Anonymous Referee #1

GENERAL COMMENTS

This is an appealing piece of work presenting a very complete study about chromophoric dissolved organic matter, biogeochemical and biological parameters in a mesocosm experiment in a tropical oligotrophic LNLC ecosystem, which have been poorly studied. The novelty of this work remains in the dynamic of the dissolved and particulate organic matter with that of N2 fixation, where N2 fixers and picophytoplankton play an essential role. The experimental approach used by the authors is appropriate to support the scientific findings of the manuscript, it is very well written and structured, and obtain sound conclusions. In summary, the work is of interest for the audience of Biogeosciences and meets the high standards required for publication in this leading journal.

SPECIFIC COMMENTS

Page 12. Lines 1-13. The conversion factor from quinine sulphate to raman units is very valuable due to the lack of uniformity regarding fluorescence normalization and conversion units, which hinder the comparison with other studies.

Answer: Yes indeed, we think it is important to provide this conversion factor, which allows comparisons with other studies.

Page 22. Line 3. Why did not you start measuring the slope at 350 nm instead of 370 nm? Have you calculated the slopes over the range 350-500 nm? This would allow the comparison with other studies that use this range as you mention in Line 4-5 of page 22.

Answer: We could not determine the slope over the spectral range 350-500 nm because the measuring range of the PSICAM instrument was 370-726 nm, as mentioned in the manuscript:

- “Chromophoric parameters we examined here were absorption coefficients of CDOM \([a_g(\lambda)]\) and particulate matter \([a_p(\lambda) = a_g(\lambda) + a_{n ap}(\lambda)]\), determined over the spectral domain 370-720 nm.” (page 7, lines 150-152 in the revised ms).

- “The cavity of the PSICAM was filled with purified water (Milli-Q water), air bubbles were removed from the cavity wall and the central light sphere by gentle shaking, and a reference intensity spectrum was recorded between 370 and 726 nm.” (page 9, lines 216-219 in the revised ms).

- “The mean precision of the PSICAM within the range 370-700 nm is ± 0.0008 m⁻¹” (page 10, lines 228-230 in the revised ms).

The PSICAM instrument is not influenced by adverse scattering effects and has a reasonable absolute sensitivity (Röttgers and Doerffer, 2007; Röttgers et al., 2007). Also, it allows for a rapid retrieval of particulate absorption (phytoplankton + NAP) from measurements on unfiltered (CDOM + particles) and filtered (CDOM) samples. On the other hand, the main current limit of the PSICAM is that it does not supply absorption measurements below 370 nm due to the low light intensities delivered at these short wavelengths inside the instrument (Röttgers and Doerffer, 2007).

Page 23. Lines 10-14. I disagree with the photo-resistance of UVC humic-like fluorophore (peak A). In fact, the increase with depth of the humic-like FDOM components in the upper
200 m has been followed as a regular pattern previously reported for open ocean waters. See for example the studies of Kowalczik et al., 2013; Lønborg et al., 2015; Timko et al., 2015 in the Atlantic, Yamashita et al., 2007 in the Southern ocean, Omori et al., 2010; Yamashita et al., 2015 in the Pacific ocean or the global cruise of Jørgensen et al. (2011).

Answer: The Reviewer #1 is right saying that UVC humic-like fluorophore (FDOM component “C1”) is not necessarily resistant to photodegradation. This point was also mentioned by the Reviewer #2. This fluorophore presents a fluorescence maximum at $\lambda_{Ex}/\lambda_{Em}$ of 230/476 nm. Thus, it theoretically no longer absorbs directly in the spectrum of natural solar radiation. However, it may undergo secondary photochemical reactions induced by radical species produced from various organic or mineral photosensitizers.

- In the revised ms, we thus replaced the part “…this humic-like component is recognized as a photodegradation product of marine organic matter that is no more photodegradable due to its absorption solely in the UVC wavelengths (Yamashita et al., 2008; Ishii and Boyer, 2012). Besides its resistance to photodegradation, the UVC humic-like fluorophore appears to be resistant to biodegradation (Balcarczyk et al., 2009; Fellman et al., 2010).” by the part “this humic-like component is recognized as a photodegradation product of marine organic matter (Yamashita et al., 2008; Ishii and Boyer, 2012) and appears to be resistant to biodegradation (Balcarczyk et al., 2009; Fellman et al., 2010; Lønborg et al., 2015).” (page 23, lines 556-559 in the revised ms).
- We also removed the part: “…which would represent a kind of “ultimate” refractory humic compound in marine waters (no more photodegradable, no more biodegradable)…” (page 29, line 703 in the revised ms).

Nevertheless, we do not fully agree with The Reviewer #1 when he mentions that the humic-like FDOM components increase with depth in the upper 200 m of open ocean waters. This is true, but not for all humic-like FDOM components. Actually, this increase with depth mainly concerns the UVA + UVC humic-like fluorophores (i.e. peaks A + C and peaks A + M in the Coble 1996’s classification, corresponding to components 2 and 3 in the Ishii and Boyer 2012’s classification) but not necessarily the humic-like fluorophore we found in the present work: the UVA humic-like alone (i.e. peak A in the Coble 1996’s classification, corresponding to component 1 in the Ishii and Boyer 2012’s classification). Indeed, this increase with depth in the upper ocean was observed for peaks A + C and peaks A + M by Jørgensen et al. (2011), Kowalczik et al. (2013) and Timko et al. (2015), for peak M by Yamashita et al. (2007), Omori et al. (2010) and Lønborg et al. (2015), and for peak C by Yamashita et al. (2015). On the contrary, Yamashita et al. (2008) found that the peak A alone (our fluorophore) exhibited the highest intensities in surface waters and decreased with depth.

TECHNICAL CORRECTIONS

Page 24. Line 20. Remove “>” before 0.040

Answer: Done (page 24, line 589 in the revised ms).

Answer: Done (page 29, line 698 in the revised ms).
Anonymous Referee #2

Overview

In this manuscript, Tedetti et al. investigated the temporal changes in the optical properties of CDOM and particulate matter during a mesocosm study located outside a lagoon in New Caledonia. P-fertilization of the mesocosm was carried out during the study in order to stimulate diazotrophs and N2 fixation, and the evolution of the optical properties was studied in this context.

The study led to the following conclusions: 1) A strong connection was observed between the abundance of synechococcus and the absorption of particulate matter and CDOM during the mesocosm, suggesting synechococcus was a strong contributor to the particulate absorption and was strongly involved in the production of CDOM. 2) The data also support the idea that N2 fixation by diazotrophs enhanced the synechococcus bloom and indirectly contributed to the production of the chromophoric material in the mesocosm, suggesting the existence of an indirect link between N2 fixation and the production of chromophoric material. 3) There was a surprising decoupling between FDOM and CDOM during the mesocosm study, which the authors attributed to the two components being regulated by different processes.

Overall, the study provided convincing evidence of a strong link between the dynamics of synechococcus bloom and that of the chromophoric material, and provides good reasoning supporting the idea (although it does not provide hard evidence of it) that there is a link between N2 fixation and the production of chromophoric via the stimulation of the synechococcus bloom.

Overall the manuscript is well written and referenced. The figures and tables are generally of high quality and clear. The methods are adequate and clearly explained, and the conclusions drawn are generally well supported by the data presented. The results and conclusions advance our understanding of the processes regulating CDOM and chromophoric particulate matter in the ocean. The topic and scientific contribution are appropriate for "Biogeosciences" and for this special issue.

I recommend the manuscript for publication after the following comments are addressed (minor revisions).

Major comments

1. The Sg+p data: I do not see the value in presenting the ag+p spectra or the corresponding spectral slope coefficients (Sg+p). The results are shown but the implications are never adequately discussed in the manuscript. The point of presenting these data remains unclear, and the data are more distracting than anything. Furthermore, I don’t find it suitable to calculate a S-value from ag+p spectra that are not really exponential. I would recommend removing the ag+p and Sg+p data, unless they are used in a meaningful way in the discussion and they enhance the conclusions of the manuscript.

 Answer: We agree with the Reviewer #2. In the revised ms, we thus removed all the data concerning $a_{g+p}(\lambda)$ and S_{g+p} (in the text, Fig. 5, Fig. 6, Table 1 and Table 2).

2. Decoupling between CDOM and FDOM: The authors attribute the lack of correspondence observed between CDOM and FDOM to the fact the dynamics of these two components are probably driven by different processes. While this conclusion is not erroneous, another possible explanation is that the components that are fluorescing are not major components of
the CDOM (meaning they absorb but not strongly enough to affect the CDOM variability in a significant way). I think this could be included in the discussion of this result.

Answer: We agree with the Reviewer #2.

- We added the sentence “Also, these fluorophores could be not major components of the CDOM. Consequently, they would absorb but not strongly enough to significantly affect the CDOM variability.” (discussion section, page 29, lines 711-713 in the revised ms).

3. Link between N2 fixation and chromophoric material: The following paper might provide some useful insights about the role of N in the formation of CDOM/FDOM: Biers et al. (2007) The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation. Marine Chemistry. doi:10.1016/j.marchem.2006.06.003

Answer: We agree with the Reviewer #2. Biers et al. (2007) highlighted the role of dissolved organic nitrogen (DON), specifically amino sugars and aromatic amino acids, in the microbial production of CDOM and FDOM. This result is very interesting because in our paper, we suggest that the labile DOM released by *Synechococcus* spp. cyanobacteria is utilized and converted into CDOM by heterotrophic bacteria. Well, Bronk et al. (1999) reported the production of DON by *Synechococcus* spp. Consequently, the works by Biers et al. (2007) and Bronk et al. (1999) support our assumption of the CDOM production by heterotrophic bacteria consecutive to their utilization of DOM (that would be in part in the form of DON) issued from *Synechococcus* spp. cyanobacteria.

- We added the sentence “Interestingly, Biers et al. (2007) highlighted the role of DON, specifically amino sugars and aromatic amino acids, in the microbial production of CDOM and FDOM while Bronk et al. (1999) reported the production of DON by *Synechococcus* spp. Consequently, the works by Biers et al. (2007) and Bronk et al. (1999) support the assumption of the CDOM production by heterotrophic bacteria consecutive to their utilization of labile DOM (that would be in part in the form of DON) released by *Synechococcus* spp. cyanobacteria.” (discussion section, page 26, lines 636-641 in the revised ms).

- We added Biers et al. (2007) in the reference list.

4. Figure 5: I think Figure 5 could be improved. The presentation of all the spectra in the left panels makes it difficult to discern any spectra. For each variable, I would recommend the authors show only 3-4 spectra from distinct times during the mesocosm study (e.g., Initial; P1 ; P2). In order to show the full range, the average of all spectra could be shown with the range shown as a gray area (instead of showing the standard deviations). Again, I don’t think adding the ag+p spectra adds to the paper, and I would suggest removing these data unless the authors can use the data in a meaningful way.

Answer: We modified Figure 5 accordingly. As mentioned in Answer to comment n°1, we removed the ag+p spectra. For CDOM and particulate data, we removed the graphs with all spectra and we modified the graphs showing the full range according to the Reviewer’s comment: We used black lines to represent the average of all spectra, and grey areas to represent the measured minimal and maximal values. Please note that along with these full range graphs, we do not think necessary to add graphs showing 3-4 spectra from distinct times during the mesocosm study, neither small graphs representing spectra over the range 370-430 nm.

5. New figure: I leave this to the discretion of the authors, but I think adding a figure showing the plots of the relationship between ag vs *synechococcus* and ap vs *synechococcus* would help emphasize to the readers (who often don’t read the entire manuscript and just look at
figures) that there is strong connection between ag/ap and synechococcus. Showing this in a figure would help getting the point across (this is probably one of the most important finding in the paper).

Answer: We agree with the Reviewer #2.
- We added in this new figure in the revised ms, as Figure 9: Linear relationships between absorption coefficient of CDOM at 370 nm [$a_g(370)$ in m$^{-1}$] or absorption coefficient of particulate matter at 442 nm [$a_p(442)$ in m$^{-1}$] and Synechococcus spp. abundance ($\times 10^3$ cell mL$^{-1}$) for samples collected in the mesocosm M1 from day 5 to day 20, i.e. from the day after the dissolved inorganic phosphorus fertilization to almost the end of the experiment ($P1 + P2$) ($n = 36$).
- We refer to this Fig. 9 in the results part, section 3.7 and in the discussion part, section 4.2.

6. Abstract: I think it would be worthwhile to expand and clarify the last sentence of the abstract. This is an important point of the paper, but the last sentence will be a little unclear to someone who hasn’t (and might never have time) to read the entire paper. I suggest replacing last sentence with something like that: “Finally, the results of this work support the idea there is indirect coupling between the dynamics of N$_2$ fixation and that of chromophoric material via the stimulation of synechococcus bloom.”

Answer: As suggested by the Reviewer #2:
- We replaced the sentence “Finally, this works indicates a coupling between the dynamics of the N$_2$ fixation and that of chromophoric material in the South West Pacific through Synechococcus bloom.” by the sentence “Finally, the results of this work support the idea there is indirect coupling between the dynamics of N$_2$ fixation and that of chromophoric material via the stimulation of Synechococcus bloom.” (abstract, pages 2-3, lines 49-51 in the revised ms).

Minor comments

Abstract, Line 45: I would suggest using a more specific term than “activities”

Answer: We replaced “activities” by “biomass” (abstract, page 2, line 45 in the revised ms).

Abstract, Line 48: Replace “proving that these were” by “suggesting they were”. Also, see Major comment 2) shown above.

Answer: Done (abstract, page 2, lines 48 in the revised ms).

Line 171: Please explain what EVA is here.

Answer: EVA is ethylene vinyl acetate. Thus, we replaced “one vinyl acetate (EVA, 19 %)” by “one ethylene vinyl acetate (EVA, 19 %)” (page 7, lines 169-170 in the revised ms).

Line 203: I suggest adding “(see section 2.2)” after “onboard”

Answer: Done (page 9, line 202 in the revised ms).

Line 278: Replace “With regard to our” by “Considering the”

Answer: Done (page 12, line 277 in the revised ms).

Line 306: Please add citation for fluorometry method
Answer: We added the reference “(Lantoine and Neveux, 1997)” (page 13, line 305 in the revised ms) and in the reference list:

Line 314-316: Can you provide a citation and expand briefly about the clustering approach used.

Answer: We added the part “according to their optical properties (light scattered and fluorescence emission by the cells) (Marie et al., 1999)” (page 13, lines 317-318 in the revised ms).

Line 324: Weird sentence structure. Please change to “BP was calculated.....leucine, and is shown here in ng C L⁻¹ h⁻¹.”

Answer: Accordingly, we replaced the sentence “BP, calculated from leucine incorporation rates using the conversion factor of 1.5 kg C mol⁻¹ leucine, is given in ng C L⁻¹ h⁻¹.” by the sentence “BP was calculated from leucine incorporation rates using the conversion factor of 1.5 kg C mol⁻¹ leucine, and is shown here in ng C L⁻¹ h⁻¹.” (page 14, lines 326-328 in the revised ms).

Line 336-339: Please provide name of instruments used for DIN and TN analysis.

Answer: We replaced the part “DIN concentration was determined on a segmented flow autoanalyser according to Aminot and Kérouel (2007). TN concentration was determined according to the wet oxidation procedure described in Pujo-Pay and Raimbault (1994). Samples for PON concentrations were collected by filtering 1 L of water on GF/F filters and analyzed according to the wet oxidation protocol (Pujo-Pay and Raimbault, 1994) with a precision of 0.06 µM.” by the part “TN concentration was determined according to the wet oxidation procedure described in Pujo-Pay and Raimbault (1994). Samples for PON concentrations were collected by filtering 1 L of water on GF/F filters and analyzed according to the wet oxidation protocol (Pujo-Pay and Raimbault, 1994) with a precision of 0.06 µM. DIN concentration was determined according to Aminot and Kérouel (2007). Measurements were conducted using a segmented flow autoanalyser (AutoAnalyzer AA3 HR, SEAL Analytical).” (page 14, lines 339-345 in the revised ms).

Line 380-382: I know no replicates were measured, but is there any information about the typically uncertainty in this measurement that could be added here.

Answer: The measurement precision of PE from replicates ~ 16 %. We rather added this information in the material and methods (page 13, lines 305-306 in the revised ms).

Line 382: I suggest using “outside the mesocosm” here and throughout the manuscript instead of “OUT”

Answer: The term “OUT” is used in the other papers from this special issue in order to define the surrounding waters/waters outside the mesocosm, and we think it is more appropriate to keep it for maintaining certain homogeneity among papers.

Line 397: Change to “No significant difference”

Answer: Done (page 17, line 401 in the revised ms).

Line 402: Please provide value correspond to “much higher” (10 times)
Answer: We replaced the part “Hence, the abundance of UCYN-C was much higher in M1 during P2” by the part “Hence, the abundance of UCYN-C was much higher in M1 during P2 than in M1 during P1 (14 times higher) and than in OUT during P1 and P2 (22-53 times higher)” (page 17, lines 406-408 in the revised ms).

Line 425-427: Again, consider removing the ag+p data as they are simply a combination of ap and ag features and they are not really insightful

Answer: All data concerning ag+p were removed from the revised ms.

Line 436-439: This kind of presentation makes it hard to match values to compare them. Please consider writing this sentence so each variable is directly shown with its corresponding range.

Answer: We replaced the sentence “In M1, a_g(370), a_g(442), a_p(442), a_p(676), a_{g+p}(370) and a_{g+p}(442) decreased from day 4 to day 9, when they were as low as ~ 0.041, 0.011, 0.009, 0.003, 0.047 and 0.020 m^{-1}, respectively, and then increased from day 9 to the end of the experiment to reach ~ 0.067, 0.020, 0.025, 0.012, 0.075 and 0.046 m^{-1} at day 23, respectively [Fig. 6a,b,e,f; data not shown for a_{g+p}(\lambda)].” by the sentence “In M1, absorption coefficients decreased from day 4 to day 9 and then increased from day 9 to the end of the experiment (day 23), leading to variations in the ranges 0.041-0.067 m^{-1} for a_g(370), 0.011-0.020 m^{-1} for a_p(442), 0.009-0.025 m^{-1} for a_{g+p}(442) and 0.003-0.012 m^{-1} for a_p(676) (Fig. 6a,b,d,e).” (page 18, lines 438-441 in the revised ms).

Line 483-484: The high correlation between either ag or ap and ag+p should be somewhat expected considering ag+p is a combination of ag and ap.

Answer: We agree. As mentioned above, the part dealing with a_{g+p} has been removed in the revised ms.

Line 546-548: The data in Figure 8 support this statement, but I did not see a statement in the results that explained that the combined fluorescence values of the Tryptophan like and Tyrosine-like component were substantially higher than that of the humic-like component. I think this needs to be mentioned in the results to substantiate the claim made here.

Answer: In the result section, we added the sentence “Overall, the FDOM pool was dominated by protein-like material: the combined fluorescence of tryptophan and tyrosine fluorophores ranged from 9.1 to 22.3 QSU, while the fluorescence of humic fluorophore ranged from 1.9 to 6.2 QSU.” (pages 19-20, lines 472-474 in the revised ms).

Line 553: It would be good to cite one of Benner’s paper considering its contribution to the topic. (e.g., Davis and Benner (2007) Limnol. Oceanogr.)

Answer: We added this reference in the text (pages 22-23, lines 546-547 in the revised ms) and in the reference list:

Line 565: I don’t think you can claim it is no longer photodegradable because it no longer absorbs in natural solar radiation range. There could be secondary photochemical reactions that could still photodegrade it (e.g. via reaction with radicals produced from other photochemical reactions).

Answer: We agree with the Reviewer #2. Reviewer #1 also mentioned this point.
In the revised ms, we thus replaced the part “…this humic-like component is recognized as a photodegradation product of marine organic matter that is no more photodegradable due to its absorption solely in the UVC wavelengths (Yamashita et al., 2008; Ishii and Boyer, 2012). Besides its resistance to photodegradation, the UVC humic-like fluorophore appears to be resistant to biodegradation (Balcarczyk et al., 2009; Fellman et al., 2010).” by the part “…this humic-like component is recognized as a photodegradation product of marine organic matter (Yamashita et al., 2008; Ishii and Boyer, 2012) and appears to be resistant to biodegradation (Balcarczyk et al., 2009; Fellman et al., 2010; Lønborg et al., 2015).” (page 23, lines 556-559 in the revised ms).

We also removed the part: “…which would represent a kind of “ultimate” refractory humic compound in marine waters (no more photodegradable, no more biodegradable),…” (page 29, lines 703 in the revised ms).

Line 605-607: Rephrase with something like “Several observations suggest the observed change in particulate matter absorption (ap) during the experiment was mainly driven by Synechococcus”.

Answer: As suggested, we replaced the sentence “During the experiment, we may assume that the absorption of particulate matter was mainly driven by Synechococcus spp.” by the sentence “Several observations suggest the observed change in particulate matter absorption \(a_p(\lambda)\) during the experiment was mainly driven by Synechococcus spp.” (page 25, lines 596-598 in the revised ms).

Line 634-635: Rephrase as follows: “…Table 2), thereby suggesting CDOM was produced by heterotrophic bacteria…”

Answer: As suggested, we replaced the part “…Table 2). Therefore, we can make the assumption that CDOM was produced by heterotrophic bacteria…” by the part “…Table 2; Fig. 9), thereby suggesting CDOM was produced by heterotrophic bacteria…” (page 26, lines 626-627 in the revised ms).

Line 660-663: How was the decrease that attributed to N limitation? Is this from another work in this special issue?

Answer: Yes this statement is from other works in the special issue (Bonnet et al., 2015; Berthelot et al., 2015). As mentioned in the revised ms (page 27, lines 806-810 in the revised ms), during the first days of the experiment, NO\(_3^-\) concentration was low in the mesocosm (< 0.04 µM), and because there was no external supply of NO\(_3^-\), phytoplankton was N-limited. In addition, DDAs would not have been a significant source of N for its surrounding environment because Richelia would have given the major part of the N that they had fixed to their host diatoms (Berthelot et al., 2015).

Line 669: replace “putting forward a rapid…” by “suggesting there is a rapid…”

Answer: Done (page 27, line 666 in the revised ms).

Line 687-690: Replace “submitted to” by “affected by”. Also, please remove “which led to modifications in the CDOM molecular weight”. There is no evidence of that in the data. A link between S and MW has been mainly shown for land-derived CDOM and for S275-295.

Answer: Done (page 28, line 686 in the revised ms).
Line 693: Replace “CDOM in total” by “CDOM to the total”. Also, did the contribution of pure water included in the total absorption here, or is this the contribution of ag to ag+p? Please clarify.

Answer: We replaced “CDOM in total” by “CDOM (ag) to the total absorption (ag+p)” (page 28, line 689 in the revised ms).

Line 745-746: Wording is a little strong and definitive for this part of the study. Please rephrase with something like “Finally, this study strongly supports the idea of an indirect link between the dynamics: : :Pacific.” You might want to mention that more work is needed to directly demonstrate the role of N2 fixation in the production of chromophoric material.

Answer: Done (page 30, lines 741-742 in the revised ms).
Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (South West Pacific)

M. Tedetti1*, L. Marie1,2, R. Röttgers3, M. Rodier4, F. Van Wambeke1, S. Helias1, M. Caffin1, V. Cornet-Barthaux1, and C. Dupouy1

1 Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
2 Present affiliation: Université de Bretagne Occidentale, IUEM, Lemar UMR CNRS 6539, Place Copernic, F-29280 Plouzané, France
3 Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute for Coastal Research, Remote Sensing, Geesthacht, Germany
4 IRD, Université de la Polynésie française - Institut Malardé - Ifremer, UMR 241, Ecosystèmes Insulaires Océaniens (EIO), IRD Tahiti, PB 529, 98713 Papeete, Tahiti, French Polynesia

* Corresponding author: marc.tedetti@mio.osupytheas.fr; Phone: + 33 (0)4 86 09 05 27; Fax: + 33 (0)4 91 82 96 41

For submission to Biogeosciences as a research article for the special issue “Biogeochemical and biological response to a diazotroph bloom in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosms experiment”

Revised version 06 May 2016
Abstract

In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment conducted in the South West Pacific at the exit of the New Caledonian coral lagoon (22°29.073 S - 166°26.905 E) from January 13th to February 4th 2013. Samples were collected in a mesocosm fertilized with phosphorus at 1, 6 and 12 m depth and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM) \([a_g(\lambda)]\) and particulate matter \([a_p(\lambda)]\) and CDOM + particulate matter \([a_{g+p}(\lambda)]\) were measured using a point-source integrating-cavity absorption meter (PSICAM), while fluorescent DOM (FDOM) components were determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC). The evolutions of \([a_g(\lambda)]\) and \([a_p(\lambda)]\) and \([a_{g+p}(\lambda)]\) in the mesocosm were similar to those of total chlorophyll \(a\) concentration, *Synechococcus* spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9-10, and an increase from days 9-10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphorus fertilization on the mesocosm’s plankton community. Correlations suggested that both *Synechococcus* cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton activities during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and UVC humic-like fluorophores) did not follow the evolution of CDOM and particulate matter, suggesting they were driven by different production/degradation processes. Finally, the results of this work support the idea that...
indirect coupling between the dynamics of N₂ fixation and that of chromophoric material via the stimulation of *Synechococcus* bloom.

Key words: South West Pacific, mesocosm, CDOM, FDOM, particulate absorption, cyanobacteria.
1. Introduction

Besides water itself, light absorption in the marine environment is due to three main biogeochemical constituents: 1) chromophoric dissolved organic matter (CDOM), also known as gelbstoff, gilvin and yellow substances, and chromophoric particulate matter, subdivided into 2) phytoplankton (photoautotrophic microorganisms), composed of both prokaryotic (cyanobacteria) and eukaryotic species (diatoms, dinoflagellates, coccolithophores,…), and 3) non algal particles (NAP), comprising organic and minerogenic detritus, and heterotrophic organisms. Absorption spectra of CDOM, phytoplankton and NAP have been extensively studied over the last two decades in various oceanic provinces including coastal waters and open ocean (Blough and Del Vecchio, 2002; Babin et al., 2003; Bricaud et al., 2010; Matsuoka et al., 2014). Indeed, in addition to their key role in the oceanic carbon cycle, these three constituents strongly influence the underwater light field and the apparent optical properties of seawater. The knowledge of their absorption spectra is thus essential for bio-optical modeling and remote sensing applications but can be used as well to investigate biological processes in the ocean.

Absorption coefficients of CDOM \([a_\text{g}(\lambda)]\) and NAP \([a_\text{nap}(\lambda)]\) typically decrease monotonically (exponentially) from ultraviolet (UV, 280-400 nm) to visible (400-700 nm) wavelengths (Nelson et al., 1998; Swan et al., 2009; Tilstone et al., 2012). Even though CDOM absorption spectra are usually featureless, some “shoulders” have been observed sporadically in the UV and visible spectral domains and attributed to the presence of dissolved absorbing pigments released by phytoplankton cells: mycosporine-like amino acids (MAAs) at 310-320 nm or at 330-360 nm, and phaeopigments or non-chlorin metal-free
porphyrins at 410-420 nm (Whitehead and Vernet, 2000; Röttgers and Koch, 2012; Organelli et al., 2014; Pavlov et al., 2014). In contrast, absorption coefficients of phytoplankton \(a_d(\lambda)\) determined from natural samples commonly display two main peaks in the visible range, around 435-450 and 675 nm, attributable to its content in total chlorophyll \(a\) (TChl \(a\)) (Lutz et al., 1996; Dupouy et al., 1997; Bricaud et al., 2004), but may also reveal other peaks or shoulders resulting from the presence of other pigments: MAAs at 325 nm (Bricaud et al., 2010), TChl \(b\), TChl \(c\) and photoprotective carotenoids at 460-470 nm, photosynthetic carotenoids and photoprotective keto-carotenoids at 490 nm (Carreto, 1985; Stuart et al., 1998; Wozniak et al., 1999; Lohrenz et al., 2003) as well as phycoerythrin at 550 nm (Morel, 1997). Hence, while chromophoric detrital matter (CDM = CDOM + NAP) is the major contributor to total absorption in the UV domain (~60-95%), in the blue region (440-490 nm), the contributions of CDM and phytoplankton tend to be equivalent (~40-50%), while CDOM alone is accounting for ~80-95% of CDM in the UV and blue ranges (Siegel et al., 2002; 2005; Tedetti et al., 2010; Nelson and Siegel, 2013).

In “Case 1 waters” (Morel and Prieur, 1977), which are generally - but not necessarily - open ocean clear waters, optical properties are controlled by phytoplankton and all its derived material, and TChl \(a\) concentration may be utilized as an index of optical properties thanks to its covariation with \(a_d(\lambda), a_g(\lambda), a_{nap}(\lambda)\) and particulate backscattering coefficient \(b_{bp}(\lambda)\) (Antoine et al., 2014). Due to the covariation with \(a_d(\lambda)\) in Case 1 waters, CDOM is considered as being a by-product of phytoplanktonic production. Nonetheless, recent studies have highlighted some degree of de-phasing between the dynamics in phytoplankton and that of CDOM at the global, regional or seasonal scale (Siegel et al., 2002; Morel et al., 2010; Xing et al., 2014). Whilst photobleaching is now considered as a major degradation process of CDOM in surface waters (Del Vecchio and Blough, 2002; Helms et al., 2008; Bracchini et al., 2010; Swan et al., 2012), the main source of CDOM in open ocean is still a matter of debate,
particularly for its “humic-like” component, which absorbs light over a broad range of UV and visible wavelengths and fluoresces in the visible domain (Andrew et al., 2013). Some works suggest that this humic-like CDOM is in part a remainder of terrestrial matter that has been diluted and transformed during transit to and within the ocean (Blough and Del Vecchio, 2002; Hernes and Benner, 2006; Murphy et al., 2008; Andrew et al., 2013). Conversely, other studies put forward its autochthonous marine source and its production from phytoplankton, including green algal, diatoms, dinoflagellates (Vernet and Whitehead, 1996; Romera-Castillo et al., 2010; 2011; Chari et al., 2013), the diazotrophic (N₂-fixing) cyanobacteria *Trichodesmium* spp. (Subramaniam et al., 1999; Steinberg et al., 2004) and the non-diazotrophic picocyanobacteria *Synechococcus* spp. and *Prochlorococcus* spp. (Romera-Castillo et al., 2011), from zooplankton (Steinberg et al., 2004; Ortega-Retuerta et al., 2009), or from the bacterial degradation (mineralization) of phytoplankton-derived organic matter (Nelson et al., 1998; 2010; Swan et al., 2009).

The New Caledonian coral lagoon, located in the South West Pacific, is a tropical, oligotrophic Low Nutrient Low Chlorophyll (LNLC) ecosystem in which diazotrophs such as cyanobacteria *Trichodesmium* spp. (Dupouy et al., 1988; 2008; Masotti et al., 2007; Rodier and Le Borgne, 2010) and diazotrophic picocyanobacteria (Biegala and Raimbault, 2008) but also non-diazotrophic picocyanobacteria such as *Synechococcus* spp. and *Prochlorococcus* spp. (Biegala and Raimbault, 2008; Neveux et al., 2009) play a significant role. Although the biogeochemical conditions in the New Caledonian coral lagoon are well documented for several years (see review by Grenz et al., 2010), the dynamics of CDOM remains poorly known in this environment. In the framework of the VAriability of vertical and tropHic transfer of fixed N₂ in the south wEst Pacific (VAHINE) mesocosm experiment, the objectives of the present study were 1) to assess the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm
experiment, and 2) to tentatively identify the main biogeochemical contributors (diazotrophic and non-diazotrophic primary producers, heterotrophic bacteria) driving changes in chromophoric material over the course of the experiment. Chromophoric parameters we examined here were absorption coefficients of CDOM \(a_g(\lambda) \) and particulate matter \(a_p(\lambda) = a_\phi(\lambda) + a_{nap}(\lambda) \) and CDOM + particulate matter \(a_{g+p}(\lambda) = a_g(\lambda) + a_\phi(\lambda) + a_{nap}(\lambda) \), determined over the spectral domain 370-720 nm, the spectral slopes of CDOM and CDOM + particulate matter (\(S_g \) and \(S_{g+p} \)), computed over the range 370-500 nm, as well as fluorescent DOM (FDOM) components, determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC).

2. Material and methods

2.1. The mesocosm experiment

Study site and mesocosm description. The VAHINE mesocosm experiment was conducted from January 13th to February 4th, 2013 in the South West Pacific at an exit of the New Caledonian coral lagoon, 28 km off the coast of New Caledonia (22°29.073 S - 166°26.905 E) (Fig. 1). At the deployment site the water depth was 25 m and the bottom was sandy. The site was protected by land from the dominant trade winds (SE sector) and characterized by high influence of oceanic oligotrophic waters coming from outside the lagoon through the Boulari passage (Ouillon et al., 2010). Three large mesocosms (hereafter called M1, M2 and M3), of 50 m3 volume each, were deployed (Fig. 2). All details concerning the mesocosm design and deployment are given in Bonnet et al. (2015). In brief, the mesocosms consisted in large cylindrical bags made of one polyethylene film and one ethylene vinyl acetate (EVA, 19 %) film, each 500 m thick, with nylon meshing in between to allow maximum resistance and light penetration. They were 2.3 m in diameter, 15 m in
depth and were equipped with removable sediment traps allowing collection of sinking material. The top of the bags were maintained 1 m above the surface with floats to prevent inflow of external water. Their straightness was maintained by weights at the bottom of the mesocosms. Before starting sampling, the mesocosms were left opened from the bottom for 24 h to insure a total homogeneity of the water column.

Nutrient fertilization. To prevent phosphate limitation, the mesocosms were fertilized in the evening of day 4 with dissolved inorganic phosphorus (DIP) to a final concentration of 0.8 µM (see details of the fertilization procedure in Bonnet et al., 2015). This phosphate fertilization aimed at stimulating diazotroph activities.

Sampling and in situ measurements. During the 23 days of the experiment, seawater sampling was performed every morning from a 4 m² floating platform at three depths (1, 6 and 12 m) in each mesocosm and at 1 m depth in the surrounding waters close to the mesocosm (“OUT”) using a compressed air-driven, metal-free pump (AstiPure™) connected to a polyethylene tubing. Samples were filled into 50-L polypropylene carboys and immediately transported for subsampling and sample treatments onboard the R/V Alis, moored 1 nautical mile away from the mesocosm site. Along with discrete sampling, vertical profiles of temperature, salinity, Chl a fluorescence, turbidity and light intensity were obtained daily (at 7 a.m. local time) in each mesocosm and in the surrounding waters using a 911plus conductivity temperature depth (CTD) profiler (Sea-Bird Electronics, Inc.). For our specific parameters, i.e. dissolved and particulate chromophoric materials, we only sampled the mesocosm M1 at 1, 6 and 12 m depth and the surrounding waters at 1 m depth.

Filtration. Onboard R/V Alis, samples for CDOM absorption and fluorescence measurements were immediately filtered under low vacuum (< 50 mm Hg) through 0.2 µm polycarbonate filters (25 mm diameter, Nuclepore) using small, pre-combusted (450 °C, 6 h) glass filtration systems. Prior to sample filtration, the Nuclepore filters were cleaned by first
soaking them for several minutes in 1 M HCl, then in ultrapure water, and processing them by filtering through and discarding 300 mL of ultrapure water and lastly 50 mL of sample. Then, 1 L of sample was filtered and the 0.2 µm filtrate transferred into pre-combusted Schott® glass bottles for analyses. Powder-free disposable gloves were worn during sampling, filtration and analyses to avoid sample contamination. All absorption coefficient measurements \([a_g(\lambda)\text{ and } a_{g+p}(\lambda)]\) were performed directly onboard (see section 2.2), while samples for fluorescence measurements were stored at 4 °C in the dark for several days until analyses.

The two phases of the experiment. In the results presented below, the 23-day mesocosm experiment was separated into two periods: P1, from day 5 to day 14, and P2, from day 15 to day 23. P1 and P2 denote the two phases of the experiment when the diazotrophic community was dominated by diatom-diazotroph associations (DDAs), more specifically heterocyst-forming Richelia associated with Rhizosolenia, and unicellular cyanobacteria group C (UCYN-C), respectively (Berthelot et al., 2015; Turk-Kubo et al., 2015).

2.2. Absorption of CDOM and particulate matter

Measurement. Absorption coefficients of CDOM and CDOM + particulate matter \([a_g(\lambda)\text{ and } a_{g+p}(\lambda)]\) were determined by measuring absorption of 0.2 µm filtered and unfiltered samples using a point-source integrating-cavity absorption meter (PSICAM) instrument as described by Röttgers et al. (2007) and Röttgers and Doerffer (2007). The cavity of the PSICAM was filled with purified water (Milli-Q water), air bubbles were removed from the cavity wall and the central light sphere by gentle shaking, and a reference intensity spectrum was recorded between 370 and 726 nm. Afterwards, sample water was poured into the cavity in the same way, and a sample intensity spectrum was recorded. The cavity was rinsed and filled with purified water again, and a second reference intensity spectrum was recorded. The two reference spectra were used to calculate two “transmissions” (sample/reference) and,
further, two absorption coefficient spectra. The mean of these two spectra was taken as the real absorption coefficient spectrum. The calibration of the PSICAM consisted of determinations of the total cavity reflectivity spectrum by using solutions of the dye nigrosine (Certistain®, Merck) with maximum absorption between 1 and 3 m⁻¹. Absorption spectra were corrected for salinity and temperature differences between sample and reference water according to Röttgers and Doerffer (2007). The mean precision of the PSICAM within the range 370-700 nm is ± 0.0008 m⁻¹, whereas its accuracy here is ± 2 %, even for absorption values < 0.1 m⁻¹.

Particulate absorption and CDOM spectral slope determination. Absorption coefficients of particulate matter \([a_p(\lambda)] \) were determined by subtracting \(a_g(\lambda) \) from \(a_{g+p}(\lambda) \) over the range 370-720 nm. Respective spectral slopes of \(a_g(\lambda) \) and \(a_{g+p}(\lambda) \), \(S_g \) and \(S_{g+p} \) (in nm⁻¹), were computed by applying a nonlinear (exponential), least-squares fit to the \(a_g(\lambda) \) and \(a_{g+p}(\lambda) \) values between 370 and 500 nm in accordance with the following formula:

\[
a_e(\lambda) = a_e(\lambda,0) \times e^{S_e(\lambda-\lambda_0)}
\]

The fit was conducted on raw (i.e. not log-transformed) data according to the recommendations by Twardowski et al. (2004). The average correlation coefficients \((r) \) of the exponential least-squares fits was 1.00 and 0.99 \((n = 72)\) for \(a_g(\lambda) \) and \(a_{g+p}(\lambda) \), respectively. The spectral range used here for the slope determination (370-500 nm) was close to that employed in previous studies for different oceanic waters (i.e. 350-500 nm) (Babin et al., 2003; Röttgers and Doerffer, 2007; Bricaud et al., 2010; Para et al., 2010; Organelli et al., 2014).

2.3. Fluorescence of DOM

Measurements. FDOM measurements were performed on 0.2-µm filtered samples using a Hitachi F-7000 spectrofluorometer. The correction of spectra for instrumental response was
conducted from 200 to 600 nm according to the procedure recommended by the manufacturer (Hitachi F-7000 Instruction Manual) and fully described in Tedetti et al. (2012). The excitation (Ex) and emission (Em) correction curves were applied internally by the instrument to correct each fluorescence measurement acquired in signal over reference ratio mode. The samples were allowed to reach room temperature in the dark and transferred into a 1-cm pathlength far-UV transparent silica quartz cuvette (170-2600 nm; LEADER LAB). The sample in the cuvette was kept at 20 °C inside the instrument using a circulating water bath connected to the cell holder. The cuvette was cleaned with 1 M HCl and ultrapure water, and triple rinsed with the sample before use. EEMs were generated over λ_{Ex} between 200 and 500 nm in 5-nm intervals, and λ_{Em} between 280 and 550 nm in 2-nm intervals, with 5-nm slit widths on both Ex and Em sides, a scan speed of 1200 nm min\(^{-1}\), a time response of 0.5 s and a PMT voltage of 700 V. Blanks (ultrapure water) and solutions of 0.1 to 10 µg L\(^{-1}\) quinine sulphate dihydrate (Fluka, purum for fluorescence) in 0.05 M sulphuric acid were run with each set of samples. Two replicates were run for each sample.

Fluorescence data processing. Different processing steps were carried out on the fluorescence data: 1) all the fluorescence data were normalized to the intensity of the ultrapure water Raman scatter peak at λ_{Ex}/λ_{Em} of 275/303 nm, measured daily as an internal standard (Coble, 1996). This value varied by 4 % (n = 20). 2) The mean, normalized EEM of ultrapure water was subtracted from normalized sample EEMs to eliminate the water Raman scatter signal. 3) These blank-corrected sample EEMs were converted into quinine sulphate unit (QSU), where 1 QSU corresponded to the fluorescence of 1 µg L\(^{-1}\) quinine sulphate at λ_{Ex}/λ_{Em} of 350/450 nm (5-nm slit widths) (Coble, 1996; Murphy et al., 2008). The conversion in QSU was made by dividing each EEM fluorescence data by the mean slope of a linear regression of fluorescence vs. concentration for the different quinine sulphate solutions (i.e. 8.4 arbitrary fluorescence intensity units/QSU). r values of these linear regressions were on
average 0.99 and the detection and quantification limits of the fluorescence measurements were 0.19 and 0.63 QSU, respectively. The water Raman scatter peak was integrated from λ_{Em} 380 to 426 nm at λ_{Ex} of 350 nm for ultrapure water samples. The mean value was used to establish a conversion factor between QSU and Raman unit (RU, nm$^{-1}$), based on the Raman-area normalized slope of the quinine sulphate linear regression. The conversion factor was 0.025 RU per QSU. Considering the With regard to our low $a_g(\lambda)$ values, samples were not corrected for inner filter effects (Stedmon and Bro, 2008).

2.4. Parallel factor analysis (PARAFAC)

In this work, a PARAFAC model was created and validated for 130 calibrated EEMs according to the method by Stedmon et al. (2003). The EEM wavelength ranges used were 210-500 and 280-550 nm for Ex and Em, respectively. EEMs were merged into a three-dimensional data array of the form: 130 samples \times 59 λ_{Ex} \times 136 λ_{Em}. The PARAFAC program was executed using the DOMFluor toolbox v1.6 (Stedmon and Bro, 2008) running under MATLAB® 7.10.0 (R2010a). The full analysis showed that no outliers were present in the dataset. The validation of the PARAFAC model (running with the non-negativity constraint) and the determination of the correct number of components (from 2 to 6 components tested) were achieved through the examination of 1) the percentage of explained variance, 2) the shape of residuals, 3) the split half analysis and 4) the random initialization using the Tucker Congruence Coefficients (Tedetti et al., 2012). The fluorescence intensities of each component found are given in QSU. The fluorescence intensities in QSU provided for each sample is the mean of the two replicates with a coefficient of variance (CV) < 10 %.

2.5. Biogeochemical and biological analyses
Filters for the determination of the TChl a concentration were collected by filtering 550 mL of sample water onto a GF/F filter (Whatman). The filters were directly shock-frozen and stored in liquid N₂. TChl a was extracted in methanol and measured by fluorometry (Le Bouteiller et al., 1992). The precision of the measurement was ± 0.005 µg L⁻¹.

For the determination of phycocerythrin concentration, water samples (3–4 L) were filtered onto 0.4-µm Nucleopore polycarbonate filters and immediately frozen in liquid N₂ until analysis. Phycoerythrin was extracted in a 4 mL glycerol-phosphate mixture (50/50) according to Neveux et al. (2009) after vigorous shaking for resuspension of particles (Wyman, 1992), and then quantified by fluorometry using a Perkin Elmer LS55 spectrofluorometer (λ_{Ex}: 450-580 nm at λ_{Em} of 605 nm) (Lantoine and Neveux, 1997). The measurement precision was ~ 16%.

Pico- and nano-phytoplankton abundances were analyzed by flow cytometry. Samples (1.8 mL) were collected from the mesocosm everyday from 1, 6 and 12 m depth in cryotubes, fixed with 200 µL of paraformaldehyde (4 % final concentration), left 15 min at ambient temperature, flash frozen in liquid N₂ and stored at -80 °C until analysis on a FACSCalibur (BD Biosciences) flow cytometer as described in Marie et al. (1999). Before analysis, samples were thawed at ambient temperature in the dark. 600 µL of each sample were mixed and homogenized with 25 µL of TrueCount beads and 10 µL of 2 µm diameter beads (Fluoresbryte[™], Polysciences) used as a reference for size discrimination between pico- and nano-phytoplankton. Phytoplankton communities were clustered as Prochlorococcus spp. cell like, Synechococcus spp. cell like, nanoeukaryotes cell like and picoeukaryotes cell like according to their optical properties (light scattered and fluorescence emission by the cells) (Marie et al., 1999).

For the determination of microphytoplankton community composition (diatoms), water samples (250 mL) were taken every day by pumping and preserved with formalin. In the
laboratory, samples were sedimentoed and microphytoplankton species were identified and enumerated under inverted microscope.

Bacterial production (BP) was estimated using the 3H-leucine incorporation technique (Kirchman et al., 1985), adapted to the centrifugation method (Smith and Azam, 1992). Radioactivity was counted using a Liquid Scintillation Analyzer Packard 2100 TR and the 3H counting efficiency was corrected for quenching. BP was calculated from leucine incorporation rates using the conversion factor of 1.5 kg C mol$^{-1}$ leucine, and is shown here in ng C L$^{-1}$ h$^{-1}$. BP calculated from leucine incorporation rates using the conversion factor of 1.5 kg C mol$^{-1}$ leucine, is given in ng C L$^{-1}$ h$^{-1}$.

Samples for total organic carbon (TOC) concentrations were collected in duplicate in precombusted (4 h, 450 °C), 12-mL sealed glassware flask, acidified with orthophosphoric acid and stored in dark at 4 °C until analysis. Samples were analyzed by using a TOC-5000 total carbon analyzer (Sohrin and Sempéré, 2005). The average TOC concentrations in the Deep Atlantic Water and low carbon water reference standards were $45 \pm 2 \mu$M C, $n = 24$ and $1 \pm 0.3 \mu$M C, $n = 24$, respectively. The analytical precision of the procedure was $\leq 2\%$.

Dissolved organic nitrogen (DON) concentrations were calculated from total nitrogen (TN) concentrations subtracted by particulate organic nitrogen (PON) and dissolved inorganic nitrogen (DIN) concentrations. Samples were collected in 50 mL glass bottles and stored at 20 °C until analysis. The samples were divided in two parts after a rapid thaw for analysis of both organic and inorganic concentrations. TN concentration was determined according to the wet oxidation procedure described in Pujo-Pay and Raimbault (1994). Samples for PON concentrations were collected by filtering 1 L of water on GF/F filters and analyzed according to the wet oxidation protocol (Pujo-Pay and Raimbault, 1994) with a precision of 0.06 µM. DIN concentration was determined on a segmented flow auto-analyser according to Aminot and Kérouel (2007). Measurements were conducted using a segmented flow auto-analyser.
(TN concentration was determined according to the wet oxidation procedure described in Pujo-Pay and Raimbault (1994). AutoAnalyzer AA3 HR, SEAL Analytical). Samples for PON concentrations were collected by filtering 1 L of water on GF/F filters and analyzed according to the wet oxidation protocol (Pujo-Pay and Raimbault, 1994) with a precision of 0.06 µM.

2.6. Statistics

Linear regression analyses and one-way analyses of variance (ANOVA) were performed with StatView 5.0 and the statistics package provided in Microsoft Excel 11.0. ANOVA was used to compare the means of independent data groups (normally distributed). For the different analyses and tests, the significance threshold was set at $p < 0.05$.

3. Results

3.1. Evolution of the core parameters in the mesocosm

The detailed description of temperature, salinity and nutrient concentrations in the three mesocosms is provided in Bonnet et al. (2015). Briefly, water temperature progressively increased inside and outside the mesocosms from 25.4 to 26.2 °C over the course of the 23-day experiment. Salinity also progressively increased from 35.1 to 35.5 but this increase was less pronounced in the surrounding waters with salinities of 35.4 at day 23. Temperature and salinity were homogeneous over depth in the mesocosms, the water column having been well mixed throughout the experiment. In the mesocosms, average concentrations of NO$_3^-$ + NO$_2^-$ were < 0.04 M before the DIP fertilization (day 4) and decreased to 0.01 M at the end of the experiment. In contrast, NH$_4^+$ concentrations were ~ 0.01 M up to day 18, and then increased up to 0.06 M at day 23. DIP concentrations increased from 0.02-0.05 M before
the fertilization to 0.8 M just after, and decreased gradually over time to return to their initial concentrations at day 23 (0.02-0.08 M). In the surrounding waters, NO$_3^-$ remained < 0.20 M and DIP was 0.05 M all over the experiment (Berthelot et al., 2015; Bonnet et al., 2015).

For all the parameters described below, including CDOM and FDOM data, no significant difference was found with depth, except for TChl a and PON whose concentrations were higher at 12 m depth than at 1 and 6 m depths (ANOVA, $n = 20-22$, $p = 0.003-0.04$). Therefore, in the following paragraphs, the parameter descriptors are generally given in term of depth-averaged values.

3.2. Evolution of phytoplankton biomass, bacterial production and organic N and C pools in the mesocosm

TChl a, PON concentrations and BP in the mesocosm M1 and in the surrounding waters (OUT) generally increased throughout the experiment, with a decrease from day 4 to day 9 and then an increase from day 9 to the end of the experiment (Fig. 3a,d,f). This increase was more pronounced in M1, where TChl a, PON concentrations and BP varying from 0.12 to 0.55 µg L$^{-1}$, 0.65 to 1.31 µM and 85 to 681 ng C L$^{-1}$ h$^{-1}$, respectively. TChl a, PON concentrations and BP were significantly higher inside M1 during P2 (day 15 to day 23) than inside M1 during P1 (day 5 to day 14), and than outside during P1 and P2 (ANOVA, $n = 25-30$, $p < 0.0001-0.004$) (Table 1). Phycoerythrin concentration decreased from day 4 (0.36 µg L$^{-1}$) to day 9 (0.05 µg L$^{-1}$), increased towards day 16 (0.34 µg L$^{-1}$) and then oscillated to return to the value of 0.34 µg L$^{-1}$ at day 23 (Fig. 3b). In contrast, in OUT, phycoerythrin concentration increased from day 9 to the end of the experiment, showing a strong raise at day 21 (0.85 µg L$^{-1}$). Thus, during P2, phycoerythrin concentration was significantly higher outside M1 than inside (ANOVA, $n = 9$, $p = 0.004$) (Table 1). The TOC concentration decreased from day 4 (70 µM) to day 11 (64 µM) and increased from day 11 to day 22 (81
µM) (Fig. 3c). This increase in the second part of the experiment was not observed in OUT. Although the TOC concentration was significantly higher during P2 than during P1 in M1 (ANOVA, \(n = 9, p = 0.03\)), there was no difference between M1 and OUT during P2 (ANOVA, \(n = 7-9, p = 0.2\)) (Table 1). The DON concentration was rather constant and only tended to decrease during P2 (Fig. 3e). No significant difference in DON concentrations was found between M1 and OUT (ANOVA, \(n = 22-29, p = 0.07-0.7\)) (Table 1).

The abundance of diazotrophs DDAs inside M1 increased from day 3 (77 × 10^{3} nifH copies L^{-1}) to day 9 (190 × 10^{3} nifH copies L^{-1}), decreased from day 9 to day 15 (5.4 × 10^{3} nifH copies L^{-1}) and finally increased from day 15 to day 23 (78 × 10^{3} nifH copies L^{-1}). In OUT a quite similar pattern was observed despite a high value of 450 × 10^{3} nifH copies L^{-1} at day 18 (Fig. 4a). No significant difference in the abundance of DDAs was observed in M1 between P1 and P2, and between M1 and OUT (ANOVA, \(n = 3-6, p = 0.05-0.8\)) (Table 1). On the other hand, the abundance of diazotrophic Group UCYN-C strongly increased from day 9 (0.54 × 10^{3} nifH copies L^{-1}) to day 23 (110 × 10^{3} nifH copies L^{-1}) in M1, while it increased much more slowly in OUT from day 10 (0.32 × 10^{3} nifH copies L^{-1}) to day 22 (4.8 × 10^{3} nifH copies L^{-1}) (Fig. 4b). Hence, the abundance of UCYN-C was much higher in M1 during P2 than in M1 during P1 (14 times higher) and than in OUT during P1 and P2 (22-53 times higher) (ANOVA, \(n = 3-6, p < 0.0001\)) (Table 1). It should be noticed that the abundances of DDAs and UCYN-C are reported as nifH (gene) copies L^{-1} rather than cells L^{-1} because there is currently little information about the number of nifH copies per genome in these diazotroph targets (Turk-Kubo et al., 2015). Total diatoms in M1 decreased from day 2 (47 × 10^{3} cell L^{-1}) to day 9 (6 × 10^{3} cell L^{-1}) and then oscillated to reach 41 × 10^{3} cell L^{-1} at the end of the experiment, with a maximum value of 120 × 10^{3} cell L^{-1} at day 15 (Fig. 4c). This was essentially due to the large diatom *Cylindrotheca closterium* (data not shown). No difference in abundance of total diatoms was observed between P1 and P2 (ANOVA, \(n = 5, p = 0.2\)).
The abundances of *Synechococcus* spp., *Prochlorococcus* spp., picoeukaryotes and nanoeukaryotes decreased from day 4 (~43, 16, 2.2 and 0.9×10^3 cell mL$^{-1}$, respectively) to day 9 (~18, 5, 0.8 and 0.6×10^3 cell mL$^{-1}$, respectively) (Fig. 4d-g). From day 9 to the end of the experiment, the abundance of *Synechococcus* spp. and picoeukaryotes noticeably increased to reach ~90 and 3.4×10^3 cell mL$^{-1}$ at day 23 respectively, whereas the increase in *Prochlorococcus* spp. and nanoeukaryotes was much less (to ~20 and 1.3×10^3 cell mL$^{-1}$ at day 23, respectively). The abundance of *Synechococcus* spp., picoeukaryotes and nanoeukaryotes was significantly higher in P2 than in P1 (ANOVA, $n=23-24$, $p<0.0001-0.002$), while that of *Prochlorococcus* spp. was not different (ANOVA, $n=23-24$, $p=0.07$) (Table 1).

3.3. Absorption spectra of CDOM and particulate matter

CDOM absorption spectra of samples collected in M1 and OUT were quite similar, displaying an exponential decrease in $a_g(\lambda)$ without any significant shoulder (Fig. 5). $a_g(\lambda)$ spectra also tended to decrease exponentially with wavelength. They presented several shoulders in the range 370-520 nm (at 376, 416, 436 and 490 nm) and a clear peak between 672 and 682 nm (at 676 nm on average) (Fig. 5). $a_p(\lambda)$ spectra, which reflect the absorption by both phytoplankton and NAP, were characterized by two main Chl a peaks, one between 432 and 442 nm (at 436 nm on average) and one between 672 and 682 nm (at 676 nm on average), while several shoulders also emerged at 376, 416, 464, 490 and 550 nm (Fig. 5). Then, it appeared that $a_g(\lambda)$ displayed a much higher variability within samples than $a_p(\lambda)$. Hereafter, $a_g(\lambda)$ and $a_{g+p}(\lambda)$ are presented at 370 and 442 nm, while $a_p(\lambda)$ is given at 442 and 676 nm, the two latter wavelengths corresponding to the absorption maxima of Chl a.

3.4. Evolution of absorption coefficients, spectral slopes in the mesocosm
In M1, absorption coefficients decreased from day 4 to day 9 and then increased from day 9 to the end of the experiment (day 23), leading to variations in the ranges 0.041-0.067 m\(^{-1}\) for \(a_g(370)\), 0.011-0.020 m\(^{-1}\) for \(a_g(442)\), 0.009-0.025 m\(^{-1}\) for \(a_g(442)\), and 0.003-0.012 m\(^{-1}\) for \(a_g(676)\). \(\alpha_{\text{gap}}(370)\) and \(\alpha_{\text{gap}}(442)\) decreased from day 4 to day 9, when they were as low as ~0.041, 0.011, 0.009, 0.003, 0.017 and 0.020 m\(^{-1}\), respectively, and then increased from day 9 to the end of the experiment to reach ~0.067, 0.020, 0.025, 0.012, 0.075 and 0.046 m\(^{-1}\) at day 23, respectively (Fig. 6a,b, c,d,e,f). In OUT, these parameters also increased from day 9 or 10 to day 23 but with lower amplitude. Inside M1, all these absorption coefficients were significantly higher during P2 than during P1 (ANOVA, \(n = 27-30\), \(p < 0.0001\)). However, only \(a_g(370)\) and \(a_g(442)\) and \(\alpha_{\text{gap}}(442)\) were significantly higher in M1 than outside during P2 (ANOVA, \(n = 9-27\), \(p = 0.004-0.02\)) (Table 1). \(S_g\) inside and outside M1, ranging from 0.0148 to 0.0188 nm\(^{-1}\), did not display any clear pattern throughout the experiment (Fig. 6c). In contrast, \(S_{\text{gap}}\) inside M1 increased from day 4 (~0.0105 nm\(^{-1}\)) to day 9 (~0.0119 nm\(^{-1}\)) and decreased from day 9 to day 16 (~0.0077 nm\(^{-1}\)). Then, \(S_{\text{gap}}\) fluctuated until the end of experiment when it was ~0.0088 nm\(^{-1}\) (Fig. 6d). In OUT, \(S_{\text{gap}}\) tended to diminish from day 5 (0.0103 nm\(^{-1}\)) to day 25 (0.0084 nm\(^{-1}\)). During P2, \(S_{\text{gap}}\) was significantly lower inside M1 than outside (ANOVA, \(n = 9-27\), \(p = 0.04\)) (Table 1).

3.5. Spectral characteristics and identification of FDOM components

Three FDOM components (C1-C3) were identified by the PARAFAC model validated on 130 EEM samples from M1 and OUT. The spectral characteristics of C1-C3 are reported in Fig. 7. These components exhibited one or two Ex maxima and one Em maximum. C1, with a maximum at \(\lambda_{\text{Ex}}/\lambda_{\text{Em}}\) of 230/476 nm, corresponded to the category of UVC humic-like fluorophores, referred to as peak A (Coble, 1996; 2007; Ishii and Boyer, 2012). C2 and C3 had two maxima each, located at \(\lambda_{\text{Ex1}}, \lambda_{\text{Ex2}}/\lambda_{\text{Em}}\) of 225, 280/344 nm and 225, 275/304 nm,
respectively (Fig. 7). They belonged to the group of protein-like fluorophores, C2 being analogous to tryptophan-like fluorophore (peaks T) and C3 being analogous to tyrosine-like fluorophore (peaks B) (Coble, 1996; 2007).

3.6. Evolution of FDOM components in the mesocosm M1

Inside M1, the fluorescence intensity of humic-like fluorophore decreased from day 2 (~5.3 QSU) to day 8 (~2.7 QSU), increased from day 8 to day 14 (~4.8 QSU) and dropped down to ~2.5 QSU at day 15. Then, it increased to reach ~5.6 QSU at the end of the experiment day 20 (Fig. 8a). The fluorescence intensity of tryptophan-like fluorophore decreased from day 3 (~9.1 QSU) to day 8 (~5.3 QSU) (Fig. 8b). At day 9, it increased up to ~8.3 QSU and remained relatively stable up to day 14 (~8.4 QSU). After a reduction at day 15 (~5.9 QSU), the fluorescence intensity increased up to the end of the experiment (~10.4 QSU at day 20). The fluorescence intensity of tyrosine-like fluorophore decreased from day 5 (~8.2 QSU) to day 15 (~3.9 QSU) and then slowly increased to day 20 (~6.2 QSU) (Fig. 8c). While for humic- and tryptophan-like fluorophores no differences in their fluorescence intensity were observed between P1 and P2 (ANOVA, n = 18-30, p = 0.4-0.9), the fluorescence intensity of tyrosine-like fluorophore was significantly lower during P2 (ANOVA, n = 18-28, p = 0.002) (Table 1). Overall, the FDOM pool was dominated by protein-like material; the combined fluorescence of tryptophan and tyrosine fluorophores ranged from 9.1 to 22.3 QSU, while the fluorescence of humic fluorophore ranged from 1.9 to 6.2 QSU.

3.7. Relationships between the chromophoric and the biogeochemical/biological parameters

29
Table 2 presents \(r \) values of linear regressions between the chromophoric and the biogeochemical/biological parameters for the samples collected in M1 from day 5 to day 23. Here we consider that only the correlations that are very highly significant \((p < 0.0001)\) reflect relevant linear relationships. Even though \(a_{\lambda}(370, 442) \) were very highly (positively) correlated to \(a_{\lambda}(370, 442) \) and \(a_{\lambda}(442, 676) \) \((r = 0.70-0.98, n = 36, p < 0.0001)\), \(a_{\lambda}(370, 442) \) and \(a_{\lambda}(442, 676) \) were much less not that much correlated to each other \((r = 0.52-0.62, n = 36, p < 0.0001-0.002)\). \(S_g \) was not correlated to \(a_{\lambda}(370, 442) \) and \(a_{\lambda+p}(370, 442) \) \((r = 0.15-0.22, n = 36, p = 0.06-0.9)\), whereas \(S_{\lambda+p} \) was very highly negatively correlated to \(a_{\lambda+p}(370, 442) \) and \(a_{\lambda}(442, 676) \) \((r = -0.67-0.94, n = 36, p < 0.0001)\). Even though humic- and tryptophan-like fluorophores were very highly correlated \((r = 0.67, n = 36, p < 0.0001)\), they did not show any coupling with tyrosine-like fluorophore \((r = 0.20-0.48, n = 36, p = 0.005-0.2)\). Moreover, none of these three fluorophores was very highly correlated to the absorption coefficients and spectral slopes \((r = 0.0009-0.4742, n = 36, p > 0.5-0.05)\) (Table 2). These correlations emphasize the decoupling between the CDOM and FDOM materials during the experiment.

All absorption coefficients were very highly positively correlated to \textit{Synechococcus} spp. abundance \((r = 0.76-0.9083)\), BP \((r = 0.72-0.8578)\), TChl \(a \) concentration \((r = 0.60-0.88)\), PON concentration \((r = 0.58-0.7475)\) and picoeukaryote abundance \((r = 0.52-0.4671)\) \((n = 36, p < 0.0001)\). Linear relationships between \(a_{\lambda}(370) \) or \(a_{\lambda}(442) \) and \textit{Synechococcus} spp. abundance are presented in Fig. 9. \(S_g \) as well as the three FDOM fluorophores did not present any highly significant correlation with the biogeochemical/biological constituents. On the contrary, \(S_{\lambda+p} \) exhibited very highly significant negative correlations with phycoerythrin concentration, \textit{Synechococcus} spp. abundance, TChl \(a \) concentration, BP, nano- and pico-eukaryote abundances, and PON concentration \((rs = -0.63-0.84, n = 36, p < 0.0001)\).

Phycoerythrin, TOC, DDAs, UCYN-C and total diatoms did not display any very highly significant correlations with the chromophoric parameters (except between phycoerythrin and...
although some r values were quite high [for instance 0.90 between UCYN-C and $a_g(442)$ or $a_g(442)$]. This is because these correlations were determined for a lower number of samples (8-15). Nonetheless, albeit not very highly significant, these relationships highlighted interesting trends such as positive (negative) relationships between absorption coefficients (tyrosine-like fluorophore) and UCYN-C abundance, and negative (positive) relationships between absorption coefficients (tyrosine-like fluorophore) and DDA abundance (Table 2).

4. Discussion

4.1. General characteristics of chromophoric material

CDOM absorption. CDOM absorption spectra from samples inside and outside the mesocosm did not display any significant shoulder in the range 370-720 nm (Fig. 5). In the same way, using the PSICAM, Röttgers and Koch (2012) did not observe any specific feature in the CDOM absorption spectra from 380 to 700 nm of samples collected in the surface waters of the tropical Atlantic Ocean and of the North East and South West Pacific, including our study area inside the barrier reef of New Caledonia.

$a_g(370)$ and $a_g(442)$ measured inside and outside the mesocosm (0.040-0.086 and 0.011-0.022 m$^{-1}$, respectively; Fig. 6a,b) were within the range of those measured in surface waters of the Atlantic Ocean and at 80-200 m depth in the South West Pacific (offshore of New Caledonia) (0.021-0.118 and 0.004-0.039 m$^{-1}$, respectively) (Röttgers and Doerffer, 2007; Röttgers and Koch, 2012; Dupouy et al., 2014). In addition, our $a_g(370)$ and $a_g(442)$ values were slightly lower than those measured in the subtropical North Pacific and the Mediterranean Sea (0.050-0.090 and 0.018-0.035 m$^{-1}$, respectively) (Yamashita et al., 2013;
Organelli et al., 2014) but higher than those observed in the center of the gyre of the South East Pacific (> 0.010-0.035 and 0.005-0.015 m⁻¹, respectively) (Bricaud et al., 2010).

Our S_g values determined over the range 370-500 nm varied between 0.015 and 0.019 nm⁻¹ inside and outside the mesocosm (Fig. 6c). They were to some extent lower than S_g values determined between 350 and 500 nm of surface waters of the Mediterranean Sea, Atlantic Ocean and South East Pacific (0.015-0.025 nm⁻¹) (Röttgers and Doerffer, 2007; Bricaud et al., 2010; Para et al., 2010; Organelli et al., 2014). In fact, our S_g values did not reach the maximal values encountered in oligotrophic areas (0.020-0.025 nm⁻¹) despite the potentially important CDOM photobleaching processes which would have occurred in the surface waters of the mesocosm. This is explained by the different spectral ranges used for the S_g determination (370-500 nm vs 350-500 nm). Indeed, S_g, which strongly depends on the chosen wavelength interval, is generally higher for intervals in the short wavelengths (Nelson and Siegel, 2013; Sempéré et al., 2015), and do not present a constant spectral slope but rather steeper slopes towards the short UV wavelengths (Tedetti et al., 2007; Sempéré et al., 2015). Hence, this difference of 20 nm in the wavelength interval may influence the S_g values, the latter decreasing when considering the range 370-500 nm. It is worth noting that no correlation was found between $a_g(370)$ or $a_g(442)$ and S_g (Table 2). This was probably attributable to the low ranges and the low values of both $a_g(\lambda)$ and S_g reported here.

FDOM. The three FDOM components identified in this work were UVC humic-, tryptophan- and tyrosine-like fluorophores (Fig. 7). Thus, FDOM was dominated by protein-like material, i.e. compounds containing nitrogen, while humic-like material was less represented. Of these protein-like compounds, tryptophan- and tyrosine-like fluorophores have been reported in many aquatic ecosystems (see reviews by Coble, 2007; Fellman et al., 2010). They represent compounds of low molecular weight at the state of free amino acids or amino acids bound in peptides or proteins. They are known to be released by autochthonous
(marine) phytoplankton activity and serve as fresh and labile bioavailable products for heterotrophic bacteria (Yamashita and Tanoue, 2004; Nieto-Cid et al., 2006; Davis and Benner, 2007; Romera-Castillo et al., 2010; Tedetti et al., 2012). Moreover, they can be directly associated to humic substances (Stedmon and Cory, 2014). Generally, they do not show any conservative behaviour in the salinity gradient (Kowalczuk et al., 2009). UVC humic-like fluorophore (“peak A”) corresponds to component 1 (\(\lambda_{\text{Ex}}/\lambda_{\text{Em}}<230-260/400-500\) nm) in the review paper by Ishii and Boyer (2012) and is one of the most widespread humic-like components in the aquatic environment (Kowalczuk et al., 2009; 2013). This fluorophore, which absorbs light at very short wavelengths (230 nm) and fluoresce in long visible wavelengths (476 nm) resulting in a high Stokes shift (246 nm), would be of relatively low molecular weight (< 1 kDa) compared to other fluorescent humic-like materials (Ishii and Boyer, 2012). Present in higher quantities in the photic zone and shallow surface waters, this humic-like component is recognized as a photodegradation product of marine organic matter that is no more photodegradable due to its absorption solely in the UVC wavelengths (Yamashita et al., 2008; Ishii and Boyer, 2012).

Besides its resistance to photodegradation, the UVC humic-like fluorophore appears to be resistant to biodegradation (Balcarczyk et al., 2009; Fellman et al., 2010; Lønborg et al., 2015).

Particulate absorption. Particulate absorption coefficient spectra were dominated by phytoplankton absorption \([a_{\text{p}}(\lambda)]\) with the presence of the two main peaks of Chl a (at 436 and 672 nm), whereas the influence of detrital material (NAP), characterized by an exponential decrease of absorption with wavelength, was not really visible upon these spectra (Fig. 5). Besides these two main peaks, several shoulders were found between 376 and 550 nm. Actually, the shoulders at 376 and 416 nm might be related to Chl a (Stuart et al., 1998; Lohrenz et al., 2003). The shoulders at 464 and 490 nm reflected the occurrence of photosynthetic carotenoids and/or non photosynthetic (photoprotective) carotenoids (Dupouy
et al., 1997; 2003; Stuart et al., 1998; Wozniak et al., 1999; Lohrenz et al., 2003; Bricaud et al., 2004). In addition, the shoulder at 490 nm may be related to the presence of phycourorubin (PUB). PUB, which absorbs light around 490 nm, is known to be contained in phycoerythrin of cyanobacteria, such as *Synechococcus* spp., living in the open ocean. PUB is indeed considered as a chromatic adaptation to blue radiation which penetrates deeper than other wavelengths in the water column (Neveux et al., 1999). Also, the small shoulder at 550 nm could be the sign of phycoerythrobilin (PEB), also contained in phycoerythrin. PEB, absorbing light around 550-565 nm, is present in higher amount in *Synechococcus* spp. of coastal environments (Neveux et al., 1999). Pronounced shoulders or peaks at 550 nm are observed only for exceptional *Synechococcus* spp. concentrations (> 3×10^5 cell mL$^{-1}$) with TChl $a > 1$ µg L$^{-1}$ (Morel, 1997) or more commonly for large filamentous cyanobacteria in tropical waters (Dupouy et al., 2008). An attribution of the shoulders at 490 and 550 nm to PUB and PEB, respectively appears reasonable regarding the fact that PUB and PEB signals were detected in the phycoerythrin fluorescence measurements (M. Rodier, pers. comm.). Such a proportion of *Prochlorococcus* spp. and *Synechococcus* spp. counts reported in this work are typical of the New Caledonia lagoon (Neveux et al., 2009) compared to the equatorial upwelling area where this is inversed (Dupouy et al., 2003).

Absorption coefficients of particulate matter at 442 and 676 nm [$a_p(442)$ and $a_p(676)$] measured inside and outside the mesocosm at the exit of the New Caledonian coral lagoon (0.006-0.031 and 0.0013-0.013 m$^{-1}$, respectively; Fig. 6e, 6f) were slightly lower than those measured with the same instrument in the surface waters within the New Caledonian lagoon (0.008-0.040 and 0.0030-0.018 m$^{-1}$, respectively) (Röttgers et al., 2014; Dupouy et al., 2014), the latter values being linked to an exceptional increase in total phytoplankton biomass during the 2008 Valhybio cruise in response to a *La Nina* heavy rain episode (Dupouy et al., 2009; Fuchs et al., 2012).
4.2. Coupling between the dynamics of chromophoric material and that of
N₂ fixation in the mesocosm

Link between absorption and Synechococcus spp. Several observations suggest the
observed change in particulate matter absorption $a_p(\lambda)$ during the experiment was mainly
driven by *Synechococcus* spp. During the experiment, we may assume that the absorption of
particulate matter was mainly driven by *Synechococcus* spp. Several observations may
support this hypothesis. Firstly, *Synechococcus* spp. was the most abundant group among
(non-diazotrophic) pico-, nano- and micro-phytoplankton communities in the mesocosm (Fig.
4c-g). For instance, the concentration of *Synechococcus* spp. (88 ± 14 × 10³ cell mL⁻¹ in P2)
was higher by a factor ~ 1000 relative to that of total diatoms (44 ± 37 × 10³ cell L⁻¹ in P2)
(Table 1). *Synechococcus* spp. abundance cannot in first approach be compared to those of
diazotrophs (given in *nifH* copies L⁻¹). However, assuming that there was a minimum of one
nifH gene copy per cell, the number of *nifH* (gene) copies L⁻¹ may reflect the upper limit of
the number of cells L⁻¹, though DNA and RNA extractions were probably < 100% (Foster et
al., 2009). In this sense, the concentration of *Synechococcus* spp. was higher by a factor ~
1000 relative to that of UCYN-C (64 ± 24 × 10³ *nifH* copies L⁻¹, given a maximum of 64 ± 24
× 10³ cell L⁻¹ in P2) (Table 1). Thus, we conclude that *Synechococcus* spp. was very likely the
most important group among non-diazotrophic and diazotrophic communities in the
mesocosm. Secondly, *Synechococcus* spp. is known to have significant absorption properties
in the visible domain, highlighted in culture experiments (Bidigare et al., 1989; Morel et al.,
1993; Stramski and Mobley, 1997; Lutz et al., 2001) but also in natural samples (Morel,
1997). Absorption properties of *Synechococcus* spp. have been compared to those of
Prochlorococcus spp. and nanoplanktonic diatoms. The efficiency factor for absorption
given for a cell), which depends on both the size and the internal pigment concentration, was
on average two times higher for *Prochlorococcus* spp. and three times higher for
nanoplanktonic diatoms than for *Synechococcus* spp. over the visible domain (Morel et al.,
1993; Stramski and Mobley, 1997). Considering than the number of cells of *Synechococcus*
spp. was on average 6 times higher than that of *Prochlorococcus* spp. and ~ 1000 times higher
than that of total diatoms during P2, we may put forward that *Synechococcus* spp was the
main contributor to visible absorption in the mesocosm. Finally, $a_p(442)$ and $a_p(676)$ showed
the highest positive correlation with *Synechococcus* spp. abundance (Table 2; Fig. 9) with a
very similar evolution during P1 and P2 (Fig. 4d, 6d).

The absorption of CDOM also presented the highest (positive) coupling with
Synechococcus spp. abundance and BP (Fig. 3f, 4d, 6a,b; Table 2; Fig. 9), thereby
suggesting CDOM was produced by heterotrophic bacteria. Therefore, we can make the
assumption that CDOM was produced by heterotrophic bacteria from their assimilation of
labile organic compounds released by *Synechococcus* spp. Indeed, the latter has been shown
to release DOM (Bronk, 1999; Becker et al., 2014) that may be directly used to support
heterotrophic activity (Nagata, 2000; Lefort and Gasol, 2014). These (non-colored) labile
organic substrates issued from *Synechococcus* spp. would be converted into chromophoric,
more refractory compounds by heterotrophic bacteria (Nelson et al., 1998; Rochelle-Newall
and Fisher, 2002; Nelson and Siegel, 2013). Currently, the coupling between phytoplankton
and heterotrophic bacteria seems to be recognized as a major pathway for the formation of
CDOM in the ocean (Rochelle-Newall and Fisher, 2002; Nelson and Siegel, 2013; Organelli
et al., 2014). Interestingly, Biers et al. (2007) highlighted the role of DON, specifically amino
sugars and aromatic amino acids, in the microbial production of CDOM and FDOM while
Bronk et al. (1999) reported the production of DON by *Synechococcus* spp. Consequently, the
works by Biers et al. (2007) and Bronk et al. (1999) support the assumption of the CDOM
production by heterotrophic bacteria consecutive to their utilization of labile DOM (that
would be in part in the form of DON) released by *Synechococcus* spp., cyanobacteria. CDOM could be also produced directly from *Synechococcus* spp., as mentioned by Romera-Castillo et al. (2011). Also, we cannot exclude the participation of other primary producers, such as diatoms, to the CDOM production through a direct release of colored material (Romera-Castillo et al., 2010; Chari et al., 2013) or through the bacterial re-working. For example, from culture experiments, Chari et al. (2013) reported the production of CDOM by *Cylindrotheca closterium*, one of the most important diatom species in the mesocosm.

Regarding the respective abundances of *Synechococcus* spp. and diatoms and their evolution all over the experiment, it seems however that *Synechococcus* spp. was a greater contributor to CDOM than diatoms. Consequently, even though it seems difficult here to discriminate the respective contributions of cyanobacterial primary producers (*Synechococcus* spp.) and heterotrophic bacteria in the production of CDOM, unambiguously the coupling between both plays a key role in the absorption of particulate and dissolved chromophoric material in the mesocosm.

Link between absorption, *Synechococcus* spp. and *N*$_2$ fixation. During the first part of the experiment (P1), the diazotrophic community was dominated by diatoms-diazotrophs associations (DDAs) (Fig. 4a), more specifically heterocyst-forming *Richelia* associated with *Rhizosolenia* (Turk-Kubo et al., 2015). The decrease observed in phytoplankton biomass (including diatoms, *Synechococcus* spp., *Prochlorococcus* spp., pico- and nano-eukaryotes), BP and organic C/N pools from day 4 to day 9-11 (Fig. 3a-d,f; Fig. 4c-g) was attributable to a N limitation. In fact, during the first days, phytoplankton would have consumed the small stock of nitrates remaining in the water column without new inputs. In addition, DDAs would not have been a significant source of N for its surrounding environment because *Richelia* would have given the major part of the N that they had fixed to their host diatoms (Berthelot et al., 2015). This decrease in *Synechococcus* spp. and BP led to the decrease in CDOM and
particulate matter absorption (Fig. 6a,b, ed, fe). During P1, the total amount of N issued from the N\textsubscript{2} fixation was equivalent to the total amount of PON exported, suggesting there is a rapid putting forward a rapid and possibly direct export of the recently fixed N\textsubscript{2} by DDAs (Berthelot et al., 2015). In the second part of the experiment (P2), unicellular cyanobacteria Group C (UCYN-C) became the dominant diazotrophs (Fig. 4b). The UCYN-C bloom was induced by the phosphate fertilization and increasing temperatures (Turk-Kubo et al., 2015). Consequently, N\textsubscript{2} fixation rates were higher during P2 than during P1 (Berthelot et al., 2015).

From these authors, the N released by UCYN-C (in the form of DON and/or NH\textsubscript{4}+) allowed for supporting non-diazotrophic cyanobacterial and heterotrophic bacterial growths. This would have in turn stimulated the production of dissolved and particulate chromophoric materials [increase in TChl \textsubscript{a}, PON, TOC, BP, Synechococcus spp., a\textsubscript{4}(370, 442) and a\textsubscript{4}(442, 676) from day 9-11 to day 21-23; Fig. 3a,c,d,f; Fig. 4d; Fig. 6a,b, ed, fe]. The enhancement of Synechococcus spp. via the release of N by diazotrophs has been already underscored by Agawin et al. (2007). This N release could also explain the strong increase in diatoms (mainly Cylindrotheca closterium) at day 15 (Fig. 4c). In P2, both N\textsubscript{2} fixation and DON consumption were significant N sources for primary production and might explain the PON production (Berthelot et al., 2015). It is worth noting that a perfect temporal synchronization occurred between the variations of Synechococcus spp./BP and the variations of CDOM and particulate matter absorption. This implies rapidity in the production mechanisms of the chromophoric material inside the mesocosm. The variations of S\textsubscript{g} (Fig. 6c) [no correlation with a\textsubscript{4}(370, 442); Table 2] suggested that CDOM absorption was not only influenced by production processes but was also probably submitted to affected by photo- and microbial-degradation processes, which led to modifications in the CDOM molecular weight. It is very likely that these degradation processes were not intense enough to counterbalance the production of CDOM by the couple Synechococcus spp./heterotrophic bacteria.
Absorption budget. Also, the contribution of CDOM (a_d) in to the total absorption (a_{eg+p}) remained high in the UV domain (370 nm), ranging from 72 to 96 %, while it decreased from the beginning (50-66 %) to the end of the experiment (40-48 %) in the visible domain (442 nm). These percentages in the UV and visible domains are in line with those reported in the literature for the open ocean (Siegel et al., 2002; 2005; Tedetti et al., 2010), the higher contribution of particulate material in the absorption budget at 442 nm during the second part of the experiment being explained by the bloom of cyanobacterial primary producers (Synechococcus spp.).

FDOM decoupling. FDOM did neither follow the evolution of CDOM nor the evolution of heterotrophic bacteria and Synechococcus spp. (Fig. 8; Table 2). Tryptophan- and tyrosine-like fluorophores are part of the DON pool. The evolution of tyrosine-like fluorophore, whose fluorescence intensity was higher in P1 than in P2 (Table 1), tended to be close to that of DDAs (Fig. 4a, 8c; Table 2). Therefore, we may hypothesize a role of these diatoms-diazotrophs associations in the production of the tyrosine-like material. The tyrosine-like fluorophore released by phytoplankton could then be consumed by heterotrophic bacteria as labile substrates. UVC humic-like fluorophore, which would represent a kind of “ultimate” refractory humic compound in marine waters (no more photodegradable, no more biodegradable), displayed however an evolution close to that of tryptophan material with two important decreases at days 7-8 and 15. This observation supports the hypothesis by Stedmon and Cory (2014) of an association between humic substances and tryptophan fluorophore in seawater. This revealed that the humic-like component was also subjected to production/degradation processes in the mesocosm that cannot be precisely identified here. The fact that CDOM which absorbs light at 370 nm was not fluorescent (no fluorophores with Ex peak at 370 nm) strengthened the assumption that $a_d(370)$ and the three fluorophores represented independent chromophoric materials that were driven by different processes.
Also, these fluorophores could be not major components of the CDOM. Consequently, they would absorb but not strongly enough to significantly affect the CDOM variability. Tryptophan- and tyrosine-like fluorophores belonged to the DON pool. Nonetheless, they showed different patterns in the mesocosm: while DON decreased during P2 (both the DON consumption and the \(\text{N}_2 \) fixation supported the PON production during P2; Berthelot et al., 2015), the two fluorophores tended to increase. This suggested that tryptophan- and tyrosine-like materials were probably not involved in the PON production.

5. Conclusion

Studies dealing with the CDOM dynamics in the frame of mesocosm experiments remain limited so far and have been conducted merely in coastal-temperate or polar ecosystems (Rochelle-Newall et al., 1999; 2004; Pavlov et al., 2014). This work highlights the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment in a tropical, oligotrophic LNLC ecosystem in which \(\text{N}_2 \) fixers and picophytoplankton play an essential role. Although CDOM did not display any specific shoulders in its absorption spectra, those of particulate chromophoric material were dominated by Chl \(a \) fingerprint with small signatures of carotenoids, phycourobilin and phycoerythrobilin, which could be related to *Synechococcus* spp., the most abundant cyanobacterial group in the mesocosm. The dynamics of CDOM and particulate matter were strongly coupled with those of *Synechococcus* spp. and bacterial production. Indeed, in the second part of the experiment, the N released in the surrounding environment, very likely by UCYN-C diazotrophs, allowed for supporting cyanobacterial and heterotrophic bacterial growths and subsequently stimulating the production of dissolved and particulate chromophoric materials. The increase in phytoplankton biomass during the second part of the
experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. FDOM, composed by (N-containing) protein-like fluorophores and UVC humic-like (photoproduct) fluorophore, did not follow the evolution of CDOM and particulate matter, and was thus subjected to different production/degradation processes in the mesocosm.

Finally, this study strongly supports the idea of an indirect link between the dynamics of the N2 fixation and that of chromophoric material in the South West Pacific.

Acknowledgements. Funding for this research was provided by the Agence Nationale de la Recherche (ANR starting grant VAHINE ANR-13-JS06-0002), INSU-LEFE-CYBER program, GOPS, IRD and M.I.O. The authors thank the captain and crew of the R/V Alis. We acknowledge the SEOH divers service from the IRD research center of Noumea (E. Folcher, B. Bourgeois and A. Renaud) and from the Observatoire Océanologique de Villefranche-sur-mer (OOV, J.M. Grisoni) as well as the technical service of the IRD research center of Noumea for their helpful technical support. C. Guieu, F. Louis and J.M. Grisoni from OOV are warmly thanked for the mesocosms design and their useful advice for deployment. We also thank A. Desnues, B. Charrière, H. Berthelot, J. Héliou and T. Moutin for their help and assistance in the sampling and analyses. S. Bonnet, PI of the VAHINE project, and J. Neveux are greatly acknowledged for their constructive comments and discussions on the early versions of the manuscript. Two anonymous Reviewers are acknowledged for their relevant comments and corrections, which contributed to improve the quality of this manuscript.
References

Berthelot, H., Moutin, T., L’Helguen, S., Leblanc, K., Hélias, S., Grosso, O., Leblond, N., Charrière B., and Bonnet S.: Dinitrogen fixation and dissolved organic nitrogen fueled
primary production and particulate export during the VAHINE mesocosms experiment (New Caledonia lagoon), Biogeosciences, 12, 4273–4313, 2015.

Figure captions

Figure 1. Location of the site of the VAHINE mesocosm experiment at the exit of the New Caledonian coral lagoon, 28 km off the coast of New Caledonia, in the South West Pacific (Ocean Data View software version 4.6.5, Schlitzer, R., http://odv.awi.de, 2014, and Google Earth).

Figure 2. Pictures of the VAHINE mesocosms deployed at the exit of the New Caledonian coral lagoon.

Figure 3. Evolution of a) total chlorophyll a (TChl a) and b) phycoerythrin concentrations (µg L\(^{-1}\)), c) total organic carbon (TOC), d) particulate organic nitrogen (PON) and e) dissolved organic nitrogen (DON) concentrations (µM) and f) bacterial production (BP) (ng C L\(^{-1}\) h\(^{-1}\)) in the mesocosm M1 and in the surrounding waters (OUT) at 1, 6 and 12 m depths (except phycoerythrin and TOC concentrations, determined only at 6 m depth) over the course of the 23-day experiment. Dots are mean values with standard deviation from duplicate measurements, except for phycoerythrin. For TChl a, standard deviations are comprised within dots. Black line represents the depth-averaged values. P1: first part of the experiment, from day 5 to day 14; P2: second part of the experiment, from day 15 to day 23.

Figure 4. Evolution of the abundance of a) diatoms-diazotrophs associations (DDAs) and b) unicellular diazotrophic cyanobacteria Group C (UCYN-C) (× 10\(^3\) nifH copies L\(^{-1}\)) in the mesocosm M1 and in the surrounding waters (OUT), and c) total diatoms (× 10\(^3\) cell L\(^{-1}\)), d) *Synechococcus* spp., e) *Prochlorococcus* spp., f) picoeukaryotes and g) nanoeukaryotes (× 10\(^3\) cell mL\(^{-1}\)) in the mesocosm M1 only, over the course of the 23-day experiment.
Synechococcus spp., *Prochlorococcus* spp., picoeukaryotes and nanoeukaryotes were determined at 1, 6 and 12 m depths, while DDAs, UCYN-C and total diatoms were determined solely at 6 m depth.

For DDAs and UCYN-C, dots are mean values with standard deviation from duplicate measurements. Black line represents the depth-averaged values. P1: first part of the experiment, from day 5 to day 14; P2: second part of the experiment, from day 15 to day 23.

Detailed data about diazotrophs (DDAs and UCYN-C) are found in Turk-Kubo et al. (2015).

Figure 5. Absorption spectra of chromophoric dissolved organic matter (CDOM), CDOM + particulate matter and particulate matter over the ranges 370-720 nm and 370-430 nm of samples collected in the mesocosm M1 at 1, 6 and 12 m depths and in the surrounding waters at 1 m depth. *Black lines represent the average of all spectra and shaded areas represent the measured minimal and maximal values. Peaks and shoulders are reported for particulate matter.*

Left column: all spectra, right column: mean spectra (full line) and standard deviation (dotted lines) on which are reported peaks and shoulders.

Figure 6. Evolution of a) absorption coefficient of CDOM at 370 nm \([a_g(370) \text{ in } \text{m}^{-1}]\), b) absorption coefficient of CDOM at 442 nm \([a_g(442) \text{ in } \text{m}^{-1}]\), c) spectral slope of CDOM absorption in the range 370-500 nm \(S_g \text{ in } \text{nm}^{-1}\), d) spectral slope of CDOM + particulate matter absorption in the range 370-500 nm \(S_{g+p} \text{ in } \text{nm}^{-1}\), e) absorption coefficient of particulate matter at 442 nm \([a_p(442) \text{ in } \text{m}^{-1}]\) and f) absorption coefficient of particulate matter at 676 nm \([a_p(676) \text{ in } \text{m}^{-1}]\) in the mesocosm M1 at 1, 6 and 12 m depths and in the surrounding waters (OUT) at 1 m depth over the course of the 23-day experiment. Dots are mean values with standard deviation from duplicate measurements, except for \(S_g\) and \(S_{g+p}\).
Black line represents the depth-averaged values. P1: first part of the experiment, from day 5 to day 14; P2: second part of the experiment, from day 15 to day 23.

Figure 7. Spectral characteristics of the three FDOM components (C1-C3) validated by the PARAFAC model for 130 EEMs of samples collected in the mesocosm M1 at 1, 6 and 12 m depths and in the surrounding waters at 1 m depth over the course of the 23-day experiment. Both contour (left column) and line (right column) plots are depicted. The line plots show the excitation (left side) and emission (right side) fluorescence spectra. The dotted grey lines correspond to split half validation results. The excitation and emission maxima (λ_{Ex} and λ_{Em}) of each component are given.

Figure 8. Evolution of the fluorescence intensities (QSU) of the three FDOM components: a) humic-like, b) tryptophan-like and c) tyrosine-like fluorophores in the mesocosm M1 at 1, 6 and 12 m depths over the course of the 23-day experiment (actually up to day 20 and not to day 23). Dots are mean values with standard deviation from duplicate measurements. Black line represents the depth-averaged values. P1: first part of the experiment, from day 5 to day 14; P2: second part of the experiment, from day 15 to day 23. Fluorescence intensities in the surrounding waters (OUT) at 1 m depth were determined on only few samples at the beginning and the end of the experiment and are thus not presented here.

Figure 9. Linear relationships between absorption coefficient of CDOM at 370 nm [$a_g(370)$ in m$^{-1}$] or absorption coefficient of particulate matter at 442 nm [$a_p(442)$ in m$^{-1}$] and *Synechococcus* spp. abundance ($\times 10^3$ cell mL$^{-1}$) for samples collected in the mesocosm M1 from day 5 to day 20, i.e., from the day after the dissolved inorganic phosphorus fertilization to almost the end of the experiment (P1 + P2) ($n = 36$).
Table 1. Mean values and associated standard deviations of chromophoric, biogeochemical and biological parameters of samples collected in the mesocosm M1 and in the surrounding waters (OUT) during the first part of the experiment, i.e. from day 5 to day 14 (P1), and during the second part of the experiment, i.e. from day 15 to day 23 (P2). The means which have different letters (a, b, c or d) are significantly different (ANOVA, p < 0.05). M1-P2 values in bold are significantly different from M1-P1, OUT-P1 and OUT-P2 values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>M1-P1 (n)</th>
<th>M1-P2 (n)</th>
<th>OUT-P1 (n)</th>
<th>OUT-P2 (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TChl a (µg L⁻¹)</td>
<td>0.19 ± 0.05⁸ (28)</td>
<td>0.42 ± 0.14⁸ (27)</td>
<td>0.21 ± 0.03⁷ (25)</td>
<td>0.30 ± 0.07⁹ (25)</td>
</tr>
<tr>
<td>Phycoerythrin (µg L⁻¹)</td>
<td>0.17 ± 0.09⁹ (9)</td>
<td>0.24 ± 0.09⁹ (9)</td>
<td>0.19 ± 0.08⁹ (10)</td>
<td>0.42 ± 0.19⁹ (9)</td>
</tr>
<tr>
<td>TOC (µM)</td>
<td>66.5 ± 2.1² (9)</td>
<td>69.7 ± 4.3³ (9)</td>
<td>66.6 ± 2.8⁸ (9)</td>
<td>67.7 ± 1.5⁴ (7)</td>
</tr>
<tr>
<td>PON (µM)</td>
<td>0.81 ± 0.13³ (30)</td>
<td>1.10 ± 0.21³ (27)</td>
<td>0.71 ± 0.06⁶ (30)</td>
<td>0.87 ± 0.13³ (27)</td>
</tr>
<tr>
<td>DON (µM)</td>
<td>5.5 ± 1.4² (29)</td>
<td>4.8 ± 0.6² (22)</td>
<td>5.0 ± 0.4³ (29)</td>
<td>5.3 ± 1.8² (23)</td>
</tr>
<tr>
<td>BP (ng C L⁻¹ h⁻¹)</td>
<td>157 ± 49⁹ (30)</td>
<td>348 ± 142² (27)</td>
<td>135 ± 24³ (30)</td>
<td>256 ± 60² (27)</td>
</tr>
<tr>
<td>DDAs (× 10⁵ nifH copies L⁻¹)</td>
<td>120 ± 45⁵ (5)</td>
<td>54 ± 31² (6)</td>
<td>227 ± 189⁵ (5)</td>
<td>200 ± 220² (3)</td>
</tr>
<tr>
<td>UCYN-C (× 10⁵ nifH copies L⁻¹)</td>
<td>4.5 ± 7.6² (4)</td>
<td>64 ± 24² (6)</td>
<td>1.2 ± 0.8⁵ (5)</td>
<td>2.9 ± 1.7² (3)</td>
</tr>
<tr>
<td>Total diatoms (× 10⁶ cell L⁻¹)</td>
<td>17 ± 9² (5)</td>
<td>44 ± 37² (5)</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Synechococcus (× 10⁵ cell mL⁻¹)</td>
<td>41 ± 20³ (24)</td>
<td>88 ± 14² (23)</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Prochlorococcus (× 10⁵ cell mL⁻¹)</td>
<td>12 ± 6² (24)</td>
<td>15 ± 3³ (23)</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Picoeukaryotes (× 10⁶ cell mL⁻¹)</td>
<td>1.5 ± 0.8² (24)</td>
<td>2.4 ± 0.6² (23)</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Nanoeukaryotes (× 10⁶ cell mL⁻¹)</td>
<td>0.9 ± 0.4² (24)</td>
<td>1.5 ± 0.4² (23)</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>a₃₇₀ngle (m⁻¹)</td>
<td>0.046 ± 0.004⁸ (30)</td>
<td>0.058 ± 0.009⁸ (27)</td>
<td>0.049 ± 0.005⁻⁸ (9)</td>
<td>0.052 ± 0.006⁹ (9)</td>
</tr>
<tr>
<td>a₄₂₀ (m⁻¹)</td>
<td>0.013 ± 0.001³ (30)</td>
<td>0.016 ± 0.003³ (27)</td>
<td>0.015 ± 0.002⁻³ (9)</td>
<td>0.015 ± 0.001⁻³ (9)</td>
</tr>
<tr>
<td>Δ₄₈₅ (nm⁻²)</td>
<td>0.0172 ± 0.001⁹ (30)</td>
<td>0.0174 ± 0.001² (27)</td>
<td>0.0169 ± 0.001⁵ (9)</td>
<td>0.0169 ± 0.001¹⁻⁹ (9)</td>
</tr>
<tr>
<td>a₃₇₀+₄₄₂ (mm⁻²)</td>
<td>0.055 ± 0.006⁻⁸ (30)</td>
<td>0.066 ± 0.008⁻⁸ (27)</td>
<td>0.058 ± 0.005⁻⁸ (9)</td>
<td>0.062 ± 0.007⁻⁸ (9)</td>
</tr>
<tr>
<td>a₄₂₀+₄₄₂ (mm⁻²)</td>
<td>0.027 ± 0.004⁻⁷ (30)</td>
<td>0.038 ± 0.005⁻⁷ (27)</td>
<td>0.030 ± 0.002⁻⁷ (9)</td>
<td>0.033 ± 0.003⁻⁷ (9)</td>
</tr>
<tr>
<td>Δ₄₈₅+₆₇₆ (nm⁻²)</td>
<td>0.0104 ± 0.0001⁻⁷ (30)</td>
<td>0.0086 ± 0.0004⁻⁷ (27)</td>
<td>0.0100 ± 0.0001⁻⁷ (9)</td>
<td>0.0092 ± 0.0001⁻⁷ (9)</td>
</tr>
<tr>
<td>a₄₂₀ (m⁻¹)</td>
<td>0.014 ± 0.004⁸ (30)</td>
<td>0.022 ± 0.004⁸ (27)</td>
<td>0.015 ± 0.002⁻⁸ (9)</td>
<td>0.018 ± 0.002⁻⁸ (9)</td>
</tr>
<tr>
<td>Δ₆₇₆ (nm⁻²)</td>
<td>0.005 ± 0.002⁸ (30)</td>
<td>0.009 ± 0.002⁻⁸ (27)</td>
<td>0.005 ± 0.001⁻⁸ (9)</td>
<td>0.008 ± 0.001⁻⁸ (9)</td>
</tr>
<tr>
<td>Humic-like (QSU)</td>
<td>4.47 ± 0.76² (30)</td>
<td>4.45 ± 1.09² (18)</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Tryptophan-like (QSU)</td>
<td>7.68 ± 1.17³ (30)</td>
<td>8.07 ± 2.07² (18)</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Tyrosine-like (QSU)</td>
<td>6.57 ± 1.21³ (28)</td>
<td>5.49 ± 0.83³ (18)</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>
nd: not determined; TChl \(a\): total chlorophyll \(a\) concentration; TOC: total organic carbon concentration; PON and DON: particulate and dissolved organic nitrogen concentrations; BP: bacterial production; DDAs: diatoms-diazotrophs associations; UCYN-C: unicellular diazotrophic cyanobacteria Group C; \(a_g(370)\) and \(a_g(442)\): absorption coefficients of CDOM at 370 and 442 nm; \(a_{g+p}(370)\) and \(a_{g+p}(442)\): absorption coefficients of CDOM + particulate matter at 370 and 442 nm; \(S_g\) and \(S_{g+p}\): spectral slopes of CDOM and CDOM + particulate matter; \(a_p(442)\) and \(a_p(676)\): absorption coefficients of particulate matter at 442 and 676 nm; Humic-like, tryptophan-like and tyrosine-like: fluorescence intensity of humic-like, tryptophan-like and tyrosine-like FDOM fluorophores. Detailed data about diazotrophs (DDAs and UCYN-C) are found in Turk-Kubo et al. (2015).
Table 2. Pearson’s correlation coefficients (r) of linear regressions between the chromophoric and the biogeochemical/biological parameters of samples collected in the mesocosm M1 from day 5 to day 23, i.e. from the day after the dissolved inorganic phosphorus fertilization to almost the end of the experiment (P1 + P2) ($n = 36$).

<table>
<thead>
<tr>
<th></th>
<th>a_s(370)</th>
<th>a_s(442)</th>
<th>S_g</th>
<th>a_s(442)</th>
<th>a_s(676)</th>
<th>Humic</th>
<th>Trypto.</th>
<th>Tyrosine</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_s(442)</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_s(442)</td>
<td></td>
<td>0.78</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_s(442)</td>
<td></td>
<td></td>
<td>0.74</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_g</td>
<td>0.22</td>
<td>0.55</td>
<td>0.52</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.61</td>
<td>0.52</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>a_s(442)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.62</td>
<td>0.53</td>
<td>0.30</td>
</tr>
<tr>
<td>a_s(676)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Humic</td>
<td>0.42</td>
<td>0.42</td>
<td>0.36</td>
<td>0.13</td>
<td>0.22</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypto.</td>
<td>0.28</td>
<td>0.28</td>
<td>0.24</td>
<td>0.28</td>
<td>0.17</td>
<td>0.16</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.09</td>
<td>0.25</td>
<td>0.11</td>
<td>0.28</td>
<td>0.39</td>
<td>0.48</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>TChl a</td>
<td>0.68</td>
<td>0.60</td>
<td>0.32</td>
<td>0.86</td>
<td>0.88</td>
<td>0.22</td>
<td>0.21</td>
<td>0.33</td>
</tr>
<tr>
<td>Phyco.*</td>
<td>0.45</td>
<td>0.42</td>
<td>0.11</td>
<td>0.74</td>
<td>0.73</td>
<td>0.05</td>
<td>0.00</td>
<td>0.35</td>
</tr>
<tr>
<td>TOC*</td>
<td>0.35</td>
<td>0.16</td>
<td>0.63</td>
<td>0.57</td>
<td>0.59</td>
<td>0.52</td>
<td>0.43</td>
<td>0.28</td>
</tr>
<tr>
<td>PON</td>
<td>0.71</td>
<td>0.58</td>
<td>0.29</td>
<td>0.75</td>
<td>0.70</td>
<td>0.43</td>
<td>0.29</td>
<td>0.04</td>
</tr>
<tr>
<td>DON</td>
<td>0.30</td>
<td>0.23</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.04</td>
<td>0.26</td>
<td>0.10</td>
</tr>
<tr>
<td>BP</td>
<td>0.75</td>
<td>0.72</td>
<td>0.10</td>
<td>0.78</td>
<td>0.72</td>
<td>0.43</td>
<td>0.32</td>
<td>0.12</td>
</tr>
<tr>
<td>DDAs*</td>
<td>0.44</td>
<td>0.38</td>
<td>0.52</td>
<td>0.85</td>
<td>0.78</td>
<td>0.20</td>
<td>0.05</td>
<td>0.60</td>
</tr>
<tr>
<td>UCYN-C*</td>
<td>0.73</td>
<td>0.67</td>
<td>0.55</td>
<td>0.90</td>
<td>0.85</td>
<td>0.15</td>
<td>0.23</td>
<td>0.47</td>
</tr>
<tr>
<td>Diatoms*</td>
<td>0.07</td>
<td>0.08</td>
<td>0.40</td>
<td>0.49</td>
<td>0.47</td>
<td>0.85</td>
<td>0.74</td>
<td>0.88</td>
</tr>
<tr>
<td>Synecho.</td>
<td>0.76</td>
<td>0.76</td>
<td>0.08</td>
<td>0.83</td>
<td>0.76</td>
<td>0.35</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td>Prochlo.</td>
<td>0.42</td>
<td>0.47</td>
<td>0.08</td>
<td>0.57</td>
<td>0.50</td>
<td>0.13</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Picoeuka.</td>
<td>0.52</td>
<td>0.62</td>
<td>0.07</td>
<td>0.71</td>
<td>0.58</td>
<td>0.40</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>Nanoeuka.</td>
<td>0.48</td>
<td>0.45</td>
<td>0.01</td>
<td>0.65</td>
<td>0.58</td>
<td>0.11</td>
<td>0.01</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Correlation coefficients (r) in bold are very highly significant ($p < 0.0001$). * Correlations determined on a lower number of samples (n): 15 for Phyco. and TOC, 10 for DDAs, 9 for UCYN-C and 8 for diatoms.
$a_g(370)$ and $a_g(442)$: absorption coefficients of CDOM at 370 and 442 nm (m$^{-1}$); $a_{g+p}(370)$ and $a_{g+p}(442)$: absorption coefficients of CDOM + particulate matter at 370 and 442 nm (m$^{-1}$); S_g and S_{g+p}: spectral slopes of CDOM and CDOM + particulate matter (nm$^{-1}$); $a_p(442)$ and $a_p(676)$: absorption coefficients of particulate matter at 442 and 676 nm (m$^{-1}$); Humic: fluorescence intensity of humic-like fluorophore (QSU); Trypto.: fluorescence intensity of tryptophan-like fluorophore (QSU); Tyrosine: fluorescence intensity of tyrosine-like fluorophore (QSU); TChl a: total chlorophyll a concentration (µg L$^{-1}$); Phyco.: phycoerythrin concentration (µg L$^{-1}$); TOC: total organic carbon concentration (µM); PON and DON: particulate and dissolved organic nitrogen concentrations (µM); BP: bacterial production (ng C L$^{-1}$ h$^{-1}$); DDAs: diatoms-diazotrophs associations ($nifH$ copies L$^{-3}$); UCYN-C: unicellular diazotrophic cyanobacteria Group C ($nifH$ copies L$^{-3}$); Diatoms: total diatoms (cell L$^{-1}$); Synecho.: Synechococcus spp. (cell mL$^{-1}$); Prochlo.: Prochlorococcus spp. (cell mL$^{-1}$); Picoeuka.: Picoeukaryote (cell mL$^{-1}$); Nanoeuka.: Nanoeukaryote (cell mL$^{-1}$).

Detailed data about diazotrophs (DDAs and UCYN-C) are found in Turk-Kubo et al. (2015).
Figure 1
Figure 3

(a) TChl a

(b) Phycocerythrin

(c) TOC

(d) PON

(e) DON

(f) BP

Day of sampling

Figure 3
Figure 4
Figure 5

Absorption coefficient (m$^{-1}$)

CDOM

Particulate

Shoulders at 376, 416, 464, 490 nm

Peak at 436 nm

Shoulder at 550 nm

Peak at 676 nm
Figure 6
Figure 7
Figure 8
Figure 9

![Graphs showing linear relationships between Synechococcus concentration and absorption coefficients at 370 and 442 nm.

- For absorption coefficient at 370 nm ($a_\lambda(370)$): $y = 0.0002x + 0.0383$, $r = 0.76$, $n = 36$, $p < 0.0001$.
- For absorption coefficient at 442 nm ($a_\lambda(442)$): $y = 0.0001x + 0.0073$, $r = 0.83$, $n = 36$, $p < 0.0001$.](image-url)