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Abstract:	 Simulations	 of	 the	 spatiotemporal	 dynamics	 of	 wetlands	 are	 key	 to	18	
understanding	 the	 role	 of	 wetland	 biogeochemistry	 under	 past	 and	 future	19	
climate.	Hydrologic	inundation	models,	such	as	TOPography-based	hydrological	20	
model	 (TOPMODEL),	 are	 based	 on	 a	 fundamental	 parameter	 known	 as	 the	21	
compound	 topographic	 index	 (CTI)	 and	 offer	 a	 computationally	 cost-efficient	22	
approach	to	simulate	wetland	dynamics	at	global	scales.	However,	there	remains	23	
large	discrepancy	in	the	implementations	of	TOPMODEL	in	land-surface	models	24	
(LSMs)	 and	 thus	 their	 performance	 against	 observations.	 This	 study	 describes	25	
new	 improvements	 to	 TOPMODEL	 implementation	 and	 estimates	 of	 global	26	
wetland	 dynamics	 using	 the	 LPJ-wsl	 (“Lund-Potsdam-Jena	 WSL	 version”)	27	
Dynamic	 Global	 Vegetation	 Model	 (DGVM),	 and	 quantifies	 uncertainties	 by	28	
comparing	 three	 digital	 elevation	 model	 (DEM)	 products	 (HYDRO1k,	 GMTED,	29	
and	 HydroSHEDS)	 at	 different	 spatial	 resolution	 and	 accuracy	 on	 simulated	30	
inundation	dynamics.	 In	addition,	we	 found	 that	 calibrating	TOPMODEL	with	a	31	
benchmark	wetland	dataset	can	help	to	successfully	delineate	the	seasonal	and	32	
interannual	variation	of	wetlands,	as	well	as	improve	the	spatial	distribution	of	33	
wetlands	to	be	consistent	with	inventories.	The	HydroSHEDS	DEM,	using	a	river-34	
basin	 scheme	 for	 aggregating	 the	 CTI,	 shows	 best	 accuracy	 for	 capturing	 the	35	
spatiotemporal	 dynamics	 of	 wetlands	 among	 the	 three	 DEM	 products.	 The	36	
estimate	of	global	wetland	potential/maximum	is	~	10.3	Mkm2	(106	km2),	with	a	37	
mean	 annual	maximum	of	~	5.17	Mkm2	 for	 1980-2010.	When	 integrated	with	38	
wetland	 methane	 emission	 submodule,	 the	 uncertainty	 of	 global	 annual	 CH4	39	
emissions	 from	 topography	 inputs	 is	 estimated	 to	 be	 29.0	 Tg	 yr-1.	 This	 study	40	
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demonstrates	 the	 feasibility	 of	 TOPMODEL	 to	 capture	 spatial	 heterogeneity	 of	41	
inundation	at	large	scale	and	highlights	the	significance	of	correcting	maximum	42	
wetland	extent	to	improve	modeling	of	interannual	variations	in	wetland	area.	It	43	
additionally	 highlights	 the	 importance	 of	 an	 adequate	 investigation	 of	44	
topographic	indices	for	simulating	global	wetlands	and	shows	the	opportunity	to	45	
converge	 wetland	 estimates	 across	 LSMs	 by	 identifying	 the	 uncertainty	46	
associated	with	existing	wetland	products.	47	
	48	
Keywords:	 Seasonal	 wetland	 dynamics,	 DGVM,	 LPJ,	 methane	 emission,	49	
Topographic	index,	Compound	topography	index	(CTI)	50	
	51	
Introduction	52	
For	their	ability	to	emit	the	greenhouse	gas	methane	(CH4),	wetland	ecosystems	53	
play	 a	 disproportionately	 important	 role	 in	 affecting	 the	 global	 climate	 system	54	
through	biogeochemical	feedbacks	(Fisher	et	al.,	2011;	Seneviratne	et	al.,	2010).	55	
Wetlands	 are	 thought	 to	 be	 the	 largest	 natural	 source	 of	 CH4	 emission	 by	56	
contributing	20-40%	of	the	total	annual	emissions	to	atmosphere,	which	adds	a	57	
strong	 radiative	 forcing	 from	 CH4	 (Bousquet	 et	 al.,	 2006;	 IPCC,	 2013).	 The	58	
seasonal	and	interannual	distribution	of	wetland	area	remains	one	of	the	largest	59	
uncertainties	in	the	global	CH4	budget	(Kirschke	et	al.,	2013),	in	particular	for	the	60	
roughly	 60%	of	wetlands	 that	 are	 not	 inundated	 permanently	 (Petrescu	 et	 al.,	61	
2010).	Changes	in	the	spatial	extent	of	seasonally	inundated	wetlands	was	most	62	
likely	a	major	driver	for	CH4	variations	during	last	glacial	period	(Kaplan,	2002)	63	
and	are	considered	as	an	important	driver	of	the	strong	atmospheric	CH4	growth	64	
rate	resumed	in	2007	(Nisbet	et	al.,	2014)	and	in	future	climate	change	scenarios	65	
(Stocker	et	al.,	2013).	66	
	67	
Improving	our	understanding	of	 the	 role	 of	wetlands	 in	 global	 greenhouse-gas	68	
(GHG)	budgets	 requires	a	 representation	of	wetlands	and	 their	biogeochemical	69	
processes	 in	 land	 surface	 models	 (LSM)	 to	 both	 hindcast	 observed	 past	70	
variations	 (Singarayer	 et	 al.,	 2011)	 and	 to	 predict	 future	 trajectories	 in	71	
atmospheric	 CH4	 and	 terrestrial	 C	 balance	 (Ito	 and	 Inatomi,	 2012;	Meng	 et	 al.,	72	
2012;	 Spahni	 et	 al.,	 2011;	 Stocker	 et	 al.,	 2014;	 Zürcher	 et	 al.,	 2013).	 Dynamic	73	
wetland	 schemes	 in	 LSMs	 were	 based	 on	 conceptual	 theories	 and	 physical	74	
processes	 describing	 surface	 water	 processes	 (e.g.,	 infiltration	 and	75	
evapotranspiration)	 and	water	movement	 in	 the	 soil	 column	 using	 probability	76	
distributions	derived	from	subgrid	topographic	information	(Beven	and	Kirkby,	77	
1979),	 or	 using	 analytical	 functional	 parametric	 forms	 with	 fixed	 parameters	78	
(Liang	 et	 al.,	 1994).	 Currently,	 the	most	 common	 approach	 for	 global	wetland	79	
modelling	 is	 to	 use	 a	 runoff	 simulation	 scheme	 such	 as	 TOPMODEL	80	
(TOPography-based	hydrological	MODEL)	 (Beven	and	Kirkby,	1979;	Kleinen	et	81	
al.,	2012;	Ringeval	et	al.,	2012;	Zhu	et	al.,	2014),	which	includes	the	assumption	82	
that	 lateral	 soil	 water	 transport	 driven	 by	 topography	 follows	 the	 same	83	
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exponential	decline	as	the	vertical	decrease	in	hydraulic	conductivity	within	soil	84	
profiles	in	a	basin	(Sivapalan	et	al.,	1987).	85	
	86	
TOPMODEL-based	 implementations	 have	 proven	 successful	 at	 capturing	 the	87	
broad	geographic	distribution	of	wetlands	and	their	seasonal	variability	(Gedney	88	
and	Cox,	2003;	Ringeval	et	al.,	2012;	Stocker	et	al.,	2014;	Zhu	et	al.,	2014),	but	89	
have	 consistently	 overestimated	 both	 the	 extent	 of	 wetlands	 and	 duration	 of	90	
inundation	 at	 global	 and	 regional	 scale	 when	 compared	 with	 existing	 current	91	
surveys	(Junk	et	al.,	2011;	Prigent	et	al.,	2007;	Quiquet	et	al.,	2015).	For	instance,	92	
simulations	 using	 the	 Earth	 system	 model	 HadGEM2	 predict	 much	 larger	93	
persistent	 Amazonian	 wetlands	 than	 an	 inventory	 (Collins	 et	 al.,	 2011).	 In	94	
general,	 independently	 determined	 wetland	 area	 using	 hydrologic	 modules	 of	95	
LSMs	 in	 The	 Wetland	 and	 Wetland	 CH4	 Inter-comparison	 of	 Models	 Projects	96	
(WETCHIMP)	 experiment	 simulated	 larger	 global	 wetland	 extent	 than	 those	97	
informed	by	remotely	sensed	product	and	inventories	(Melton	et	al.,	2013).	This	98	
large	disagreement	also	exists	across	specific	regions	(Ringeval	et	al.,	2014).	For	99	
example,	 Bohn	 et	 al.	 (2015)	 carried	 out	 a	 model	 inter-comparison	 of	 wetland	100	
extent	on	the	West	Siberian	Lowland,	one	of	the	major	wetland	regions	 in	high	101	
latitudes,	 and	highlighted	 similar	uncertainties	 of	wetland	 extent	 simulation	 in	102	
the	LSMs	participating	in	the	WETCHIMP	experiment	and	using	TOPMODEL.	103	
	104	
Meanwhile,	uncertainties	in	wetland	area	estimation	partly	come	from	a	paucity	105	
of	 observational	 datasets	 and	 different	 definitions	 of	 wetland	 (Matthews	 and	106	
Fung,	 1987).	 Remotely	 sensed	 datasets	 have	 difficulties	 in	 capturing	 small	 or	107	
isolated	water	 in	saturated	soils	 that	are	not	 flooded	on	the	surface	(Prigent	et	108	
al.,	 2007),	 as	 well	 capturing	 the	 forested	 wetlands	 that	 obscure	 detection	 of	109	
inundation	 because	 of	 dense	 forest	 canopies	 (Bohn	 et	 al.,	 2015).	 In	 addition,	110	
ground-based	survey	or	 inventories	that	determine	wetlands	usually	 limited	as	111	
static	 distribution	 that	 cannot	 provide	 temporal	 patterns	 for	 inundated	 area,	112	
making	 it	 hard	 to	 evaluate	 with	 simulated	 results.	 On	 the	 other	 hand,	 the	113	
definition	 of	 wetland	 for	 regional-	 or	 global-scale	modelling	 assumes	 the	 land	114	
surface	 has	 both	 inundated	 and	 saturated	 conditions,	which	 is	 not	 necessarily	115	
the	 same	 as	 inundated	 area	measured	 by	 satellite	 observations	 (Melton	 et	 al.,	116	
2013).	117	
	118	
While	 prognostic	 wetland	 dynamics	 schemes	 are	 promising	 to	 resolve	 these	119	
observational	 issues,	 the	 configuration	 parameters	 for	 TOPMODEL	 are	 a	120	
potential	source	of	uncertainty	in	estimating	wetland	dynamics	(Marthews	et	al.,	121	
2015).	Among	all	parameters	in	TOPMODEL,	the	Compound	Topographic	Index	122	
(CTI)	is	of	critical	importance	for	determining	inundated	areas	in	terrain-related	123	
hydrological	applications	(Ward	and	Robinson,	2000;	Wilson	and	Gallant,	2000).	124	
It	measures	the	tendency	of	soils	to	become	saturated	(Beven	and	Cloke,	2012)	125	
and	consequently	it	drives	the	accuracy	of	wetland	area	scaled	to	the	larger	grid	126	
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cell	(Ducharne,	2009;	Mulligan	and	Wainwright,	2013).	Although	the	importance	127	
of	CTI	has	been	highlighted,	only	few	studies	have	so	far	evaluated	the	effect	of	128	
CTI	on	modelling	the	spatial	and	temporal	patterns	of	global	wetland	dynamics.	129	
This	is	due	to	a	limited	availability	of	global	CTI	products.	During	the	last	decade,	130	
the	first	CTI	product	at	1km	resolution	from	HYDRO1k	global	dataset	released	by	131	
U.S.	Geological	Survey	(USGS)	 in	2000	has	become	the	most	commonly	applied	132	
global	dataset	 for	 large-scale	applications	(Kleinen	et	al.,	2012;	Lei	et	al.,	2014;	133	
Ringeval	et	al.,	2012;	Wania	et	al.,	2013).	However,	HYDRO1k	has	been	proven	to	134	
potentially	 overestimate	 inundation	 extent	 due	 to	 a	 lack	 in	 quality	 of	 the	135	
underlying	digital	elevation	model	(DEM)	(Grabs	et	al.,	2009;	Lin	et	al.,	2010;	Lin	136	
et	 al.,	 2013;	 Sørensen	 and	 Seibert,	 2007;).	 With	 recent	 advances	 in	 the	137	
development	of	DEMs	(Danielson	and	Gesch,	2011;	Lehner	et	al.,	2008),	there	is	a	138	
both	 a	 requirement	 and	 an	 opportunity	 to	 investigate	 uncertainties	 caused	 by	139	
CTI	parameter.		140	
	141	
The	primary	goal	of	our	study	is	to	improve	the	modeling	of	dynamically	varying	142	
wetland	extents	with	i)	a	parameter	constraint	to	match	integrated	satellite	and	143	
inventory	observations,	and	with	ii)	a	better	parameterizations	of	CTI	values	for	144	
determining	 wetland	 seasonal	 cycles	 using	 new	 topographic	 data	 and	145	
aggregation	schemes	(i.e.,	grid	versus	catchment).	To	this	end,	we	develop	a	new	146	
version	of	Dynamic	Global	Vegetation	Model	 (DGVM)	LPJ-wsl	 (“Lund-Potsdam-147	
Jena	WSL	 version”)	 that	 includes	 the	 TOPMODEL	 approach	 for	wetland	 extent	148	
modelling	 by	 also	 accounting	 for	 soil	 thermal	 dynamics	 and	 high-latitude	 soil-149	
water	 freeze	 and	 thaw	 cycles,	 and	 by	 incorporating	 the	 necessary	 physical	150	
processes	 (e.g.	 snow	aging)	 that	 constrain	global	wetland	dynamics.	We	utilize	151	
three	 commonly	 used	 global	 DEM	 products	 to	 evaluate	 the	 effects	 of	 sub-grid	152	
parameterizations	on	simulated	global	wetland	extent	uncertainties.	We	perform	153	
six	global	simulations	resulting	from	the	combination	of	three	DEM	products	and	154	
two	 aggregation	 schemes	under	 the	 same	 common	experimental	 protocol.	 The	155	
specific	 aims	are:	 (1)	 to	 improve	 the	performance	of	 estimated	wetland	extent	156	
based	on	TOPMODEL	for	the	purpose	of	 large-scale	modelling,	(2)	to	develop	a	157	
new	 parameterization	 scheme	 using	 inventory	 in	 combination	 with	 satellite-158	
based	 retrievals,	 and	 (3)	 to	 evaluate	 the	 uncertainties	 and	 the	 spatial	 and	159	
temporal	differences	of	CTI	from	three	major	DEM	products	in	model	behavior.		160	
	161	
2	Model	Descriptions	and	Experimental	Design	162	
The	 model	 LPJ-wsl	 is	 a	 process-based	 dynamic	 global	 vegetation	 model	163	
developed	for	carbon	cycle	applications	based	on	development	of	the	LPJ-DGVM	164	
(Sitch	 et	 al.,	 2003).	 LPJ-wsl	 includes	 land	 surface	 processes,	 such	 as	 water,	165	
carbon	fluxes,	and	vegetation	dynamics	that	are	intimately	represented	by	plant	166	
functional	 types	 (PFTs)	 (Poulter	 et	 al.,	 2011).	 The	 distribution	 of	 PFTs	 is	167	
simulated	based	on	a	 set	of	bioclimatic	 limits	and	by	plant-specific	parameters	168	
that	govern	the	competition	for	resources.	The	soil	hydrology	is	modeled	using	169	
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semi-empirical	approach,	with	the	soil	treated	as	bucket	consisting	of	two	layers	170	
each	with	 fixed	 thickness	 (Gerten	et	 al.,	 2004).	The	LPJ-wsl	CH4	model	used	 in	171	
this	study	is	the	same	as	presented	in	Hodson	et	al.,	(2011)	and	is	a	function	of	172	
two	scaling	factors	(rCH4:C	and	fecosys),	soil	temperature,	soil-moisture-dependent	173	
fraction	 of	 heterotrophic	 respiration,	 and	 wetland	 extent	 according	 to	 the	174	
following	equation:	175	

! !, ! =  !!"!:! ∙ !!"#$%$ ! ∙ ! !, ! ∙ !! !, !  																													(1)	176	

where	 ! !, ! 	is	 wetland	 CH4	 flux,	 ! !, ! 	is	 wetland	 extent,	 !! !, ! 	is	177	
heterotrophic	respiration,	fecosys	is	a	scaling	factor	representing	different	wetland	178	
ecosystems,	rCH4:C	is	the	ratio	C	to	CH4	fluxes.	179	
	180	
LPJ-wsl	has	been	evaluated	 in	previous	studies	using	global	 inventory	datasets	181	
and	 satellite	 observations	 and	has	 been	 one	 of	 the	 participating	models	 in	 the	182	
WETCHIMP	study	(Melton	et	al.,	2013).	Modifications	made	here	to	the	original	183	
LPJ-wsl	model	and	a	detailed	description	of	changes	are	summarized	below:	184	
-	 A	 permafrost	 module	 that	 simulate	 soil	 freeze	 and	 thaw	 processes,	 is	185	
implemented	 and	 modified	 following	 the	 Wania	 et	 al.	 (2009)	 study	 (see	186	
description	in	Sect.	2.1).	187	
-	 The	 snow	 module	 from	 Wania	 et	 al.	 (2009)	 was	 included	 and	 modified	 to	188	
include	some	of	the	effects	of	snow	ageing	on	snow	thermal	properties.	We	use	189	
an	updated	parameterization	of	soil	thermal	properties	both	for	the	permafrost	190	
and	 the	 snow	module,	which	 is	 calibrated	by	 satellite	 observations	 specifically	191	
for	global	application.		192	
-	 A	 new	 parameterization	 of	 soil	 texture	 was	 formulated	 based	 on	 the	193	
Harmonized	 World	 Soil	 Database	 (HWSD),	 which	 combines	 the	 recently	194	
collected	extensive	volumes	of	 regional	and	national	updates	of	 soil	parameter	195	
information	(Nachtergaele	et	al.,	2008).	The	new	soil	 texture	in	LPJ-wsl	 follows	196	
the	U.S.	Department	of	Agriculture	soil	classification	with	14	soil	types	grouped	197	
according	 to	 a	 particular	 range	 of	 particle-size	 fractions	 (e.g.	 sand,	 clay,	 loam,	198	
etc.),	instead	of	using	the	original	Food	and	Agriculture	Organization	of	the	U.N.	199	
classification	with	 9	 soil	 types	 (Sitch	 et	 al.,	 2003).	 Thus,	 the	 volumetric	water	200	
holding	capacity,	also	defined	as	potential	maximum	soil	water	content	(SWC),	is	201	
assumed	 to	 vary	 spatially,	 calculated	 as	 a	 function	 of	 the	 surface	 soil	 texture	202	
using	 pedotransfer	 functions	 from	 Cosby	 et	 al.,	 1984.	 Wilting	 point,	 porosity,	203	
mineral	soil	content	and	organic	soil	content	for	each	soil	type	are	derived	from	204	
a	look-up	table	available	from	the	Air	Force	Weather	Agency	(2002)	as	listed	in	205	
Table	1.		206	
The	 modified	 LPJ-wsl	 version	 is	 thus	 the	 starting	 point	 upon	 which	 the	207	
TOPMODEL-based	wetland	and	permafrost	modules	are	included	(Sect.	2.2).	208	
	209	
2.1	Permafrost	Model	210	
In	 order	 to	 consider	 the	 functional	 wetland	 area	 extension	 during	 the	 spring	211	
thaw	and	their	shrinking	or	disappearances	during	autumn	freeze,	we	added	to	212	
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LPJ-wsl	a	soil	temperature	scheme	and	freeze-thaw	processes,	as	in	Wania	et	al.	213	
(2009).	 The	modified	 version	 considers	 the	 soil	 heat	 capacity	 and	 its	 thermal	214	
conductivity,	 which	 are	 both	 affected	 by	 the	 volumetric	 fractions	 of	 the	 soil	215	
physical	 components,	 such	 as	 water-ice	 fraction,	 mineral	 soil,	 or	 peat.	 The	216	
thermal	 scheme	 of	 LPJ-wsl	 is	 discretized	 vertically	 using	 8-layers	 of	 variable	217	
thickness,	while	the	water-balance	scheme	is	kept	the	same	as	the	original	LPJ-218	
DGVM,	which	means	the	daily	changes	in	water	content	are	allocated	to	the	“old”	219	
upper	and	 lower	 layer	of	LPJ	while	considering	percolation	between	 these	 two	220	
layers	 and	 baseflow	 from	 the	 lower	 layer.	 Fractional	water	 and	 ice	 content	 in	221	
each	 of	 the	 8-layers	 is	 calculated	 on	 a	 daily	 time	 step.	 Soil	 temperature	 is	222	
updated	 in	 the	 thermal	 routine	 and	 then	passed	 to	 the	hydrological	 routine	 to	223	
determine	the	water-ice	phase	change	in	permafrost	routine.	224	
	225	
2.2	Dynamic	Wetland	Model	226	
To	represent	the	grid	cell	fraction	covered	by	wetlands,	we	have	implemented	an	227	
approach	based	on	the	TOPMODEL	hydrological	framework	(Beven	and	Kirkby,	228	
1979).	 TOPMODEL	 was	 initially	 developed	 to	 operate	 at	 the	 scale	 of	 large	229	
watersheds	 using	 the	 channel	 network	 topography	 and	 dynamics	 contributing	230	
areas	 for	runoff	generation,	and	was	 later	extended	to	perform	over	areas	 that	231	
are	 much	 larger	 than	 a	 typical	 river	 catchment	 (Gedney	 and	 Cox,	 2003).	 The	232	
fundamental	 information	 to	 determine	 the	 area	 fraction	 with	 soil	 water	233	
saturation	is	derived	from	knowledge	of	the	mean	watershed	water	table	depth	234	
and	 a	 probability	 density	 function	 (PDF)	 of	 combined	 topographic	 and	 soil	235	
properties	 (Sivapalan	 et	 al.,	 1987).	 The	 CTI,	which	 provides	 the	 sub-grid	 scale	236	
topographic	information	in	TOPMODEL,	determines	the	likelihood	of	a	grid	box	237	
to	be	inundated.	It	is	defined	as:	238	

!! = ln( !!
!"#!!

) 																																																																								(2)	239	

where	!! 	represents	 local	CTI	value,	αl	 represent	 the	contributing	area	per	unit	240	
contour,	 tanβl,	 the	 local	 topographic	 slope,	 approximates	 the	 local	 hydraulic	241	
gradient	where	β	is	the	local	surface	slope.	The	CTI	distribution	can	be	generated	242	
from	digital	elevation	models	and	near	global	datasets	are	readily	available,	e.g.	243	
HYDRO1k	dataset	from	USGS.	244	
	245	
Following	 the	 central	 equations	 of	 TOPMODEL,	 the	 relationship	 between	 local	246	
water	table	depth	!! 	and	the	grid	mean	water	table	depth	!!	can	be	given	as:	247	

!! − !!  = ! !! − !!  																																																									(3)	248	
where	!! 	is	 the	 mean	 CTI	 averaged	 over	 the	 grid	 box,	! 	is	 the	 saturated	249	
hydraulic	conductivity	decay	factor	with	depth	for	each	soil	type.	This	equation	250	
is	 valuable	 in	 that	 it	 relates	 the	 local	 moisture	 status	 to	 the	 grid	 box	 mean	251	
moisture	status	based	on	the	subgrid-scale	variations	in	topography.	Higher	CTI	252	
values	 than	average	are	 indicative	of	areas	with	higher	water	 table	depth	 than	253	
average	water	table,	and	vice	versa.		We	therefore	calculate	the	inundated	areas	254	
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(Fwet)	 of	 all	 the	 sub-grid	 points	within	 a	 grid	 cell	 that	 have	 a	 local	water	 table	255	
depth	!! 	>=	0:	256	

!!"# =  !"#(!)!!!!"#
!!         																																															(4)	257	

where	 instead	 of	 using	 the	 CTI	 values	 themselves,	we	 followed	 a	 common	up-258	
scaling	approach	to	approximate	the	distribution	of	CTI	values	within	a	grid	cell	259	
in	order	to	reduce	computation	costs.	Here,	 the	discrete	distribution	of	 the	CTI	260	
for	lowland	pixels	(i.e.	!!  ≥ !!)	has	been	represented	as	an	exponential	function,	261	
not	 as	 a	 three-parameter	 gamma	distribution	 as	 applied	 in	 recent	 applications	262	
for	 modeling	 wetland	 extent	 (Kleinen	 et	 al.,	 2012;	 Ringeval	 et	 al.,	 2012).	 As	263	
shown	 in	 Figure	 1,	 the	 new	 exponential	 function	 agrees	 well	 with	 the	 three-264	
parameter	 gamma	 distribution	 function	when	 the	 CTI	 is	 larger	 than	 the	mean	265	
CTI	!!.		This	change	allows	linking	the	inundated	fraction	directly	to	water	table	266	
depth,	thus	improving	the	parameterization	by	providing	physical	meaning	and	267	
fewer	calibration	parameters.	This	change	also	improves	the	parameterization	of	268	
fractional	saturated	area,	especially	in	mountainous	regions	(Niu	et	al.,	2005).		269	
	270	
Finally,	the	wetland	area	fraction	(Fwet)	is	represented	as:	271	

!!"# = !!"#!!!!!(!!!!!)																																																						(5)	272	
Where	!!	is	a	coefficient	representing	the	topographic	information	generated	by	273	
fitting	 the	exponential	 function	 to	 the	discrete	cumulative	distribution	 function	274	
(CDF)	of	the	CTI.	Fmax	is	the	maximum	wetland	fraction	of	a	grid	cell.	Because	of	275	
the	 uncertainties	 involved	 in	 determining	 the	water	 table	 depth,	 the	 hydraulic	276	
factor	 f,	 and	 the	 coarse	 resolution	DEMs,	 the	maximum	 soil	 saturated	 fraction	277	
calculated	 from	 discrete	 CDF	 are	 prone	 to	 large	 uncertainties	 and	 thus	278	
complicate	 the	comparison	of	 the	saturated	 fraction	with	existing	observations	279	
(Ducharne,	 2009;	 Ringeval	 et	 al.,	 2012).	 Here,	 we	 introduce	 a	 calibration	 of	280	
maximum	 wetland	 fractions	 Fmax.	 We	 used	 the	 inventory-calibrated	 satellite	281	
observations	 (see	 description	 in	 3.3)	 combining	 with	 inventory	 dataset	 to	282	
calculate	 representative	 long-term	maximum	wetland	 extents	within	 each	 grid	283	
box	(0.5°),	i.e.	the	parameter	Fmax	for	each	grid	cell	i:	284	

!!"#! = max(A!"#$! ,max(A!"#$%!!"#$!))																																			(6)	285	

AGLWD	represents	wetland	estimate	from	GLWD,	and	ASWAMP-GLWD	represents	long-286	
term	wetland	 estimate	 from	 SWAMPS-GLWD.	 The	 reason	 for	 combining	 these	287	
two	datasets	is	to	take	the	advantage	of	satellite-based	observations	at	capturing	288	
temporal	wetlands	and	inventory-based	datasets	at	estimating	forested	wetlands	289	
and	small	wetlands	ignored	by	remote	sensing.	This	calibration	is	also	based	on	290	
the	 assumption	 that	 water	 is	 stagnant	 within	 local	 grids	 at	 large	 scale,	 in	291	
particular	for	model	using	simple	‘bucket’	concept	to	calculate	grid-mean	water	292	
table	depth.	293	
In	 addition,	we	 used	 nonlinear	 least	 squares	 (nls)	 estimates	 to	 fit	 the	 discrete	294	
CDF	curve	of	CTI	for	lowlands	(!!  <	!!)	to	calculate	parameter	!!,	the	parameter	295	
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that	 determines	 varying	 trend	 of	 wetland	 extent.	 By	 this,	 the	 parameters	296	
!!"# , !!	and	!!	for	determining	inundated	areas	are	derived	(Figure	2).		297	
	298	
To	account	for	the	permafrost	effects	on	soil	infiltration	properties,	we	followed	299	
Fan	 and	Miguez-Macho	 (2011)	 and	 Kleinen	 et	 al.	 (2012)	 who	modified	 f	by	 a	300	
function	k	 depending	 on	 January	 temperature	Tjan.	 Since	 LPJ-wsl	 uses	 two	 soil	301	
layers	 from	 the	 HWSD	 soil	 texture	 database	 (Nachtergaele	 et	 al.,	 2008)	 to	302	
represent	the	different	texture	characteristics,	 the	modification	depends	on	the	303	
combination	of	a	look-up	table	(Table	1)	from	soil	types	and	water	table	depth:	304	

! =  
1                              ∀!!"# >  −5℃

1.075+ 0.015!!"#     − 25℃ <  ∀!!"# < −5℃
0.75                         ∀!!"# <  −5℃

 																													(7)	305	

Since	the	observed	CH4	emission	during	winter	are	mainly	attributed	to	physical	306	
processes	 during	 soil	 freezing	 effects	 (Whalen	 and	 Reeburgh,	 1992),	 for	 the	307	
partially	frozen	wetland	in	high	latitudes,	we	introduced	an	effective	fraction	of	308	

wetland	area	(!!"#!"")	defined	by:	309	

!!"#!"" = !!"#
!!"#!!!"#$ !" !"

∙ !!"#																																																			(8)	310	

	311	
where	!!"# 	and	 	!!"#$	are	the	fraction	of	 liquid	and	frozen	soil	water	content	 in	312	

the	upper	soil	(0-0.5	m)	respectively.	Since	the	liquid	water	content	in	the	lower	313	
soil	layer	gets	trapped	and	cannot	contribute	to	CH4	emission	when	upper	soil	is	314	
frozen,	we	didn't	consider	the	lower	layer	for	surface	wetland	calculations.	315	
	316	
3	Experimental	set-up	and	datasets	317	
3.1	Topographic	information	318	
In	this	study	we	used	three	DEMs	of	varying	spatial	resolution,	HYDRO1k	at	30	319	
arc-second	 (USGS,	 2000;	 http://lat.cr.usgs.gov/HYDRO1K),	 Global	 Multi-320	
resolution	 Terrain	 Elevation	 Data	 2010	 (GMTED)	 at	 15	 arc-second	 (Danielson	321	
and	 Gesch,	 2011),	 and	 HydroSHEDS	 at	 15	 arc-second	 (Lehner	 et	 al.,	 2008)	 to	322	
compare	the	effect	of	sub-grid	topographic	attributes	on	simulated	seasonal	and	323	
interannual	variability	of	wetlands.	HYDRO1k,	developed	from	the	USGS	released	324	
30	 arc-second	 digital	 elevation	 model	 of	 the	 world	 (GTOPO30),	 is	 the	 first	325	
product	 that	 allowed	 spatially	 explicit	 hydrological	 routines	 applied	 in	 large-326	
scale	 applications	 (USGS,	 2000).	 HydroSHEDS,	 developed	 from	 satellite-based	327	
global	mapping	by	the	Shuttle	Radar	Topography	Mission	(SRTM),	is	a	significant	328	
improvement	in	the	availability	of	high-	resolution	DEMs	covering	all	land	areas	329	
south	 of	 60°N	 (the	 limit	 of	 SRTM).	 For	 the	 areas	 at	 higher	 latitudes	 we	 used	330	
HYDRO1k	by	aggregating	the	GTOPO30	DEM	to	provide	global	grids.	GMTED	was	331	
produced	 using	 seven	 data	 sources	 including	 SRTM,	 global	 Digital	 Terrain	332	
Elevation	Data	 (DTED),	Canadian	elevation	data,	 Spot	5	Reference3D	data,	 and	333	
data	from	the	Ice,	Cloud,	and	land	Elevation	Satellite	(ICESat),	covering	nearly	all	334	
global	terrain.	335	
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	336	
To	 avoid	mismatch	 of	 CTI	 value	 inherent	 in	 computing	 CTI	with	 different	 CTI	337	
algorithms,	 we	 generated	 three	 global	 CTI	 maps	 based	 on	 the	 three	 DEM	338	
products,	 instead	 of	 relying	 on	 existing	 CTI	 products	 (e.g.	 HYDRO1k	 CTI,	339	
HydroSHEDS	CTI	product	from	Centre	for	Ecology	and	Hydrology)	(Marthews	et	340	
al.,	 2015).	 Since	 studies	 show	 that	 multiple	 flow	 direction	 algorithms	 for	341	
calculating	CTI	give	better	accuracy	compared	with	single-flow	algorithms	in	flat	342	
areas	 (Kopecký	 and	 Čížková,	 2010;	 Pan	 et	 al.,	 2004),	 thus	 we	 selected	 an	343	
algorithm	from	R	library	’topmodel’	(Buytaert,	2011),	which	applies	the	multiple	344	
flow	 routing	 algorithm	of	Quinn	et	 al.	 (1995)	 to	 calculate	 the	 global	CTI	maps.	345	
The	DEMs	from	HYDRO1k	and	HydroSHEDS	had	been	previously	processed	for	346	
hydrological-correction,	 meaning	 that	 the	 DEMs	 were	 processed	 to	 remove	347	
elevation	 depressions	 that	 would	 cause	 local	 hydrologic	 ‘sinks’.	 To	 include	 a	348	
comparison	of	(hydrologically)	corrected	and	uncorrected	DEMs	in	our	analyses	349	
as	 some	 studies	 have	 been	 done	 previously	 (Stocker	 et	 al.,	 2014),	 the	 GMTED	350	
DEM	was	applied	without	hydrological	correction.	351	
	352	
3.2	Description	of	the	simulation	353	
For	 running	 LPJ-wsl	 with	 permafrost	 and	 TOPMODEL,	 we	 used	 global	354	
meteorological	forcing	(temperature,	cloud	cover,	precipitation	and	wet	days)	as	355	
provided	by	the	Climatic	Research	Unit	(CRU	TS	3.22)	at	0.5°	resolution	(Harris	356	
et	 al.,	 2014).	 To	 spin	 up	 the	 LPJ-wsl	model	 using	 the	CRU	 climatology,	 climate	357	
data	 for	12-months	were	 randomly	 selected	 from	1901-1930	and	 repeated	 for	358	
1000	years	with	a	fixed	pre-industrial	atmospheric	CO2	concentration.	The	first	359	
spinup	 simulation	 started	 from	 initial	 soil	 temperature	 derived	 from	 LPJ-wsl	360	
simulated	 results	 on	 January	 1901	 and	 continued	 with	 a	 land	 use	 spin-up	361	
simulation.	These	procedures	 ensure	 that	 carbon	 stocks	 and	permafrost	 are	 in	362	
equilibrium	before	performing	transient	simulations.	The	transient	simulations,	363	
with	 observed	 climate	 and	 CO2	 were	 performed	 with	 monthly	 climate	364	
disaggregated	 to	 daily	 time	 steps	 over	 the	 1901-2013	 period.	 The	 1993-2013	365	
years	were	used	for	evaluation	against	satellite	data	and	inventories.	366	
One	of	key	assumptions	 in	TOPMODEL	is	 that	the	water	table	 is	recharged	at	a	367	
spatially	uniform	and	steady	rate	with	respect	to	the	flow	response	timescale	of	368	
the	catchment	(Stieglitz	et	al.,	1997).	Given	the	fact	that	we	consider	the	water	to	369	
be	stagnant	within	each	grid,	 the	mean	CTI	parameter	was	estimated	with	 two	370	
alternative	 schemes:	 (1)	 a	 regular	 ‘grid-based’	 or	 gridded	 approach,	 i.e.,	 the	371	
subgrid	 CTI	 values	 were	 averaged	 per	 0.5°	 grids,	 and	 (2)	 an	 irregular	 ‘basin-372	
based’	 approach,	 where	 mean	 CTI	 were	 calculated	 over	 the	 entire	 catchment	373	
area	in	which	the	respective	pixel	 is	 located.	For	generating	a	global	catchment	374	
map	 at	 0.5°	 resolution,	 we	 applied	 a	 majority	 algorithm	 in	 the	 case	 of	 multi-375	
catchments	 in	 a	 grid	with	 consideration	 of	 avoiding	 isolated	pixels	 for	 specific	376	
river	 basin.	 There	 are	 two	 catchment	 area	 products	 applied	 in	 this	 study,	377	
HYDRO1k	 (2013)	 and	HydroSHEDS.	 Similarly,	 the	parameter	Cs	was	 generated	378	
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using	 nonlinear	 least	 squares	 estimates	 from	 both	 of	 these	 two	 different	 CTI	379	
calculation	 strategies.	 Two	 sets	 of	 model	 experiments	 were	 carried	 out	 to	380	
compare	 the	 wetland	 dynamics	 under	 basin	 and	 grid-based	 TOPMODEL	381	
parameterizations	respectively	(Table	2).		382	
	383	
3.3	Evaluation	and	benchmarking	data		384	
Since	the	soil	freeze-thaw	cycles	are	a	key	component	for	determining	seasonal	385	
cycles	 of	 wetlands	 in	 cold	 regions,	 in	 this	 study	 we	 benchmarked	 the	 general	386	
pattern	of	permafrost	locations	by	comparing	the	model	output	against	satellite	387	
observations	 of	 freeze	 and	 thaw	 status	 and	 inventories	 of	 permafrost	 extent.	388	
Since	 soil	 depth	 in	 LPJ-wsl	 is	 held	 at	 2.0	 m	 for	 the	 permafrost	 module,	 the	389	
permafrost	 extent	 in	 this	 study	 is	 defined	 as	 the	 lower	 soil	 (0.5-2	 m)	 that	 is	390	
always	 at	 or	 below	 the	 freezing	 point	 of	 water	 0°C	 for	 multiple	 years.	 The	391	
permafrost	extent	map	at	0.5-degree	resolution	from	National	Snow	and	Ice	Data	392	
Center	 (NSIDC)	 is	 adopted	 for	 benchmarking	 (Brown	 et	 al.,	 2001).	 The	 global	393	
dataset	of	Freeze/Thaw	(FT)	status	is	derived	from	satellite	microwave	remote	394	
sensing	 provided	 by	 the	Numerical	 Terradynamic	 Simulation	Group	 (NTSG)	 at	395	
University	of	Montana	and	is	based	on	daily	maps	over	a	34-year	record	(1979-396	
2012).	It	represents	the	FT	status	of	the	composite	landscape	vegetation-snow-397	
soil	 medium	 to	 constrain	 surface	 water	mobility	 and	 land-atmosphere	 carbon	398	
fluxes	(Kim	et	al.,	2012).		399	
	400	
Two	 global	 inundation	 products	 derived	 from	 satellite	 observations	 were	401	
additionally	 used	 for	 evaluation	 purposes:	 the	 Global	 Inundation	 Extent	 from	402	
Multi-Satellites	 (GIEMS),	 derived	 from	visible	 (AVHRR)	and	active	 (SSM/I)	 and	403	
passive	(ERS)	microwave	sensors	over	the	period	1993-2007;	the	Surface	Water	404	
Microwave	 Product	 Series	 (SWAMPS),	 derived	 from	 active	 (SeaWinds-on-405	
QuikSCAT,	 ERS,	 and	 ASCAT)	 and	 passive	 (SSM/I,	 SSMI/S,	 AMSR-E)	microwave	406	
sensors	 over	 the	 period	 1992-2013.	 This	 new	 SWAMPS	 global	 dataset,	 hereby	407	
denoted	as	SWAMPS-GLWD,	was	first	developed	at	NASA	JPL	(Schroeder	et	al.,	In	408	
preparation).	 We	 re-scaled	 this	 dataset	 with	 the	 Global	 Lake	 and	 Wetland	409	
Database	(GLWD)	(Lehner	and	Döll,	2004),	a	well-established	global	inventory	of	410	
water	 bodies	 at	 high	 resolution	 to	 match	 SWAMPS-GLWD	 with	 the	 inventory	411	
estimates.	This	post-processed	SWAMPS	product	covers	the	required	regions	for	412	
forested	 wetlands,	 which	 are	 not	 readily	 observable	 by	 passive	 or	 active	413	
microwave	 measurements	 (Poulter,	 et	 al.,	 in	 preparation).	 For	 evaluating	414	
regional	 wetland	 patterns,	 we	 selected	 two	 study	 areas	 (the	 largest	 peatland	415	
West	 Siberian	 Lowland	 (WSL);	 the	 largest	 floodplain,	 Amazon	 River	 Basin).	416	
Three	wetland	map	products	over	the	WSL	from	(Sheng	et	al.,	2004),	(Peregon	et	417	
al.,	2008)	and	(Tarnocai	et	al.,	2009)	(denoted	by	“Sheng2004”,	“Peregon2008”,	418	
Tarnocai2009	 respectively)	 and	 one	 up-date	 high	 resolution	 dual-season	419	
inundated	 area	 inventory	 for	 lowland	 Amazon	 basin	 from	 Japanese	 Earth	420	
Resources	 Satellite	 (JERS-1)	 were	 applied	 (Hess	 et	 al.,	 2015)	 (denoted	 by	421	
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“Hess2015”).	We	 aggregated	 all	 above-mentioned	 datasets	 from	 the	 native	 25	422	
km	 to	 a	 0.5-degree	 spatial	 resolution	 and	 from	 daily	 to	 monthly	 temporal	423	
resolution	for	comparison	with	model	outputs	(Table	A1).	424	
	425	
4	Results	426	
4.1	Evaluation	against	observations	427	
We	first	evaluated	the	permafrost	module	that	constrains	the	seasonal	cycles	of	428	
wetland	 area	 in	 cold	 regions	 with	 respect	 to	 inventory	 and	 remote	 sensing	429	
observations.	 Figure	 3a	 compares	 the	 spatial	 distribution	 of	 permafrost	 extent	430	
from	inventory	and	the	modeled	permafrost	extent	over	the	period	1980-2000.	431	
Figure	 3b	 gives	 the	 spatial	 distribution	 of	 spearman	 rank	 correlation	 between	432	
the	 simulated	 and	 observed	 number	 of	 monthly	 frozen-days.	 The	 modeled	433	
permafrost	 extent	 shows	 high	 agreement	 with	 benchmarking	 dataset,	 with	 a	434	
slightly	 higher	 coverage	 of	 permafrost	 regions	 in	 North-Western	 Eurasia.	 The	435	
model	successfully	captures	the	seasonally	frozen	soil,	which	is	closely	linked	to	436	
surface	 wetland	 formation	 and	 seasonal	 variation	 of	 wetland	 in	 cold	 regions.	437	
Most	of	the	regions	reveal	a	temporal	correlation	>	0.9,	while	Eastern	Siberia	and	438	
the	 Southern	 permafrost	 distribution	 edge	 is	 generally	 around	 0.5.	 The	 lower	439	
correlation	in	East	Siberia	probably	originates	from	two	issues:	high	snow	depth	440	
in	 LPJ-wsl	 that	 insulates	 soil	 temperature	 and	 consequent	 delay	 of	 soil	441	
temperature	 to	reach	complete	 freezing;	and	 the	relatively	 large	uncertainty	of	442	
FT-ESDR	 derived	 soil	 frozen	 status	 in	 those	 regions	 (Kim	 et	 al.,	 2012).	 This	443	
difference	 can	 be	 partly	 explained	 by	 the	 different	 representation	 of	 frozen	444	
status	between	simulated	results	and	satellite	retrievals.	Remotely	sensed	maps	445	
reflect	 the	 mixed	 condition	 of	 the	 upper	 vegetation	 canopy,	 snow	 layer	 and	446	
surface	soil,	while	 the	simulated	 frozen	days	only	represent	 the	 frozen	state	of	447	
topsoil.		448	
	449	
Figure	 4	 illustrates	 the	 model	 evaluation	 at	 the	 regional	 scale	 over	 the	 West	450	
Siberian	Lowland	(Figure	4).	The	model	generally	captures	the	spatial	extent	of	451	
the	seasonal	maximum	wetland	area	 fraction	across	 the	whole	WSL	 for	 the	 JJA	452	
season	 successfully.	 However,	 the	 TOPMODEL	 approach	 without	 calibration	453	
(denoted	as	‘Original’)	shows	large	areas	with	relatively	low	wetland	proportion	454	
and	 cannot	 capture	 high	 values.	 This	 suggests	 poor	 model	 performance	 in	455	
simulating	 wetland	 areas	 without	 Fmax	 calibration.	 The	 calibrated	 model	456	
generally	exhibits	good	agreement	with	inventories	and	satellite	retrievals.	It	 is	457	
especially	 successful	 at	 capturing	 the	 spatial	 heterogeneity	 of	 wetland	 areal	458	
extent	over	 the	whole	WSL	regions.	LPJ-wsl	simulated	results	reveal	additional	459	
wetland	area	in	the	northeast,	where	wetlands	entirely	lacked	in	the	GLWD	map,	460	
although	 captured	 in	 other	 datasets.	 Meanwhile,	 LPJ-wsl	 captured	 the	 higher	461	
wetland	area	in	region	between	61	and	66°N	and	70	and	80°E	regions	compared	462	
with	GLWD,	where	mire/bog/fen	was	dominated	across	that	region.	LPJ-wsl	also	463	
maintained	well	the	spatial	pattern	of	wetlands	in	forested	region	south	of	60°N,	464	
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which	was	captured	by	 inventories	(Sheng2004,	Peregon2008,	and	GLWD),	but	465	
was	 missed	 by	 two	 satellite	 products	 (SWAMPS-GLWD,	 GIEMS)	 due	 to	 the	466	
limitation	 of	 remotely	 sensed	 datasets	 in	 detecting	 water	 under	 vegetative	467	
canopy	and/or	due	to	reduced	sensitivity.		468	
As	 illustrated	 in	 Figure	 5,	 LPJ-wsl	 captured	 the	 spatial	 pattern	 of	 simulated	469	
wetlands	well	with	lower	estimates	of	the	total	wetland	area	in	low-water	season	470	
compared	to	the	JERS-1	observed	maps.	Differences	between	Hess2015	and	LPJ-471	
wsl	maps	were	primarily	in	two	regions,	Maranon-Ucayali	region	of	Peru	(MUP,	472	
3-7°S,	73-77°W)	and	Llanos	de	Moxos	in	Bolivia	(LMB,	11-17°S,	60-68°W).	LPJ-473	
wsl	 shows	 higher	 wetland	 coverage	 in	 MUP	 while	 Hess2015	 indicates	 high	474	
wetland	 fraction	 in	LMB	 in	high-water	 season.	Global	 satellite	products	 largely	475	
ignore	 the	LMB	region	 that	was	partly	captured	 in	LPJ-wsl,	 indicating	 that	LPJ-476	
wsl	 using	 hybrid	 TOPMODEL	 approach	 can	 yield	 estimates	 closer	 to	 those	 of	477	
fine-resolution	 mapping,	 while	 large-scale	 satellite	 products	 are	 likely	 to	478	
underestimate	Amazon	wetland	extent	because	of	their	coarse	spatial	resolution	479	
that	 limit	 the	 ability	 to	 detect	 inundation	 outside	 of	 large	 wetlands	 and	 river	480	
floodplains	(Hess	et	al.,	2015).		481	
To	 evaluate	 the	 effect	 of	 Fmax	 calibration	 on	 CH4	 emission	 estimates,	 two	482	
estimates	 of	 CH4	 (with	 and	 w/o	 calibration)	 over	 the	 WSL	 regions	 were	483	
compared	with	observation-based	estimate	 from	Glagolev	et	 al.	 (2011)	 (Figure	484	
6).	The	3-year	mean	annual	total	emission	from	original	version	is	6.29±0.51	Tg	485	
CH4	 yr-1,	 falling	 into	 the	 upper	 part	 of	 range	 from	 land	 surface	 models	 and	486	
inversions	 (Bohn	 et	 al.,	 2015),	 whereas	 the	 calibrated	 version	 is	 close	 to	 the	487	
estimate	of	Glagolev	et	al.	(2011)	(3.91±1.29	Tg	CH4	yr-1)	with	4.6±0.45	Tg	CH4	488	
yr-1,.	In	addition,	the	spatial	pattern	of	CH4	emission	with	Fmax	calibration	shows	489	
better	 agreement	 with	 observation	 than	 non-calibration	 one	 with	 relatively	490	
larger	emissions	in	Taiga	forests	and	central	region	(55-65°N,	65-85°E).	We	also	491	
compared	our	estimates	with	recent	airborne	campaign	observations	for	Alaska	492	
during	2012	growing	season.		Estimates	with	Fmax	calibration	also	falls	well	into	493	
the	range	of	recent	estimate	(2.1±0.5	Tg	CH4	yr-1)	for	Alaska	based	on	airborne	494	
observations	 (Chang	 et	 al.,	 2014)	 with	 a	 total	 of	 1.7	 Tg	 CH4	 yr-1	 during	 2012	495	
growing	 season	 (3.1	 Tg	 CH4	 yr-1	 from	 non-calibrated	 estimate),	 indicating	 the	496	
necessity	to	calibrate	Fmax	to	accurately	capture	annual	CH4	emission	and	spatial	497	
variability	for	boreal	wetlands.		498	
4.2	Spatial	distribution	499	
Several	 observations	 applicable	 to	 evaluate	 the	 difference	 among	 sub-grid	500	
parameterizations	of	TOPMODEL	are	available	for	the	WSL	region.	Figure	7	lists	501	
the	spatial	patterns	of	simulated	 JJA	(June-July-August)	wetland	area	over	WSL	502	
regions	 to	 illustrate	 differences	 among	wetland	maps.	 The	 general	 patterns	 of	503	
wetland	 extent	 are	 substantially	 similar,	 because	 they	 both	 used	 the	 same	504	
calibrated	 Fmax	 map.	 Both	 of	 these	 datasets	 show	 wetlands	 distributed	 across	505	
most	 of	 the	WSL,	 with	 extensive	wetlands	 in	 the	 central	 region	 (55-65°N,	 60-506	
90°E).	 However,	 the	 detailed	 pattern	 is	 differing	 between	 the	 approaches	 and	507	
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DEMs	 used,	 which	 indicate	 the	 uncertainty	 of	 parameterizations	 on	 wetland	508	
distribution.	The	basin-based	parameterization	can	capture	 the	higher	wetland	509	
areas	 in	 regions	with	bog,	mire,	or	 fen	vegetation	 in	 the	central	east	 (63-67°N,	510	
85-90°E)	 as	 was	 found	 in	 the	 GLWD	 benchmark	 map.	 The	 grid-based	511	
parameterizations	 fail	 to	 reproduce	 this	 pattern.	 It	 seems	 that	 the	 grid-based	512	
parameterizations	 are	 less	 sensible	 in	 capturing	 the	 spatial	 heterogeneity	513	
throughout	most	 of	 the	WSL.	 The	 difference	 in	 parameterization	 derived	 from	514	
DEM	datasets	also	affects	the	simulated	regional	pattern.	Both	of	HydroSHEDS-515	
based	results	successfully	reproduce	the	high	wetland	fractions	in	the	southern-516	
forested	 regions	 (55-60°N,	 65-80°E),	while	HYDRO1k	 and	GMTED	both	 cannot	517	
capture	 this	 feature.	Note	 that	 GMTED	 is	 derived	 from	 the	 same	DEM	product	518	
SRTM	as	HydroSHEDS	but	without	hydro-correction,	 indicating	 the	 importance	519	
of	hydro-correction	in	simulating	spatial	patterns	of	wetlands.	520	
	521	
The	comparison	of	simulated	mean	annual	minimum,	maximum,	and	amplitude	522	
of	 wetland	 extent	 with	 observational	 datasets	 (Table	 3)	 reveals	 that	 the	523	
simulated	wetland	area	for	1980-2010	falls	within	the	range	of	4.37±0.99	Mkm2	524	
(Mkm2=106	 km2).	 This	 number	 is	 close	 to	 GIEMS	 (5.66	 Mkm2)	 (Prigent	 et	 al.,	525	
2012)	 and	 inventory-based	 estimates	 (6.2	 Mkm2)	 (Bergamaschi	 et	 al.,	 2007)	526	
after	exclusion	of	other	water	bodies	like	lakes,	rivers,	and	rice	paddies	(Leff	et	527	
al.,	2004).	Considering	potential	underestimation	of	 satellite-based	observation	528	
in	forested	regions,	the	realistic	estimate	could	possibly	be	in	the	upper	part	of	529	
our	range.	Note	that	one	must	be	careful	when	directly	comparing	model	results	530	
with	the	observational	datasets	based	on	inventories	or	digitized	maps,	because	531	
these	datasets	might	represent	the	long-term	maximal	area	as	wetland	potential.	532	
The	higher	 seasonal	wetland	extent	 in	GIEMS	 compared	with	LPJ-wsl	 could	be	533	
partly	due	 to	permanent	wetlands	 that	 are	difficult	 to	detect	by	GIEMS.	Lastly,	534	
the	 definition	 of	 wetland	 is	 another	 possible	 source	 of	 discrepancy.	 Remotely	535	
sensed	inundation	datasets	emphasizes	on	open	water	while	wetland	area	in	our	536	
study	 is	 specifically	 defined	 from	 inventories	 following	 the	 National	Wetlands	537	
Working	 Group	 (1988)	 classification	 that	 include	 peatlands,	mineral	wetlands,	538	
and	seasonally	inundated	shallow	waters.	539	
	540	
4.3	Seasonal	cycle	541	
The	 shapes	 of	 the	 seasonal	 patterns	 in	 wetland	 area	 are	 generally	 similar	 in	542	
model	 simulation	 compared	 to	 satellite	 observations,	 despite	 disagreement	 in	543	
the	timing	of	the	seasonal	cycle	of	wetland	area	in	some	boreal	regions	(Figure	544	
8).	The	modeled	results	show	slightly	larger	wetland	areas	in	the	SON	(Sept-Nov)	545	
months	 than	 satellite-based	 observations.	 The	 larger	 seasonal	 wetland	 areas	546	
during	 SON	may	 originate	 from	 the	 longer	 periods	 of	 unfrozen	 and	 relatively	547	
water	saturated	soil	 in	the	model	data.	 It	 thus	seems	realistic	that	the	satellite-548	
based	 inundation	 product	 AMSR-E	 observed	 a	 similar	 trend	 of	 seasonal	549	
inundation	patterns	for	North	America	and	Boreal	Eurasia	(Jennifer	et	al.,	2014).	550	
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This	 is	 also	 supported	 by	 field	 studies	 in	 boreal	 regions,	 indicating	 that	water	551	
table	depth	during	the	SON	months	is	still	in	a	high	level	and	soil	temperature	is	552	
above	freezing	status	(Rinne	et	al.,	2007;	Turetsky	et	al.,	2014).	In	contrast,	the	553	
modeled	 seasonal	 cycle	 of	 wetland	 in	 tropical	 and	 temperate	 regions	 show	 a	554	
good	 agreement	 with	 GIEMS	 and	 SWAMPS-GLWD.	 Given	 the	 difficulties	 of	555	
satellite-based	 observations	 in	 detecting	 wetlands	 in	 forested	 regions	 and	 the	556	
reduced	 sensitivity	 where	 open	 water	 fraction	 is	 low	 (<10%)	 (Prigent	 et	 al.,	557	
2007),	the	inundation	numbers	by	GIEMS	might	slightly	underestimates	the	area	558	
compared	with	the	simulated	results.		559	
	560	
Figure	8	reveals	that	the	six	data	sets	of	monthly	wetland	extent	for	1993-2007	561	
based	 on	 different	 TOPMODEL	 parameterization	 show	 the	 same	 general	562	
behavior	 in	 the	 different	 regions.	 The	 six	 data	 sets	 are	 highly	 correlated,	with	563	
largest	 differences	 at	 the	 maximal	 wetland	 extents	 during	 growing	 seasons,	564	
especially	 in	 the	 boreal	 regions.	 In	 addition,	 the	 differences	 in	 seasonal	 cycle	565	
among	 the	 six	 model	 experiments	 are	 relatively	 small,	 mostly	 below	 5%	566	
regardless	of	 the	month.	This	 indicates	 that	 the	 averaged	 total	wetland	area	 is	567	
not	dependent	on	the	introduction	of	the	new	sub-grid	parameterizations	at	the	568	
global	 scale.	 Among	 the	 DEM	 datasets,	 HYDRO1k	 shows	 the	 largest	 difference	569	
between	 basin	 and	 grid-based	 estimates	 with	 annual	 mean	 wetland	 area	 of	570	
89,663	km2	in	boreal	regions,	while	HydroSHEDS	has	a	lowest	difference	of	6550	571	
km2	 between	 the	 two	 versions.	 Examining	 the	 seasonal	 amplitude	 for	 basin-572	
based	 schemes,	 HydroSHEDS	 shows	 a	 better	 agreement	 with	 satellite-based	573	
observations	than	the	other	two	datasets.		574	
	575	
4.4	Interannual	variability	576	
For	 evaluating	 the	 performance	 of	 all	 the	 sub-grid	 parameterizations,	 we	577	
calculated	 the	 Pearson’s	 correlation	 coefficient	 (r)	 between	 modeled	 and	578	
satellite-based	 results	 (Table	 4).	 Generally,	 the	 comparison	 demonstrates	 that	579	
simulated	 interannual	 variability	 shows	 a	 good	 agreement	 with	 GIEMS	 and	580	
SWAMPS-GLWD	 in	 most	 regions	 as	 defined	 in	 Fig.	 2.	 For	 boreal	 and	 tropical	581	
regions,	all	correlation	coefficients	are	ranging	from	0.7-0.8.	The	comparison	of	582	
the	 inter-annual	 trends	 (Figure	A1)	 indicates	 that	absolute	values	of	 simulated	583	
interannual	 variations	 are	 close	 to	 satellite-based	 observation	 with	 good	584	
agreement	in	shape	and	timing	in	these	regions.	This	demonstrates	the	ability	of	585	
TOPMODEL	to	capture	the	large-scale	variations	in	wetland/inundation.	Highest	586	
disagreements	 are	 found	 in	 temperate	 regions	 that	 are	 strongly	 affected	 by	587	
human	activities	(likely	strong	global	anthropogenic	effect	on	continental	surface	588	
freshwater),	 which	 is	 indicated	 by	 GIEMS	 (Prigent	 et	 al.,	 2012)	 but	 not	 by	589	
modeled	results.	590	
	591	
The	 interannual	 variability	 originating	 from	 six	 different	 sub-grid	 DEM	592	
parameterizations	 is	 very	 similar	 between	 these	 schemes	with	 Spearman	 rank	593	
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correlation	 coefficient	 r	 >	 90%.	 Among	 the	 six	 schemes,	 the	 parameters	594	
calculated	 from	 HydroSHEDS	 using	 basin-based	 statistics	 result	 in	 better	595	
agreement	 between	 simulated	 and	 measured	 wetland	 area	 than	 the	 other	596	
schemes.	In	most	regions,	the	SWAMPS-GLWD	and	GIEMS	are	consistent	in	their	597	
observed	wetland	 area	 patterns,	 except	 for	 temperate	 regions	 (e.g.	 Temperate	598	
South	 America,	 Temperate	 North	 America,	 Europe).	 This	 confirms	 that	 the	599	
differences	 in	 surface	 water	 extent	 detection	 between	 GIEMS	 and	 SWAMPS-600	
GLWD,	which	might	be	caused	by	observational	behaviors	from	different	satellite	601	
instruments	and	algorithms.	 In	addition,	parameters	estimation	based	on	 river	602	
basins	are	slightly	better	than	grid-based	results.	603	
	604	
5.Discussion	605	
5.1	Wetland	modelling	based	on	TOPMODEL	concept	606	
The	 coupling	 between	 LPJ-wsl	 and	 TOPMODEL	 with	 calibrated	 parameters	 as	607	
described	 in	 this	 study,	 improves	 the	 dynamic	 simulation	 of	 wetlands,	 in	608	
particular	 their	 geographic	 location	 and	 extent.	 This	 is	 based	 on	 the	 recent	609	
discussions	 of	 the	 suitability	 of	 TOPMODEL	 applications	 to	 simulate	 wetland	610	
variations	at	 large	spatial	scale	(Ringeval	et	al.,	2012),	and	intercomparisons	of	611	
the	wetland-area-driven	model	bias	 in	CH4	emission	at	 regional	 scale	 (Bohn	et	612	
al.,	 2015).	 The	 large	 discrepancies	 of	 wetland	 area	 among	 LSMs	 so	 far	 have	613	
shown	extensive	disagreement	with	inventories	and	remotely	sensed	inundation	614	
datasets	(Melton	et	al.,	2013),	which	 is	partly	due	to	 large	varieties	of	schemes	615	
used	 for	 representing	 hydrological	 processes,	 or	 due	 to	 the	 inappropriate	616	
parameterizations	 for	 simulating	 inundations.	 Our	 results	 suggest	 that	617	
benchmarking	Fmax	is	necessary	for	global	wetland	modelling.	618	
	619	
The	simulation	of	hydrological	dynamics	within	LSMs	remains	relatively	simple	620	
because	 the	 physical	 processes	 described	 in	 LSMs	 occur	 at	much	 finer	 spatial	621	
scales	 (Ducharne,	 2009;	 Mulligan	 and	 Wainwright,	 2013).	 The	 coupling	 of	622	
TOPMODEL	 with	 process-based	 LSMs	 allows	 for	 retrieving	 of	 the	 maximum	623	
saturated	 fraction	 (Fmax),	 which	 is	 defined	 by	 the	 pixels	 with	 no	 water	 deficit	624	
estimated	 from	 the	 partial	 integration	 of	 the	 spatial	 distribution	 of	 CTI	 in	 a	625	
catchment.	The	estimated	distribution	of	Fmax	is	much	larger	than	that	obtained	626	
from	the	satellite-based	observations	(Papa	et	al.,	2010).	As	a	key	parameter	for	627	
determining	the	soil	saturated	area,	the	calculation	of	Fmax	at	large	scale	is	prone	628	
to	 large	 uncertainties,	 in	 particular	 linked	 to	 uncertainties	 in	 topographic	629	
information,	 as	 well	 as	 the	 hydrological	 processes	 implemented	 in	 large-scale	630	
LSMs.	 Ringeval	 et	 al.	 (2012)	 pointed	 to	 the	 difficulty	 of	 two-layer	 bucket	631	
hydrological	model	 in	 estimating	 the	mean	 deficit	 to	 the	 saturation	 over	 each	632	
grid-cell.	This	can	lead	to	nonrealistic	absolute	values	of	the	contributing	area	in	633	
a	watershed.	We	constructed	several	strategies	for	optimizing	Fmax	by	correcting	634	
topographic	 information	 to	 match	 the	 wetland	 inventories	 (Gedney	 and	 Cox,	635	
2003;	 Kleinen	 et	 al.,	 2012).	 This	 is	 one	 possible	 solution	 for	 global	 wetland	636	
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modeling	as	 it	assumes	that	wetland	area	can	be	considered	constant	at	coarse	637	
spatial	resolution	(e.g.	0.5°	or	1°),	following	the	classical	approach	of	Beven	and	638	
Kirkby	(1979).	However,	due	to	the	uncertainties	from	topographic	information	639	
used	 in	 global	 applications	 and	 due	 to	 limitations	 in	model	 parameterizations,	640	
this	 approximation	 cannot	 capture	 the	 fine	 scale	 wetland	 extent,	 which	641	
complicates	the	comparison	with	inventories.	642	
	643	
The	integration	of	satellite-based	and	inventory-based	observations	to	calibrate	644	
Fmax	is	highlighted	in	this	study.	Combining	SWAMPS	and	GLWD	led	to	simulated	645	
wetland	 area	 consistent	 with	 detailed	 regional	 distribution	 (Poulter	 et	 al.,	 in	646	
preparation).	 Our	 estimation	 of	 global	 wetland	 potential/maximum	 is	 ~	 10.3	647	
Mkm2,		and	in	agreement	with	the	deduction	(10.4	Mkm2)	from	recent	estimates	648	
at	 finer	 resolution	 for	 total	 open	water	 (~17.3	Mkm2)	 (Fluet-Chouinard	 et	 al.,	649	
2015),	 lakes	(~5	Mkm2)	(Verpoorter	et	al.,	2014),	and	rice	paddies	(1.9	Mkm2)	650	
(Leff	et	al.,	2004).	The	calibration	of	Fmax	allows	for	simulating	the	dynamics	of	651	
wetland	 on	 decade-to-century	 long	 time	 scales.	 As	 shown	 in	 Figure	 9,	 the	652	
wetland	 potential	 for	 permafrost	 and	 arid/semi-arid	 regions	 is	 high.	 Even	 in	653	
tropical	regions,	there	is	~	20-30%	of	potential	for	areas	to	be	inundated.	654	
	655	
According	 to	our	evaluation	using	satellite-based	observations	and	 inventories,	656	
the	 spatial	 distribution	 of	 the	 wetland	 areas	 and	 its	 temporal	 variability	 are	657	
generally	 well	 captured	 by	 our	 model,	 both	 at	 regional	 and	 global	 scales.	 In	658	
addition,	 the	modeled	wetland	 areas	 and	 interannual	 variability	 compare	well	659	
with	 inventories	 and	 satellite-based	 observations	 respectively.	 Unfortunately,	660	
the	 wide	 disagreement	 in	 simulated	 wetland	 dynamics	 among	 estimates	 from	661	
WETCHIMP	 hampers	 our	 ability	 to	 assess	 model	 performance	 (Bohn	 et	 al.,	662	
2015).	Narrowing	down	the	uncertainty	of	wetland	areas	by	existing	maps	could	663	
minimize	 the	 controversial	 use	 of	 the	 definition	 between	 wetlands	 and	664	
inundations.	 Wetlands	 have	 considerable	 variations	 in	 hydrologic	 conditions,	665	
size,	locations	that	make	difficult	to	reconcile	a	single	definitions	of	wetlands.	In	666	
current	parameterizations,	 the	 connectivity	of	wetlands	 cannot	be	 represented	667	
since	wetlands	are	considered	invariant	within	grid	cells.	668	
	669	
5.2	CTI	parameterizations		670	
As	 shown	 in	 this	 study,	 global	wetland	 simulations	 can	benefit	 from	 improved	671	
spatial	 resolution	 of	 topographic	 maps,	 thus	 creating	 a	 more	 realistic	672	
representation	 of	 processes	 at	 sub-grid	 resolution,	 and	 correspondingly	 better	673	
inundation	simulations.	This	 is	supporting	the	 ideas	of	Wood	et	al.	 (2011)	who	674	
claimed	that	higher-resolution	modeling	leads	to	better	spatial	representation	of	675	
saturated	 and	 nonsaturated	 areas,	 even	 though	 limitations	 in	 up-scaling	676	
parameterizations	 may	 potentially	 outrun	 this	 advantage.	 The	 comparison	677	
between	HydroSHEDS	and	GMTED	also	 indicated	 that,	 for	 capturing	 inundated	678	
areas	under	the	same	spatial	resolution,	the	parameter	maps	derived	from	DEM	679	
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without	hydrological	corrections	have	less	accuracy	compared	to	corrected	ones	680	
(Lehner	and	Grill,	2013).	Without	hydrological	corrections,	valleys	would	appear	681	
as	 closed	 depressions	 in	 the	DEM,	 leading	 to	 an	 underestimation	 of	 inundated	682	
areas	(Marthews	et	al.,	2015).	It	could	be	foreseen	that	if	DEMs	in	process-based	683	
models	are	being	applied	at	higher	resolution,	this	drawback	could	be	amplified.	684	
The	comparison	between	basin-	and	grid-based	parameterizations	suggests	that	685	
grid-based	 calculations	 are	 not	 appropriate	 and	 consequently	 underestimates	686	
wetland	areas	even	when	assuming	invariant	inundated	areas	at	large	scale.	687	
	688	
The	algorithm	to	calculate	CTI	is	another	potential	source	of	error	for	modelling	689	
inundations.	 The	 method	 we	 applied	 here	 is	 based	 on	 calculating	 a	 CTI	690	
distribution	map	using	a	simple	algorithm	in	the	R	package	‘topmodel’	instead	of	691	
using	 an	 existing	 CTI	 product	with	 improved	 contributing	 area.	 The	 algorithm	692	
we	applied	using	the	multi-flow	direction	algorithm	that	allows	for	multiple	in-693	
flow	 and	 out-flow	 of	 water	 among	 neighboring	 pixels	 when	 generating	694	
topographic	 values.	 This	 could	 potentially	 overestimate	 the	 contributing	 areas	695	
(Pan	et	al.,	2004).	As	a	result,	 it	might	underestimate	 the	wetland	areas	within	696	
each	grid	cell,	and	slightly	underestimate	the	temporal	pattern	of	saturated	areas	697	
because	 of	 improper	 estimates	 of	 parameter	 Cs	 (Güntner	 et	 al.,	 2004).	 One	698	
limitation	of	HydroSHEDS	 is	 that	 its	projection	 is	not	equal-area	 like	HYDRO1k	699	
(Marthews	et	al.,	2015),	and	will	cause	a	potential	bias	in	slope	calculation	along	700	
east-west	 directions	 at	 high	 latitudes.	 However,	 since	 there	 is	 no	 common	701	
method	 to	 calculate	 slope	 or	 flow	 direction,	 we	 believe	 that	 our	 calculations	702	
provide	a	reasonable	approximation	for	global	applications.	703	
	704	
In	 addition,	 variability	 in	 TOPMODEL	 parameterizations	 have	 considerable	705	
influence	 on	 simulated	CH4	 fluxes,	 so	 that	 the	uncertainty	 of	mean	 annual	 CH4	706	
emissions	from	variable	topography	inputs	is	estimated	to	be	29.0	Tg	yr-1	(Table	707	
5).	Nevertheless,	all	of	the	model	estimates	generally	fall	within	the	value	range	708	
of	 inversion	 estimates.	 	 The	 differences	 of	 CH4	 emissions	 among	 the	 model	709	
experiments	 is	 related	 to	 simulated	magnitude	 of	wetland	 extents	 because	 the	710	
fraction	 of	 CH4	 emissions	 from	 the	 tropics	 (~63%)	 and	 Extratropics	 (~27%)	711	
remain	constant	due	to	the	same	parameters	rC:CH4	and	fecosys.	The	importance	of	712	
hydrological	 correction	 is	 highlighted	 by	 results	 based	 on	 GMTED,	 suggesting	713	
that	 applying	 DEMs	 without	 hydro-correction	 may	 potentially	 underestimate	714	
CH4	fluxes	due	to	lower	hydrological	connectivity,	which	dampen	the	generation	715	
of	 inundation.	 In	addition,	 fine-scale	 topography	data	 like	HydroSHEDS	reveals	716	
higher	CH4	fluxes	than	HYDRO1k,	highlighting	the	importance	to	capturing	small	717	
wetlands/inundated	areas	that	may	be	ignored	by	coarse-resolution	products.			718	
	719	
	720	
5.3	Future	needs	for	global	wetland	modelling	721	
Substantial	 progress	 has	 been	made	 in	 the	 development	 of	wetland	modeling,	722	
but	the	wide	disagreement	among	estimates	 from	LSMs	still	exists	(Bohn	et	al.,	723	
2015;	Melton	et	al.,	2013).	Considering	that	spatiotemporal	variation	of	wetland	724	
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area	 can	 largely	 influence	 CH4	 emissions,	 the	 selection	 of	 appropriate	 maps	725	
needs	 to	 be	 done	 with	 care.	 The	 parameterization	 and	 evaluation	 of	 multi-726	
resolution	 topographic	 products	 presented	 in	 this	 study	would	 enhance	 global	727	
wetland	modeling	if	progress	could	be	made	in	four	areas	particularly:	728	

• Improved	parameters	of	TOPMODEL	for	large-scale	application.	Our	results	729	
demonstrate	 that	 model	 simulation	 after	 calibrating	 TOPMODEL	 are	730	
comparable	 in	 absolute	 value	 with	 inventories	 and	 satellite-based	731	
observations	at	coarser	resolution.	This	supports	the	ideas	of	(Beven	and	732	
Cloke,	 2012)	 that	 an	 appropriate	 scale-dependent	 subgrid	733	
parameterization	is	the	main	challenge,	regardless	of	whether	it	is	carried	734	
out	at	global	modeling	scales	or	landscape	scales.	The	saturated	soil	water	735	
content	 is	 the	 decisive	 unit	 that	 determines	 wetland	 distributions	 and	736	
reasonable	 estimates	 of	 global	 wetland	 areas.	 Hydraulic	 parameters,	737	
which	 describe	 soil	 characteristics	 for	 water	movement,	 are	 critical	 for	738	
modelling	wetland	seasonal	cycles	(Marthews	et	al.,	2014).	Assessing	the	739	
uncertainties	introduced	by	aggregating	sub-pixel	to	pixel	areas	also	need	740	
to	be	evaluated.		741	

• Implementing	 human	 impact	 within	 wetland	 modeling.	 There	 are	742	
evidences	 from	 long-term	 satellite-based	 observations	 detecting	 a	743	
significant	 effect	of	human	activities	on	wetland	drainage	at	 continental	744	
scale	(Prigent	et	al.,	2012).	At	finer	scale,	the	variability	of	wetland	extent	745	
has	 also	 been	 affected	 by	 land-use	 change	 (e.g.	 wetland	 restoration,	746	
deforestation,	 drainage	 for	 forestry,	 agriculture,	 or	 peat	 mining)	 and	747	
consequently	 influences	 spatiotemporal	 patterns	 of	 CH4	 emission	748	
(Petrescu	et	al.,	2015;	Zona	et	al.,	2009).		Land-use	change	may	therefore	749	
feedback	 water	 available	 to	 wetlands	 through	 altering	 water	 balance	750	
between	 land	 surface	 and	 atmosphere	 (Woodward	 et	 al.,	 2014).	 An	751	
implementation	 of	 human	 impacts	 within	 LSMs	 at	 large	 scale	 may	 be	752	
important	for	accurate	estimation	of	interannual	variations	of	wetlands.		753	

• Improved	 modelling	 of	 soil	 moisture.	 The	 quality	 of	 soil	 moisture	754	
simulation	 using	 LSMs	 depends	 largely	 on	 the	 accuracy	 of	 the	755	
meteorological	forcing	data,	surface-atmosphere	interaction	schemes,	and	756	
a	wide	range	of	parameters	 (Zhang	et	al.,	2013)	 (e.g.	CO2	concentration,	757	
albedo,	minimum	stomatal	 resistance,	 and	 soil	 hydraulic	properties).	As	758	
the	 fundamental	 variable	 for	 determining	 water	 table	 depth	 at	 global	759	
scale	 (Fan	 et	 al.,	 2013),	 soil	moisture	 plays	 a	 key	 role	 in	 simulating	 the	760	
spatiotemporal	variability	of	wetland	dynamics.	Since	 it	 is	 impossible	 to	761	
produce	 accurate	 large-scale	 estimates	 of	 soil	 moisture	 from	 in	 situ	762	
measurement	 networks	 (Bindlish	 et	 al.,	 2008;	 Dorigo	 et	 al.,	 2011),	763	
simulation	 combined	 with	 long-term	 surface	 and	 root	 zone	 remotely	764	
sensed	 estimates	 (de	 Rosnay	 et	 al.,	 2013;	 Kerr	 et	 al.,	 2010)	 via	 data	765	
assimilation	technology,	represents	a	strategy	to	improve	the	capturing	of	766	
global	 wetland	 variability.	 Future	 hydrology-oriented	 satellite	 missions	767	
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such	as	Soil	Moisture	Active	Passive	(SMAP)	(Entekhabi	et	al.,	2010),	and	768	
Surface	 Water	 and	 Ocean	 Topography	 (SWOT)	 mission	 (Durand	 et	 al.,	769	
2010)	are	expected	to	provide	soil	moisture	and	will	improve	the	capacity	770	
of	global	soil	moisture	simulations.	771	

• Improved	 satellite	 benchmark	 observations.	 Current	 satellite-based	772	
estimates	 of	 wetland	 area	 remain	 generally	 uncertain,	 despite	 being	773	
important	 for	 monitoring	 global	 wetland	 variability.	 Remotely	 sensed	774	
global	 inundation	 is	 prone	 to	 underestimate	 small	 wetlands,	 as	 well	 as	775	
covered	 with	 dense	 vegetation	 canopies	 (Papa	 et	 al.,	 2010).	 Moreover,	776	
estimated	 coastal	 areas	 show	 large	 bias	 due	 to	 interference	 with	 the	777	
ocean	surface	 (Prigent	et	al.,	2007).	This	 raises	 the	need	 for	benchmark	778	
dataset	 useful	 to	 generate	 accurate	 products	 with	 lower	 uncertainties.	779	
Downscaling	 methodology	 has	 been	 made	 to	 refine	 existing	 satellite-780	
based	 inundation	 estimates	 by	 coupling	 the	 mapping	 process	 with	781	
reliable	 inventories	 (Fluet-Chouinard	 et	 al.,	 2015).	 This	 may	 improve	782	
global	 inundation	 products,	 as	 well	 as	 the	 TOPMODEL	 parameter	783	
estimation	in	the	future.	784	

	785	
Conclusion	786	
The	new	LPJ-wsl	version	incorporates	a	TOPMODEL	approach	and	a	permafrost	787	
module	 representing	 soil	 freeze-thaw	 processes	 to	 simulate	 global	 wetland	788	
dynamics.	 Once	 the	 Fmax	 parameter	 in	 TOPMODEL	 was	 calibrated	 against	 a	789	
benchmark	 dataset,	 the	model	 successfully	mapped	 regional	 spatial	 pattern	 of	790	
wetlands	 in	West	 Siberian	 Lowland	 and	 lowland	 Amazon	 basin,	 and	 captured	791	
well	 the	 spatiotemporal	 variations	of	 global	wetlands.	The	parameterization	of	792	
TOPMODEL	based	on	three	DEM	products,	HYDRO1k,	GMTED,	and	HydroSHEDS	793	
revealed	that	HydroSHEDS	performed	best	in	capturing	the	spatial	heterogeneity	794	
and	 interannual	 variability	 of	 inundated	 areas	 compared	 to	 inventories.	 River-795	
basin	based	parameterization	schemes	using	HYDRO1k	and	GMTED	marginally	796	
but	 significantly	 improve	 wetland	 area	 estimates.	 The	 estimates	 of	 global	797	
wetland	potential/maximum	is	~	10.3	Mkm2,	with	a	mean	annual	maximum	of	~	798	
5.17	Mkm2	 for	 1980-2010.	This	 development	 of	 the	wetland	modeling	method	799	
reduces	 the	 uncertainties	 in	modeling	 global	 wetland	 area	 and	 opens	 up	 new	800	
opportunities	 for	 studying	 the	 spatiotemporal	 variability	 of	 wetlands	 in	 LSMs	801	
that	are	directly	comparable	with	inventories	and	satellite	datasets.		802	
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Tables	

Table	 1.	 Soil	 parameters	 for	 LPJ-wsl	 soil	 classes.	f	is	 a	 parameter	 describing	 the	 exponential	 decline	 of	 transmissivity	with	
depth	for	each	soil	type.	

Soil	type	 !	 Mineral		
Content	(%)	

Organic	
Content	
(%)	

Wilting	
Point	
(%)	

Porosity	
	(%)	

Clay	Heavy	 3.2	 0.508	 0.01	 0.138	 0.138	
Silty	Clay	 3.1	 0.531	 0.01	 0.126	 0.468	
Clay	 2.8	 0.531	 0.01	 0.138	 0.468	

Silty	Clay	Loam	 2.9	 0.534	 0.01	 0.120	 0.464	
Clay	Loam	 2.7	 0.595	 0.01	 0.103	 0.465	

Silt	 3.4	 0.593	 0.01	 0.084	 0.476	
Silt	Loam	 2.6	 0.593	 0.01	 0.084	 0.476	
Sandy	Clay	 2.5	 0.535	 0.01	 0.100	 0.406	
Loam	 2.5	 0.535	 0.01	 0.066	 0.439	

Sandy	Clay	Loam	 2.4	 0.565	 0.01	 0.067	 0.404	
Sandy	Loam	 2.3	 0.565	 0.01	 0.047	 0.434	
Loamy	Sand	 2.2	 0.578	 0.01	 0.028	 0.421	

Sand	 2.1	 0.578	 0.01	 0.010	 0.339	
Organic	 2.5	 0.01	 0.20	 0.066	 0.439	
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Table	2	Model	experiments	for	different	parameterization	schemes	and	corresponding	DEM	products	applied	in	this	study.	

Model	
Experiment	

DEM	 DEM	source	 Resolution	
(arc	

seconds)	

Coverage	 River	Basin	 Aggregation	
type	

Hydro-
corrected	

HYDRO1k_BASIN	 Hydro1k	 GTOPO30	 30	 Global*		 HYDRO1K	 Catchment	 Yes	
HYDRO1k_GRID	 Hydro1k	 GTOPO30	 30	 Global*		 HYDRO1K	 Grid	 Yes	
GMTED_BASIN	 GMTED	 SRTM&others	 15	 Global	 HYDRO1K	 Catchment	 No	
GMTED_GRID	 GMTED	 SRTM&others	 15	 Global	 HYDRO1K	 Grid	 No	
SHEDS_BASIN	 HydroSHEDS	 SRTM	 15	 <60°N	 HydroSHEDS	 Catchment	 Yes	
SHEDS_GRID	 HydroSHEDS	 SRTM	 15	 <60°N	 HydroSHEDS	 Grid	 Yes	

	

	
Table	3	Summary	of	simulated	and	observed	mean	annual	minimum	(MIN),	maximum	(MAX),	and	amplitude	(AMP)	of	wetland	
extent	for	1980-2010.	All	units	are	Mkm2	(106	km2)	±	1σ,	where	standard	deviation	represents	the	inter-annual	variation	in	
model	estimates	except	for	the	row	Average,	which	represents	uncertainties	of	estimates	from	each	model	experiment.	
Model	 Lowland	Amazon	Basin	 West	Siberian	Lowland	 Global	

MIN	 MAX	 AMP	 MIN	 MAX	 AMP	 MIN	 MAX	 AMP	
SHEDS_BASIN	 0.27±0.02	 0.38±0.01	 0.11±0.01	 0±0	 0.45±0.05	 0.45±0.05	 2.96±0.06	 5.17±0.11	 2.23±0.10	
SHEDS_GRID	 0.32±0.01	 0.40±0.01	 0.08±0.01	 0±0	 0.45±0.05	 0.45±0.05	 3.56±0.06	 5.93±0.11	 2.38±0.10	
GMTED_BASIN	 0.21±0.02	 0.35±0.01	 0.14±0.02	 0±0	 0.39±0.06	 0.39±0.06	 2.09±0.05	 3.75±0.12	 1.66±0.12	
GMTED_GRID	 0.19±0.02	 0.34	±0.01	 0.15±0.02	 0±0	 0.38±0.06	 0.38±0.06	 1.80±0.05	 3.32±0.13	 1.52±0.13	
HYDRO1k_BASIN	 0.25±0.02	 0.37±0.01	 0.12±0.01	 0±0	 0.39±0.06	 0.39±0.06	 2.44±0.05	 4.32±0.11	 1.89±0.11	
HYDRO1k_GRID	 0.22±0.02	 0.36±0.01	 0.14±0.02	 0±0	 0.36±0.07	 0.36±0.07	 2.12±0.05	 3.73±0.13	 1.61±0.13	
Average	 0.27±0.04	 0.38±0.02	 0.11±0.01	 0±0	 0.40±0.04	 0.40±0.04	 2.49±0.65	 4.37±0.99	 1.88±0.35	
Observations	 	 	 	 	 	 	 	 	 	
Hess2015	 0.23	 0.58	 	 	 	 	 	 	 	
GIEMS	 0.12±0.01	 0.25±0.03	 0.14±0.04	 0±0	 0.24±0.05	 0.25±0.05	 1.38±0.09	 4.47±0.20	 3.09±0.19	
SWAMPS-GLWD	 0.22±0.03	 0.34±0.01	 0.12±0.03	 0±0	 0.50±0.03	 0.51±0.03	 3.03±0.13	 6.62±0.18	 3.63±0.14	
	
	



	 31	

Table	4	Spearman	correlations	between	satellite-based	vs.	modeled	interannual	anomalies	of	the	grid-cells	contained	in	each	
region	 defined	 in	 Fig.	 2f	 at	 global	 scale.	 Values	 out	 and	 in	 parentheses	 are	 correlation	 efficient	 with	 SWAMPS-GLWD	 and	
GIEMS	respectively.	The	two	highest	value	within	one	column	is	in	bold.	

Regions	 SHDES	
BASIN	

SHDES	
GRID	

GMTED	
BASIN	

GMTED	
GRID	

HYDRO1K	
BASIN	

HYDRO1k	
GRID	

Boreal	North	America	 0.770	
(0.378)	

0.768	
(0.376)	

0.751	
(0.354)	

0.745	
(0.341)	

0.765	
(0.378)	

0.748	
(0.343)	

Boreal	Eurasia	 0.785	
(0.513)	

0.782	
(0.511)	

0.763	
(0.487)	

0.764	
(0.487)	

0.763	
(0.493)	

0.760	
(0.484)	

Europe	 0.604	
(0.091)	

0.595	
(0.079)	

0.313	
(-0.198)	

0.211	
(-0.278)	

0.588	
(0.076)	

0.218	
(-0.272)	

Tropical	South	America	 0.723	
(0.838)	

0.725	
(0.831)	

0.724	
(0.835)	

0.666	
(0.825)	

0.708	
(0.836)	

0.726	
(0.835)	

South	Africa	 0.082	
(0.736)	

0.044	
(0.725)	

0.084	
(0.735)	

0.076	
(0.734)	

0.040	
(0.717)	

0.088	
(0.740)	

Tropical	Asia	 0.689	
(0.674)	

0.681	
(0.673)	

0.705	
(0.682)	

0.677	
(0.625)	

0.670	
(0.660)	

0.648	
(0.632)	

Temperate	North	America	 0.359	
(0.139)	

0.380	
(0.155)	

0.406	
(0.262)	

0.347	
(0.229)	

0.518	
(0.288)	

0.479	
(0.305)	

Temperate	South	America	 -0.193	
(0.633)	

-0.205	
(0.597)	

-0.153	
(0.622)	

-0.162	
(0.641)	

-0.178	
(0.627)	

-0.166	
(0.627)	

Temperate	Eurasia	 0.742	
(0.645)	

0.760	
(0.660)	

0.735	
(0.642)	

0.721	
(0.643)	

0.732	
(0.642)	

0.716	
(0.642	

	
	

	
Table	5.	List	of	global	and	regional	wetland	CH4	estimates	from	our	model	experiments	(see	Table	2)	over	the	period	1980-
2000.	All	units	are	Tg	CH4	yr-1±1σ,	where	standard	deviation	represents	the	interannual	variation	in	the	model	estimates.	Note	
that	estimates	from	some	reference	studies	are	not	for	the	same	period.	



	 32	

Estimates	 Global	 Regions	 Hotspot	
Tropics	
(20N-30S)	

Temperate	
(20-45N,	30S-50S)	

Northern	
(>45N)	

Central	
Amazonb	

WSL	 Hudson	Bay	 Alaska	

SHEDS_BASIN	 171.9	 109.3±2.3	 26.4±1.0	 36.1±1.8	 10.9±0.3	 5.4±0.9	 6.5±0.5	 1.7±0.3	
SHEDS_GRID	 193.0	 123.7±2.2	 31.4±1.0	 38.7±1.9	 11.4±0.3	 5.5±0.9	 7.1±0.6	 1.5±0.3	
GMTED_BASIN	 130.1	 85.5±2.3	 19.0±0.9	 26.3±1.4	 9.5±0.4	 4.5±0.9	 4.4±0.6	 1.6±0.3	
GMTED_GRID	 117.2	 76.7±2.3	 16.4±0.9	 24.2±1.4	 9.2±0.4	 4.1±0.9	 4.2±0.6	 1.4±0.3	
HYDRO1K_BASIN	 148.3	 96.4±2.3	 21.5±0.9	 30.3±1.6	 10.4±0.3	 4.4±0.9	 5.8±0.6	 1.7±0.3	
HYDRO1K_GRID	 128.8	 85.0±2.3	 17.8±0.9	 26.0±1.4	 10.0±0.4	 3.9±0.9	 4.8±0.6	 1.5±0.3	
Melton	et	al.	(2013)a	 190±39	 	 	 	 	 	 5.4±3.2	 	
Zhu	et	al.	(2015)	 209-245	 	 	 38.1-55.4	 	 	 	 	
Chen	et	al.	(2015)	 	 	 	 35	 	 	 3.11±0.45	 	
Zhu	et	al.	(2014)	 	 	 	 34-58	 	 	 3.1±	0.5	 	
Ringeval	et	al.	(2012)	 193.8	 102	 51	 40.8	 	 	 	 	
Glagolev	et	al.	(2011)	 	 	 	 	 	 3.91±1.3	 	 	
Melack	et	al.	(2004)	 	 	 	 	 9.1	 	 	 	
Zhuang	et	al.	(2004)	 	 	 	 57.3	 	 	 	 	
Chang	et	al.	(2014)	 	 	 	 	 	 	 	 2.1±0.5	
Bloom	et	al.	(2012)	 	 111.1	 	 	 	 	 	 	
Bousquet	et	al.	
(2011)	

151±10	 91±11	 	 	 	 	 	 	

Bloom	et	al.	(2010)	 165±50	 91±28	 	 	 	 	 4.9±1.4	 	
a	WETCHIMP	estimates	for	1993-2004		
b	Central	Amazon	(54-72°W,0-8°S)	
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Figures	1	

	2	
Figure	1.	Cumulative	distribution	function	(CDF)	of	the	fitted	exponential	curve	3	
(blue	 line)	 as	 a	 function	 of	 compound	 topographic	 index	 (CTI)	 in	 comparison	4	
with	the	three-parameter	gamma	function	(red	line),	as	well	as	the	observations	5	
(grey	line)	with	in	a	sample	grid	box.	6	
	7	
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	8	
Figure	2.	TOPMODEL	parameter	maps	in	model	experiments.	Mean	CTI	(a,	b)	and	9	
Cs	(c,	d)	aggregated	by	river	basin	(denoted	as	“By	Basin”)	and	grid	cell	(denoted	10	
as	“By	Tile”)	schemes	from	HydroSHEDS	were	listed.	Fmax	(e)	for	calibration	was	11	
generated	 using	 SWAMPS-GLWD	 and	 GLWD.	 Map	 of	 regions	 (f)	 was	 used	 to	12	
partition	globe	into	boreal,	temperate,	tropical	biomes	(Gurney	et	al.	2003).	13	
	14	
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	15	
Figure	 3	 Evaluation	 of	 permafrost	 simulation	 in	 LPJ-wsl.	 (a)	 Inventory-based	16	
(light	blue)	and	simulated	(dark	blue)	permafrost	extent	from	NSIDC	and	LPJ-wsl	17	
respectively.	 The	 inventory	 contains	 discontinuous,	 sporadic	 or	 isolated	18	
permafrost	boundaries,	 as	well	 as	 the	 location	of	 subsea	and	relict	permafrost.	19	
We	 only	 compare	 the	 distribution	 of	 all	 permafrost	 against	 model	 outputs	20	
without	 distinguishing	 each	 permafrost	 types.	 (b)	 Spatial	 distribution	 of	21	
Spearman	 correlation	 between	 simulated	 monthly	 frozen-days	 from	 LPJ-wsl	22	
over	2002-2011	and	satellite	retrievals	of	FT	status	from	AMSR-E.		23	
	24	
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	25	
Figure	 4	 Comparison	 of	 TOPMODEL-based	 wetland	 areas	 and	 Observational	26	
datasets	over	the	region	West	Siberian	Lowland	(WSL)	for	June-July-August	(JJA)	27	
average	 over	 the	 period	 1993-2012.	 ‘Calibrated’	 and	 ‘Original’	 represent	28	
simulated	 wetland	 areas	 with	 and	 without	 Fmax	 calibration	 respectively.	 For	29	
Sheng2004,	 Tanocai,	 Pregon2008,	 and	 GLWD,	 it	 represents	maximum	wetland	30	
extent	per	0.5°	cell	as	derived	 from	static	 inventory	maps.	For	SWAMPS-GLWD	31	
and	 GIEMS,	 areas	 shown	 are	 averaged	 for	 JJA	 over	 the	 period	 1993-2007	 and	32	
2000-2012	respectively.	33	
	34	
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	35	
Figure	5.	Comparison	of	wetland	areas	(km2)	between	LPJ-wsl	simulated	results	36	
(SHEDS_basin	 version)	 and	 JERS-1	 satellite	 observation	 over	 Lowland	Amazon	37	
Basin	 for	 low-water	 season	 and	 high-water	 season.	 The	 low	water	 season	 and	38	
high-water	 season	 in	 LPJ	 was	 calculated	 by	 mean	 annual	 minimum	 and	39	
maximum	respectively	during	1993-2013.	40	
	41	
	42	
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	43	
Figure	6.	Observation-based	estimate	from	Glagolev	et	al.,	2011	and	two	LPJ-wsl	44	
estimates	 using	 Hydro-SHEDS	 (calibrated	 Fmax	 and	 non-calibrated	 Fmax)	 for	45	
annual	CH4	emission	(g	CH4	m-2	yr-1		of	grid	cell	area).	Averages	from	LPJ-wsl	are	46	
over	the	time	period	2007-2010.	47	
	48	
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	49	
Figure	 7.	 Spatial	 distributions	 of	 average	 June-July-August	 (JJA)	 wetland	 area	50	
(km2)	over	the	West	Siberian	Lowland	(WSL)	area	from	model	experiments	(see	51	
Table	2).		52	
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Figure	 8.	 Average	 seasonal	 variability	 of	 observed	 and	 simulated	 monthly	 total	
wetland	area	for	Transcom	regions	(see	Fig.	2).	For	consistent	comparison,	two	sets	
of	 simulated	 results	were	 generated	by	masking	 out	 pixels	 for	which	GIEMS	 (red,	
dashed)	or	SWAMPS-GLWD	(blue,	dashed)	don't	have	observations	(denoted	as	‘-G’	
and	‘-S’,	respectively).	
	

	
Figure	9.	Global	wetland	potential	map,	which	is	calculated	by	the	ratio	of	the	mean	
annual	maximum	wetland	extent	averaged	 for	 the	 time	period	1980-2010	and	the	
long-term	potential	maximum	wetland	area	(F!"#!"# ).	Higher	value	represents	higher	
availability	for	sub-grids	to	be	inundated.	
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Appendix	A	
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Figure	A1.	Interannual	variations	of	seasonal	wetland	area	anomalies	from	LPJ-wsl	
and	satellite-derived	observations	for	the	period	1993-2012.	
	
	
Table	A1.	Reclassification	table	for	aggregating	JERS-1	lowland	Amazon	basin	to	0.5°	
cell.	Code	NA,	0,	1,	and	2	represent	Not-Available,	Not	Wetlands,	wetland	only	exist	
in	low-water	season	and	wetland	exist	in	high-water	season.	
DN	 Cover	 at	 low-water	

stage	
Cover	 at	 higher-water	
stage	

Flag	 for	 minimum/	
maximum	wetlands	

0	 Land	 outside	 Amazon	
Basin	

Land	 outside	 Amazon	
Basin	

NA	

1	 Non-wetland	 within	
Amazon	Basin	

Non-wetland	 within	
Amazon	Basin	

0	

11	 Open	water	 Open	water	 0	
13	 Open	water	 Aquatic	macrophyte	 0	
21	 Bare	 soil	 or	herbaceous,	

non-flooded	
Open	water	 2	

23	 Bare	 soil	 or	herbaceous,	
non-flooded	

Aquatic	macrophyte	 2	

33	 Aquatic	macrophyte	 Aquatic	macrophyte	 1	
41	 Shrub,	non-flooded	 Open	water	 2	
44	 Shrub,	non-flooded	 Shrub,	non-flooded	 0	
45	 Shrub,	non-flooded	 Shrub,	flooded	 2	
51	 Shrub,	flooded	 Open	water	 1	
55	 Shrub,	flooded	 Shrub,	flooded	 1	
66	 Woodland,	non-flooded	 Woodland,	non-flooded	 0	
67	 Woodland,	non-flooded	 Woodland,	flooded	 2	
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77	 Woodland,	flooded	 Woodland,	flooded	 1	
88	 Forest,	non-flooded	 Forest,	non-flooded	 0	
89	 Forest,	non-flooded	 Forest,	flooded	 2	
99	 Forest,	flooded	 Forest,	flooded	 1	
200	 Elevation	 >=	 500m,	 in	

Basin	
Elevation	 >=	 500,	 in	
Basin	

NA	

255	 Ocean	 Ocean	 NA	
	
	
	


