



## Supplement of

## Trace elements transport in western Siberia rivers across a permafrost gradient

O. S. Pokrovsky et al.

Correspondence to: O. S. Pokrovsky (oleg@get.obs-mip.fr)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

## SUPPLEMENT

## List of rivers, correlation coefficients and latitudinal plots of TE

**Table S1.** List of sampled rivers, their watershed area and annual runoff. The numbers in the first column represent the rivers in the map (Fig. 1).

| River                   | N            | Е            | watersheds,<br>km <sup>2</sup> | Annual<br>runoff,<br>mm/y |
|-------------------------|--------------|--------------|--------------------------------|---------------------------|
|                         |              |              |                                |                           |
| 41. Vach-Yagun          | 61°29'11.1"  | 74°09'42.9"  | 1.79                           | 192                       |
| 40. Segut-Yagun         | 61°29'46.6"  | 74°15'30.3"  | 3.37                           | 192                       |
| 27. Medvedka            | 60°44'10,9"  | 77°22'55,9"  | 7                              | 173                       |
| 38. Kottym'egan         | 61°27'17.3"  | 74°40'23.3"  | 7.18                           | 192                       |
| 81. Tydylyakha          | 65°06'48.8"  | 77°47'58.8"  | 7.46                           | 185                       |
| 3. Chybyr'              | 56°43'15.0"  | 83°55'35.1"  | 8.14                           | 44.8                      |
| 35. Er-Yakh             | 61°12'19,5"  | 75°23'06,5"  | 9.35                           | 173                       |
| 42. Vachinguriyagun     | 61°50'28.6"  | 70°50'28.2"  | 9.52                           | 192                       |
| 47. Pertriyagun         | 62°37'08.4"  | 74°10'15.9"  | 9.65                           | 192                       |
| 60. Goensapur           | 63°12'43.38" | 76°21'27.66" | 11                             | 194                       |
| 82. Tydyotta            | 65°12'17.6"  | 77°43'49.8"  | 12.0                           | 309                       |
| 14. Istok               | 58°24'38.0"  | 82°08'46.0"  | 12.3                           | 127                       |
| 61. Denna               | 63°12'45.96" | 76°24'1.32"  | 15                             | 194                       |
| 78. Seryareyakha        | 64°32'07.9"  | 76°54'21.3"  | 15.2                           | 186                       |
| 73. Apoku-Yakha         | 64°09'06.4"  | 75°22'18.1"  | 18.8                           | 186                       |
| 54. Ponto-Yakha         | 63°9'31.38"  | 75°3'2.58"   | 19                             | 194                       |
| 43. Lyukh-Yagun         | 61°58'05.1"  | 73°47'03.4"  | 21.6                           | 192                       |
| 49. Ai-Kirill-Vys'yagun | 62°43'09.9"  | 74°13'45.9"  | 24.0                           | 192                       |
| 28. Saim                | 60°45'58,5"  | 77°26'12,6"  | 26                             | 173                       |
| 31. Kaima               | 60°50'43,6"  | 77°05'03,0"  | 31                             | 173                       |
| 6. Cherniy Klyuch       | 56°54'39,1"  | 82°33'33,3"  | 32                             | 168                       |
| 29. Mishkin Saim        | 60°47'29,3"  | 77°19'13,5"  | 32                             | 173                       |
| 67. Nyudya-Itu-Yakha    | 63°8'34.02"  | 74°54'29.1"  | 32                             | 194                       |
| 46. Pintyr'yagun        | 62°33'39.8"  | 74°00'29.5"  | 33.5                           | 192                       |
| 64. Khatytayakha        | 63°36'48.2"  | 74°35'28.6"  | 34.6                           | 194                       |
| 88. Tadym-Yakha         | 65°59'05.7"  | 77°40'52.6"  | 39.9                           | 185                       |
| 87. Yude-Yakha          | 65°58'54"    | 77°34'05"    | 42.4                           | 185                       |
| 57. Tlyatsayakha        | 63°13'25.2"  | 76°5'23.04"  | 43                             | 194                       |
| 30. Alenkin Egan        | 60°49'32,3"  | 77°13 46,3"  | 44                             | 173                       |
| 77. Kharv'-Yakha        | 64°26'05.2"  | 76°24'37.0"  | 46.4                           | 186                       |
| 76. Khaloku-Yakha       | 64°23'30,6"  | 76°19'50,1"  | 53                             | 186                       |
| 13. Tatarkin Istok      | 58°23'16.8"  | 82°11'39.0"  | 58.6                           | 33.4                      |
| 71. Ngarka-Tyde-Yakha   | 64°12'08.4"  | 75°24'28.4"  | 59.9                           | 186                       |
| 2. Prud                 | 56°46'19.5"  | 83°57'35.7"  | 61.5                           | 44.8                      |
| 72. Ngarka-Varka-Yakha  | 64°06'50.7"  | 75°14'17.3"  | 67.1                           | 186                       |
| 74. Etu-Yakha           | 64°17'31.9"  | 75°44'33.4"  | 71.6                           | 186                       |
| 66. Khanupiyakha        | 63°49'58,0"  | 74°39'02,5"  | 74                             | 194                       |
| 83. Ponie-Yakha         | 65°23'34.1"  | 77°45'46.7"  | 78.9                           | 185                       |
| 53.Nyudya-Pidya-Yakha   | 63°10'4.68"  | 76°28'19.08" | 79.5                           | 194                       |

| 50. Pyrya-Yakha          | 63°11'19,3"  | 74°36'25,5"  | 82    | 194   |
|--------------------------|--------------|--------------|-------|-------|
| 56. Yangayakha           | 63°13'12.06" | 75°38'52.26" | 88    | 194   |
| 52. Nekhtyn-Pryn         | 63°10'3.48"  | 74°45'16.32" | 96    | 194   |
| 75. Varka-Yakha          | 64°19'10.1"  | 76°08'26.7"  | 105   | 186   |
| 86. Almayakha            | 65°47'48.6"  | 78°10'09.0"  | 106   | 185   |
| 69. Lymbyd'yakha         | 63°47'04.5"  | 75°37'06.8"  | 115   | 194   |
| 20. Vyalovka             | 58°40'46.5"  | 84°27'56.6"  | 117   | 127   |
| 58. Chukusamal           | 63°13'3.66"  | 76°15'24.6"  | 121   | 194   |
| 92. Malokha Yakha        | 66°59'20,9"  | 79°22'30,5"  | 157   | 208   |
| 55. Velykh-Pelykh-Yakha  | 63°9'39.84"  | 75°09'10.86" | 170   | 194   |
| 63. Kamgayakha           | 63°22'01.6"  | 74°31'53.2"  | 175   | 194   |
| 10. Chemondaevka         | 57°52'26.8"  | 83°11'29.9"  | 177   | 63.4  |
| 85. Khiroyakha           | 65°46'34,5"  | 78°08'25,8"  | 183   | 185   |
| 22. Kornilovskaya        | 59°41'01,6"  | 77°44'33,9"  | 190   | 133   |
| 24. Koltogorka           | 60°08'43"    | 77°16'53"    | 220   | 155.4 |
| 51. Itu-Yakha            | 63°11'40.68" | 74°38'16.92" | 250   | 194   |
| 23. Levyi Il'yas         | 59°44'09,2"  | 77°26'06"    | 253   | 133   |
| 11. Sugotka              | 57°58'45.7"  | 82°58'32.2"  | 275   | 63.4  |
| 65. Pulpuyakha           | 63°40'41.8"  | 74°35'20.7"  | 281   | 194   |
| 8. Malyi Tatosh          | 57°36'43.3"  | 83°37'02.1"  | 302   | 63.4  |
| 5. Brovka                | 57°19'20.7"  | 83°55'53.8"  | 320   | 63.4  |
| 36. Ur'evskii Egan       | 61°19'41.2"  | 75°04'0.3"   | 359   | 272   |
| 17. Karza                | 58°32'05,8"  | 80°51'26,8"  | 473   | 148   |
| 18. Sochiga              | 58°37'29,9"  | 81°06'09,0"  | 510   | 148   |
| 90. Mal. Khadyr-Yakha    | 65°59'14.7"  | 78°32'25.2"  | 512   | 278   |
| 48. Kirill-Vys'yagun     | 63°38'23,4"  | 74°10'52"    | 598   | 225   |
| 93. Nuny-Yakha           | 67°10'54,8"  | 78°51'04,5"  | 656   | 312   |
| 16. Chigas               | 58°33'03.1"  | 81°48'44.3"  | 689   | 180   |
| 25. Sosninskii Yegan     | 60°30'19"    | 76°58'57"    | 732   | 199   |
| 67. Kharucheiyakha       | 63°51'23.4"  | 75°08'05.6"  | 820   | 292   |
| 9. Bolshoy Tatosh        | 57°37'17.3"  | 83°31'53.3"  | 1020  | 74.6  |
| 33. Mokhovaya            | 61°34'27.4"  | 77°46'35.4"  | 1260  | 192.3 |
| 70. Chuchi-Yakha         | 63°43'37,9"  | 75°59'04,1"  | 1396  | 292   |
| 44. Limpas               | 61°59'39"    | 73°47'39"    | 1648  | 320   |
| 91. Ngarka Khadyta-Yakha | 66°17'10.8"  | 79°15'06.1"  | 1970  | 277   |
| 59. Vyngapur             | 63°46'22.92" | 76°25'28.86" | 1979  | 324   |
| 34. Vatinsky Egan        | 61°11'52.7"  | 75°25'20.2"  | 3190  | 287   |
| 7. Bakchar               | 57°02'23,75" | 82°04'02,44" | 3197  | 96.1  |
| 15. Shudelka             | 58°26'06.9"  | 82°05'43.6"  | 3460  | 211   |
| 84. Yamsovey             | 65°41'51.1"  | 78°01'05.0"  | 4030  | 309   |
| 79. Purpe                | 64°40'14.0"  | 77°05'27.2"  | 5110  | 309   |
| 95. Khadutte             | 67°24'39"    | 76°21'12"    | 5190  | 346   |
| 68. Pyakupur             | 63°49'54,2"  | 75°22'47,1"  | 9880  | 324   |
| 45. Tromyegan            | 62°07'50,0"  | 73°44'05,6"  | 10770 | 263   |
| 4. Shegarka              | 57°06'39.2"  | 83°54'41.1"  | 12000 | 58.3  |
| 19. Parabel              | 58°42'34.5"  | 81°22'22.0"  | 25500 | 131   |
| 80. Aivasedapur          | 64°55'55.1"  | 77°56'08.2 " | 26100 | 309   |
| 12. Chaya                | 58°04'20.8"  | 82°49'19.7"  | 27200 | 96    |
| 37. Agan                 | 61°26'13,6"  | 74°47'39,7"  | 27600 | 291   |

| 21. Vasyugan | 58°59'37"    | 80°34'00"   | 63780  | 177 |
|--------------|--------------|-------------|--------|-----|
| 32. Vakh     | 60°55'41,0"  | 76°53'49,3" | 75090  | 298 |
| 89. Pur      | 65°57'05.5"  | 78°18'59.1" | 112000 | 298 |
| 94. Taz      | 67°22'13.28" | 79°00'25,9" | 150000 | 330 |
| 26. Ob'      | 60°40'28.8"  | 77°31'29.4" | 773200 | 216 |
| 1. Ob'       | 56°31'48"    | 84°09'44"   | 423100 | 207 |

**Table S2.** Correlation matrix of major and TE with Fe, Al, DOC and DIC. Bold values are significant at p < 0.05.

|                   | Al, all | Fe, all | Al,    | Fe,    | Al,    | Fe,    | Al,  | Fe,   | Al,    | Fe,    |
|-------------------|---------|---------|--------|--------|--------|--------|------|-------|--------|--------|
|                   | year    | year    | spring | spring | Summer | Summer | ган  | Fall  | winter | winter |
| DIC               | -0.28   |         |        |        | -0.75  |        |      |       | -0.45  |        |
| DOC               | 0.60    |         | 0.66   |        | 0.80   |        |      |       |        | 0.40   |
| UV <sub>280</sub> | 0.71    | 0.19    | 0.67   |        | 0.75   |        |      |       | 0.61   | 0.64   |
| Cl                |         |         |        | 0.75   |        |        |      |       |        |        |
| SO <sub>4</sub>   |         |         |        |        |        |        |      |       |        |        |
| Si                |         |         |        |        |        |        |      |       |        |        |
| Li                |         |         |        | 0.48   |        |        |      |       |        |        |
| Ве                | 0.45    | 0.44    | 0.75   |        | 0.83   |        | 0.75 |       |        |        |
| В                 |         |         |        | 0.69   |        |        |      |       |        |        |
| Na                |         |         |        | 0.74   |        |        |      |       |        |        |
| Mg                | -0.27   |         |        |        |        |        |      |       | -0.51  |        |
| Si                | -0.45   |         |        |        |        |        |      |       | -0.48  |        |
| К                 |         |         |        |        |        |        |      | -0.78 | -0.46  |        |
| Са                |         |         |        |        |        |        |      |       | -0.47  |        |
| Ті                | 0.47    |         | 0.71   |        | 0.98   |        | 0.87 | 0.78  | 0.76   | 0.68   |
| v                 | 0.28    |         | 0.45   |        |        |        |      |       | 0.77   | 0.53   |
| Cr                | 0.46    | 0.34    | 0.60   |        | 0.91   |        | 0.86 |       | 0.80   | 0.54   |
| Mn                | -0.28   | 0.34    |        |        |        |        |      |       |        | 0.50   |
| Со                |         | 0.29    |        |        | 0.84   |        | 0.73 |       |        |        |
| Ni                | 0.45    |         | 0.46   |        |        |        |      |       |        |        |
| Cu                | 0.34    | -0.31   |        |        | 0.73   |        |      |       |        |        |
| Zn                |         |         |        |        |        |        |      |       |        |        |
| Ga                |         |         | 0.55   |        | 0.84   |        | 0.90 | 0.71  |        | 0.69   |
| As                |         | 0.36    |        |        |        | 0.79   |      |       |        | 0.86   |
| Rb                |         |         |        |        |        |        |      |       |        |        |
| Sr                |         |         |        | 0.51   |        |        |      |       | -0.44  |        |
| Zr                | 0.59    |         | 0.75   |        | 0.83   |        | 0.75 |       | 0.86   | 0.62   |
| Nb                | 0.79    |         | 0.88   |        |        |        |      |       |        |        |
| Мо                |         | -0.29   |        |        |        |        |      | -0.95 |        |        |
| Cd                | 0.71    |         | 0.74   |        | 0.92   |        | 0.95 |       |        |        |
| Sb                | 0.52    | -0.28   | 0.40   |        |        |        |      |       |        | 0.40   |
| Cs                |         |         |        | 0.56   |        |        |      |       |        |        |
| Ва                |         |         |        | 0.48   |        |        |      |       |        |        |
| La                | 0.77    |         | 0.72   |        | 0.88   |        | 0.86 |       | 0.79   |        |
| Ce                | 0.78    |         | 0.73   |        | 0.96   |        | 0.82 |       | 0.80   |        |
| Pr                | 0.72    |         | 0.74   |        | 0.91   |        | 0.89 |       | 0.80   |        |
| Nd                | 0.72    |         | 0.75   |        | 0.92   |        | 0.88 |       | 0.80   |        |
| Sm                | 0.70    |         | 0.74   |        | 0.92   |        | 0.90 |       | 0.80   |        |
| Eu                | 0.58    |         | 0.60   |        | 0.90   |        | 0.91 |       | 0.60   |        |
| Gd                | 0.66    |         | 0.68   |        | 0.92   |        | 0.85 |       | 0.78   |        |
| Ga                | 0.66    |         | 0.68   |        | 0.92   |        | 0.85 |       | 0.78   |        |

| Dy | 0.67 |       | 0.71 | 0.95 | 0.84 |      | 0.76 |  |
|----|------|-------|------|------|------|------|------|--|
| Но | 0.64 |       | 0.67 | 0.91 | 0.89 |      | 0.51 |  |
| Er | 0.65 |       | 0.69 | 0.94 | 0.82 |      | 0.71 |  |
| Tm | 0.66 |       | 0.72 | 0.76 | 0.83 |      |      |  |
| Yb | 0.61 |       | 0.68 | 0.97 | 0.83 |      | 0.70 |  |
| Lu | 0.59 |       | 0.67 |      | 0.85 |      |      |  |
| Hf | 0.69 |       | 0.72 |      |      |      |      |  |
| W  |      |       | 0.47 |      |      |      |      |  |
| Pb | 0.37 |       |      |      |      |      | 0.45 |  |
| Th | 0.80 |       | 0.86 | 0.83 | 0.86 | 0.73 | 0.88 |  |
| U  |      | -0.33 |      |      |      |      |      |  |

|                   | DIC,<br>all<br>year | DOC,<br>all<br>year | DIC,<br>Spring | DOC,<br>Spring | DIC,<br>Summer | DOC,<br>Summer | DIC,<br>Fall | DOC,<br>Fall | DIC,<br>Winter | DOC,<br>Winter |
|-------------------|---------------------|---------------------|----------------|----------------|----------------|----------------|--------------|--------------|----------------|----------------|
| DOC               |                     |                     | 0.60           |                |                |                | -0.77        |              |                |                |
| UV <sub>280</sub> |                     | 0.90                | 0.53           | 0.99           |                | 0.98           | -0.92        | 0.92         |                | 0.51           |
| CI                |                     |                     |                |                |                |                | 0.72         | -0.87        |                | 0.64           |
| SO4               |                     |                     |                |                |                |                | 0.71         |              |                |                |
| Si                | 0.20                |                     |                |                |                |                | 0.73         | -0.88        |                |                |
| Li                |                     |                     | 0.59           | 0.73           | 0.28           |                |              |              |                |                |
| Ве                | -0.20               | 0.63                |                |                |                | 0.80           | -0.84        |              |                |                |
| В                 | 0.33                |                     |                |                | 0.56           |                | 0.89         | -0.75        |                |                |
| Na                | 0.34                |                     |                |                | 0.32           |                | 0.84         |              |                | 0.66           |
| Mg                | 0.98                |                     | 0.96           | 0.71           | 0.97           |                | 0.98         |              | 0.99           |                |
| Al                | -0.31               | 0.59                |                | 0.66           |                | 0.72           |              |              | -0.46          |                |
| Si                | 0.40                |                     | 0.65           | 0.42           | 0.32           | -0.31          | 0.74         | -0.83        |                |                |
| К                 | 0.59                | 0.34                | 0.94           | 0.55           | 0.71           |                |              |              | 0.77           | 0.44           |
| Ca                | 0.91                |                     | 0.99           | 0.71           | 0.91           |                | 1.00         | -0.74        | 1.00           |                |
| Ті                |                     | 0.52                | 0.46           | 0.56           |                | 0.70           |              |              | -0.46          | 0.47           |
| v                 |                     | 0.59                | 0.73           | 0.82           | 0.34           | 0.71           |              |              | -0.42          |                |
| Cr                | -0.33               | 0.54                | 0.55           | 0.87           | -0.34          | 0.63           | -0.90        |              | -0.57          |                |
| Mn                | 0.37                |                     |                |                |                | 0.58           |              | -0.84        |                |                |
| Fe                |                     | 0.22                |                |                |                | 0.43           |              |              |                | 0.48           |
| Со                |                     |                     |                |                |                | 0.72           |              |              |                |                |
| Ni                |                     | 0.62                | 0.80           | 0.88           |                | 0.71           | -0.82        | 0.89         |                |                |
| Cu                |                     | 0.37                | 0.77           | 0.66           |                | 0.35           |              |              |                |                |
| Zn                |                     |                     | -0.57          | -0.56          |                |                |              |              |                |                |
| Ga                |                     | 0.20                | 0.41           | 0.41           |                | 0.66           |              |              |                |                |
| As                | 0.28                | 0.42                | 0.76           | 0.85           | 0.37           | 0.47           | 0.85         |              |                | 0.59           |
| Rb                | 0.51                | 0.25                | 0.46           | 0.59           | 0.64           |                |              |              |                | 0.53           |
| Sr                | 0.58                | 0.19                | 0.50           | 0.56           | 0.49           |                | 0.99         | -0.71        | 0.82           | 0.42           |
| Zr                |                     | 0.62                | 0.59           | 0.85           |                | 0.86           |              |              | -0.42          |                |
| Nb                | 0.28                | 0.25                | 0.48           | 0.76           |                | 0.53           |              |              |                |                |
| Мо                | 0.21                | 0.52                | 0.40           | 0.50           | 0.33           | 0.56           |              |              |                |                |
| Cd                |                     |                     |                | 0.54           |                |                |              |              |                |                |
| Sb                |                     | 0.45                | 0.75           | 0.74           |                | 0.45           |              |              |                |                |
| Cs                | 0.25                |                     |                |                |                |                |              |              |                |                |
| Ва                | 0.29                |                     | -0.46          | -0.46          | 0.33           |                |              |              |                | 0.59           |
| La                | -0.23               | 0.42                |                | 0.62           |                | 0.70           |              |              | -0.44          |                |
| Ce                | -0.24               | 0.34                |                | 0.56           |                | 0.78           |              |              | -0.44          |                |
| Pr                | -0.22               | 0.37                |                | 0.62           |                | 0.74           |              |              | -0.44          |                |
| Nd                | -0.26               | 0.44                |                | 0.63           |                | 0.74           |              |              | -0.45          |                |
| Sm                | -0.23               | 0.46                |                | 0.65           |                | 0.75           |              |              | -0.46          |                |

| Eu |       | 0.32 |      |      |       | 0.65 |      |       |  |
|----|-------|------|------|------|-------|------|------|-------|--|
| Gd | -0.22 | 0.48 |      | 0.65 |       | 0.79 |      | -0.45 |  |
| Dy | -0.23 | 0.47 |      | 0.65 |       | 0.77 |      | -0.47 |  |
| Но |       | 0.21 |      | 0.66 |       | 0.71 |      |       |  |
| Er | -0.20 | 0.43 |      | 0.65 |       | 0.77 |      | -0.47 |  |
| Tm |       |      |      | 0.68 |       | 0.53 |      |       |  |
| Yb | -0.20 | 0.37 |      | 0.66 |       | 0.69 |      | -0.48 |  |
| Lu |       |      |      | 0.61 | -0.31 | 0.39 |      |       |  |
| Hf | 0.30  | 0.45 | 0.62 | 0.85 |       | 0.80 |      |       |  |
| w  | 0.35  |      | 0.53 | 0.56 | 0.29  |      |      |       |  |
| Pb |       |      |      |      |       |      |      |       |  |
| Th |       | 0.53 |      | 0.79 |       | 0.88 |      | -0.45 |  |
| U  | 0.60  | 0.29 | 0.79 | 0.57 | 0.54  | 0.41 | 0.76 | 0.80  |  |



**Fig. S1.** Variation of La concentration on the latitude during spring (A) and summer (B) and an increase of La concentration northward in winter (C). The latitudinal trend in winter is significant at p < 0.05. Considering all seasons together, the differences between different watershed sizes are not statistically significant (p > 0.05). The symbols are the same as in Fig. 2.



**Fig. S2.** Variation of Ti concentration on the latitude during spring (A), summer (B) and winter (C). The latitudinal trend in summer is significant at p < 0.05. Considering all seasons together, the differences between different watershed sizes are not statistically significant (p > 0.05). The symbols are the same as in Fig. 2.



**Fig. S3.** The variation of Ni concentration with latitude during spring (A), summer (B) and winter (C) for watershed of different size. The symbols are the same as in Fig. 2.



**Fig. S4.** The variation of Co concentration with latitude during spring (A), summer (B) and winter (C) for watershed of different size. The symbols are the same as in Fig. 2. Note a factor of 10 higher Co concentrations in winter compared to spring and summer, presumably linked to coupled to Mn reduction, Co mobilization from Mn (III, IV) hydroxides in anoxic waters.



**Fig. S5.** The variation of Cd concentration with latitude during spring (A), summer (B) and winter (C) for watershed of different size. The symbols are the same as in Fig. 2.



**Fig. S6.** The variation of Cr concentration with latitude during spring (A), summer (B) and winter (C) for watershed of different size. The symbols are the same as in Fig. 2.



**Fig. S7.** The variation of B concentration with latitude during spring (A), summer (B) and winter (C) for watershed of different size. The symbols are the same as in Fig. 2.



**Fig. S8.** The variation of As concentration with latitude during spring (A), summer (B) and winter (C) for watershed of different size. The symbols are the same as in Fig. 2. Clear groundwater effect consists in gradual decrease of concentration northwards, visible during all seasons.



**Fig. S9.** The variation of Ba concentration with latitude during spring (A), summer (B) and winter (C) for watershed of different size. The symbols are the same as in Fig. 2.



**Fig. S10.** Li (A), Sr (B), Mo (C) and U (D) concentration in rivers as a function of latitude representing all seasons and all river watersheds. The difference between three permafrost zone are significant at p < 0.05. Note log scale for concentration as a function of latitude.



**Fig. S11.** Fe (A), Al (B) and Ce (C) concentration in rivers as a function of latitude representing all seasons and all river watersheds. The difference between three permafrost zone for Fe and Al are significant at p < 0.05. Note log scale for concentration.



**Fig. S12.** Mn (A), Ni (B), Cu (C) and Pb (D) concentration in rivers as a function of latitude representing all seasons and all river watersheds. The difference between three permafrost zone for Fe and Al are significant at p < 0.05. Note log scale for concentration.



**Fig. S13.** Latitude range-averaged, all river-size averaged, annual fluxes of Fe (A), Zn (B) and Cd (C) in western Siberian rivers.



**Fig. S14.** Latitude range-averaged, all river-size averaged, annual fluxes of Sr (A), Mo (B) and U (C) in western Siberian rivers.



**Figure S15.** Average peat, moss, and mineral horizon concentration of Sr (A), Mo (B), and U (C) in western Siberia as a function of latitude. Data of Stepanova et al. (2014).



**Figure S16**. The ratio of annual element fluxes in the largest pristine European Arctic River (Severnaya Dvina) measured in 2007-2009 to mean fluxes of the WSL rivers. Given the intrinsic uncertainties on the fluxes of each region ranging between  $\pm 30$  and  $\pm 50\%$ , the agreement within a factor of 1.5 to 2 is within the uncertainty.