

1 **Impact of water table level on annual carbon and greenhouse**  
2 **gas balances of a restored peat extraction area**

3  
4 **Järvi Järveoja<sup>1</sup>, Matthias Peichl<sup>2</sup>, Martin Maddison<sup>1</sup>, Kaido Soosaar<sup>1</sup>, Kai Vellak<sup>3</sup>,**  
5 **Edgar Karofeld<sup>3</sup>, Alar Teemusk<sup>1</sup>, Ülo Mander<sup>1,4</sup>**

6 [1]{Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu,  
7 Estonia}

8 [2]{Department of Forest Ecology and Management, Swedish University of Agricultural  
9 Sciences, Sweden}

10 [3]{Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Estonia}

11 [4]{Hydrosystems and Bioprocesses Research Unit, National Research Institute of Science and  
12 Technology for Environment and Agriculture (Irstea), France}

13 Correspondence to: J. Järveoja (jarvi.jarveoja@ut.ee)

14  
15 **Abstract**  
16 Peatland restoration may provide a potential after-use option to mitigate the negative climate  
17 impact of abandoned peat extraction areas; currently, however, knowledge about restoration  
18 effects on the annual balances of carbon (C) and greenhouse gas (GHG) exchanges is still  
19 limited. The aim of this study was to investigate the impact of contrasting water table levels  
20 (WTL) on the annual C and GHG balances of restoration treatments with high (Res-H) and low  
21 (Res-L) WTL relative to an unrestored bare peat (BP) site. Measurements of carbon dioxide  
22 (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) fluxes were conducted over a full year using the  
23 closed chamber method and complemented by measurements of abiotic controls and vegetation  
24 cover. Three years following restoration, the difference in the mean WTL resulted in higher  
25 bryophyte and lower vascular plant cover in Res-H relative to Res-L. Consequently, greater gross  
26 primary production and autotrophic respiration associated with greater vascular plant cover were  
27 observed in Res-L compared to Res-H. However, the means of the measured net ecosystem CO<sub>2</sub>

1 exchanges (NEE) were not significantly different between Res-H and Res-L. Similarly, no  
2 significant differences were observed in the respective means of CH<sub>4</sub> and N<sub>2</sub>O exchanges in Res-  
3 H and Res-L, respectively. In comparison to the two restored sites, greater net CO<sub>2</sub>, similar CH<sub>4</sub>  
4 and greater N<sub>2</sub>O emissions occurred in BP. On the annual scale, Res-H, Res-L and BP were C  
5 sources of 111, 103 and 268 g C m<sup>-2</sup> yr<sup>-1</sup> and had positive GHG balances of 4.1, 3.8 and 10.2 t  
6 CO<sub>2</sub> eq ha<sup>-1</sup> yr<sup>-1</sup>, respectively. Thus, the different WTLs had a limited impact on the C and GHG  
7 balances in the two restored treatments three years following restoration. However, the C and  
8 GHG balances in Res-H and Res-L were considerably lower than in BP owing to the large  
9 reduction in CO<sub>2</sub> emissions. This study therefore suggests that restoration may serve as an  
10 effective method to mitigate the negative climate impacts of abandoned peat extraction areas.

11

## 12 1 Introduction

13 Peatlands are widely distributed across the northern hemisphere covering 5-30% of national land  
14 areas in northern Europe, North-America and Russia and play a key role in the global carbon (C)  
15 cycle (Gorham, 1991; Joosten and Clarke, 2002; Vasander et al., 2003; Charman et al., 2013).  
16 Throughout the Holocene, northern peatlands have accumulated ~270-450 Gt C as peat and  
17 presently store about a third of the global soil C pool (Gorham, 1991; Turunen et al., 2002). They  
18 also provide a small but persistent long-term C sink (between 20 and 30 g C m<sup>-2</sup> yr<sup>-1</sup>) (Gorham,  
19 1991; Vitt et al., 2000; Roulet et al., 2007; Nilsson et al., 2008). Carbon accumulation in peatland  
20 ecosystems occurs mainly due to the slow decomposition rate under the anoxic conditions caused  
21 by high water table levels (Clymo, 1983). Within the past century, a large fraction of peatlands  
22 has been exploited for energy production and horticultural use. Since commercial peat extraction  
23 requires initial vegetation removal and drainage, harvested peatlands are turned into C sources by  
24 eliminating the carbon dioxide (CO<sub>2</sub>) uptake during plant photosynthesis and increasing CO<sub>2</sub>  
25 emission due to enhanced aerobic decomposition of organic matter. Thus, following the cessation  
26 of peat extraction activities, after-use alternatives that mitigate the negative climate impacts of  
27 these degraded and abandoned areas are required.

28 Among different after-use alternatives, re-establishment of peatland vegetation, which is essential  
29 for returning the extracted peatlands back into functional peat-accumulating ecosystems, has been

1 shown to provide climate benefits (Tuittila et al., 1999, 2000a; Graf and Rochefort, 2009;  
2 Waddington et al., 2010; Strack and Zuback, 2013) as well as high ecological value (Rochefort  
3 and Lode, 2006; Lamers et al., 2015). However, due to the harsh environmental conditions of  
4 bare peat surfaces and the lack of a propagule bank, spontaneous regeneration of self-sustaining  
5 ecosystems rarely occurs and thus, human intervention is necessary to initiate this process. For  
6 instance, active re-introduction of natural peatland vegetation communities (i.e. primarily  
7 fragments of *Sphagnum* mosses and companion species) combined with rewetting has been  
8 shown to be an effective method to initiate the recovery of *Sphagnum*-dominated ecosystems  
9 with resumed long-term peat accumulation (Quinty and Rochefort, 2003).

10 Re-establishment of peatland vegetation and raising the water table level (WTL) affect the  
11 ecosystem C balance and peat accumulation through their impact on the production and  
12 decomposition of organic matter. Specifically, vegetation development results in increased plant  
13 photosynthesis and respiration (i.e. autotrophic respiration) as well as in greater substrate supply  
14 for methanogenesis. In addition, restoring the hydrological regime affects the CO<sub>2</sub> uptake by  
15 vegetation and the microbial decomposition of organic matter (i.e. heterotrophic respiration) by  
16 increasing water availability and decreasing soil oxygen status of the upper peat layer. Moreover,  
17 an increase in the WTL also reduces the depth of the aerobic peat layer in which methane (CH<sub>4</sub>)  
18 oxidation may occur. As a consequence, higher WTL following filling or blocking of the  
19 drainage ditches commonly results in decreased CO<sub>2</sub> emissions (Tuittila et al., 1999; Waddington  
20 and Warner, 2001), while increasing the emissions of CH<sub>4</sub> (Tuittila et al., 2000a; Waddington and  
21 Day, 2007; Vanselow-Algan et al., 2015) relative to the abandoned bare peat area. The depth of  
22 the WTL is therefore in addition to the vegetation biomass recovery a key controlling variable of  
23 the ecosystem CO<sub>2</sub> and CH<sub>4</sub> exchanges following peatland restoration.

24 Considering the strong effects of the WTL on plant succession and ecosystem C exchanges,  
25 differences in the depth of the re-established WTL baseline (i.e. the mean WTL) due to the  
26 varying effectiveness of initial restoration activities (e.g. ditch blocking, surface peat stripping)  
27 may have implications for the trajectories of vegetation development and recovery of the C sink  
28 function following restoration. To date, only few studies (e.g. Tuittila et al., 1999, 2004) have  
29 investigated the impact of contrasting WTLs on the subsequent ecosystem C balance within the  
30 same restoration site. Understanding the sensitivity of the C balance to differences in the re-

1 established WTL baseline is, however, imperative when evaluating the potential of restoration for  
2 mitigating the negative climate impacts of drained peatlands. Moreover, estimates of the C sink-  
3 source strength of restored and unrestored peatlands have been limited to the growing season  
4 period in most previous studies (Tuittila et al., 1999, 2000a, 2004; Waddington et al., 2010;  
5 Samaritani et al., 2011; Strack et al., 2014). In contrast, data on annual budgets, which are  
6 required to evaluate the full climate benefits of peatland restoration relative to the abandoned peat  
7 extraction area, are currently scarce and to our knowledge only reported in a few studies (e.g. Yli-  
8 Petäys et al., 2007; Strack and Zuback, 2013).

9 Furthermore, the full ecosystem greenhouse gas balance (GHG) also includes emissions of  
10 nitrous oxide ( $N_2O$ ), a greenhouse gas with an almost 300 times stronger warming effect relative  
11 to  $CO_2$  (IPCC, 2013). Highly variable  $N_2O$  emissions ranging from  $<0.06$  to  $26\text{ kg N ha}^{-1}\text{ yr}^{-1}$   
12 have been previously reported for drained organic soils, with highest emissions occurring from  
13 mesic and nutrient rich sites (Martikainen et al., 1993; Regina et al., 1996; Maljanen et al., 2010).  
14 In contrast,  $N_2O$  emissions are generally low in natural peatlands because environmental  
15 conditions (i.e. uptake of mineral N by the vegetation and anaerobic conditions due to high WTL  
16 favoring the complete reduction of  $N_2O$  to dinitrogen) diminish the potential for  $N_2O$  production  
17 (Martikainen et al., 1993; Regina et al., 1996; Silvan et al., 2005; Roobroeck et al., 2010). Thus,  
18 while the focus of most previous studies in restored peatlands has been limited to the  $CO_2$  and  
19  $CH_4$  exchanges, accounting for  $N_2O$  emissions might be imperative when assessing the climate  
20 benefits of peatland restoration as an after-use option for abandoned peat extraction areas. To our  
21 knowledge, however,  $N_2O$  fluxes in restored peatlands have not been quantified to date.

22 This study investigated the GHG fluxes (i.e.  $CO_2$ ,  $CH_4$  and  $N_2O$ ) and their biotic and abiotic  
23 controls in a restored peat extraction area with high (Res-H) and low (Res-L) WTLs and in an  
24 unrestored bare peat (BP) site. The two main objectives were i) to investigate the impact of  
25 contrasting WTLs on the annual C and GHG balances of a restored peatland and ii) to assess the  
26 potential of peatland restoration for mitigating the C and GHG emissions from abandoned peat  
27 extraction areas. Our hypotheses were that i) the C and GHG balances are improved in Res-H  
28 relative to Res-L since the increased net  $CO_2$  uptake, as a result of reduced peat mineralization  
29 and greater water availability enhancing gross primary production, outweighs the increase in  $CH_4$   
30 emissions under high WTL conditions and ii) the C and GHG balances of the two restoration

1 treatments are ameliorated relative to BP due the decreased CO<sub>2</sub> emissions from peat  
2 mineralization and lower N<sub>2</sub>O emissions under more anoxic conditions following rewetting of  
3 drained peatlands.

4

5 **2 Material and methods**

6 **2.1 Experimental area**

7 The study was conducted in the Tässi peat extraction area located in central Estonia (58° 32' 16''  
8 N; 25° 51' 43'' E). The region has a temperate climate with long-term mean (1981-2010) annual  
9 temperature and precipitation of 5.8 °C and 764 mm, respectively (Estonian Weather Service,  
10 2015). Peat extraction in the peatland started in late 1960's and today peat is continued to be  
11 harvested for horticultural purposes using the milling technique on about 264 ha.

12 The current study was carried out on a 4.5 ha area which was set aside from peat extraction in the  
13 early 1980's. The residual *Sphagnum* peat layer depth is about 2.5 m. A section approximately  
14 0.24 ha in size within the abandoned site was restored in April 2012. The restoration was done  
15 following a slightly modified protocol of the moss layer transfer technique (Quinty and  
16 Rochefort, 2003) aimed at restoring the growth of *Sphagnum* mosses and initiating the  
17 development of a natural bog community. The first restoration steps included stripping the  
18 uppermost oxidized peat layer (20 cm) and flattening the freshly exposed surface. In addition, the  
19 peat along the borders of the restoration area was compressed and the outflow drainage ditch was  
20 dammed with peat material to reduce the lateral water outflow from the experimental site.

21 To study the impact of water table level on restoration success in terms of vegetation  
22 development and greenhouse gas fluxes, the restoration site was divided into wetter and drier  
23 sections by lowering the peat surface by 10 cm for approximately one third of the area. This  
24 resulted in restoration treatments with high (Res-H) and low (Res-L) water table levels. In  
25 addition, an unrestored bare peat (BP) site was included in the study as a reference. Two replicate  
26 plots (20 x 20 m) were established for each of the Res-H, Res-L and BP treatments.

27 To enhance vegetation succession, living plant fragments from *Sphagnum*-dominated hummocks  
28 were collected from a nearby (10 km) donor site (Soosaare bog) and spread out in the ratio of

1 1:10 (i.e. 1 m<sup>2</sup> of collected plant fragment were spread over 10 m<sup>2</sup>) in the Res-H and Res-L  
2 treatments. As the last step, straw mulch was applied to protect plant fragments from solar  
3 radiation and to improve moisture conditions. Further details about the restoration procedure at  
4 this study site have been given in Karofeld et al. (2015).

5 Three years following restoration, the bryophyte species found at the restored site were  
6 dominated primarily by *Sphagnum* mosses (e.g. *S. fuscum*, *S. rubellum* and *S. magellanicum*).  
7 The common vascular plant species observed post-restoration included shrubs and trees such as  
8 common heather (*Calluna vulgaris* L.), common cranberry (*Oxycoccus palustris* Pers.), downy  
9 birch (*Betula pubescens* Ehrh.), bog-rosemary (*Andromeda polifolia* L.), scots pine (*Pinus*  
10 *sylvestris* L.) with a minor cover of accompanying herbaceous sedge and forb species such as  
11 tussock cottongrass (*Eriophorum vaginatum* L.) and round-leaved sundew (*Drosera rotundifolia*  
12 L.) (Karofeld et al., 2015).

## 13 **2.2 Environmental measurements**

14 A meteorological station to continuously monitor environmental variables was set up on-site in  
15 June 2014. This included measurements of air temperature (Ta; model CS 107, Campbell  
16 Scientific Inc., Logan, UT, USA), photosynthetically active radiation (PAR; model LI-190SL,  
17 LI-COR Inc., Lincoln, NE, USA) and precipitation (PPT; tipping bucket model 52202, R. M.  
18 Young Company, Traverse City, MI, USA) at 1.2 m height above the ground. Soil temperature  
19 (Ts; depths of 5 and 30cm) was measured with CS temperature probes (model CS 107, Campbell  
20 Scientific Inc., Logan, UT, USA) and volumetric soil moisture (VWC; depth 5cm) with CS water  
21 content reflectometers (model CS615, Campbell Scientific Inc., Logan, UT, USA). All automated  
22 abiotic data were collected in 1-min intervals and stored as 10-min averages on a CR1000  
23 datalogger (Campbell Scientific Inc., Logan, UT, USA). In addition, continuous 30-min records  
24 of the WTL relative to the soil surface were obtained with submerged HOBO Water Level  
25 Loggers (Onset Computer Corporation, Bourne, MA, USA) placed inside perforated 1.0 m long  
26 PVC pipes (Ø 5 cm; sealed in the lower end).

27 The on-site meteorological measurements were complemented by Estonian Weather Service data  
28 to obtain complete time series of Ta, PPT and PAR over the entire year. Hourly means of Ta and  
29 daily sums of PPT were obtained from the closest (~20 km away) Viljandi meteorological station.

1 Global radiation (hourly sums) data from the Tartu meteorological station (~40 km away) was  
2 converted to PAR based on a linear correlation relationship to on-site PAR.  
3 In addition, manual measurements of soil temperature (depths 10, 20, 30 and 40 cm) were  
4 recorded by a handheld temperature logger (Comet Systems Ltd., Rožnov pod Radhoštěm, Czech  
5 Republic) and volumetric soil water content (depth 0-5cm) using a handheld soil moisture sensor  
6 (model GS3, Decagon Devices Inc., Pullman, WA, USA) during each sampling campaign.  
7 Furthermore, groundwater temperature, pH, redox potential, dissolved oxygen content, electrical  
8 conductivity as well as ammonium ( $\text{NH}_4^+$ ) and nitrate ( $\text{NO}_3^-$ ) concentrations were measured in  
9 observation wells ( $\varnothing$  7.5 cm, 1.0 m long PVC pipes perforated and sealed in the lower end)  
10 installed at each sampling location using YSI Professional Plus handheld instruments (YSI Inc.,  
11 Yellow Springs, OH, USA). In addition, soil samples (0-10 cm depth) in three replicates were  
12 taken from each of the treatments and analyzed for pH as well as total C, total N, P, K, Ca and S  
13 contents at the Tartu Laboratory of the Estonian Environmental Research Centre. Three  
14 additional samples were taken from the same depth to determine bulk density in each treatment.  
15 Mean values for these soil properties are summarized in Table 1.

### 16 **2.3 Vegetation cover estimation**

17 To assess the effect of vegetation development on greenhouse gas fluxes, vegetation cover (%)  
18 and species composition were recorded inside each of the flux measurement collars (see section  
19 2.4) in late spring. In each collar, the cover was estimated visually for each species and rounded  
20 to the nearest 1%. Bryophyte, vascular plant and total vegetation cover were computed as the sum  
21 of their respective individual species coverages.

### 22 **2.4 Net ecosystem CO<sub>2</sub> exchange, ecosystem respiration, gross and net primary 23 production measurements**

24 To evaluate the impact of WTL on the net ecosystem CO<sub>2</sub> exchange (NEE) in the restored Res-H  
25 and Res-L treatments, flux measurements were conducted biweekly from May to December 2014  
26 at three sampling locations within each replicate plot (i.e. 6 locations per treatment) using the  
27 closed dynamic chamber method. At each sampling location, a collar ( $\varnothing$  50 cm) with a water-  
28 filled ring for air-tight sealing was permanently installed to a soil depth of 10 cm. NEE

1 measurements were conducted in random plot order (to avoid diurnal effects) using a clear  
2 Plexiglas chamber (95% transparency; h 50 cm, V 65 L) combined with a portable infra-red gas-  
3 analyzer (IRGA; EGM-4, PP Systems, Hitchin, UK). The chamber was equipped with a sensor to  
4 measure photosynthetically active radiation and air temperature (TRP-2, PP Systems, Hitchin,  
5 UK) inside the chamber. Ambient air temperature was also recorded with an additional  
6 temperature sensor placed on the outside of the chamber. Cooling packs placed inside the  
7 chamber were used to avoid a temperature increase inside the chamber during measurements. The  
8 chamber was also equipped with a low-speed fan to ensure constant air circulation. After every  
9 NEE measurement, ecosystem respiration (RE) was determined from a subsequent measurement  
10 during which the transparent chamber was covered with an opaque and light reflective shroud.  
11 CO<sub>2</sub> concentrations, PAR, temperature, pressure and relative humidity were recorded by the  
12 IRGA system every 4.8 s over a 4-min or 3-min chamber deployment period for NEE and RE  
13 measurements, respectively. Since the aim of this study was to assess the atmospheric impact of  
14 restoration, all fluxes are expressed following the atmospheric sign convention in which positive  
15 and negative fluxes represent emission to and uptake from the atmosphere, respectively.

16 Gross primary production (GPP) was derived from the difference between NEE and RE (i.e. GPP  
17 = NEE – RE). In addition, an estimate of net primary production (NPP) was derived from the  
18 difference between NEE and heterotrophic respiration (Rh; see section 2.5) (i.e. NPP = NEE –  
19 Rh).

20 RE estimates during the non-growing season months of March to April 2014 and January to  
21 February 2015 were determined from closed static chamber measurements (described in section  
22 2.6). Air samples collected during these measurements were analyzed for their CO<sub>2</sub>  
23 concentrations on a Shimadzu GC-2014 gas chromatograph with an electron capture detector  
24 (ECD). These RE estimates also represented non-growing season NEE for all treatments.

25 In the BP treatment, RE was determined by measurements using a separate closed dynamic  
26 chamber set-up as described below in section 2.5. Due to the absence of vegetation, GPP as well  
27 as NPP were assumed to be zero and NEE subsequently equaled RE in the BP treatment.

1    **2.5 Heterotrophic and autotrophic respiration measurements**

2    From May to December 2014, heterotrophic respiration was measured simultaneously with NEE  
3    from separate PVC collars ( $\varnothing$  17.5 cm) inserted to a depth of 10 cm beside each NEE collar. The  
4    soil around the Rh collars was cut with a sharp knife to a depth of 30 cm in April 2014 to exclude  
5    respiration from the roots. The area inside the collars was cleared of living moss and vascular  
6    plants and kept free of vegetation during the remaining year. For Rh measurements, a second set  
7    of instrumentation was used which included an opaque chamber (h 30 cm, V 0.065 L; equipped  
8    with a low-speed fan) combined with an EGM-4 infrared gas analyzer. During each Rh  
9    measurement, CO<sub>2</sub> concentration and air temperature inside the chamber were recorded every 4.8  
10   s over a period of 3 min. Autotrophic respiration (Ra) was derived from the difference between  
11   the measured RE and Rh fluxes (i.e. Ra = RE – Rh). Due to the absence of vegetation, Ra was not  
12   determined in BP.

13   **2.6 Methane and nitrous oxide flux measurements**

14   To assess the impact of WTL on methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) exchanges in the  
15   restored Res-H and Res-L treatments, flux measurements were conducted with the closed static  
16   chamber method at a biweekly to monthly interval from March 2014 to February 2015 at the  
17   same locations (i.e. same collars) as were used for the NEE measurements (described in section  
18   2.4). During each chamber deployment period, a series of air samples were drawn from the  
19   chamber headspace (h 50 cm, V 65 L; white opaque PVC chambers) into pre-evacuated (0.3  
20   mbar) 50-mL glass bottles 0, 0.33, 0.66 and 1 h after closing the chamber. The air samples were  
21   analyzed for CH<sub>4</sub> and N<sub>2</sub>O concentrations with a flame ionization detector (FID) and an electron  
22   capture detector (ECD), respectively, using a Shimadzu GC-2014 gas chromatograph combined  
23   with a Loftfield automatic sample injection system (Loftfield et al., 1997).

24   **2.7 Flux calculation**

25   Fluxes of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O were calculated from the linear change in gas concentration in the  
26   chamber headspace over time, adjusted by the ground area enclosed by the collar, volume of  
27   chamber headspace, air density and molar mass of gas at measured chamber air temperature. The  
28   linear slope in case of the dynamic chamber measurements was calculated for a window of 25

1 measurement points (i.e. 2 min) moving stepwise (with one-point increments) over the entire  
2 measurement period after discarding the first two measurement points (i.e. applying a 9.6 sec  
3 'dead band'). The slope of the window with the best coefficient of determination ( $R^2$ ) was  
4 selected as the final slope for each measurement. In the static chamber method, the linear slope  
5 was calculated over the four available concentration values.

6 All dynamic chamber  $\text{CO}_2$  fluxes with a  $R^2 \geq 0.90$  ( $p < 0.001$ ) were accepted as good fluxes.  
7 However, since small fluxes generally result in a lower  $R^2$  (which is especially critical for NEE  
8 measurements), dynamic chamber fluxes with an absolute slope within  $\pm 0.15 \text{ ppm s}^{-1}$  were  
9 always accepted. The slope threshold was determined based on a regression relationship between  
10 the slope and respective  $R^2$  values. For static chamber measurements, the  $R^2$  threshold for  
11 accepting  $\text{CO}_2$ ,  $\text{CH}_4$  and  $\text{N}_2\text{O}$  fluxes was 0.90 ( $p < 0.05$ ), 0.80 ( $p < 0.1$ ) and 0.80 ( $p < 0.1$ ),  
12 respectively, except, if the maximum difference among the four concentration values was less  
13 than the gas-specific GC detection limit (i.e.,  $< 20 \text{ ppm}$  for  $\text{CO}_2$ ,  $< 20 \text{ ppb}$  for  $\text{CH}_4$  and  $< 20 \text{ ppb}$   
14 for  $\text{N}_2\text{O}$ ), in which case no filtering criterion was used. Based on these quality criteria 11% of  
15 NEE, 9% of RE, 21% of Rh, 33% of  $\text{CH}_4$  and 6% of  $\text{N}_2\text{O}$  fluxes were discarded from subsequent  
16 data analysis.

## 17 **2.8 Annual balances**

18 To obtain estimates for the annual  $\text{CO}_2$  fluxes, non-linear regression models were developed  
19 based on the measured  $\text{CO}_2$  flux, PAR, WTL and Ta data following Tuittila et al., (2004). As a  
20 first step, measured GPP fluxes were fitted to PAR inside the chamber using a hyperbolic  
21 function adjusted by a second term which accounted for additional WTL effects (Eq. 1):

22

$$23 \quad \text{GPP} = \frac{\alpha \times A_{\max} \times \text{PAR}}{\alpha \times \text{PAR} + A_{\max}} \times \exp \left[ -0.5 \times \left( \frac{\text{WTL} - \text{WTL}_{\text{opt}}}{\text{WTL}_{\text{tol}}} \right)^2 \right]. \quad (1)$$

24

25 where GPP is gross primary production ( $\text{mg C m}^{-2} \text{ h}^{-1}$ ), PAR is the photosynthetically active  
26 radiation ( $\mu\text{mol m}^{-2} \text{ s}^{-1}$ ),  $\alpha$  is the light use efficiency of photosynthesis (i.e. the initial slope of the  
27 light response curve;  $\text{mg C } \mu\text{mol photon}^{-1}$ ),  $A_{\max}$  is maximum photosynthesis at light saturation

1 (mg C m<sup>-2</sup> h<sup>-1</sup>), WTL is the water table level (cm), WTL<sub>opt</sub> is the WTL at which maximum  
2 photosynthetic activity occurs and WTL<sub>tol</sub> is the tolerance, i.e. the width of the Gaussian response  
3 curve of GPP to WTL.

4 Secondly, RE fluxes were fitted to Ta using an exponential function (Eq. 2):

5

6 RE = R<sub>0</sub> × exp<sup>(b × Ta)</sup>. (2)

7

8 where RE is ecosystem respiration (mg C m<sup>-2</sup> h<sup>-1</sup>), Ta is air temperature (°C), R<sub>0</sub> is the soil  
9 respiration (mg C m<sup>-2</sup> h<sup>-1</sup>) at 0 °C and b is the sensitivity of respiration to Ta. Both GPP and RE  
10 were modeled with hourly resolution using hourly PAR, WTL and Ta as input variables.  
11 Growing season (May 1 to October 31) GPP and annual RE were then derived from the  
12 cumulative sums of these modeled fluxes. The balance between growing season GPP and annual  
13 RE estimates resulted in the annual NEE in Res-H and Res-L, whereas annual RE represented  
14 annual NEE in BP. The GPP and RE model parameters for the different treatments are  
15 summarized in Table 2.

16 Annual sums of CH<sub>4</sub> and N<sub>2</sub>O fluxes were estimated by scaling their hourly mean and median  
17 flux values, respectively, to annual sums. The median flux was used for N<sub>2</sub>O to avoid a positive  
18 bias caused by episodic high peak fluxes measured directly after rainfall events. The annual sums  
19 were converted to CO<sub>2</sub> equivalents (CO<sub>2</sub> eq) using the global warming potentials (GWP, over a  
20 100-year timeframe including carbon-climate feedbacks) of 34 and 298 for CH<sub>4</sub> and N<sub>2</sub>O,  
21 respectively (IPCC, 2013).

## 22 **2.9 Statistical analysis**

23 Collar flux data were averaged for each plot before conducting further statistical analysis to avoid  
24 pseudoreplication. The non-parametric Friedman one-way analysis of variance (ANOVA) by  
25 ranks test for dependent samples was used to account for repeated measurements in time when  
26 testing for treatment effects (i.e. Res-H, Res-L and BP) on the growing season or annual means  
27 of the various component fluxes. This analysis was followed by a Bonferroni post-hoc

1 comparison to determine significant differences among treatment means. The Mann-Whitney U-  
2 test was used when comparing only the restoration treatments for significant effects (i.e. on GPP,  
3 NPP and Ra fluxes). Pearson's correlations were used to investigate the effects of vegetation  
4 cover on mean growing season fluxes. The significance level was  $P < 0.05$  unless stated  
5 otherwise. All calculations and statistics were computed using the Matlab software (Matlab  
6 Student version, 2013a, Mathworks, USA).

7

### 8 **3 Results**

#### 9 **3.1 Environmental conditions**

10 The annual mean Ta and total PPT from March 2014 to February 2015 were 7.2 °C and 784 mm,  
11 respectively, which suggests warmer conditions with normal wetness when compared to the long-  
12 term climate normal (5.8 °C and 764 mm). PAR peaked in the first week of July while the  
13 seasonal Ta curve peaked at around 23 °C in late July (Figure 1a). A prolonged warm and dry  
14 period occurred from early to late July with a mean Ta of 20.0 °C and total rainfall of 43.3 mm.

15 The WTL ranged from -2 to -52 cm and from -8 to -59 cm in the restored Res-H and Res-L  
16 treatments, respectively, while remaining between -26 and -69 cm in the unrestored BP site  
17 (Figure 1b). The mean WTLs in Res-H and Res-L were -24 and -31 cm, respectively, resulting in  
18 a mean annual difference of 7 cm between the restored treatments. Throughout the year, the WTL  
19 in Res-H was always higher than in Res-L with the difference varying between 3 and 10 cm. The  
20 mean WTL in BP was -46 cm resulting in mean differences of -22 and -15 cm compared to Res-  
21 H and Res-L, respectively.

#### 22 **3.2 Vegetation cover and composition**

23 The total surface cover, i.e. the fraction of re-colonized surface area, inside the flux measurement  
24 collars was higher in the wetter Res-H (63%) than in the drier Res-L (52%) treatment.  
25 Bryophytes were more abundant in Res-H (62%) than in Res-L (44%) (Table 3). The bryophyte  
26 cover consisted primarily of *Sphagnum* species which contributed 98 and 96% in Res-H and Res-  
27 L, respectively. Vascular plants occurred more frequently in the drier Res-L (14%) than in the

1 wetter Res-H (4%) treatment and were dominated by woody plants (i.e. shrubs and tree  
2 seedlings) (Table 3). The cover of sedges was <1% in both restored treatments.

3 **3.3 Carbon dioxide fluxes**

4 Daytime NEE was positive indicating CO<sub>2</sub> emissions during the non-growing season months  
5 (November to April) in all three treatments (Figure 2a). During the early (i.e. June) and late (i.e.  
6 mid-August to September) summer, net CO<sub>2</sub> uptake occurred in both Res-H and Res-L with  
7 maximum rates of -42 and -41 mg C m<sup>-2</sup> h<sup>-1</sup>, respectively. However, during the warm and dry  
8 mid-summer period, CO<sub>2</sub> emissions of up to 36 and 27 mg C m<sup>-2</sup> h<sup>-1</sup> were observed in Res-H and  
9 Res-L, respectively. In contrast, NEE remained positive in BP throughout the growing season and  
10 followed the seasonal pattern of Ta with maximum emission rates of 104 mg C m<sup>-2</sup> h<sup>-1</sup> occurring  
11 in early August. The annual mean midday NEE in Res-H and Res-L were significantly lower than  
12 in BP, but not significantly different between the two restored treatments (Table 4).

13 Midday RE was similar for all treatments during the non-growing season months (Figure 2b).  
14 During the growing season, however, midday RE differed among treatments with lowest and  
15 highest RE observed in Res-H and BP, respectively. RE in Res-H and Res-L reached maximum  
16 values of 74 and 96 mg C m<sup>-2</sup> h<sup>-1</sup> during early July, respectively, whereas RE peaked at 104 mg C  
17 m<sup>-2</sup> h<sup>-1</sup> in early August in BP. The annual mean midday RE was significantly lower in Res-H and  
18 Res-L than in BP (Table 4).

19 From early June to late August, both the daytime GPP and NPP were lower (i.e. representing  
20 greater production) in the drier Res-L than in the wetter Res-H treatment (Figure 2c, d). Greatest  
21 GPP (i.e. most negative values) occurred in late June and mid-August reaching -90 and -98 mg C  
22 m<sup>-2</sup> h<sup>-1</sup> in Res-H and Res-L, respectively. GPP temporarily decreased (i.e. resulting in more  
23 positive values) to -14 and -41 mg C m<sup>-2</sup> h<sup>-1</sup> during the warm and dry mid-summer period in both  
24 Res-H and Res-L. The seasonal patterns in NPP followed closely those of GPP, reaching -65 and  
25 -68 mg C m<sup>-2</sup> h<sup>-1</sup> in Res-H and Res-L, respectively. The growing season mean GPP in Res-H (-  
26 49.3 mg C m<sup>-2</sup> h<sup>-1</sup>) was significantly higher than that in Res-L (-65.5 mg C m<sup>-2</sup> h<sup>-1</sup>) (Table 4). The  
27 difference in the growing season means of NPP in Res-H and Res-L was not statistically  
28 significant.

1 Midday Ra was more than two times greater in the drier Res-L than in the wetter Res-H treatment  
2 for most of the growing season sampling dates (Figure 2e). The seasonal pattern of Ra coincided  
3 with that of GPP in both restored treatments with greatest Ra occurring in late June and mid-  
4 August reaching maximum values of up to 27 and 36 mg C m<sup>-2</sup> h<sup>-1</sup> in Res-H and Res-L,  
5 respectively. The growing season mean Ra was significantly higher (by about two times) in Res-  
6 L than in Res-H (Table 4). The ratio of Ra to Rh was on average 0.21 and 0.42 in Res-H and Res-  
7 L, respectively.

8 Midday Rh was consistently lower in Res-H and Res-L than in BP throughout the growing  
9 season (Figure 2f). Maximum Rh of up to 61, 73 and 104 mg C m<sup>-2</sup> h<sup>-1</sup> in Res-H, Res-L and BP,  
10 respectively, were observed in early July (restored treatments) and early August (unrestored BP).  
11 The growing season mean Rh was significantly lower (by about 50%) in Res-H and Res-L than in  
12 BP (Table 4).

### 13 **3.4 Methane fluxes**

14 Throughout most of the year, CH<sub>4</sub> fluxes were observed in the range of -13 to 60 µg C m<sup>-2</sup> h<sup>-1</sup> in  
15 all three treatments (Figure 3a). Occasional peak CH<sub>4</sub> emission of up to 170 and 92 µg C m<sup>-2</sup> h<sup>-1</sup>  
16 occurred in Res-H and Res-L, respectively. During the non-growing season months, CH<sub>4</sub>  
17 exchange was variable showing both small uptake as well as large emission (-6 to 138 µg C m<sup>-2</sup>  
18 h<sup>-1</sup>). The mean annual CH<sub>4</sub> exchange was about two times greater in the wetter Res-H than in the  
19 drier Res-L treatment, however, the differences among the three treatments were not statistically  
20 significant (Table 4).

### 21 **3.5 Nitrous oxide fluxes**

22 N<sub>2</sub>O fluxes in Res-H and Res-L remained within the range of -2.8 to 25 µg N m<sup>-2</sup> h<sup>-1</sup> for most of  
23 the year (Figure 3b). In contrast, high N<sub>2</sub>O emissions of 66 to 133 µg N m<sup>-2</sup> h<sup>-1</sup> occurred during  
24 July and August in BP. The annual mean N<sub>2</sub>O exchanges of -0.12 µg N m<sup>-2</sup> h<sup>-1</sup> in Res-H and 2.13  
25 µg N m<sup>-2</sup> h<sup>-1</sup> in Res-L were not significantly different (Table 4). Meanwhile, the mean N<sub>2</sub>O  
26 exchanges in the two restored treatments were significantly lower (by 1-2 magnitudes) compared  
27 to the 27.1 µg N m<sup>-2</sup> h<sup>-1</sup> in BP (Table 4).

1    **3.6 Biotic and abiotic controls of greenhouse gas fluxes**

2    The differences in mean growing season NEE, GPP, NPP and Ra among individual collars (i.e.  
3    the spatial variability) were significantly correlated to bryophyte but not to vascular plant cover  
4    in Res-H (Table 5). In contrast, spatial variations in NEE, GPP, NPP and Ra were significantly  
5    correlated to vascular plant but not to bryophyte cover in Res-L. In addition, RE was significantly  
6    correlated to vascular plant cover in Res-L. Meanwhile, the CH<sub>4</sub> and N<sub>2</sub>O exchanges were not  
7    significantly correlated to vegetation cover neither in Res-H nor in Res-L.

8    Soil temperature measured at 10 cm depth was the abiotic variable that best explained variations  
9    in RE ( $R^2 = 0.79, 0.84$  and  $0.81$  in Res-H, Res-L and BP, respectively) in form of an exponential  
10   relationship (Figure 4) with higher temperatures resulting in higher respiration rates. The basal  
11   respiration and temperature sensitivity parameters were lowest in the wetter Res-H treatment and  
12   highest in BP.

13   N<sub>2</sub>O fluxes correlated best with volumetric water content measured at 0-5 cm soil depth in Res-L  
14   ( $R^2 = 0.60$ ) and in BP ( $R^2 = 0.39$ ) (Figure 5). In contrast, N<sub>2</sub>O fluxes were not correlated to soil  
15   volumetric water content or any other abiotic variable in Res-H. Similarly, the CH<sub>4</sub> exchange did  
16   not show any significant relationships with any abiotic variable for any of the three treatments.

17   **3.7 Annual carbon and greenhouse gas balances**

18   In the restored Res-H and Res-L treatments, the modelled annual RE estimates were 188.6 and  
19   213.2 g C m<sup>-2</sup> yr<sup>-1</sup>, respectively, whereas in the unrestored BP treatment annual RE was 267.8 g C  
20   m<sup>-2</sup> yr<sup>-1</sup> (Table 6). The annual GPP was estimated at -78.0 and -110.5 g C m<sup>-2</sup> yr<sup>-1</sup> in Res-H and  
21   Res-L, respectively. This resulted in annual net CO<sub>2</sub> exchanges of 110.6, 102.7 and 267.8 g C m<sup>-2</sup>  
22   yr<sup>-1</sup> in the wetter Res-H, drier Res-L and BP treatments, respectively. The growing season net  
23   CO<sub>2</sub> loss (i.e. NEE) represented 45 and 37% of the annual net CO<sub>2</sub> loss in Res-H and Res-L,  
24   respectively, while it accounted for 67% in BP. The additional carbon losses via CH<sub>4</sub> emission  
25   were 0.190, 0.117 and 0.137 g C m<sup>-2</sup> yr<sup>-1</sup> in Res-H, Res-L and BP, respectively. In total, all  
26   treatments acted as carbon sources, however, the annual C balance was lower in the restored Res-  
27   H (110.8 g C m<sup>-2</sup> yr<sup>-1</sup>) and Res-L (102.8 g C m<sup>-2</sup> yr<sup>-1</sup>) treatments than in the unrestored BP (268.0  
28   g C m<sup>-2</sup> yr<sup>-1</sup>) treatment. The total GHG balance, including the net CO<sub>2</sub> exchange as well as CH<sub>4</sub>

1 and N<sub>2</sub>O emissions expressed as CO<sub>2</sub> eq, was 4.14, 3.83 and 10.21 t CO<sub>2</sub> eq ha<sup>-1</sup> yr<sup>-1</sup> in Res-H,  
2 Res-L and BP, respectively (Table 6). The GHG balance was driven by the net CO<sub>2</sub> exchange (96  
3 to 98%) in all three treatments. The contribution of CH<sub>4</sub> emission was highest (2.1%) in the  
4 wetter Res-H treatment, while the contribution of N<sub>2</sub>O emission was highest (3.9%) in the  
5 unrestored BP treatment.

6

7 **4 Discussion**

8 **4.1 Greenhouse gas fluxes and their controls in restored and abandoned peat**  
9 **extraction areas**

10 **4.1.1 Coupling of water table level and vegetation dynamics**

11 Three years following restoration, contrasting vegetation communities in Res-H and Res-L had  
12 developed as a result of a mean annual WTL difference of 7 cm. Specifically, a greater cover of  
13 bryophytes (63%) (primarily *Sphagnum* spp.), which rely on capillary forces for acquiring water  
14 and thus require moist conditions (Rydin, 1985), was present in the wetter Res-H treatment. In  
15 contrast, the lower WTL in Res-L resulted in a lower bryophyte cover (44%) but greater  
16 abundance of vascular plants, likely due to the extended zone of aeration for plant roots. Apart  
17 from having roots to absorb water and nutrients from the soil, vascular plants also differ from  
18 bryophytes by having leaf stomata to regulate water transport and CO<sub>2</sub> exchange (Turner et al.,  
19 1985; Schulze et al., 1994). Thus, the establishment of contrasting vegetation communities as a  
20 result of different WTL baselines has potential implications for the biogeochemical cycles and  
21 GHG fluxes following peatland restoration (Weltzin et al., 2000).

22 **4.1.2 Carbon dioxide fluxes**

23 In this study, the significantly higher GPP in Res-L was likely due to the greater vascular plant  
24 cover compared to Res-H, since vascular plants reach higher photosynthesis rates at higher light  
25 levels compared to mosses (Bubier et al., 2003; Riutta et al., 2007a). Similarly, Strack and  
26 Zuback (2013) reported a strong correlation between vascular plant cover and GPP in a restored  
27 peatland in Canada. In return, the greater GPP also explains the higher Ra observed in Res-L

1 compared to Res-H. This highlights the implications of hydrological differences and the  
2 associated vegetation development on plant-related CO<sub>2</sub> fluxes. Furthermore, it has been  
3 suggested that the presence of vascular plants can facilitate greater survival and better growth of  
4 the re-introduced mosses as they can provide shelter from the intense solar radiation and wind  
5 and thus create a more favorable micro-climate (Ferland and Rochefort, 1997; Tuittila et al.,  
6 2000b; McNeil and Waddington, 2003; Pouliot et al., 2012). Since *Sphagnum* mosses are  
7 generally more sensitive to drought compared to vascular plants, restoration strategies allowing  
8 the development of a diverse vegetation cover (i.e. bryophytes accompanied by vascular plants)  
9 could therefore be considered to have greater potential for limiting CO<sub>2</sub> loss and regaining the C  
10 sink function (Tuittila et al., 1999). Nevertheless, despite the significant effects of the re-  
11 established WTL baseline on vegetation development and the associated CO<sub>2</sub> component fluxes  
12 (i.e. RE and GPP), the net CO<sub>2</sub> exchange of the two restored treatments was similar. Our study  
13 therefore suggests that the greater GPP was partly counterbalanced by greater Ra in Res-L  
14 compared to Res-H. However, while differences in the re-established WTL baseline had no  
15 significant effect on the CO<sub>2</sub> sink-source strength three years after restoration of the abandoned  
16 peat extraction area, vegetation characteristics are likely to further diverge in the future which  
17 might essentially result in contrasting net CO<sub>2</sub> balances over longer time spans (Weltzin et al.,  
18 2000; Yli-Petäys et al., 2007; Samaritani et al., 2011; Vanselow-Algan et al., 2015).

19 Compared to the unrestored BP treatment, growing season Rh, i.e. the decomposition of soil  
20 organic matter, was considerably reduced in the restored treatments which suggests that raising  
21 the WTL effectively mitigated C losses from the ecosystem by reducing the potential for aerobic  
22 peat decomposition (Silvola et al., 1996; Frolking et al., 2001; Whiting and Chanton, 2001).  
23 Furthermore, the significantly lower ecosystem respiration in Res-H and Res-L compared to BP  
24 demonstrates that the additional autotrophic respiration from the growing vegetation was  
25 negligible compared to the large reduction in Rh. Likewise, Strack and Zuback (2013) found a  
26 significantly lower Rh and RE in the restored compared to an unrestored site in Canada 10 years  
27 following peatland restoration. Furthermore, the lower RE in the restored treatments relative to  
28 BP might also result from the lower temperature sensitivity of Rh, i.e. soil organic matter  
29 decomposition, observed in this study which is likely due to greater oxygen limitation in the  
30 restored treatments following the raising of the WTL. Thus, our findings highlight the

1 effectiveness of raising the WTL in reducing peat decomposition and CO<sub>2</sub> emissions from  
2 drained organic soils.

3 **4.1.3 Methane fluxes**

4 Both WTL and vegetation dynamics have been previously highlighted as major controls on the  
5 CH<sub>4</sub> exchange in natural, restored and drained peatlands (Bubier, 1995; Frenzel and Karofeld,  
6 2000; Tuittila et al., 2000a; Riutta et al., 2007b; Waddington and Day, 2007; Lai, 2009; Strack et  
7 al., 2014). Specifically, the WTL determines the depth of the lower anaerobic and upper aerobic  
8 peat layers and thus the potential for CH<sub>4</sub> production and consumption occurring in these  
9 respective layers (Bubier, 1995; Tuittila et al., 2000a). The relatively low mean annual WTLs  
10 (i.e. -24, -31 and -46 cm in Res-H, Res-L and BP, respectively) might therefore explain the  
11 generally low CH<sub>4</sub> emission rates observed in our study compared to those previously reported in  
12 similar ecosystems (Tuittila et al., 2000a; Basiliko et al., 2007; Waddington and Day, 2007; Lai,  
13 2009; Vanselow-Algan et al., 2015). Nevertheless, high autumn peak emissions were observed in  
14 all treatments that might be caused by a concurrent drop in the WTL during which CH<sub>4</sub> may have  
15 been released from the pore water and emitted to the atmosphere as shown in previous studies  
16 (e.g. Windsor et al., 1992; Moore and Dalva, 1993). These episodic emission peaks indicate a  
17 potential for higher annual CH<sub>4</sub> emissions following peatland restoration than those estimated in  
18 this study.

19 Vegetation composition affects the CH<sub>4</sub> production through substrate supply (i.e. quality and  
20 quantity) (Saarnio et al., 2004; Ström et al., 2005) and by offering a direct emission pathway for  
21 CH<sub>4</sub> from the deeper anaerobic layer to the atmosphere via the aerenchymatic cell tissue of deep  
22 rooting sedge species such as *Eriophorum* spp. (Thomas et al., 1996; Frenzel and Karofeld, 2000;  
23 Ström et al., 2005; Waddington and Day, 2007). Given the considerable differences in vegetation  
24 composition, the lack of significant effects on CH<sub>4</sub> emissions among the restored and BP  
25 treatments in our study was surprising. Most likely, similar CH<sub>4</sub> emissions in Res-H and Res-L  
26 were the result of opposing effects counterbalancing the production and consumption of CH<sub>4</sub>. For  
27 instance, enhanced anaerobic CH<sub>4</sub> production due to higher WTL in Res-H could have been  
28 partly compensated by greater CH<sub>4</sub> oxidation within or immediately below the more developed  
29 moss layer (Frenzel and Karofeld, 2000; Basiliko et al., 2004; Larmola et al., 2010). In Res-L on

1 the other hand, greater vascular plant substrate supply might have sustained substantial CH<sub>4</sub>  
2 production despite a reduction of the anaerobic zone (Tuittila et al., 2000a; Weltzin et al., 2000).  
3 Also noteworthy is that, while very few aerenchymatic sedge species (e.g. *Eriophorum*  
4 *vaginatum*) were established at the time of this study, a future increase in the sedge cover is likely  
5 to occur (Tuittila et al., 2000a; Weltzin et al., 2000; Vanselow-Algan et al., 2015) which could  
6 considerably increase the CH<sub>4</sub> emission in the restored treatments over longer time spans.  
7 Overall, the potential effects from enhanced anaerobic conditions due to the raised WTL, CH<sub>4</sub>  
8 oxidation in the moss layer or greater vascular plant substrate supply on the net CH<sub>4</sub> fluxes were  
9 small, considering that CH<sub>4</sub> emissions were not significantly different from those in BP which  
10 was characterized by a considerably lower WTL and absence of vegetation. Thus, our study  
11 suggests that in non-flooded conditions WTL changes following peatland restoration have a  
12 limited effect on the CH<sub>4</sub> emissions during the initial few years.

#### 13 **4.1.4 Nitrous oxide fluxes**

14 Soil moisture and WTL effects on the soil oxygen status have been previously identified as the  
15 main control on N<sub>2</sub>O emissions from pristine and drained peatlands (Firestone and Davidson,  
16 1989; Martikainen et al., 1993; Klemedtsson et al., 2005). Highest N<sub>2</sub>O emissions commonly  
17 occur in mesic soils with intermediate water table levels, which allows both aerobic and  
18 anaerobic N<sub>2</sub>O production during nitrification and denitrification, respectively, while avoiding  
19 the anaerobic reduction of N<sub>2</sub>O to N<sub>2</sub> (Firestone and Davidson, 1989; Martikainen et al., 1993).  
20 In addition, substrate supply (i.e. C and inorganic N) is a key prerequisite for N<sub>2</sub>O production  
21 (Firestone and Davidson, 1989). In our study, similar N<sub>2</sub>O fluxes in the two restored treatments  
22 therefore suggest that the differences in WTL, soil moisture and substrate supply from  
23 mineralization of organic matter were too small to affect the magnitudes of N<sub>2</sub>O emission three  
24 years following restoration with different WTL baselines. On the other hand, the enhanced  
25 anaerobic conditions due to higher WTL as well as lower soil N concentrations due to reduced  
26 mineralization and enhanced plant N uptake might explain both the reduced N<sub>2</sub>O emissions and  
27 their lower sensitivity to soil moisture in the restored Res-H and Res-L treatments compared to  
28 BP. Thus, peatland restoration has the potential for reducing the N<sub>2</sub>O emissions commonly  
29 occurring in drained, abandoned peatlands by altering both soil hydrology and N substrate  
30 supply.

1    **4.2 The carbon and greenhouse gas balances of restored and abandoned peat**  
2    **extraction areas**

3    Both restored treatments were C sources during the growing season which indicates that the CO<sub>2</sub>  
4    uptake by the re-established vegetation was not able to compensate for the C losses via  
5    respiration and CH<sub>4</sub> emissions three years following restoration. Several studies have previously  
6    reported estimates for the growing season C sink-source strength of restored peatlands, with  
7    contrasting findings owing to different restoration techniques, environmental conditions during  
8    the study year and time passed since the initiation of the restoration (Tuittila et al., 1999;  
9    Bortoluzzi et al., 2006; Yli-Petäys et al., 2007; Waddington et al., 2010; Samaritani et al., 2011;  
10   Strack et al., 2014). For instance, restored peatlands in Finland (Tuittila et al., 1999) and Canada  
11   (Waddington et al., 2010; Strack et al., 2014) were C sinks during the growing season three to six  
12   years after restoration. In contrast, other studies suggested that several decades may be required  
13   before restored peatlands resume their functioning as C sinks (Yli-Petäys et al., 2007; Samaritani  
14   et al., 2011). However, while growing season studies can provide important information on  
15   processes governing the fluxes, it is necessary to quantify and compare full annual budgets to  
16   better evaluate the climate benefits of peatland restoration relative to abandoned peatland areas  
17   (and other after-use options, e.g. afforestation or energy crop cultivation).

18   In our study, the annual C source strength of the two restored treatments and the bare peat site  
19   was about 1.5 to 2.5 times greater than on the growing season scale. This highlights the  
20   importance of accounting for the considerable non-growing season emissions when evaluating  
21   the C sink potential of restored peatlands. In comparison, the annual C source strength of the two  
22   restored treatments (111 and 103 g C m<sup>-2</sup> yr<sup>-1</sup>) was lower than the annual emissions of 148 g C m<sup>-2</sup>  
23   yr<sup>-1</sup> reported for a restored cutaway peatland in Canada 10 years following restoration (Strack  
24   and Zuback, 2013). Similarly, the C balance of BP (268 g C m<sup>-2</sup> yr<sup>-1</sup>) in our study was about half  
25   of the 547 g C m<sup>-2</sup> yr<sup>-1</sup> emitted at the Canadian unrestored site. However, high emissions in the  
26   study of Strack and Zuback (2013) were partly attributed to the dry conditions during the study  
27   year. Thus, this indicates that restored peatlands are unlikely to provide an annual C sink during  
28   the first decade following restoration of peat extraction sites. However, compared to naturally re-  
29   vegetating peatlands which may require 20-50 years to reach a neutral or negative C balance  
30   (Bortoluzzi et al., 2006; Yli-Petäys et al., 2007; Samaritani et al., 2011), initiating the restoration

1 by rewetting in combination with re-introduction of peatland vegetation might reduce the time  
2 required for the ecosystem to return to being a C sink similar to that of a natural peatland (Tuittila  
3 et al., 2004; Roulet et al., 2007; Nilsson et al., 2008).

4 The similar GHG balances in the two restored treatments Res-H and Res-L suggest that the  
5 differences in the mean WTL had a limited effect on the GHG balance within the few years  
6 following restoration of the peat extraction area. Moreover, the GHG balances in the restored  
7 treatments were driven primarily by the net CO<sub>2</sub> exchange, while the contribution of CH<sub>4</sub> and  
8 N<sub>2</sub>O exchanges remained minor in our study. In contrast, 30 years after rewetting of a German  
9 bog, high CH<sub>4</sub> emission were reported as the main component of the GHG balance (Vanselow-  
10 Algan et al., 2015). The same study also reported GHG balances ranging from 25-53 t CO<sub>2</sub> eq ha<sup>-1</sup>  
11 yr<sup>-1</sup> which are considerably higher compared to our study. This indicates that the GHG balances  
12 of restored peatlands may vary greatly over longer time spans. Moreover, this also suggests the  
13 GHG balance of peatland restoration with differing WTL baselines is likely to further diverge  
14 over time due to contrasting trajectories in vegetation development and changes in soil  
15 biogeochemistry (e.g. pH, nutrient contents and soil moisture dynamics).

16 While the two restored treatments had similar GHG balances, the difference between the GHG  
17 balances in restored and BP treatments was considerable. Only three years following restoration,  
18 the GHG balance in the restored treatments was reduced to about half of that in BP. This  
19 reduction was mainly due to lower annual CO<sub>2</sub> emissions (i.e. lower NEE) in the restored  
20 treatments compared to BP likely as a result of increased WTL and vegetation development. In  
21 addition, annual N<sub>2</sub>O emissions were also significantly reduced in the restored treatments,  
22 although, compared to the differences in the CO<sub>2</sub> balance, the impact of the reduction in N<sub>2</sub>O  
23 emissions on the GHG balance was relatively small. Overall, our study suggests that peatland  
24 restoration may provide an effective method to mitigate the negative climate impacts of  
25 abandoned peat extraction areas in the short-term. However, due to the lack of long-term  
26 observations and recent reports of potential high CH<sub>4</sub> emissions occurring several decades after  
27 rewetting (Yli-Petäys et al., 2007; Vanselow-Algan et al., 2015), it remains uncertain whether  
28 restoration of abandoned peat extraction areas may also provide an after-use solution with climate  
29 mitigation potential in the long-term.

30

1    **5 Conclusions**

2    We found that differences in the re-established WTL strongly affected the vegetation  
3    communities following restoration of the abandoned peat extraction area. Furthermore, the  
4    difference in vegetation cover and composition was identified as the main control of within- and  
5    between-site variations in GPP, NPP and plant respiration. We therefore conclude that variations  
6    in WTL baselines may have important implications for plant-related CO<sub>2</sub> fluxes in restored  
7    peatlands. In contrast, differences in the WTL baseline had only small effects on the net CO<sub>2</sub>  
8    exchange due to the concurrent changes in plant production and respiration in the wet and dry  
9    restoration treatments. Moreover, since CH<sub>4</sub> and N<sub>2</sub>O exchanges were also similar in the two  
10   restored treatments, this study suggests that differing water table levels had a limited impact on  
11   the C and GHG balances three years following restoration. Furthermore, we observed a  
12   considerable reduction of heterotrophic respiration in the restored treatments which advocates  
13   rewetting as an effective method to reduce aerobic organic matter decomposition in drained  
14   peatlands. In contrast, our study suggests that the effects of rewetting on CH<sub>4</sub> fluxes were  
15   negligible three years following restoration. However, rewetting reduced the N<sub>2</sub>O emissions by 1-  
16   2 magnitudes which indicates a high potential of peatland restoration in reducing the N<sub>2</sub>O  
17   emissions commonly occurring in drained peatlands. Three years following restoration, the C and  
18   GHG balances of the restored treatments were reduced by approximately half relative to those of  
19   the abandoned bare peat area. We therefore conclude that peatland restoration may effectively  
20   mitigate the negative climate impacts of abandoned peat extraction areas; however, longer time  
21   spans may be needed to return these sites into net C sinks.

22

23    **Acknowledgements**

24    This study was supported by the European Regional Development Fund (Centre of Excellence in  
25   Environmental Adaption ENVIRON and Centre of Excellence in Biodiversity Research FIBIR),  
26   by the Ministry of Education and Research of the Republic of Estonia (grants IUT2-16, IUT34-7  
27   and IUT34-9) and by the Estonian Environmental Observatory Biosphere-Atmosphere Science  
28   and Development Programme: BioAtmos (KESTA, SLOOM12022T). We would like to thank  
29   Eeva-Stiina Tuittila for her valuable comments on the original manuscript version.

30

1 **References**

2 Basiliko, N., Knowles, R. and Moore, T. R.: Roles of moss species and habitat in methane  
3 consumption potential in a northern peatland, *Wetlands*, 24(1), 178–185, doi:10.1672/0277-  
4 5212(2004)024[0178:ROMSAH]2.0.CO;2, 2004.

5 Basiliko, N., Blodau, C., Roehm, C., Bengtson, P. and Moore, T. R.: Regulation of  
6 Decomposition and Methane Dynamics across Natural, Commercially Mined, and Restored  
7 Northern Peatlands, *Ecosystems*, 10(7), 1148–1165, 2007.

8 Bortoluzzi, E., Epron, D., Siegenthaler, A., Gilbert, D. and Buttler, A.: Carbon balance of a  
9 European mountain bog at contrasting stages of regeneration, *New Phytol.*, 172(4), 708–718,  
10 doi:10.1111/j.1469-8137.2006.01859.x, 2006.

11 Bubier, J., Crill, P., Mosedale, A., Frolking, S. and Linder, E.: Peatland responses to varying  
12 interannual moisture conditions as measured by automatic CO<sub>2</sub> chambers, *Glob. Biogeochem.*  
13 *Cycles*, 17(2), 1066, doi:10.1029/2002GB001946, 2003.

14 Bubier, J. L.: The Relationship of Vegetation to Methane Emission and Hydrochemical Gradients  
15 in Northern Peatlands, *J. Ecol.*, 83(3), 403, doi:10.2307/2261594, 1995.

16 Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M.,  
17 Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A.,  
18 Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z.  
19 C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le  
20 Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare,  
21 N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Välimäki, M.,  
22 van Bellen, S., van Geel, B., Vitt, D. H. and Zhao, Y.: Climate-related changes in peatland carbon  
23 accumulation during the last millennium, *Biogeosciences*, 10(2), 929–944, doi:10.5194/bg-10-  
24 929-2013, 2013.

25 Clymo, R.: in Peat. In: *Ecosystems of the world. 4A. Mires: swamp, bog, fen and moor. General*  
26 *studies*. Gore, AJP (Ed.), Elsevier, Amsterdam, pp.159-224., Elsevier Scientific Publishing Co.,  
27 Amsterdam, Oxford, New York., 1983.

28 Ferland, C. and Rocheleau, L.: Restoration techniques for *Sphagnum*-dominated peatlands, *Can. J.*  
29 *Bot.*, 75(7), 1110–1118, doi:10.1139/b97-122, 1997.

30 Firestone, M. and Davidson, E.: Microbiological Basis of NO and N<sub>2</sub>O Production and  
31 Consumption in Soil, edited by M. Andreae and D. Schimel, John Wiley & Sons Ltd, Chichester.,  
32 1989.

33 Frenzel, P. and Karofeld, E.: CH<sub>4</sub> emission from a hollow-ridge complex in a raised bog: The  
34 role of CH<sub>4</sub> production and oxidation, *Biogeochemistry*, 51(1), 91–112,  
35 doi:10.1023/A:1006351118347, 2000.

36 Frolking, S., Roulet, N. T., Moore, T. R., Richard, P. J. H., Lavoie, M. and Muller, S. D.:  
37 Modeling Northern Peatland Decomposition and Peat Accumulation, *Ecosystems*, 4(5), 479–498,  
38 doi:10.1007/s10021-001-0105-1, 2001.

39 Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic

1 Warming, Ecol. Appl., 1(2), 182–195, doi:10.2307/1941811, 1991.

2 Graf, M. and Rochefort, L.: Examining the Peat-Accumulating Potential of Fen Vegetation in the  
3 Context of Fen Restoration of Harvested Peatlands, Ecoscience, 16(2), 158–166, doi:10.2980/16-  
4 2-3128, 2009.

5 IPCC: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment  
6 Report of the Intergovernmental Panel on Climate Change, edited by: Stocker TF, Qin D, Plattner  
7 G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Cambridge  
8 University Press, Cambridge., 2013.

9 Joosten, H. and Clarke, D.: Wise use of mires and peatlands: background and principles including  
10 a framework for decision-making. International Mire Conservation Group and Internatonal Peat  
11 Society, 304 pp, 2002.

12 Karofeld, E., Müür, M. and Vellak, K.: Factors affecting re-vegetation dynamics of  
13 experimentally restored extracted peatland in Estonia, Environ. Sci. Pollut. Res.,  
14 doi:10.1007/s11356-015-5396-4, 2015, (available online).

15 Klemedtsson, L., Von Arnold, K., Weslien, P. and Gundersen, P.: Soil CN ratio as a scalar  
16 parameter to predict nitrous oxide emissions, Glob. Change Biol., 11(7), 1142–1147,  
17 doi:10.1111/j.1365-2486.2005.00973.x, 2005.

18 Lai, D. Y. F.: Methane Dynamics in Northern Peatlands: A Review, Pedosphere, 19(4), 409–421,  
19 2009.

20 Lamers, L. P. M., Vile, M. A., Grootjans, A. P., Acreman, M. C., van Diggelen, R., Evans, M. G.,  
21 Richardson, C. J., Rochefort, L., Kooijman, A. M., Roelofs, J. G. M. and Smolders, A. J. P.:  
22 Ecological restoration of rich fens in Europe and North America: from trial and error to an  
23 evidence-based approach, Biol. Rev. Camb. Philos. Soc., 90(1), 182–203, doi:10.1111/brv.12102,  
24 2015.

25 Larmola, T., Tuittila, E.-S., Tiirola, M., Nykänen, H., Martikainen, P. J., Yrjälä, K., Tuomivirta,  
26 T. and Fritze, H.: The role of *Sphagnum* mosses in the methane cycling of a boreal mire,  
27 Ecology, 91(8), 2356–2365, doi:10.1890/09-1343.1, 2010.

28 Loftfield, N., Flessa, H., Augustin, J. and Beese, F.: Automated Gas Chromatographic System for  
29 Rapid Analysis of the Atmospheric Trace Gases Methane, Carbon Dioxide, and Nitrous Oxide, J.  
30 Environ. Qual., 26(2), 560, doi:10.2134/jeq1997.00472425002600020030x, 1997.

31 Maljanen, M., Sigurdsson, B. D., Guðmundsson, J., Óskarsson, H., Huttunen, J. T. and  
32 Martikainen, P. J.: Greenhouse gas balances of managed peatlands in the Nordic countries –  
33 present knowledge and gaps, Biogeosciences, 7(9), 2711–2738, doi:10.5194/bg-7-2711-2010,  
34 2010.

35 Martikainen, P. J., Nykänen, H., Crill, P. and Silvola, J.: Effect of a lowered water table on  
36 nitrous oxide fluxes from northern peatlands, Nature, 366(6450), 51–53, doi:10.1038/366051a0,  
37 1993.

38 McNeil, P. and Waddington, J. M.: Moisture controls on *Sphagnum* growth and CO<sub>2</sub> exchange on  
39 a cutover bog, J. Appl. Ecol., 40(2), 354–367, doi:10.1046/j.1365-2664.2003.00790.x, 2003.

40 Moore, T. R. and Dalva, M.: The influence of temperature and water table position on carbon

1 dioxide and methane emissions from laboratory columns of peatland soils, *J. Soil Sci.*, 44(4),  
2 651–664, doi:10.1111/j.1365-2389.1993.tb02330.x, 1993.

3 Nilsson, M., Sagerfors, J., Buffam, I., Laudon, H., Eriksson, T., Grelle, A., Klemedtsson, L.,  
4 Weslien, P. and Lindroth, A.: Contemporary carbon accumulation in a boreal oligotrophic  
5 minerogenic mire – a significant sink after accounting for all C-fluxes, *Glob. Change Biol.*,  
6 14(10), 2317–2332, doi:10.1111/j.1365-2486.2008.01654.x, 2008.

7 Pouliot, R., Rochefort, L. and Karofeld, E.: Initiation of microtopography in re-vegetated cutover  
8 peatlands: evolution of plant species composition, *Appl. Veg. Sci.*, 15(3), 369–382,  
9 doi:10.1111/j.1654-109X.2011.01164.x, 2012.

10 Quinty, F. and Rochefort, L.: Peatland Resoration Guide: Second Edition, Canadian Sphagnum  
11 Peat Moss Association and New Brunswick Department of Natural Resources and Energy., 2003.

12 Regina, K., Nykänen, H., Silvola, J. and Martikainen, P. J.: Fluxes of nitrous oxide from boreal  
13 peatlands as affected by peatland type, water table level and nitrification capacity,  
14 *Biogeochemistry*, 35(3), 401–418, doi:10.1007/BF02183033, 1996.

15 Riutta, T., Laine, J. and Tuittila, E.-S.: Sensitivity of CO<sub>2</sub> Exchange of Fen Ecosystem  
16 Components to Water Level Variation, *Ecosystems*, 10(5), 718–733, doi:10.1007/s10021-007-  
17 9046-7, 2007a.

18 Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T., Laurila, T., Haapanala, S., Pihlatie, M. and  
19 Tuittila, E.-S.: Spatial variation in plant community functions regulates carbon gas dynamics in a  
20 boreal fen ecosystem, *Tellus B*, 59(5), doi:10.3402/tellusb.v59i5.17063, 2007b.

21 Rochefort, L. and Lode, E.: Restoration of Degraded Boreal Peatlands, in *Boreal Peatland  
22 Ecosystems*, edited by K. Wieder and D. Vitt, pp. 381–423, Springer Berlin Heidelberg, 2006.

23 Roobroeck, D., Butterbach-Bahl, K., Brüggemann, N. and Boeckx, P.: Dinitrogen and nitrous  
24 oxide exchanges from an undrained monolith fen: short-term responses following nitrate  
25 addition, *Eur. J. Soil Sci.*, 61(5), 662–670, doi:10.1111/j.1365-2389.2010.01269.x, 2010.

26 Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys, E. R. and Bubier, J.:  
27 Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland,  
28 *Glob. Change Biol.*, 13(2), 397–411, doi:10.1111/j.1365-2486.2006.01292.x, 2007.

29 Rydin, H.: Effect of Water Level on Desiccation of Sphagnum in Relation to Surrounding  
30 Sphagna, *Oikos*, 45(3), 374–379, doi:10.2307/3565573, 1985.

31 Saarnio, S., Wittenmayer, L. and Merbach, W.: Rhizospheric exudation of *Eriophorum  
32 vaginatum* L. — Potential link to methanogenesis, *Plant Soil*, 267(1-2), 343–355,  
33 doi:10.1007/s11104-005-0140-3, 2004.

34 Samaritani, E., Siegenthaler, A., Yli-Petäys, M., Buttler, A., Christin, P.-A. and Mitchell, E. A.  
35 D.: Seasonal Net Ecosystem Carbon Exchange of a Regenerating Cutaway Bog: How Long Does  
36 it Take to Restore the C-Sequestration Function?, *Restor. Ecol.*, 19(4), 480–489,  
37 doi:10.1111/j.1526-100X.2010.00662.x, 2011.

38 Schulze, E., Kelliher, F. M., Korner, C., Lloyd, J. and Leuning, R.: Relationships among  
39 Maximum Stomatal Conductance, Ecosystem Surface Conductance, Carbon Assimilation Rate,  
40 and Plant Nitrogen Nutrition: A Global Ecology Scaling Exercise, *Annu. Rev. Ecol. Syst.*, 25(1),

1 629–662, doi:10.1146/annurev.es.25.110194.003213, 1994.

2 Silvan, N., Tuittila, E.-S., Kitunen, V., Vasander, H. and Laine, J.: Nitrate uptake by *Eriophorum*  
3 *vaginatum* controls N<sub>2</sub>O production in a restored peatland, *Soil Biol. Biochem.*, 37(8), 1519–  
4 1526, doi:10.1016/j.soilbio.2005.01.006, 2005.

5 Silvola, J., Alm, J., Ahlholm, U., Nykanen, H. and Martikainen, P. J.: CO<sub>2</sub> fluxes from peat in  
6 boreal mires under varying temperature and moisture conditions, *J. Ecol.*, 84(2), 219–228,  
7 doi:10.2307/2261357, 1996.

8 Strack, M. and Zuback, Y. C. A.: Annual carbon balance of a peatland 10 yr following  
9 restoration, *Biogeosciences*, 10(5), 2885–2896, doi:10.5194/bg-10-2885-2013, 2013.

10 Strack, M., Keith, A. M. and Xu, B.: Growing season carbon dioxide and methane exchange at a  
11 restored peatland on the Western Boreal Plain, *Ecol. Eng.*, 64, 231–239,  
12 doi:10.1016/j.ecoleng.2013.12.013, 2014.

13 Ström, L., Mastepanov, M. and Christensen, T. R.: Species-specific Effects of Vascular Plants on  
14 Carbon Turnover and Methane Emissions from Wetlands, *Biogeochemistry*, 75(1), 65–82,  
15 doi:10.1007/s10533-004-6124-1, 2005.

16 Thomas, K. L., Benstead, J., Davies, K. L. and Lloyd, D.: Role of wetland plants in the diurnal  
17 control of CH<sub>4</sub> and CO<sub>2</sub> fluxes in peat, *Soil Biol. Biochem.*, 28(1), 17–23, doi:10.1016/0038-  
18 0717(95)00103-4, 1996.

19 Tuittila, E.-S., Komulainen, V.-M., Vasander, H. and Laine, J.: Restored cut-away peatland as a  
20 sink for atmospheric CO<sub>2</sub>, *Oecologia*, 120(4), 563–574, doi:10.1007/s004420050891, 1999.

21 Tuittila, E.-S., Komulainen, V.-M., Vasander, H., Nykänen, H., Martikainen, P. J. and Laine, J.:  
22 Methane dynamics of a restored cut-away peatland, *Glob. Change Biol.*, 6(5), 569–581,  
23 doi:10.1046/j.1365-2486.2000.00341.x, 2000a.

24 Tuittila, E.-S., Rita, H., Vasander, H. and Laine, J.: Vegetation patterns around *Eriophorum*  
25 *vaginatum* L. tussocks in a cut-away peatland in southern Finland, *Can. J. Bot.*, 78(1), 47–58,  
26 doi:10.1139/b99-159, 2000b.

27 Tuittila, E. S., Vasander, H. and Laine, J.: Sensitivity of C sequestration in reintroduced  
28 *Sphagnum* to water-level variation in a cutaway peatland, *Restor. Ecol.*, 12(4), 483–493,  
29 doi:10.1111/j.1061-2971.2004.00280.x, 2004.

30 Turner, N. C., Schulze, E.-D. and Gollan, T.: The responses of stomata and leaf gas exchange to  
31 vapour pressure deficits and soil water content, *Oecologia*, 65(3), 348–355,  
32 doi:10.1007/BF00378908, 1985.

33 Turunen, J., Tomppo, E., Tolonen, K. and Reinikainen, A.: Estimating carbon accumulation rates  
34 of undrained mires in Finland—application to boreal and subarctic regions, *The Holocene*, 12(1),  
35 69–80, doi:10.1191/0959683602hl522rp, 2002.

36 Vanselow-Algan, M., Schmidt, S. R., Greven, M., Fiencke, C., Kutzbach, L. and Pfeiffer, E.-M.:  
37 High methane emissions dominate annual greenhouse gas balances 30 years after bog rewetting,  
38 *Biogeosciences*, 12(3), 2809–2842, doi: 10.5194/bg-12-4361-2015, 2015.

39 Vasander, H., Tuittila, E.-S., Lode, E., Lundin, L., Ilomets, M., Sallantaus, T., Heikkilä, R.,

1 Pitkänen, M.-L. and Laine, J.: Status and restoration of peatlands in northern Europe, *Wetl. Ecol. Manag.*, 11(1-2), 51–63, doi:10.1023/A:1022061622602, 2003.

3 Vitt, D. H., Halsey, L. A., Bauer, I. E. and Campbell, C.: Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene, *Can. J. Earth Sci.*, 37(5), 683–693, doi:10.1139/e99-097, 2000.

6 Waddington, J. M. and Day, S. M.: Methane emissions from a peatland following restoration, *J. Geophys. Res. Biogeosciences*, 112(G3), G03018, doi:10.1029/2007JG000400, 2007.

8 Waddington, J. M. and Warner, K. D.: Atmospheric CO<sub>2</sub> sequestration in restored mined peatlands, *Ecoscience*, 8(3), 359–368, 2001.

10 Waddington, J. M., Strack, M. and Greenwood, M. J.: Toward restoring the net carbon sink function of degraded peatlands: Short-term response in CO<sub>2</sub> exchange to ecosystem-scale restoration, *J. Geophys. Res. Biogeosciences*, 115(G1), G01008, doi:10.1029/2009JG001090, 2010.

14 Weltzin, J. F., Pastor, J., Harth, C., Bridgham, S. D., Updegraff, K. and Chapin, C. T.: Response of bog and fen plant communities to warming and water-table manipulations, *Ecology*, 81(12), 3464–3478, doi:10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2, 2000.

17 Whiting, G. J. and Chanton, J. P.: Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration, *Tellus B*, 53(5), doi:10.3402/tellusb.v53i5.16628, 2001.

19 Windsor, J., Moore, T. R. and Roulet, N. T.: Episodic fluxes of methane from subarctic fens, *Can. J. Soil Sci.*, 72(4), 441–452, doi:10.4141/cjss92-037, 1992.

21 Yli-Petäys, M., Laine, J., Vasander, H. and Tuittila, E.-S.: Carbon gas exchange of a re-vegetated cut-away peatland five decades after abandonment, *Boreal Environ. Res.*, 12(2), 177–190, 2007.

23

24

1 Table 1. Soil properties in restoration treatments with high (Res-H) and low (Res-L) water table  
2 level and bare peat (BP); numbers in parenthesis indicate standard error.

| Soil property                      | Res-H        | Res-L        | BP           |
|------------------------------------|--------------|--------------|--------------|
| pH                                 | 4.0 (0.07)   | 3.9 (0.07)   | 3.9 (0.06)   |
| Bulk density (g cm <sup>-3</sup> ) | 0.08 (0.002) | 0.09 (0.003) | 0.13 (0.004) |
| C (%)                              | 49 (0.6)     | 50 (0.3)     | 48 (0.6)     |
| N (%)                              | 0.61 (0.04)  | 0.76 (0.05)  | 0.85 (0.04)  |
| C/N                                | 80.3         | 65.8         | 56.5         |
| P (mg g <sup>-1</sup> )            | 0.2 (0.03)   | 0.2 (0.02)   | 0.4 (0.03)   |
| K (mg g <sup>-1</sup> )            | 0.2 (0.007)  | 0.2 (0.003)  | 0.1 (0.004)  |
| Ca (mg g <sup>-1</sup> )           | 2.1 (0.07)   | 2.1 (0.07)   | 3.4 (0.23)   |
| S (mg g <sup>-1</sup> )            | 0.9 (0.12)   | 1.0 (0.05)   | 1.4 (0.09)   |

3

1 Table 2. Parameters for the gross primary production (GPP) and ecosystem respiration (RE)  
 2 models in restoration treatments with high (Res-H) and low (Res-L) water table level and bare  
 3 peat (BP);  $\alpha$  is the quantum use efficiency of photosynthesis (mg C  $\mu\text{mol photon}^{-1}$ ),  $A_{max}$  is the  
 4 maximum rate of photosynthesis at light saturation (mg C  $\text{m}^{-2} \text{h}^{-1}$ );  $WTL_{opt}$  is the WTL at which  
 5 maximum photosynthetic activity occurs;  $WTL_{tol}$  is the tolerance, i.e. the width of the Gaussian  
 6 response curve of GPP to WTL;  $R_0$  is the soil respiration (mg C  $\text{m}^{-2} \text{h}^{-1}$ ) at 0 °C,  $b$  is the  
 7 sensitivity of respiration to air temperature; numbers in parenthesis indicate standard error; Adj.  
 8  $R^2$  = adjusted  $R^2$ .

| Model parameter | Res-H         | Res-L         | BP            |
|-----------------|---------------|---------------|---------------|
| GPP model       |               |               |               |
| $\alpha$        | -0.20 (0.07)  | -0.23 (0.07)  | n.a.          |
| $A_{max}$       | -98.0 (39.9)  | -121.9 (43.4) | n.a.          |
| $WTL_{opt}$     | -18.7 (8.4)   | -24.9 (6.4)   | n.a.          |
| $WTL_{tol}$     | 16.4 (10.0)   | 21.0 (9.7)    | n.a.          |
| Adj. $R^2$      | 0.58          | 0.61          | n.a.          |
| RE model        |               |               |               |
| $R_0$           | 13.0 (1.5)    | 13.4 (1.5)    | 18.6 (2.7)    |
| $b$             | 0.056 (0.005) | 0.064 (0.005) | 0.055 (0.005) |
| Adj. $R^2$      | 0.62          | 0.71          | 0.60          |

9 n.a. = not applicable  
 10

1 Table 3. Vegetation cover (%) inside the collars for greenhouse gas flux measurements in  
2 restoration treatments with high (Res-H) and low (Res-L) water table level. Total surface cover  
3 represents the area of bare peat surface re-colonized by vegetation; numbers in parenthesis  
4 indicate the range among individual collars.

| Species                   | Res-H         | Res-L         |
|---------------------------|---------------|---------------|
| Bryophytes                | 62 (32 to 93) | 44 (15 to 74) |
| <i>Sphagnum</i> mosses    | 61 (31 to 91) | 43 (12 to 70) |
| Vascular plants           | 4 (2 to 9)    | 14 (5 to 22)  |
| Shrubs and tree seedlings | 2 (0 to 7)    | 13 (5 to 22)  |
| Sedges                    | < 1           | < 1           |
| Total surface cover       | 63 (35 to 95) | 52 (20 to 85) |

5

6

1 Table 4. Means of measured  $\text{CO}_2$  fluxes ( $\text{mg C m}^{-2} \text{ h}^{-1}$ ) including net ecosystem exchange (NEE),  
 2 ecosystem respiration (RE), gross primary production (GPP), net primary production (NPP),  
 3 autotrophic respiration (Ra) and heterotrophic respiration (Rh) as well as means of measured  
 4 methane ( $\text{CH}_4$ ;  $\mu\text{g C m}^{-2} \text{ h}^{-1}$ ) and nitrous oxide ( $\text{N}_2\text{O}$ ;  $\mu\text{g N m}^{-2} \text{ h}^{-1}$ ) fluxes in restoration  
 5 treatments with high (Res-H) and low (Res-L) water table level and bare peat (BP). Negative and  
 6 positive fluxes represent uptake and emission, respectively. Numbers in parenthesis indicate  
 7 standard error; different letters indicate significant ( $P < 0.05$ ) differences among treatments.

| Component flux       | Res-H                     | Res-L                    | BP                       |
|----------------------|---------------------------|--------------------------|--------------------------|
| NEE                  | 0.57 (4.9) <sup>c</sup>   | -2.82 (4.9) <sup>c</sup> | 44.9 (8.2) <sup>ab</sup> |
| RE                   | 29.9 (5.1) <sup>c</sup>   | 35.1 (6.4) <sup>c</sup>  | 44.9 (8.2) <sup>ab</sup> |
| GPP*                 | -49.3 (7.4) <sup>a</sup>  | -65.5 (7.3) <sup>b</sup> | n.a.                     |
| NPP*                 | -41.5 (5.3)               | -48.1 (4.2)              | n.a.                     |
| Ra*                  | 7.9 (2.6) <sup>a</sup>    | 16.2 (3.4) <sup>b</sup>  | n.a.                     |
| Rh*                  | 37.0 (5.1) <sup>c</sup>   | 38.5 (5.9) <sup>c</sup>  | 71.2 (8.4) <sup>ab</sup> |
| $\text{CH}_4$        | 23.0 (10.7)               | 10.9 (6.1)               | 14.7 (3.7)               |
| $\text{N}_2\text{O}$ | -0.12 (0.25) <sup>c</sup> | 2.13 (1.29) <sup>c</sup> | 27.1 (9.1) <sup>ab</sup> |

8 \* Growing season mean (May 1 to October 31)

9 n.a. = not applicable

10

1 Table 5. Correlation coefficients of vegetation (bryophytes and vascular plants) cover (%) with mean growing season CO<sub>2</sub> fluxes  
 2 including the net ecosystem CO<sub>2</sub> exchange (NEE), ecosystem respiration (RE), gross primary production (GPP), net primary  
 3 production (NPP) and autotrophic respiration (Ra) and with mean growing season methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) fluxes in  
 4 restoration treatments with high (Res-H) and low (Res-L) water table level. Total vegetation represents the sum of bryophyte and  
 5 vascular plant cover; significant correlations are marked with asterisks (\* indicates  $P < 0.05$  and \*\* indicates  $P < 0.01$ ).

| Vegetation cover | Res-H   |      |         |        |        |                 |                  | Res-L   |        |         |         |       |                 |                  |
|------------------|---------|------|---------|--------|--------|-----------------|------------------|---------|--------|---------|---------|-------|-----------------|------------------|
|                  | NEE     | RE   | GPP     | NPP    | Ra     | CH <sub>4</sub> | N <sub>2</sub> O | NEE     | RE     | GPP     | NPP     | Ra    | CH <sub>4</sub> | N <sub>2</sub> O |
| Bryophytes       | -0.95** | 0.74 | -0.95** | -0.84* | 0.97** | -0.53           | -0.56            | -0.75   | 0.67   | -0.81*  | -0.70   | 0.78  | -0.33           | -0.34            |
| Vascular plants  | -0.70   | 0.49 | -0.76   | -0.68  | 0.60   | -0.07           | -0.05            | -0.92** | 0.93** | -0.97** | -0.93** | 0.89* | 0.13            | 0.22             |
| Total vegetation | -0.95** | 0.74 | -0.95** | -0.84* | 0.96** | -0.50           | -0.53            | -0.82*  | 0.72   | -0.84*  | -0.75   | 0.88* | -0.21           | -0.19            |

6

1 Table 6. Growing season (GS; May 1 to October 31) and annual (A) sums of the carbon  
 2 balance components ( $\text{g C m}^{-2}$ ) including gross primary production (GPP), ecosystem  
 3 respiration (RE), net ecosystem exchange (NEE) of  $\text{CO}_2$ , and methane ( $\text{CH}_4$ ) fluxes as well as  
 4 of the greenhouse gas (GHG) balance components ( $\text{t CO}_2 \text{ eq ha}^{-1}$ ) including NEE,  $\text{CH}_4$  and  
 5 nitrous oxide ( $\text{N}_2\text{O}$ ) exchanges (using global warming potentials of 34 and 298 for  $\text{CH}_4$  and  
 6  $\text{N}_2\text{O}$ , respectively) in restoration treatments with high (Res-H) and low (Res-L) water table  
 7 level and bare peat (BP). Negative and positive fluxes represent uptake and emission,  
 8 respectively.

| Component flux                 | Res-H |       | Res-L  |        | BP                 |                    |
|--------------------------------|-------|-------|--------|--------|--------------------|--------------------|
|                                | GS    | A     | GS     | A      | GS                 | A                  |
| <i>C balance components</i>    |       |       |        |        |                    |                    |
| GPP                            | -78.0 | -78.0 | -110.5 | -110.5 | n.a.               | n.a.               |
| RE                             | 127.5 | 188.6 | 148.8  | 213.2  | 180.5              | 267.8              |
| NEE                            | 49.5  | 110.6 | 38.3   | 102.7  | 180.5 <sup>a</sup> | 267.8 <sup>a</sup> |
| $\text{CH}_4$                  | 0.130 | 0.190 | 0.036  | 0.117  | 0.076              | 0.137              |
| Total C balance <sup>b</sup>   |       | 110.8 |        | 102.8  |                    | 268.0              |
| <i>GHG balance components</i>  |       |       |        |        |                    |                    |
| NEE                            | 1.81  | 4.05  | 1.40   | 3.76   | 6.62               | 9.82               |
| $\text{CH}_4$                  | 0.059 | 0.086 | 0.016  | 0.053  | 0.035              | 0.062              |
| $\text{N}_2\text{O}$           | 0.002 | 0.004 | 0.010  | 0.020  | 0.167              | 0.332              |
| Total GHG balance <sup>c</sup> |       | 4.14  |        | 3.83   |                    | 10.21              |

<sup>a</sup>GPP for BP was assumed to be zero and NEE therefore equal to RE

<sup>b</sup>The total C balance ( $\text{g C m}^{-2} \text{ yr}^{-1}$ ) is the sum of NEE and  $\text{CH}_4$  fluxes

<sup>c</sup>The total GHG balance ( $\text{t CO}_2 \text{ eq ha}^{-1} \text{ yr}^{-1}$ ) is the sum of NEE,  $\text{CH}_4$  and  $\text{N}_2\text{O}$  fluxes

n.a. = not applicable

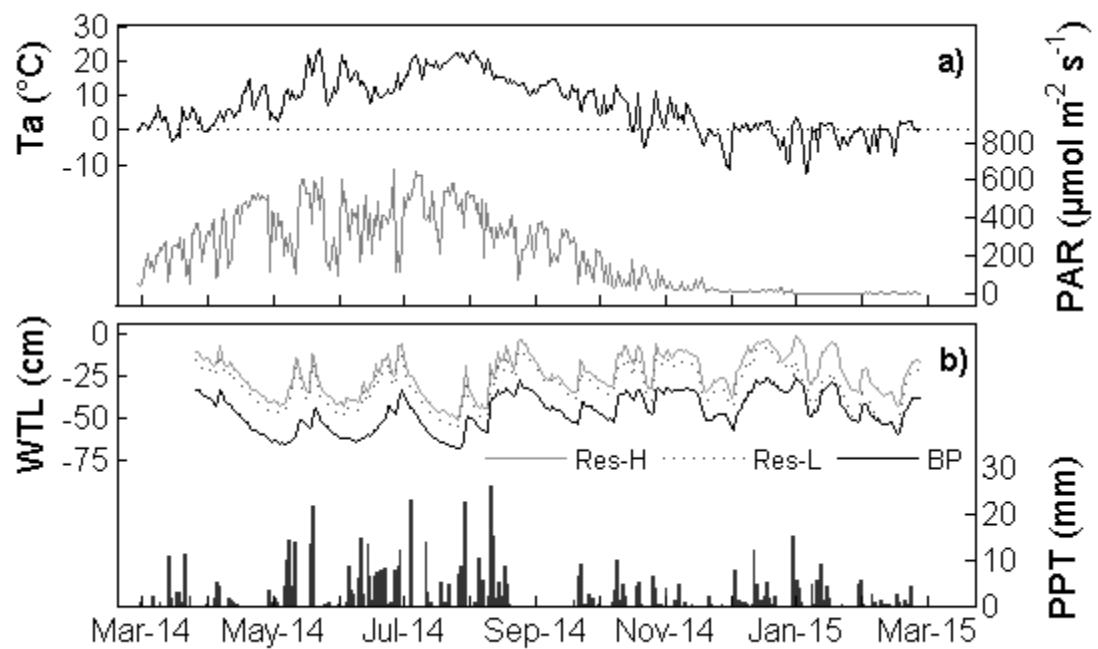
13

1 **Figure captions**

2 Figure 1. Daily means of a) air temperature (Ta) and photosynthetically active radiation  
3 (PAR), b) water table level (WTL) in restoration treatments with high (Res-H) and low (Res-  
4 L) water table level and bare peat (BP) and daily sums of precipitation (PPT) from March  
5 2014 to February 2015; Ta, PAR and PPT data are taken from the Pärnu meteorological  
6 station (until June 17) and measured at the study site (from June 18 onward).

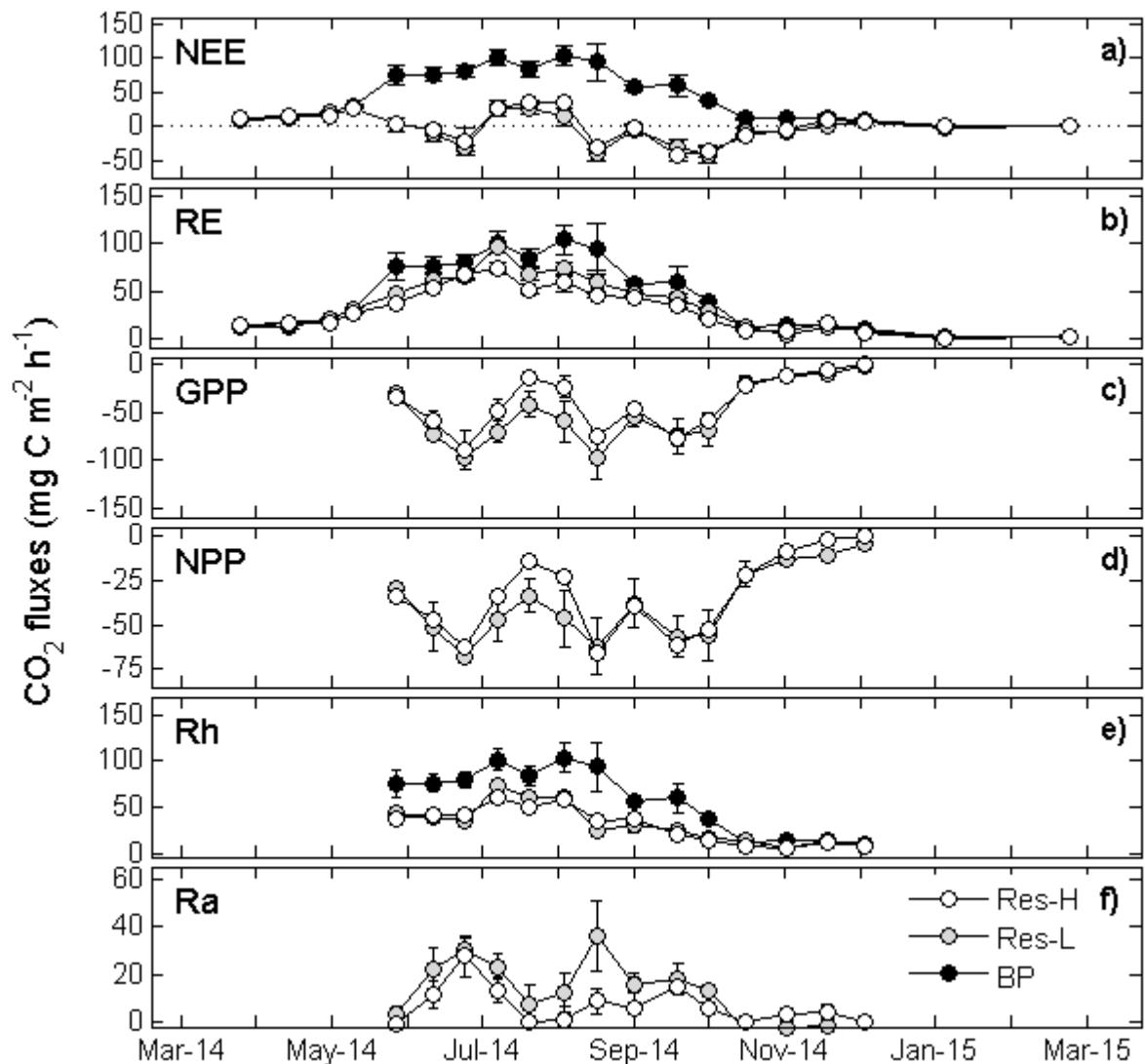
7 Figure 2. a) Net ecosystem exchange (NEE) of carbon dioxide, b) ecosystem respiration (RE),  
8 c) gross primary production (GPP), d) net primary production (NPP), e) autotrophic  
9 respiration (Ra) and f) heterotrophic respiration (Rh) in restoration treatments with high (Res-  
10 H) and low (Res-L) water table level and bare peat (BP); error bars indicate standard error;  
11 the horizontal dotted line in a) visualizes the zero line above and below which CO<sub>2</sub> emission  
12 and uptake occur, respectively.

13 Figure 3. Measured fluxes of a) methane (CH<sub>4</sub>;  $\mu\text{g C m}^{-2} \text{h}^{-1}$ ) and b) nitrous oxide (N<sub>2</sub>O;  $\mu\text{g N}$   
14  $\text{m}^{-2} \text{h}^{-1}$ ) in restoration treatments with high (Res-H) and low (Res-L) water table level and  
15 bare peat (BP); error bars indicate standard error; the horizontal dotted line in a) visualizes the  
16 zero line above and below which CH<sub>4</sub> emission and uptake occur, respectively.

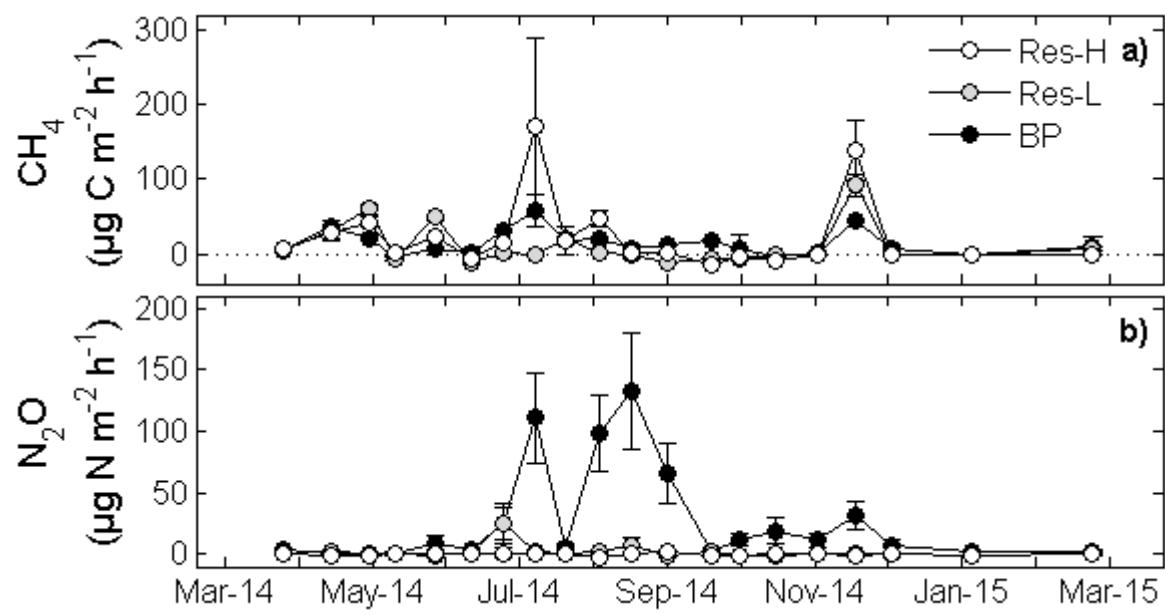

17 Figure 4. Response of ecosystem respiration (RE;  $\text{mg C m}^{-2} \text{h}^{-1}$ ) to changes in soil temperature  
18 (Ts) measured at 10 cm soil depth in restoration treatments with high (Res-H) and low (Res-  
19 L) water table level and bare peat (BP).

20 Figure 5. Response of nitrous oxide (N<sub>2</sub>O) fluxes ( $\mu\text{g N m}^{-2} \text{h}^{-1}$ ) to changes in volumetric  
21 water content (VWC) measured at 0-5 cm soil depth during the growing season in restoration  
22 treatments with high (Res-H) and low (Res-L) water table level and bare peat (BP).

23

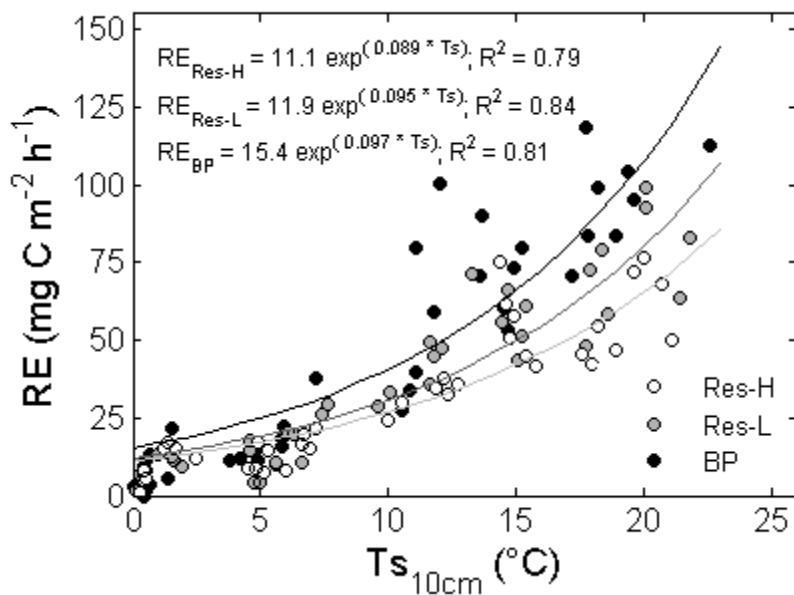

24

1 Figure 1

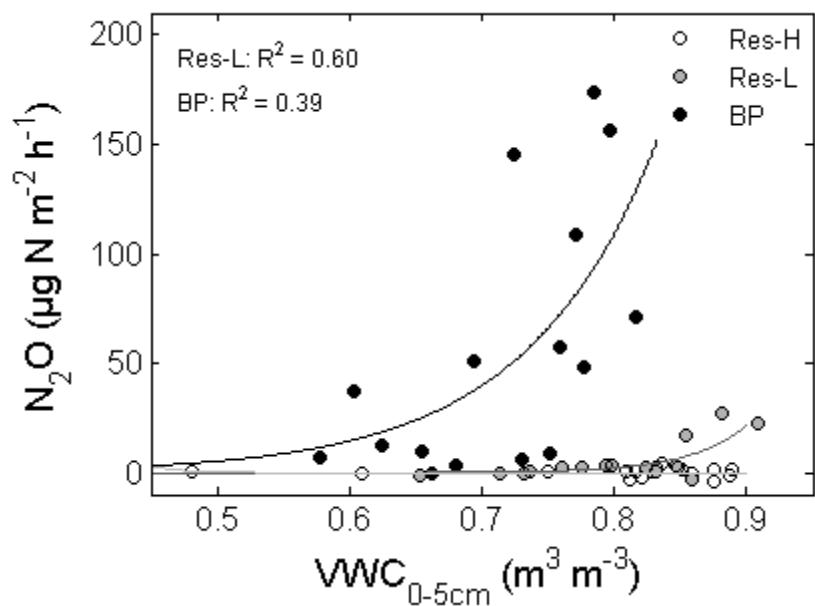



2  
3

1 Figure 2




1 Figure 3




2  
3

1 Figure 4



1 Figure 5

