytes and vascular plants) cover (%) with mean growing season CO, fluxes
including the net ecosystem CO, exchange (NEE), ecosystem respiration (RE), gross primary production (GPP), net primary
production (NPP) and autotrophic respiration (Ra) and with mean growing season methane (CH,4) and nitrous oxide (N,O) fluxes in
restoration treatments with high (Res-H) and low (Res-L) water table level. Total vegetation represents the sum of bryophyte and

vascular plant cover; significant correlations are marked with asterisks (" indicates P < 0.05 and ~ indicates P < 0.01).

Res-H Res-L
Vegetationcover NEE RE GPP NPP Ra CH; N,O NEE RE GPP NPP Ra CH; N0
Bryophytes 095 0.74 -095 -0.84 097 -053 -056 -0.75 0.67 -0.81 -0.70 078 -0.33 -0.34
Vascular plants -0.70 049 -0.76 -0.68 0.60 -0.07 -0.05 -0.927 0.93° -0.97  -0937 089 013 0.22

Total vegetation -0.957 0.74 -095" -0.84" 0.96 -050 -053 -082° 072 -0.84 -0.75 088 -021 -0.19
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Table 6. Growing season (GS; May 1 to October 31) and annual (A) sums of the carbon
balance components (g C m?) including gross primary production (GPP), ecosystem
respiration (RE), net ecosystem exchange (NEE) of CO,, and methane (CH,) fluxes as well as
of the greenhouse gas (GHG) balance components (t CO, eq ha™) including NEE, CH, and
nitrous oxide (N,O) exchanges (using global warming potentials of 34 and 298 for CH, and
N.O, respectively) in restoration treatments with high (Res-H) and low (Res-L) water table
level and bare peat (BP). Negative and positive fluxes represent uptake and emission,

respectively.

Res-H Res-L BP
Component flux GS A GS A GS A
C balance components
GPP -78.0  -78.0 -110.5 -110.5 n.a. n.a.
RE 1275 188.6 148.8  213.2 180.5 267.8
NEE 49.5 110.6 38.3 102.7 180.5% 267.8°
CH,4 0.130  0.190 0.036  0.117 0.076  0.137
Total C balance” 110.8 102.8 268.0
GHG balance components
NEE 1.81 4.05 1.40 3.76 6.62 9.82
CH,4 0.059  0.086 0.016  0.053 0.035  0.062
N,O 0.002  0.004 0.010 0.020 0.167 0.332
Total GHG balance © 4.14 3.83 10.21

#GPP for BP was assumed to be zero and NEE therefore equal to RE

10

12
13

® The total C balance (g C m?2 yr™) is the sum of NEE and CH, fluxes
® The total GHG balance (t CO, eq ha™ yr™) is the sum of NEE, CH, and N,O fluxes

n.a. = not applicable
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Figure captions

Figure 1. Daily means of a) air temperature (Ta) and photosynthetically active radiation
(PAR), b) water table level (WTL) in restoration treatments with high (Res-H) and low (Res-
L) water table level and bare peat (BP) and daily sums of precipitation (PPT) from March
2014 to February 2015; Ta, PAR and PPT data are taken from the Pdrnu meteorological
station (until June 17) and measured at the study site (from June 18 onward).

Figure 2. a) Net ecosystem exchange (NEE) of carbon dioxide, b) ecosystem respiration (RE),
c) gross primary production (GPP), d) net primary production (NPP), e) autotrophic
respiration (Ra) and f) heterotrophic respiration (Rh) in restoration treatments with high (Res-
H) and low (Res-L) water table level and bare peat (BP); error bars indicate standard error;
the horizontal dotted line in a) visualizes the zero line above and below which CO, emission

and uptake occur, respectively.

Figure 3. Measured fluxes of a) methane (CH.; ug C m™ h™) and b) nitrous oxide (N-O; pg N
m? h™) in restoration treatments with high (Res-H) and low (Res-L) water table level and
bare peat (BP); error bars indicate standard error; the horizontal dotted line in a) visualizes the

zero line above and below which CH4 emission and uptake occur, respectively.

Figure 4. Response of ecosystem respiration (RE; mg C m™? h™) to changes in soil temperature
(Ts) measured at 10 cm soil depth in restoration treatments with high (Res-H) and low (Res-

L) water table level and bare peat (BP).

Figure 5. Response of nitrous oxide (N,O) fluxes (ug N m™ h™') to changes in volumetric
water content (VWC) measured at 0-5 cm soil depth during the growing season in restoration
treatments with high (Res-H) and low (Res-L) water table level and bare peat (BP).
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