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Abstract 18 

Timely and accurate monitoring of pasture biomass and ground-coverground cover is necessary 19 

in livestock production systems to ensure productive and sustainable management of forage for 20 

livestock. Interest in the use of proximal sensors for monitoring pasture status in grazing systems 21 

has increased, since such sensors can return data can be returned in near real-time, and have. 22 

Proximal sensors have the potential the potentially for being deployeddeployment on large 23 

properties where remote sensing may not be suitable due to issues such as spatial scale or cloud 24 

cover. However,T there are unresolved challenges in gathering reliable sensor data, and in 25 

developing calibrations to convertcalibrating raw sensor data to quantitative biophysical values, , 26 

such as pasture biomass or vegetation ground-coverground cover, that, to allow meaningful 27 

interpretation of sensor data by livestock producers. 28 
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Our goal was to assess whether a combination of proximal sensors could be reliably deployed to 1 

monitor tropical pasture status in an operational beef production system, as a precursor to 2 

designing a full sensor deployment. We use this pilot project to 1) illustrate practical issues 3 

around the sensor deployment, 2) develop methods necessary for the quality control of the sensor 4 

data, and 3) assess the strength of the relationships between vegetation indices derived from the 5 

proximal sensors and field observations across the wet and dry seasons. 6 

 We assessed the use of multiple proximal sensors for monitoring tropical pastures with aWe 7 

made a pilot deployment of sensors at two sites nodes on Lansdown Research Stationin tropical 8 

pastures on a beef production property near Townsville, Australia. Each site was monitored by a 9 

Skye SKR-four-band multi-spectralmultispectral sensor (every 1 min.), a digital camera (every 10 

30 min.), and a soil moisture sensor (every 1 min), each operated over 18 months. Raw data from 11 

each sensor were was processed to calculate multispectral vegetation indices. Visual observations 12 

of pasture characteristics, including above-ground standing biomass and ground cover, were 13 

made every 2 weeks. AThe data capture from the digital cameras was more reliable than the 14 

multi-spectralmultispectral sensors, which had up to 67% of data discarded after data cleaning 15 

and quality control for technical issues related to the sensor design, and environmental issues 16 

such as water incursion and insect infestations. We recommend having a system with both sensor 17 

types to aid in data interpretation and troubleshooting technical issues. . Non-destructive 18 

observations of pasture characteristics, including above-ground standing biomass and fractional 19 

ground cover in 2- and 3- dimensions, were made every 2 weeks. This simplified data collection 20 

was designed for multiple years of sampling at the remote site, but had the disadvantage of high 21 

measurement uncertainty.  22 

A bootstrapping method was used to explore the strength of the relationships between sensor and 23 

pasture observations. Due to the uncertainty in the field observations the relationships between 24 

sensor and field data are not conformational, and should be used only to inform the design of 25 

future work. We found the We found a strongest relationships between sensor and pasture 26 

measurements occurred duringduring the wet season period of maximum pasturepasture growth 27 

(January to April), with generally poor relationships outside of this period. , especially when data 28 

from the multi-spectral sensors were combined with weather data. Strong relationships were also 29 

found with multispectral indices that were sensitive to the green and dry components of the 30 

vegetation were used, such as those containing RatioNS34 (a simple band ratio between the near 31 

infrared (NIR)the band in the and lower shortwave infrared (SWIR) region of the 32 

electromagnetic spectrum) . 33 
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and rainfall since September 1st explained 91% of the variation in above-ground standing 1 

biomass (RSE= 593 kg DM ha-1, p < 0.01). RatioNS34 together with rainfall explained 95% of 2 

the variation in the percentage of green vegetation observed in 2-dimensions (%Green2D) (RSE= 3 

6%, p < 0.01). The Green Leaf Algorithm index derived from the digital camera images and the 4 

rainfall accumulated since the 1st September explained 91% of the variation in %Green2D (RSE= 5 

9%, p < 0.01, df = 20), but had poor relationship with biomass. Our successful pilot of multiple 6 

proximal sensors in this pilot project supports the design of future deployments in tropical 7 

pastures and their potential for operational use. The stringent rules we developed for data 8 

cleaning can be more broadly applied to other sensor projects to ensure quality data. Although 9 

proximal sensors observe only a small area of the pasture, they deliver continual and timely 10 

pasture measurements to inform timely decision-making on-farm. 11 

 12 
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1. Introduction 1 

Frequent and accurate monitoring of pastures in livestock production systems is necessary to 2 

facilitate timely and appropriate management decisions. Traditional methods for measuring 3 

pasture biomass (e.g. pasture cuts, visual assessments and plate meters, (Sanderson et al., 2001)) 4 

are time-consuming and error-prone, leading to an increased interest in automated monitoring 5 

methods. While remote sensing of the landscape from satellite-based platforms gives extensive 6 

spatial coverage, its usefulness can be limited by irregular availability of suitable images, which 7 

in tropical environments can be further restricted by cloud cover, particularly during the wet 8 

season. Converting raw satellite images to a measure that is useful for on-farm decision making 9 

is also problematic due to the cost and processing requirements for operational delivery (e.g. 10 

Handcock et al., 2008). While cheap or free satellite images are increasingly accessible, their 11 

ability to be interpreted for decision-making on-farm is not straight forward. Continual 12 

monitoring using proximal sensors has the advantage over satellite images of capturing rapid-13 

changes in the proportions of photosynthetically -active vegetation (PV) (i.e. green) and non- 14 

photosynthetically- active vegetation (NPV) (i.e. dead/dry). Such changes in the feed-base can 15 

signal that farm-management interventions are necessary for better utilization of resources and 16 

reducing detrimental environmental impacts due to overgrazing. For example, at the end of the 17 

wet season in tropical environments, beef producers need to assess how much green feed remains 18 

in the paddocks to determine if there is sufficient feed to carry the cattle through the dry season, 19 

or to adjust stocking rates accordingly (O'Reagain et al., 2014), provide supplemental feed, or 20 

move animals. 21 

With recent advances in wireless sensor networks and improved mobile network coverage, the 22 

delivery of monitoring data from sensors in remote cattle enterprises in a near -real- time data 23 

stream has become feasible. While proximal sensors monitor only a small area or point and do 24 

not provide the extensive coverage of satellite imagery, when strategically placed within the farm 25 

these sensors have the potential to deliver continual data on the feed-base and allow more 26 

responsive management decisions. 27 

In the present study, proximal sensors refer to in -situ sensors placed within several metres of the 28 

surface to be monitored, or placed in the shallow sub-surface environment, and providing repeat 29 

measurements at discrete intervals over periods of days to years. This distinguishes fixed 30 

proximal sensors from those which are mobile via robotic or aerial platforms (e.g. Von Bueren et 31 

al., 2015;Hamilton et al., 2007), vehicle-mounted sensors (e.g. King et al., 2010), or hand-held 32 

such as a field spectroradiometer (e.g. Peddle et al., 2001). While each of these moveable sensor 33 
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types has their own advantages, such as covering large areas for the mobile sensors, or in of 1 

targeted measurements in the case of hand-held sensors, none have the ability for easy long 2 

temporal coverage which is provided by fixed proximal sensors. Proximal sensors are of 3 

particular interest in extensive grazing enterprises in remote regions where access to repeat 4 

monitoring is costly and difficult, yet where remote sensing is not suitable due to issues such as 5 

scale or cloud cover. 6 

There have has been recent growth in the use of in -situ proximal environmental sensors for a 7 

wide range of monitoring, including soils (Allen et al., 2007;Zerger et al., 2010),  and ecological 8 

studies (Collins et al., 2006;Hamilton et al., 2007;Szewczyk et al., 2004), temperate pastures 9 

(Zerger et al., 2010;Gobbett et al., 2013), forests (Eklundh et al., 2011), and sub-alpine 10 

grasslands (Sakowska et al., 2014), or and to complement measurements made from flux towers 11 

(Balzarolo et al., 2011;Gamon, 2015). Networks to support the improvement of such sensors 12 

have recently been developed, such as through SpecNet (http://specnet.info), and the projects 13 

presented in the current special issue. Recent work on the use of digital cameras for repeat 14 

monitoring of vegetation includes using the camera images to estimate foliage cover in the forest 15 

understorey (Macfarlane and Ogden, 2012), forest phenology  (Sonnentag et al., 2012), and gross 16 

primary production (GPP) of both forests and grassland and crops (Toomey et al., 2015). 17 

Previous research using proximal sensing of pastures aimed at helping decision making in 18 

livestock production has employed handheld active multispectral sensors to measure green 19 

herbage mass and predict pasture growth rate (Trotter et al., 2010), plant height (Payero et al., 20 

2004), nutrient composition using a handheld hyperspectral device (Pullanagari et al., 2012), 21 

pasture variability using multiple sensors (Serrano et al., 2016), forage biomass (Flynn et al., 22 

2008), and forage quality (Zhao et al., 2007). These sensing devices can certainly aid in farm 23 

decision making such as grazing and livestock nutritional management, however they are time 24 

consuming for the producer to implement, which reduces the frequency with which they are used. 25 

If proximal sensors were deployed permanently in pastures they could provide frequent 26 

information of temporal changes for timely management. These sensors may prove useful in 27 

livestock production under grazing conditions when decisions have to be made frequently (e.g. 28 

cell or rotational grazing) or at critical decision making periods such as during transitions 29 

between seasons 30 

Converting sensor data to quantitative biophysical values, such as pasture biomass and 31 

groundcover, allows easier interpretation of the sensor data for making management decisions by 32 

livestock producers. With minimal processing,Once calibration relationships are established, the 33 
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data obtained from proximal sensors, such as spectral reflectance, can be related to biophysical 1 

values and provide useful qualitative information. An example is the well-established field of 2 

multi-spectralmultispectral sensing using vegetation indices (e.g Tucker, 1979). Vegetation 3 

indices are frequently calibrated to the biophysical properties of the vegetation such as leaf area 4 

index (Turner et al., 1999), biomass (Pearson et al., 1976;Handcock et al., 2008), percentage 5 

vegetation cover (Lukina et al., 1999), or the fraction of photosynthetically active radiation 6 

absorbed by a canopy (Richardson et al., 2007;Myneni and Williams, 1994;Guerschman et al., 7 

2009). Converting sensor data to quantitative biophysical values such as pasture biomass and 8 

groundcover, allows easier interpretation of the sensor data for making management decisions by 9 

livestock producers. 10 

The aim of this study was to quantify how well multiple proximal sensors could be used to 11 

monitor tropical pasture biomass, which requires both obtaining reliable data, and calibrating that 12 

data to biophysical values. To address this goal we assessed how the relationships between 13 

sensor and field observations of pastures differed between the wet and dry seasons in a tropical 14 

pasture grazed by cattle. Our goal was to assess whether a combination of proximal sensors could 15 

be reliably deployed to monitor tropical pasture status in an operational beef production system, 16 

as a precursor to designing a full sensor deployment. We made a pilot deployment across of 17 

sensors at two nodes located on tropical pastures in a beef production system. Each node was 18 

monitored by a Skye SKR-four-band multispectral sensor, a digital camera, and a soil moisture 19 

sensor, each operated over 18 months. The multi-spectralmultispectral sensor data were 20 

calibrated using repeated visual observations of pasture characteristics supplemented by data 21 

from digital cameras, soil moisture sensors and weather data. We also developed methods for the 22 

management of multiple proximal sensors deployed for pasture monitoring in a tropical in 23 

thisenvironment and the quality control of such data which extends on previous work in 24 

temperate pastures (Gobbett et al., 2013). We use this pilot deployment to illustrate: 25 

1) practical issues around the sensor deployment, 26 

2) methods necessary for the quality control of the sensor data, and  27 

3) the strength of the relationships between vegetation indices derived from the proximal 28 

sensors and field observations of pasture status between the wet and dry seasons.  29 

 30 

 31 
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2. Methods 1 

2.1. Field site and sensor nodes 2 

The sensors deployed in this study were located at the Commonwealth Scientific and Industrial 3 

Research Organisation’s (CSIRO) Lansdown Research Station near Townsville, Queensland, 4 

Australia (19º 39’ 42” S and 146º 51’ 12” E, elevation 63 m). Paddocks used in this study 5 

contained pastures dominated by Urochloa spp., Chloris spp., and Stylosanthes spp.. Data were 6 

collected over 545 days between 23rd September 2011 and 21st March 2013.  7 

Based on daily precipitation and temperature data collected by the Bureau of Meteorology (BoM) 8 

from the “Woolshed” station (approximately 45 km NW of the study site) the tropical climate in 9 

the study region is characterised by a wet-seasonwet season from November to April where 10 

monsoonal storms bring intermittent periods of heavy rainfall, and a winter dry-seasondry season 11 

with little or no rainfall. The average annual rainfall of 1139 mm falls mainly during the wet 12 

season, and the average monthly temperatures range is 20.8 to 28.5 °C in January, and 10.4 to 13 

21.8 °C in July. 14 

Two identical sensor nodes (Figure 1 Figure 1) were mounted with the same array of equipment 15 

(multi-spectralmultispectral sensors, digital camera, soil moisture sensor, wireless networking 16 

infrastructure), and providing spatially-coincident data with both high temporal- and spatial-17 

resolution. The nadir-pointing sensors were located at a height of 2.5 m above the ground. At this 18 

height the downward-pointing multi-spectralmultispectral sensor had a 25° field of view (FOV) 19 

sensing approximately 0.97 m² of area at ground level, although this area changes across the 20 

season as the vegetation height changes. The camera field of view was approximately 2.8 m x 2.0 21 

m at ground level, and would have been able to capture the 1 x 1 m area with a vegetation height 22 

up to approximately 1.5 m. See Balzarolo et al. (2011) for a discussion of optical sensor 23 

configurations. 24 

The nodes were approximately 200 m apart in areas of the paddock visually assessed to be 25 

uniform and similar at the time of installation. One node was unfenced, permitting access to the 26 

area under the node by cattle grazing in the paddock. The second node was enclosed by a 30 m 27 

by 30 m fence which excluded cattle from grazing within the enclosure, but allowed access by 28 

kangaroos and other small herbivores. The decision to place only one of the nodes within a 29 

grazing exclosure was made to improve the likelihood that the vegetation that was observed in 30 

each node would be at different heights. Although the paddocks were grazed by beef cattle for 31 



8 

 

short periods during the sensor deployment, due to the lack of feed in the paddocks at those times 1 

there ultimately was no discernible difference in vegetation height before and after the grazing.  2 

Each node included a solar-powered sensor hub which relayed captured sensor data to a wireless 3 

sensor network (WSN) installed on the research farm, and via an internet connection to a 4 

centralized enterprise database. All equipment was temporarily removed for a week during a 5 

controlled property burn in mid-December 2011. 6 

2.2. Soil moisture sensors 7 

A Decagon “5TM” soil moisture sensor (Decagon Devices, USA) was installed to monitor the 8 

volumetric water content (VWC) of the soil. The VWMC is the volume of water per unit of total 9 

volume, determined by measuring the dielectric constant of the soil, as well as soil temperature 10 

from a thermistor. The 5TM sensors were buried at a depth of 15 cm under the soil surface below 11 

the multi-spectralmultispectral sensors. This depth was used to capture soil moisture near the 12 

surface, yet reduce the possibility of damage from trampling by cattle. The 5TM sensors recorded 13 

soil moisture and soil temperature readings at 1 min intervals. We extracted an average of VMC 14 

for the period between 12:00 and 13:00 for each day, resulting in a time seriestime-series of daily 15 

VWC (i.e. SoilMoisture) and soil temperature data during the study period. 16 

2.3. Weather data 17 

The nearest BoM weather stations were at “Woolshed”, “Charters Towers Airport” (both inland), 18 

and “Townsville Airport” (coastal), approximately 45 km NW, 70 km SW and 40 km N of the 19 

study site, respectively. Daily maximum ambient temperature averaged for the two inland 20 

stations had a strong relationship with temperature data from 12:00 from the 5TM soil moisture 21 

sensor, so these datasets were used interchangeably. The 5TM soil moisture sensors were 22 

additionally used as the main source of soil moisture data. 23 

At the time of this study a new meteorological station at the Lansdown Research Station had 24 

recently been installed, but the data was were not available for the study period. Given the spatial 25 

heterogeneity of precipitation events, Tthe nationally availablenational interpolated climate 26 

surfaces from BoM were thought to be too coarse for our small study site as precipitation events 27 

are typically spatial heterogeneous. A Instead, a comparison of data from nearby BoM stations 28 

with the in -situ soil moisture sensors at our nodes showed a strong correlation with the average 29 

of the precipitation recorded at “Charters Towers Airport” and “Townsville Airport” stations 30 

(Pearson product-moment correlation coefficient of 0.61 during the wet season period of data 31 
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collection)., so Tthis station average precipitation was therefore used as the best of the available 1 

optionsoption for precipitation, as the only alternative was to use an interpolated dataset. 2 

The start and end of the wet season was determined using a method designed for the North 3 

Australian climate (Lo et al., 2007) in which the start of the wet season is defined as the date 4 

after 1st September when 50 mm of precipitation has accumulated. Bureau of Meteorology 5 

precipitation data from the “Townsville Airport” station were used to define the start and end of 6 

the wet and dry seasons, as this station had the most complete time-series of the nearby stations. 7 

Using this method, the 2011/2012 wet season at our study site started on the 5th December 2011, 8 

and the 2012/2013 wet season started on 1st January 2013. 9 

2.4. Digital Cameras and the VegMeasure semi-automated classification 10 

Digital cameras were deployed at the study site to provide an automated assessment of ground 11 

cover (see Zerger et al., 2012), to serve as a visual cross-check of the multi-spectralmultispectral 12 

data, and to assist in identifying surface water. At each of the two nodes we deployed a Pentax 13 

Optio WG-1 digital camera in a downward-pointing position, centred on the area sensed by the 14 

Skye sensors so that the images covered that imaged the same FOV as the multi-15 

spectralmultispectral sensors.  16 

This model camera model was selected as it was inexpensive, weatherproof and having had an 17 

inbuilt intervalometer to enable automatic shooting at fixed intervals. At 2.5 m the 13.8 18 

megapixel digital cameras recorded images with an approximate 0.6 mm ground resolution. The 19 

cameras were configured with flash off, sensitivity at ISO 200, autofocus and automatic white 20 

balance enabled. The decision to use an automatic white balance was based on similar studies 21 

(e.g. Macfarlane and Ogden, 2012), although other studies have used a manual/fixed white 22 

balance in order to minimize changes in illumination (e.g. Toomey et al., 2015;Sonnentag et al., 23 

2012). Digital images (approximately 1 to 4 MB each) were captured every 30 mins and were 24 

manually downloaded at approximately 2--week intervals. 25 

The images from the cameras contained un-uncalibrated red, green and blue (RGB) spectral 26 

bands. There has been extensive work on automated and semi-automated classification of such 27 

time seriestime-series of digital photographs for the purposes of vegetation monitoring (e.g. 28 

Ewing and Horton, 1999;Karcher and Richardson, 2005;Bennett et al., 2000). As the focus of the 29 

current study was on the calibration of the multi-spectralmultispectral sensor data, we chose to 30 

use a semi-automated method, VegMeasure (Johnson et al., 2003), to extract a green cover 31 
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fraction of the time-series of digital camera images from each node. VegMeasure has been 1 

utilized and validated in a number of studies (e.g Booth et al., 2005;Louhaichi et al., 2001) and 2 

provides a rapid method to classify a series of images into green and non-green using the Green 3 

Leaf Algorithm (GLA). The GLA also acts as an alternative sensor measurement of green 4 

fraction to that derived from the multispectral dataset. 5 

The GLA protocol requires deriving a single threshold value from a single image which is then 6 

applied across the whole time-series of camera images. The GLA applies the following spectral 7 

band ratio (Louhaichi et al., 2001): 8 

B)GR(G

)()(


 BGRG

.         (1) 9 

where G is the digital number of the green band, R is the digital number of the red band and B is 10 

the digital number of the blue band. The proportion of the pixels in each image in which the band 11 

ratio exceeds a user defined threshold, is reported as the GLA. 12 

For each day in the study period, the camera image taken nearest in time to 12:00 was selected to 13 

minimise shadows and to ensure as consistent illumination as possible, and the time-series was 14 

quality controlled for days when there was site maintenance work under the node. One photo 15 

with a mix of PV (i.e. green) and NPV vegetation was manually selected as a calibration image 16 

(14 May 2012, 12:13:55 GMT, on the unfenced node). To derive a threshold value for the GLA, 17 

one hundred random points were identified using the “Calibrate threshold” function in the 18 

VegMeasure software , and manually assigned to two classes: “white” = green vegetation and 19 

“black” = non-green vegetation and  background material including litter and soil). The resulting 20 

GLA threshold of 0.095 was verified using a random selection of images and was used then 21 

applied across the whole time-series of camera images to process all images to extract the green 22 

proportion. The single threshold value used in deriving the GLA is a necessary feature of using 23 

the GLA, as well as having been applied in other vegetation studies (as cited).The GLA was used 24 

as a crosscheck of the green fraction determined from the multi-spectral dataset and from field 25 

measurement. 26 

2.5. Multi-spectral sensors 27 

We used a paired sensor setup (Figure 1Figure 1) with the downward-pointing sensor having a 28 

conical field of FOV of 25° as indicated by the manufacturer, allowing it to sense reflected light 29 

only from the ground directly beneath the sensor. The upward-pointing sensor was fitted with a 30 
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cosine diffusing filter to alter its FOV to a full hemispherical view, permitting the albedo of the 1 

surface to be assessed relative to the incident solar radiation. Sensors were checked and cleaned 2 

fortnightly and the sensor station coated with insecticide to deter crawling and flying insects. 3 

The multispectral sensors mounted on each of the two nodes were paired Skye SKR-1850 four-4 

band weatherproof sensors (Skye-Instruments, 2012b), which were calibrated individually by 5 

Skye, with band choices based on our specifications. Each sensor was configured with bands in 6 

the green (0.545 to 0.547 µm), red (0.644 to 0.646 µm), near infrared (NIR) (0.834 to 0.837 µm) 7 

and the lower SWIR (1.028 to 1.029 µm) spectral range (wavelengths in brackets indicate band 8 

widths). These bands were chosen as the the NIR region of the electromagnetic spectrum band is 9 

widely used in monitoring vegetation ‘greenness’ from multispectral sensors (Tucker, 1979), and 10 

the SWIR region region of the electromagnetic spectrum is sensitive to plant moisture content 11 

(Tucker, 1980). Additionally, these bands were chosen as both Both the SWIR and upper NIR 12 

spectral data can be used to help differentiate PV from both NPV and soil (Asner, 1998), and 13 

broad-band SWIR indices have been used to capture seasonally-varying NPV proportions 14 

resulting from repeat grazing of pastures by livestock (Handcock et al., 2008).  We were not able 15 

to choose the fourth sensor to be in the 1.55–1.75 μm range recommended by (Tucker, 1980), but 16 

were limited to using the longest wavelength possible for this sensor configuration to try and 17 

capture senescing vegetation as best as possible. The band choice was verified before sensor 18 

creation by comparing the band to reflectance for green and dry pastures from the ASTER 19 

spectral library (Baldridge et al., 2009). This comparison confirmed that while the discrimination 20 

between green and dry pastures is not as distinct at 1.029 µm compared to that at 1.55–1.75 μm, 21 

there was still enough potential for discrimination to confirm this wavelength choice for the 22 

fourth band. 23 

2.6. Vegetation indices 24 

The NIR region is sensitive to vegetation “vigour” or “greenness”, and Spectral bands in the NIR 25 

region are commonly used to calculate a large range of vegetation indices, such as the widely 26 

used normalized difference vegetation index (NDVI) (Tucker, 1979) utilize the NIR spectral 27 

range. A variety of vegetation indices are possible from combinations of these the four broad 28 

spectral bands of our Skye sensors. Due, some of which have become used for specific 29 

applications. However, due to the algebraic complexity of calculating indices from this particular 30 

Skye sensor model (see the description in the paragraph below), our index choice was limited to 31 

simple ratios and normalized difference band ratios (Jackson and Huete, 1991),  which we 32 



12 

 

selected derived to highlight seasonal aspects of the green and dry mix of the tropical pastures 1 

(Table 1 VTable 1). 2 

The Skye sensors provided returned a calibrated numeric output for each spectral band every 3 

minute, and data volumes were small enough to be transmitted in near real-time via the WSN. 4 

After calibrating raw sensor data using individual Skye sensor calibration coefficients, vegetation 5 

indices were then calculated. The Skye SKR-1850 sensor does not permit the It is not possible to 6 

calculation of e reflectance directly from the raw current the Skye SKR-1850 sensor. 7 

HoweverInstead, Skye provides formulae which use the measured sensitivities of the individual 8 

sensors to calculate ratio-style indices such as NDVI (Skye-Instruments, 2012a). These indices 9 

are mathematically equivalent to those calculated from reflectance. Using the NDVI example 10 

from Skye, we developed formulae for the vegetation indices shown in Table 1 VTable 1. 11 

2.7. Quality control of the sensor data 12 

The We illustrate the types of processing required for high-frequency multispectral time-series 13 

are illustrated with an example of a typical diurnal time-series of multispectral data with a 14 

reading every minute ( 15 

Figure 2Figure 2). Both raw sensor current and the calculated NDVI values are typically low 16 

during the night-time hours. The period of rapidly increasing sensor values at dawn is extremely 17 

noisy due to variable early -morning illumination and the scattering of sunlight through a thicker 18 

atmosphere at low elevations. At dusk this a mirrored pattern of sensor values is reversed  19 

decrease (data not shown), which is also seen in Weber et al. (2008: Figure 3a). Apart from the 20 

spike in high NDVI values when a green leaf was held in front of the sensor (approximately 21 

13:00), the middle part of the day is the period of relatively stable values of NDVI, with only 22 

random variations that occur due to  compared to the noise in the raw current, or  resulting from 23 

variable solar illumination or cloudsephemeral variations in illumination such as from sun glint. 24 

 To calculate a single daily value from the diurnal cycle of For the entire daily time-seriestime-25 

series of multi-spectralmultispectral sensor data taken every minute, a time-series of daily values 26 

was determined by selecting the vegetation index values from the middle part of the day 27 

(1012:00 to 1413:00) were selected andand calculating the median value calculated to reduce 28 

noise due to small fluctuations in illumination.  29 

Data from a particular day were discarded if they met any of the four categories of filtering 30 

criteria listed in Table 2Table 2. Data were not discarded under conditions where changes in the 31 
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spectral values were considered to be a signal rather than noise. For example, rapid increases 1 

over time in values of NDVI values corresponded to rapid growth at the start of the wet season, 2 

and so would not be filtered.  Questionable multispectral data were also visually verifiedThe 3 

against the digital camera images were used as a verification check of the multi-spectral data. In 4 

developing these filtering rules, the vegetation indices stood as proxy for their individual 5 

constituent bands since, as discussed, it was not possible to use spectral reflectance from the 6 

Skye SKR-1850 sensors directly. Table 2 is divided into different into four different filtering 7 

categories as follows. 8 

 9 

The first category of filtering criteria (Table 2a) were developed to screen the daily multi-10 

spectralmultispectral data series for large fluctuations (Table 2), such as data outliers, spikes, 11 

high noise levels, data out of range, clipping and calibration issues, which can commonly result 12 

from anomalies at the sensor or during data transmission (Collins et al., 2006;Ni et al., 2009). In 13 

developing these filtering rules, the vegetation indices stood as proxy for their individual 14 

constituent bands as it was not possible to use spectral reflectance from the Skye SKR-1850 15 

sensors directly. 16 

For example,  the night-time raw current reading should remain relatively constant, excluding 17 

minor night-time light reflections or electronic noise, and l. Large deviations from night-time 18 

baseline current values will indicated a technical issue (Table 2a). Such issues were identified 19 

from the night-time (00:00 to 01:00) median value of raw current by flagging where one or more 20 

of the multispectral sensor bands in the paired node had a night-time reading of greater than 21 

10000 mV, or where these values were greater than 3 standard deviations from the band mean 22 

value. The day-time (12:00 to 13:00) median value of the multispectral indices was also used to 23 

identify data quality issues, for example where NDVI was not between 0 and 0.1. This threshold 24 

value of NDVI was chosen based on typical values for this environment (Holben, 1986;Jackson 25 

and Huete, 1991), and would have to be adjusted if the sensors were deployed elsewhere, for 26 

example to monitor snow and ice which may have negative NDVI values. Data were also masked 27 

when the daytime RatioNS34 dropped to zero but within one day had returned to its previous 28 

value. All instances where the RatioNS34 remained at zero for more than one day were visually 29 

cross-checked with the deployment records to see if this indicated sensor failure or some other 30 

issue such as an insect infestation. 31 
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 The second category of filtering criteria (Table 2b) is for logistical and physical issues. For 1 

example, the data for a day was screened if there was a maintenance ladder underneath the 2 

sensor. Or when aThe baseline current could also change suddenly if the sensor was swapped for 3 

new equipment, this required that a new baseline current value be used in calculations that use 4 

raw current, or for logistical reasons such as if there was a maintenance ladder underneath the 5 

sensor (see Table 2, category b). A flag was also set here to indicate days where there was no 6 

data during the midday period from one or more of the sensors, which would restrict the 7 

calculation of a full suite of indices.We  8 

The third category of filtering criteria (see Table 2c) coversalso developed filtering rules based 9 

on the expected spectral response of tropical pastures. For example, if  (see Table 2, category c). 10 

For example, NDVI was less than zero. This flag is a companion test to the range tested in Table 11 

2a, as it flags NDVI ranges that may indicate catastrophic failure of the sensor resulting in values 12 

extremely out of range. All of these cases were visually examined through the photographs and 13 

by inspecting the sensor infrastructure during site visits. for vegetation should not be less than 14 

zero (Holben, 1986;Jackson and Huete, 1991). Other indices were also used for testing data out 15 

of range. For example, if RatioNS34 values were greater than 2, this indicated a technical error as 16 

pastures should not have values in this range. Infrastructure during site visits. This filtering rule 17 

should also be adjusted if the sensors were deployed to a different environment. When values of 18 

gNDVI were less than 0 or values of NVI-GR were greater than -0.10, and the date and weather 19 

data indicated that the readings were made in the dry season, this again indicated values that were 20 

out of range rather than due to wet season surface water. 21 

 In developing these filtering rules, the vegetation indices stood as proxy for their individual 22 

constituent bands as it was not possible to use spectral reflectance from the Skye SKR-1850 23 

sensors directly.The fourth category of filtering criteria (Table 2d) covered  Some of the filtering 24 

rules where excluded valid spectral signals were excluded, not because  that were not they were 25 

errors, but which because they covered physical conditions which were not applicable to our goal 26 

of monitoring pastures (Table 2d). For example, surface water under the vegetation due to heavy 27 

rainfall was identified by visual inspection of the camera images combined with the soil moisture 28 

data, and filtered because it was not a valid measurement of the pasture status even though it was 29 

a valid sensor signal. 30 

 31 
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2.8. Field measurements observations of vegetation made under the sensor 1 

nodes 2 

In designing the field sampling for this project it was necessary to balance the project goals with 3 

staff resources and logistics of travelling to the remote site every 2-3 weeks for the multiple years 4 

of the sensor deployment. All field observation methods were designed to be quickly deployed 5 

by field technicians during these visits, while also maintaining the technical infrastructure of the 6 

sensor deployment. This trade-off between time and resources (Catchpole and Wheeler, 1992) 7 

resulted in field observations successfully being obtained over the multiple years of the study, but 8 

also resulted in a large degree of uncertainty in the field observations. 9 

During the study period there were 32 visits to the study site to make field observations. All the 10 

measurements were made by the same two field technicians, with the majority (71%) by one 11 

technician. Where possible, measurements were repeated by both of the main technicians or other 12 

staff (6 days). For the 45% of days where more than one technician made measurements, the data 13 

from that day was averaged. Visual examination of the raw field data noted no systematic 14 

differences between the data collected by the different field technicians, so measurements were 15 

not further controlled for operator differences. All observations were made within the sensors 16 

FOV in a 1 m x 1 m area under the sensors identified by small pegs hidden by the vegetation. 17 

Pasture	Biomass	18 

In temperate pastures, biomass is commonly measured using destructive sampling, with the 19 

vegetation cut from a sample quadrat being dried and weighed (Catchpole and Wheeler, 1992). 20 

For pastures where the spatial variability is high, such as at our study site, destructive sampling is 21 

also not recommended (Tothill, 1998) because of the difficultly in making biomass cuts in dense 22 

vegetation. Destructive sampling of the area under the sensors was also not desirable as this 23 

would have restricted the range of pasture biomass measurements to only low values, and the 24 

pastures would not re-grow rapidly enough for accurate visual assessment of biomass if they 25 

were cut to ground level. An alternative approach of destructive sampling at nearby locations was 26 

also not suitable as the tropical pastures are naturally heterogeneous at the local scale, and the 27 

area around the sensors will be highly variable in both biomass and species composition. We 28 

therefore limited sampling to the FOV of the multispectral sensors. 29 

An alternative non-destructive sampling method for assessing pasture biomass in tropical 30 

pastures is the BOTANAL dry-weight ranking method (t'Mannetje and Haydock, 1963;Friedel et 31 
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al., 1988) which can be used to estimate pasture composition as well as the pasture yield (Tothill 1 

et al., 1992;Orchard et al., 2000). A key technique in the BOTANAL method is that is that visual 2 

estimates are verified against pasture cuts from which a calibration relationship is developed. 3 

However, the BOTANAL assessment was determined as being too time consuming for the long 4 

deployment of the pilot, and we instead developed a less time-intensive set of field observations, 5 

which is described below. 6 

For our quick field assessment of above-ground standing biomass (weight of above-ground 7 

vegetation dry matter (DM) per unit of area, (kg DM ha-1) we used non-destructive visual 8 

assessment within the sensor FOV to pasture photo standards (Queensland Department of 9 

Primary Industries, 2003). These pasture photo standards were developed as the industry standard 10 

for beef producers to assess pasture status (Department of Resources Northern Territory Australia 11 

and Meat and Livestock Australia, 2012). Visual observations of pasture biomass (weight of 12 

above ground vegetation dry matter (DM) per unit of area) for the sensors FOV were recorded by 13 

trained field staff at 2-3 week intervals during the study period. Above-ground standing biomass 14 

(kg DM ha-1) (called TotalBiomass henceforth) was therefore assessed by comparing the sensor 15 

FOV area with pasture standard photographs.For field observations of above-ground standing 16 

biomass (called TotalBiomass henceforth) which were less than 3000 kg DM ha-1 the 17 

predominant pasture photo standards used were those for a mixed pasture of "Eucalyptus Box” 18 

and “Stylo", with the group "Eucalyptus Box” used for pastures above 3000 kg DM ha-1. Where 19 

the vegetation was clearly between two photo standards the observation was visually interpolated 20 

(Queensland Department of Primary Industries, 2003) 21 

For days where we had a second researcher repeat the observation, the average difference 22 

between the two observations of TotalBiomass was 570 kg DM ha-1, but ranged from zero to as 23 

much as 2400 kg DM ha-1. When these operator differences are combined with the wide spacing 24 

of biomass in the reference photographs, as well as any additional uncertainty introduced by the 25 

visual nature of the assessment, the total uncertainty in the TotalBiomass is high, and must be 26 

used with caution. Recommendations for alternative sampling methods for future work will be 27 

made in the discussion section. 28 

Destructive sampling of the area under the sensors was not desirable as this would have restricted 29 

the range of pasture biomass measurements to only low values, and the pastures would not re-30 

grow rapidly enough for accurate visual assessment of biomass if they were cut to ground 31 

level.Above-ground standing biomass (kg DM ha-1) (called TotalBiomass henceforth) was 32 

therefore assessed by comparing the sensor FOV area with pasture standard photographs. 33 
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Fractional	Cover	1 

The mix of PV and NPV in the vegetation is an important factor in monitoring pasture changes 2 

over time.  TotalBiomass was not divided into PV (i.e. green) and NPV (i.e. %dead/dry) biomass 3 

components as the pasture reference photographs used for assessing these tropical pastures are 4 

not suitable for such an application. We instead made visual assessments of fractional cover 5 

measurements as a way of capturing the PV and NPV components of the pasturesthis is difficult 6 

to do in this environment, although the green proportion was estimated.  using the method that 7 

follows. 8 

The fraction of bare ground and the fractional coverage by PV (i.e. green) and of NPV (i.e. 9 

%dead/dry), are widely used for assessing landscape degradation (Richardson et al., 10 

2007;Myneni and Williams, 1994;Guerschman et al., 2009). However, although for a non-expert 11 

in remote sensing the fractional cover is a less familiar measurement than TotalBiomass to 12 

interpret and use. 13 

 We made The visual field assessments of fractional coverage were made , by PV (i.e. green) and 14 

of NPV (i.e. %dead/dry, as seen in two dimensions from above, across a 1 m by 1 m area under 15 

the sensors as follows:  16 

%TotalVegetation2D + %BareGround + %Litter2D = 100%  (2) 17 

where %BareGround is the percentage bare -ground as seen in 2D, %Litter2D is the percentage 18 

of litter which is not attached to any plant, and TotalVegetation2D% is the percentage of 19 

vegetation still attached to the plant, including both green (PV) and dry (NPV) vegetation as both 20 

typically remain on the plant as the plant season during the dry season.  21 

We also visually assessed the percentage of just the visible green proportion of the vegetation, as 22 

seen in both two dimensions, looking down at the plot (%Green2D), and three dimensions, 23 

looking at the whole plants within the plot (%Green3D). While not as useful as actual 24 

measurements of green biomass, these 2D and 3D visual assessments give the nearest 25 

approximation of green vegetation without destructive samplings and separating green and dry 26 

material. .For days where we had a second researcher repeat the observation, the average 27 

difference between the two observations of %BareGround was 11% (range 1-35%), of %Litter2D 28 

was 6% (range 0-30%), of %Green3D was 12% (range 0-50%), and of %Green2D was 5% 29 

(range 0-30%). 30 

Vegetation	Height	31 
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Finally, theThe 1 m x 1 m area under the sensor FOV was divided into four quadrants and 1 

vegetation height (VegetationHeight, cm) was measured for each of the four quadrants. 2 

Vegetation height was also measured as well as across the sampling area as a whole, for by 3 

assessing the total area the height at which 95% of the vegetation was below, and all . The final 4 

VegetationHeight value was the average of the five measurements were averaged. 5 

2.9. Model developmentThe relationship between sensor and field data 6 

The goal of this part of the project is to assess whether the sensors are able to deliver a reliable 7 

source of data that can be calibrated to biophysical values. Our goal was not to develop definitive 8 

relationships for prediction purposes, as the quality and volume of the field data is not sufficient 9 

for that purpose. We instead assess only the strength of the relationship between the sensor and 10 

field data, and do this separately for data from the wet and dry seasons and across the whole year. 11 

We use these results to recommend when and how data should be collected in a full sensor 12 

deployment for monitoring on-farm.To use an indirect sensor measure (e.g. NDVI) to predict 13 

biophysical variables (e.g. biomass), it is necessary to model the relationship between the two 14 

measurements.  15 

Data from the two nodes was combined as there were no discernible differences between the 16 

fenced and unfenced data due to grazing of the pastures by cattle. Of the original 32 days of field 17 

measurements from across the whole project there were 32 days with corresponding cleaned data 18 

from the digital camera at the fenced node, and 30 days of matching data from the unfenced 19 

node. For the same period, there were 18 days with corresponding cleaned data from the 20 

multispectral sensors at the fenced node, and 24 days of matching data from the unfenced node. 21 

The remainder of the field samples falling during periods where the sensor data were filtered 22 

using the rules in Table 1. 23 

Counting data from each node individually, there were 63 individual sets of field data from the 24 

32 days of field observations. Data subsets were created for the wet season period from January 25 

to April (days 1 to 130 of the year), and the dry season (May through December). During the wet 26 

season there were 25 sets of field data, of which all matched with the cleaned data from the 27 

digital cameras, and 12 matched with cleaned data from the multispectral sensors. During the dry 28 

season there were 38 sets of field data, of which 37 matched with the cleaned data from the 29 

digital cameras, and 30 matched with cleaned data from the multispectral sensors. 30 
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Based on the previous work of Handcock et al. (2008) where climate variables were used to 1 

improve the performance of the model developed from multi-spectral satellite images and 2 

biomass measured by cuts of the temperate dairy pastures, we included a number of climatic 3 

variables in our model development: daily minimum and maximum temperature (i.e. TMin and 4 

TMax, 
°C), daily total rainfall (Rain, mm), the accumulated rainfall since the 1st September (i.e. 5 

RainAcc-1Sept, mm), soil volumetric water content (i.e. SoilMoisture, %), and the number of 6 

days since the 1st January (YearDay). 7 

The final group of independent variables therefore included vegetation indices derived from the 8 

filtered daily dataset from the multispectral sensors (i.e. NDVI, gNDVI, NVI-GR, NVI-SR, and 9 

RatioNS34) and the digital cameras (i.e. GLA). The dependent variables were the visual 10 

biophysical measurements and other observations of the pasture status made at the field sites 11 

(TotalBiomass, %BareGround, %Litter2D, %TotalVegetation2D, %Green2D, %Green3D, and 12 

VegetationHeight). 13 

2.10. Model development 14 

A common problem in calibrating and validating models between remote sensing and field data 15 

is the small number of field samples and the inherent variability in biophysical data, resulting in 16 

models that are not robust (Richter et al., 2012;Harrell et al., 1996). Richter and others (2012) 17 

provide a good over view of statistical techniques useful for such datasets, including the use of 18 

cross-validation and bootstrapping methods for model development and validation. 19 

Bootstrapping is a non-parametric method that does not assume normality of the dataset, making 20 

it suitable for developing robust estimates of the population from limited sample data such as in 21 

the present study. The estimated model coefficients are assumed to be the best estimates of the 22 

population values (Harrell et al., 1996), of which our field observations are just one sample of the 23 

entire population. The advantage of the bootstrapping method is that the entire dataset can be 24 

used to assess the model performance in the one process, rather than having to split it to create a 25 

validation subsample (Harrell et al., 1996). The distribution of model parameters resulting from 26 

the bootstrapping allows the confidence intervals and standard errors of the model parameters to 27 

be estimated (Peters and Freedman, 1984). 28 

In the bootstrapping method, a sample is drawn from the original dataset with replacement, 29 

meaning that each individual datum is selected from the whole dataset and so could be drawn 30 

multiple times. For each sample, the desired model is fitted between the dependent and 31 

independent variables, and their model coefficients are determined. The sampling and modelling 32 
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process is repeated many times, with 200 being the minimum recommended by {Richter, 2012 1 

#1645}(Steyerberg et al., 2001). The result is a distribution of the selected model parameters 2 

from which the robust estimates of the model parameters and confidence intervals can be made.  3 

The bootstrapping approach is particularly suited to our pilot study because we are interested in 4 

the strength of the relationships between the sensor data rather than their form. The approach also 5 

addresses the main issue with the visual assessment of pasture status, which is the high degree of 6 

uncertainty in that data. The bootstrap method replicates all uncertainty in the analysis, including 7 

operator error, uncertainty in the field observations, and that from the flexibility of the statistical 8 

model, allowing the confidence intervals around the model parameters to be assessed (Carpenter, 9 

1998). The method is robust in cases where one variable has missing data, such as where the 10 

filtering of our spectral data resulted in field data which did not have matching sensor data. 11 

We therefore applied a bootstrapping method to assess the strength of the relationship between 12 

the sensor and field data and the uncertainty around the model parameters. All analysis was made 13 

using the R statistical package (R-Core-Team, 2013). We used the “mgcv” library in R (Wood, 14 

2006)(Wood, 2011) (Hastie and Tibshirani, 1990;Wood, 2006)to fit generalised additive models 15 

(GAM) (Hastie and Tibshirani, 1990) with a maximum possible dimension of four. GAMs do not 16 

assume a linear relationship, but instead use a non-parametric method to fit a model with the 17 

highest dimension possible given constraints of small datasets and missing data. The bootstrap 18 

was implemented using the “boots” library in R (Carpenter, 1998) with 2000 model runs and a 19 

“Pivotal” method. This bootstrapping method was applied to all combinations of observations of 20 

pasture status, and a single independent sensor variable. 21 

 22 

3. Results 23 

3.1. Multi-spectral sensor data 24 

As the multispectral measurements were made every minute, the data collection from the two 25 

nodes represents a possible 1,569,600 sets of the eight raw current values. As a result of the 26 

rigorous data cleaning using the criteria in Table 2Table 2, for the 545 days of data collected at 27 

each node, 48% of days of data from the unfenced node were discarded, and 63% of days of data 28 

from the fenced node were discarded. This large number of filtered days of data reflects the 29 

experimental nature of the pilot deployment of the sensors, which resulted in technical and 30 
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environmental issues with the sensor deployment. However, the rigorous data cleaning we 1 

applied was necessary to provide ensure quality data for the model development. 2 

Figure 3Figure 3 illustrates this data cleaning by showing the time-series of NDVI values from 3 

the unfenced node, before (raw) and after filtering. In comparison to the digital cameras, the 4 

design of the housing for the Skye SKR-1850 sensors led to significant problems with insects 5 

such as mud-wasps nesting in the sensor tubes (Figure 4Figure 4 a-b), spiders building webs 6 

across the sensor openings, and water ingress below the cosine correction filters which were 7 

fitted to the upward- pointing sensors. 8 

3.2. Field observationsmeasurements 9 

The field observations measurements made at each of the two nodes (Figure 5) illustrate the rapid 10 

vegetation growth at the start of the wet season followed by senescence during the dry season. 11 

During the 2011-12 wet season the TotalBiomass observed at the two nodes had similar values 12 

(Figure 5a), despite the recognised uncertainty in these measurements. Having initially similar 13 

pasture biomass was not unexpected as the nodes were sited in an area of the paddock with 14 

similar vegetation. Although we had fenced one node with the intention of increasing the range 15 

of pasture height we observed, due to the limited feed availability in the paddocks these grazing 16 

events had negligible impact on the pastures, and were not considered further in the analysis.At 17 

the end of the 2011-12 wet season the TotalBiomass observed at each node became markedly 18 

dissimilar, withDespite the two nodes being located only 200 m apart, the measurements of 19 

TotalBiomass a) exhibit differences of almost 2,000 kg DM ha-1  between the nodes, and as 20 

expected the difference continues between nodes for the period following the end of the 2011-12 21 

wet-season.during the rest of dry season period as there is no rain to promote vegetation growth. 22 

This difference in the pasture biomass between the nodes illustrates the heterogeneous nature of 23 

these pastures, where a small change in the type, size, shape, and density of the vegetation 24 

growing under a node resulted in large biomass differences. It also highlights why pasture 25 

measurement made in the area surrounding the node may not be representative of what the sensor 26 

FOV observes.  27 

The time seriestime-series of VegetationHeight (Figure 5b) shows a similar pattern to 28 

TotalBiomass, but the differences between the nodes areis less distinctly different between the 29 

nodes compared to TotalBiomassdistinct, and slowly decreases through the dry-season. 30 

VegetationHeight also exhibits more variability between measurements despite being a 31 

quantitative measurement made with a ruler rather than a visual  Inestimate. In contrast, the 32 
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observations of %Green2D, and %Green3D (Figure 5c and d) are comparatively similar between 1 

the two nodes. 2 

3.3. Time- series of digital camera images and GLA 3 

Over the 545 day study period, the digital cameras captured 22,642 images from the camera 4 

mounted at the unfenced node and 23,210 from the fenced node. Data capture from the cameras 5 

was more reliable than for the multi-spectralmultispectral sensors with the loss of only 13 days of 6 

data from the unfenced node (3%), and 10 days of data from the fenced node (2%), both due to 7 

data card failure. 8 

Figure 6Figure 6 shows a time seriestime-series of images from the digital camera at the fenced 9 

node, with each 6- week period represented by one image taken at approximately 12:00. The 10 

seasonal progression of vegetation is clearly illustrated by these images, from the new green 11 

growth of the vegetation at the start of the wet season, followed by senescence during the move 12 

into the dry season and the sudden removal of all vegetation following the 2011 controlled -burn. 13 

The camera images again illustrate how, as the wet season progresses, the tall grasses dominate 14 

the canopy followed by the gradual drying of the canopy in the transition into the dry season. 15 

Figure 7Figure 7 shows the daily time seriestime-series of GLA calculated from digital camera 16 

images at each node. These results show that the digital cameras and GLA can successfully 17 

capture the seasonal changes in green vegetation, corresponding with the rapid growth of green 18 

vegetation at the start of the wet season followed by a decrease to zero during the dry season.  19 

3.4. The relationship between sensor data and field estimatesobservations 20 

Error! Reference source not found.Table 3 and Figure 8 show the bias-adjusted bootstrap point 21 

estimates, and the lower and upper bound of the 95% pivotal bootstrap confidence intervals, the 22 

regression relationships between field measurements of TotalBiomass and %Green2D 23 

(dependent variables) and the sensor-derived GLA, NDVI, and RatioNS34 (independent 24 

variables) for the distributions of R2. These distributions are from bootstrapping the GAMs for all 25 

combinations of sensor-derived indices and field observations, which were made for of all data, 26 

as well as for the data subsets from the wet or dry seasonsdata across the whole year, the wet 27 

season, and the dry season. .As the bias-adjusted bootstrap point estimates of R2 are a more 28 

conservative estimate than the mean R2 of the modelled distribution, there are times when its 29 

value is negative, or less than the lower bound of the 95% pivotal bootstrap confidence interval. 30 

This occurred most frequently for the dry season data where the model fits are generally poor 31 
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(Table 3). The graphs in Figure 8 clearly show the various uncertainties in the study, and in 1 

particular the high uncertainty in the field observations, has resulted in wide confidence intervals 2 

for many of the models explored using the bootstrapping methodology. 3 

 Models developedThe relationships between sensor and field observations for the whole year 4 

and dry season period using data from the whole year or for data from outside the wet season 5 

generally  performed poorly compared to those from the wet season. . For example, with data 6 

from the entire year the NDVI explained only 3% of the variation in TotalBiomass, with a 7 

residual standard error (RSE) of 1,523 kg DM ha-1 (p = 0.308), and the relationship with 8 

%Green2D is equally poor (RSE = 2%, p = 0.368). These results are not unexpected as the 9 

vegetation between the wet and dry season in this environment is distinctly different. for the dry 10 

season are not unexpected given that at that time the pastures contain mainly senesced 11 

vegetation, but the spectral bands of the sensors are sensitive to green vegetation. The exceptions 12 

were for %Green3D (Figure 8e) and %Green2D (Figure 8f), which for all sensor-derived indices 13 

except RatioNS34 had strong relationships to data from the whole year and dry season. The 14 

bootstrapping analysis for %Green.2D was not able to determine model parameters due to the 15 

boundary conditions inherent in those subsets of data values.  16 

Across all time periods, the strongest relationships between the multispectral sensor and pasture 17 

observations were for the wet season data for %Green3D (Figure 8e) and %Green2D (Figure 8f). 18 

For all variables, %Litter2D (Figure 8c) showed the weakest relationships with the sensor 19 

variables, and %TotalVegetation2D (Figure 8d) showed only weak relationships. For the other 20 

pasture observations there were good relationships with at least one sensor variable. For example, 21 

the bias-adjusted bootstrap point estimates for the wet season data between TotalBiomass and 22 

NVI-SR were 0.72 (95% CI of 0.28 to 0.98) (Figure 8a), %BareGround and gNDVI were 0.65 23 

(95% CI of 0.09 to 0.92) (Figure 8b), %Green3D and RatioNS34 were 0.81 (95% CI of 0.53 to 24 

1.00) (Figure 8e), and VegetationHeight and NVI-SR were 0.66 (95% CI of 0.19 to 0.95) (Figure 25 

8g). Excluding the relationships for %Litter2D, for four of the other pasture observations, the 26 

NVI-SR index had the strongest relationships to four different pasture characteristics, with 27 

RatioNS34 for one variable (%Green3D, Figure 8e), and gNDVI for one variable 28 

(%BareGround, Figure 8b). 29 

Across almost all time periods, the relationship between the image-derived GLA were weaker 30 

than those from the multispectral sensor data. The one example where the GLA outperformed the 31 

multispectral sensors was also the strongest relationship in all data and periods, being for data 32 

from the whole year, and between %Green3D (Figure 8e) and %Green2D (Figure 8f). These 33 
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results show that the GLA method to extract green fractions from the digital camera images was 1 

very successful in this environment. 2 

 3 

For the relationships with data from across the year this dry-season response is confounded with 4 

the discretely different wet season green vegetation growth, as we would expect in a tropical 5 

pasture system. Similar outcomes for models developed using data from the whole year or the 6 

dry season were found for all combinations of variables (Table 3 shows only selections of these 7 

results but all combinations were tested). 8 

In contrast, during the wet season RatioNS34 alone explained 59% of the variation in 9 

TotalBiomass, with an RSE of 1,208 kg DM ha-1 (p < 0.01), and the relationship with 10 

%Green2D is equally good (96% of variation explained, RSE = 5.7%, p < 0.01). Similar 11 

outcomes for models developed using data from the wet season were found for all combinations 12 

of variables (Table 3 shows only a selection of these results but again all combinations were 13 

tested). Based on these results we focus on developing relationships for the wet season. 14 

Table 4 shows the regression relationships for the three top models of wet-season data for each 15 

biophysical variable (dependent variable), and models with either a spectral index, or a spectral 16 

index and climate variable (independent variables). For models with only a single spectral index 17 

as the independent variable, both VegetationHeight (independent variable = RatioNS34) and 18 

%Green2D (independent variable = RatioNS3) had the strongest relationships, explaining 81% 19 

and 96% of the variation in the biophysical variables, respectively 20 

For all other biophysical variables, the 2-variable models with multi-spectral data and the 21 

addition of climate data outperformed the 1-variable models explaining greater than 86% of the 22 

variance. The climate variables in these top models were from both weather station data (e.g. 23 

RainAcc-1Sept) and from separate sensors on the node (e.g. SoilMoisture). For example, 24 

RatioNS34 and RainAcc-1Sept explained 91% of the variation in TotalBiomass, and RatioNS34 25 

and Rain explained 95% of the variation in %Green2D. RatioNS34 was the best performing 26 

multi-spectral sensor index, being the multi-spectral index included in all of the top ranked 1-27 

variable models and the majority of the top ranked 2-variable models. 28 

Table 5 shows regression relationships for the three top ranked models of wet-season data for 29 

each biophysical variable (dependent variable), and models with either only GLA, or GLA and 30 

climate variables (independent variables). For models with only GLA as the independent 31 

variable, both %Green3D and %Green2D had strong relationships, explaining 83% and 87% of 32 
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the variation in the biophysical variables, respectively. This is expected as GLA is designed to 1 

capture the green component of vegetation which is similar to what is captured by assessments of 2 

%Green2D and %Green3D. 3 

For all other biophysical variables the top ranked 2-variable models with GLA and the addition 4 

of climate data outperformed the 1-variable models, explaining between 50% and 91% of the 5 

variance, respectively. For example, GLA and SoilMoisture explained 90% of the variation in 6 

%Green3D (RSE= 7%, p < 0.01, df = 16), while GLA and RainAcc-1Sept explained 91% of the 7 

variation in %Green2D (RSE= 9%, p < 0.01, df = 20). Unsurprisingly, the biophysical variable 8 

most poorly predicted from GLA was %BareGround, with the top ranked model with YearDay 9 

explaining only 50% of the variation in %BareGround (RSE= 15%, p < 0.01, df = 20). 10 

TotalBiomass had weaker relationships with GLA than was found with the multi-spectral indices 11 

with the best model with GLA and YearDay explaining only 67% of the variation in 12 

TotalBiomass (RSE= 957 kg DM ha-1, p < 0.01, df = 20). 13 

4. Discussion 14 

The tropical pasture conditions in the present study presented unique technical issues that had to 15 

be overcome as part of the deployment of proximal sensors, including marked wet and dry 16 

seasons, high humidity, rapidly growing vegetation, fire and insects.  17 

4.1. Assessing pasture status 18 

In this study, the time-series of images from the digital cameras and multi-spectralmultispectral 19 

sensors at each node clearly captured the changes in the tropical pastures; from the period of 20 

green-up at the start of the wet season, the period of green vegetation growth during the wet 21 

season and the gradual senescence and drying -off of the vegetation. Even given the obvious 22 

limitations with the observations of pasture status in this study, it is clear that there are stronger 23 

relationships during the wet season period than during the dry season or for the whole year. The 24 

generally pPoor relationships between the sensor and field observations measurements poor 25 

outside of the wet season period are not surprising since NPV is difficult to discern in the NIR 26 

spectral region. The lower SWIR band of our multi-spectralmultispectral sensors was also in the 27 

lower part of the SWIR range (1.029 µm), which is not as responsive to dry vegetation as the 28 

longer SWIR bandsregion of the visible to near-infrared (i.e. 1.55–1.75 μm) that (Tucker, 1980) 29 

recommends for the remote sensing of . plant canopy water status. Even if the issues with the 30 

field data quality are overcome in a future deployment, it is unlikely that the relationships 31 
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between field and sensor data will improve for the dry season period unless the choice of spectral 1 

bands in a future deployment was made to improve sensitively to NPV. 2 

4.2. Fractional cover 3 

The results of using the bootstrapping method to explore the relationship between the pasture 4 

observations shows that the various measures of fractional cover could be successfully predicted 5 

from various indices calculated from either the multispectral sensors or the digital camera data. 6 

These results are encouraging for additional studies exploring these relationships further. 7 

These results also showed the GLA derived from the digital images to be a useful parameter, 8 

with strong relationships to the field observations of %Green3D and %Green2D. They also When 9 

combined with climate data, the multi-spectral indices were a better predictor of TotalBiomass 10 

than GLA, with the model with RatioNS34 and RainAcc-1Sept explaining 91% of the variation 11 

in TotalBiomass and an RSE of 593 kg DM ha-1. While this RSE is greater than the industry 12 

standard in field measurements is a dairy pasture system of approximately 400 kg DM ha-1, 13 

although in a temperature pasture (L’Huillier and Thomson, 1988), this result is encouraging for 14 

a pilot study.support the utility of including a SWIR band in the multispectral sensors, with data 15 

from our multispectral band in the lower SWIR giving encouraging results. 16 

 17 

Fractional cover was successfully predicted, with indices calculated from either the multi-spectral 18 

sensors or the digital camera data, combined with climate data, explaining high proportions of the 19 

variation in %Green2D (95% and 91% respectively, RSEs of 6% and 9%, respectively). These 20 

strong relationships between the two dimensional variables and field measurements is not 21 

unexpected as they both are observed by looking down on the canopy, as differ from biomass or 22 

%Green3D which are measured in three dimensions. 23 

The vegetation indices from the multi-spectralmultispectral sensors were a better predictor of 24 

%BareGround than the GLA from the digital cameras., explaining 90% and 50% of the variation, 25 

respectively (RSEs of 5% and 15% respectively). These results indicate that while both sensor 26 

types are suitable for monitoring aspects of fractional cover in this tropical pasture system, 27 

alternative indices extracted from the digital cameras would need to be explored to improve how 28 

well %BareGround can be monitored. These results are again not unexpected, as whileB both 29 

sensors view the canopy in two dimensions, with the GLA is focussed on the green proportion of 30 
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the canopy while the band -choice for multi-spectralmultispectral indices can be made to capture 1 

both green PV and dead NPVaspects of the vegetation.  2 

Fractional cover has the potential to be a valuable part of a multiple data -source approach to 3 

providing on-farm data to farmers for sustainable pasture management. Although fractional cover 4 

is widely used in landscape degradation studies, particularly in regional monitoring (Richardson 5 

et al., 2007;Myneni and Williams, 1994;Guerschman et al., 2009), it is a more recent 6 

measurement compared to the pasture biomass which has long been used in livestock production 7 

systems.. F, fractional cover is therefore a less familiar measurement than biomass to interpret 8 

and use. However, as fractional cover measurements become more widely available (e.g. 9 

Guerschman et al., 2009) and examples of its use in operational farm management become 10 

availableincrease, it is likely that this will change. This, as occurred when NDVI started to 11 

become available for usebe used in agriculture. Sensor nodes that monitored fractional cover  12 

could be strategically placed in sensitive areas to monitor areas that are becoming over-grazed, 13 

for example to signal an alert to move stock. 14 

Due to our stringent data cleaning protocols, which excluded a large amount of data from the 15 

multispectral sensors, the models we developed had low degrees of freedom. Future automatic 16 

data filtering could also be implemented, for example using spectral data to filter surface water, 17 

rather than the manual method we used where we identified surface water using the digital 18 

camera images.  19 

4.3. Data interpretation at different times of the year 20 

Our field measurements were made throughout the year, whereas the best models results (Table 4 21 

and Table 5) were only for the wet season, during which green vegetation is present, that the 22 

spectral bands of the sensors are sensitive to, compared to the long period of senesced pastures 23 

during the dry season which the chosen spectral bands have only limited sensitivity to. Although 24 

the period at the end of the wet season is critical for on-farm decision making, we recommend 25 

that to improve understanding of the rate of change of the pasture conditions, monitoring also be 26 

made throughout the wet season period that precedes it and into the start of the dry season. One 27 

of the benefits of a data flow from proximal sensors is to understand the rate of seasonal changes, 28 

and identify any periods where the pasture conditions change rapidly or suddenly in response to 29 

weather or environmental events. 30 
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From this pilot project it is still unclear whether the pasture biomass will be able to be predicted 1 

with sufficient accuracy in this environment to allow the measurements to be used operationally 2 

in decision making on-farm, but the results of the present study are encouraging enough to show 3 

that further work is warranted. Assuming that the issues with the field data quality can be 4 

addressed in future work, it is expected that the relationships between the field and sensor data 5 

will improve. 6 

Future studies should focus field data collection on the wet season to improve the available data 7 

for modelling. This study was run for less than two years, and as a result of interannual 8 

variability in climate and differing grazing and pasture management which covers a limited range 9 

of pasture conditions.  as a result of inter-annual variability in climate and differing grazing and 10 

pasture management. Further research can be focussed on validating the models. If further 11 

studies do not show consistent relationships between sites and years, one option for calibration 12 

would be to have the farmer performing a controlled set of calibration measurements once or 13 

twice during the growing season to calibrate a particular sensor deployment. Having to make 14 

some pasture status measurements would be an additional time requirement for beef producers. 15 

However, by gathering this data at the geographical location of the deployed sensors, these 16 

measurements would alleviate the cost of a much larger project. This larger project would require 17 

gathering the volume of calibration data required to develop models that would be robust for 18 

different geographical locations and different weather conditions between years, and changes in 19 

the calibration of the physical sensor over time. Alternatively, the time-series of vegetation index 20 

data from the sensors could be used without calibration to a quantitative value, which would still 21 

provide data to indicate sudden changes in vegetation growth. 22 

4.4. Accuracy of the field data 23 

It is clear that the accuracy of field observations of pasture status could be improved for future 24 

sensor deployments aimed at developing qualitative relationships between sensor and field data. 25 

In the context of the present study, the uncertainty in our field observations does not change the 26 

main outcomes of the project, which are to illustrate practical issues around the sensor 27 

deployment, and the methods necessary for the quality control of the sensor data, necessary for 28 

designing future deployments. 29 

We recommend that a future deployment uses a non-destructive sampling method such as the 30 

BOTANAL, which includes a protocol for assessing and maintaining the accuracy of visual 31 

measurements of(t'Mannetje and Haydock, 1963;Friedel et al., 1988) pasture biomass and 32 
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composition (Tothill et al., 1992;Orchard et al., 2000). Alternatively, visual assessments could be 1 

calibrated by developing a site-specific set of reference photographs at different times in the 2 

growing season. The reference photos would be calibrated using pasture cuts (if possible for the 3 

vegetation type), and used for repeat training of field staff. This method has the advantage of 4 

allowing control of the data range and the biomass interval between photo standards. Pasture 5 

assessments of this type require a much higher time requirement, which may be mitigated if the 6 

data collections are focussed at a shorter period during the year. It would also be useful to make 7 

additional measurements in the vicinity of the node FOV to assess the spatial variability of 8 

pastures in the surrounding area. 9 

4.2.4.5. Comparing camera and multi-spectral sensorsData filtering 10 

In the extensive database cleaning illustrated in Figure 3Figure 3 and Table 2Table 2 we focused 11 

on post -collection filtering methods, as the experimental nature of our deployment meant that 12 

data could not be screened in real- time. In an operational system additional rules could be 13 

implemented as there are approaches to sensor data cleaning and outlier detection (e.g. (e.g. Basu 14 

and Meckesheimer, 2007;Huemmrich et al., 1999;Liu et al., 2004) including implementing data 15 

quality control algorithms within the WSN (e.g. Collins et al., 2006;Jeffery et al., 2006;Zhang et 16 

al., 2010). In addition to the data cleaning rules we developed, and as the field deployment 17 

progressed, we modified the sensor maintenance protocols and infrastructure. This knowledge 18 

can also be used in future deployments.  19 

Due to our stringent data cleaning protocols a large amount of data from the multispectral sensors 20 

was excluded. In future deployments, automatic data filtering could be implemented, for example 21 

using spectral data to filter surface water. Developing automatic filtering rules for surface water 22 

was not considered necessary in our study as visual examination of the digital camera images 23 

identified only 9 days of surface water at the fenced node and 20 days at the unfenced node. The 24 

data were simply excluded manually, particularly as this surface water occurred when there was 25 

water incursion into the sensor housing and the whole period data period was suspect. For sensor 26 

deployments in conditions with more surface water, such as in areas of flood irrigation, having an 27 

automatic rule for surface water would be useful. 28 

4.6. Comparing camera and multispectral sensors 29 

We found the digital cameras to be more robust than the multi-spectralmultispectral sensors in 30 

terms of data flow, with up to 63% of days of data from our Skye sensors being discarded during 31 
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data quality control. While the stringent filter criteria (Table 2) may have resulted in some 1 

“clean” data being excluded, this was weighed up against the greater impact of having un-2 

untrustworthy data for modelling. The long periods of erroneous multi-spectralmultispectral data 3 

made showed this Skye SKR-1850 model of sensor was unreliable in this the environment. In 4 

comparison to the digital camera, the design of the Skye SKR-1850 sensors led to significant 5 

problems, including insect infestations in the sensor tubes, and water ingress below the cosine 6 

correction filters which were fitted to the upward- pointing sensors. 7 

 While we were able to mitigate the effects of these issues by regular maintenance of the sensors 8 

and post-acquisition data cleaning, we found that the Skye SKR-1850 was not stable enough in 9 

our tropical environment for an operational deployment on a farm. For example, we had the 10 

complete failure of one sensor which then had to be replaced by new equipment.had water 11 

incursion into the sensor enclosure at the point where the wiring attached to the sensor, despite 12 

sealant being applied to the connection and the connections being regularly monitored. Given 13 

that we had a spare sensor that could be used as a replacement the decision was made to swap the 14 

sensors out to ensure continuity of data collection while the sensor was returned to the 15 

manufacturer for examination. 16 

 The new and iImproved designs for the Skye sensor housing are likely to address many of these 17 

issues by having a covered sensor face and also being able to calculate reflectance directly (e.g. 18 

the SKR 1860D 4 channel sensor design Skye-Instruments (2013). Repeating this study with the 19 

newer sensor design is expected to address many of the issues that we had with the multispectral 20 

sensors, so thatwould allow the focus of future studies will to be on gathering multispectral 21 

measurements, not on checking and managing the technical aspects of the field deployment, or 22 

on post collection data filtering. In situations where only the earlier model Skye sensors are 23 

available for useavailable, it may be possible to use a method employed by byHarris et al. (2014) 24 

who were able to overcome similar limitations of earlier models of a SKR-1800 sensor by using a 25 

cross-calibration method between the upward- and downward-pointing sensors to retrieve 26 

reflectance. While not recommended by the manufacturer, such a method would be useful for 27 

deployments where the calibration certificates had expired, or where reflectance was is a 28 

requirement. 29 

Cross calibration of sensors could also be useful in situations where there is a mix of sensor types 30 

deployed to capture spatial variability in the landscape. The growing availability of lower cost 31 

sensors provides an alternative to expensive but highly calibrated sensors such as the Skye SKR-32 

1850, with arrays of lower cost sensors relying on multiple sensor redundancy rather than 33 
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absolute sensor accuracy. Multi-spectral sensors have the potential to be deployed relatively 1 

inexpensively if these technical issues can be resolved. 2 

 In our pilot study the digital camera images were downloaded manually, but as described by 3 

Gobbett et al. (2013) in an operational system the cameras could be solar powered and deliver 4 

data across a network that had sufficient bandwidth, particularly if daily image capture rather 5 

than every 30 minutes was found to be adequate. Testing the technology around sending image 6 

data across the network in this way was not the focus of this pilot deployment, but we illustrate 7 

the utility of such an approach by our transmission of the multispectral and soil moisture sensor 8 

data via the WSN 9 

We showed that a single image selected in the middle of the day was sufficient for seasonal 10 

monitoring, but that camera images from other times of the day were also useful for investigating 11 

unexpected data from the other sensors. The selection of camera images from the middle of the 12 

day was made to minimize illumination changes between images, and used an automated white 13 

balance setting on the camera following that used in  (e.g. Macfarlane and Ogden, 2012). Other 14 

studies have used a manual/fixed white balance in order to minimize changes in illumination 15 

(Toomey et al., 2015;Sonnentag et al., 2012) and its use is recommended by the Phenocam 16 

network (http://phenocam.sr.unh.edu/webcam/). This aspect could be investigated further in 17 

future deployments, as it may enable even stronger correlations to be derived from the digital 18 

imagery.  19 

There were benefits to having both multi-spectralmultispectral sensors and digital cameras as 20 

they complement each other in data interpretation. In an operational setting with cost constraints, 21 

a single digital camera could be used to give visual feedback on pasture status to the producer, 22 

while using a wide deployment of spectral sensors as the main data source. In our study, the 23 

climate variables in the top ranked models were from either weather station data or from 24 

separatethe separate soil moisture sensors (soil moisture) on the nodeat each node were used to 25 

aid in data interpretation. Additional precipitation information could also be provided A remote 26 

sensor node may be enhanced by the addition of a low cost rainfall sensor to alleviate the 27 

necessity of using rainfall data from non-local metrological stations. However, if sensor setup 28 

does not allow for an extra sensor to measure soil moisture or rainfall, these results are 29 

encouraging as they indicate that a nearby meteorological station could be used instead. 30 
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4.3.4.7. Overcoming the limitations of proximal sensors in heterogeneous 1 

pastures 2 

We have been explicit in this study that we did not expect to capture the heterogeneity of tropical 3 

pastures with just the 2 sensors used in the pilot deployment, as assessing the spatial 4 

heterogeneity of the pastures was not the project’s goal. The two nodes were intentionally placed 5 

in an area of the paddock that was as similar as possible, and the fencing of one node was aimed 6 

only at providing a range of pasture heights. An important question about the use of proximal 7 

sensors mounted on static nodes is whether the spatial heterogeneity of the pastures is adequately 8 

captured by the small area on the ground that the sensors observe, assuming an appropriate 9 

number of sensors are deployed. The small FOV of an individual sensor is in contrast to the 10 

spatially-extensive data obtained from satellite and airborne sensing platforms, and more recently 11 

from mobile platforms such as ground vehicles (e.g. King et al., 2010) helicopters, un-unmanned 12 

aerial vehicles (UAV) (e.g. Von Bueren et al., 2015), and robotic setups to move sensors 13 

(Hamilton et al., 2007). In  . However, in an operational setting deployment of sensors it may not 14 

be necessary to spatially sample the landscape exhaustively, as occurs from an imaging platform 15 

such as a satellite; the landscape only needs to be sampled with the number of nodes and their 16 

spatial arrangement suitable to capture the spatial pattern in the particular landscape. This 17 

includes considerations such as whether the spatial pattern in the pastures is relatively stable, as 18 

is more common in temperate pastures, or is more clumped and heterogeneous as is common in 19 

tropical pastures. Spatially heterogeneous pastures can also result from pasture management such 20 

as re-seeding. The assessment of landscape spatial pattern at multiple scales is a broad topic, but 21 

a good overview can be found in McCoy (2005), and a more detailed example in Chen et. al, 22 

(2012).(2012)sufficiently so that the expected spatial variability in the paddock is covered to 23 

enable a farm-management decision to be made at critical points in the season. 24 

Options for addressing these spatial sampling concerns of point-based proximal sensors in an 25 

operational system include placing multiple sensors strategically in key paddock zones such that 26 

the sensors capture the range of paddock variability. Remote sensing images, even if captured 27 

only once or twice per year, could be used to aid in the delineation of suitable zones in 28 

conjunction with local farmer knowledge. Data from this setup could then be aggregated up to 29 

the scale of a farm management unit to create a robust time-series of observations. Alternatively, 30 

the sensors could be mounted on a mobile platform that monitors the pastures along a series of 31 

waypoints at set times in the day. Unlike the set revisit times of satellite-based remotely sensed 32 

images, helicopters and UAVs have the potential for more flexible data capture under cloudy 33 
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conditions. However, data from these platforms have more complex capture and processing 1 

requirements due to the stability of the imaging platform and the capture of strips of image data 2 

in separate flight lines. Increasingly, these processing limitations of mobile platforms are being 3 

mitigated by advances in automating image processing (Colomina and Molina, 2014), but they 4 

still have the limitation of providing intermittent rather than continuous monitoring. More 5 

importantly, while capturing raw image data from these systems is relatively easy, creating an 6 

operational system to convert the data to something the producer can use for decisions making is 7 

more complex. 8 

While there are limitations of using point-based sensors for monitoring heterogeneous tropical 9 

pastures, this is balanced by the benefits of having a near real-time continuous data stream for 10 

monitoring. For example, an ideal pasture monitoring system would combine data from multiple 11 

sources; proximal sensing data for repeated and continuous monitoring of the pastures, and 12 

remote sensing images collected at a limited number of times when a spatial assessment of 13 

pasture status is required. An automatic sensor system could also be set up to trigger a 14 

notification to a smart phone or tablet, when a critical threshold in feed availability or bare -15 

ground has been reached. These data sources could also be combined with other precision farm 16 

management technologies, such as walk over weighing (González et al., 2014), and emerging 17 

low power sensor network systems (e.g. http://www.taggle.com.au). For these combined sensor 18 

technologies to be used on-farm outside of the current research pilot deployment would require 19 

future technical development to streamline their installation and operational use. 20 

5.  Conclusions 21 

This project has demonstrated the successful deployment of This project successfully 22 

gatheredmultiple proximal sensors to  data monitor tropical pastures in an operational beef 23 

production system of tropical pastures over 18 months. In our pilot deployment we had a number 24 

of technical issues that limited the amount of sensor data that was of suitable quality for 25 

comparison to the field observations. Due to the uncertainty in the field observations the 26 

relationships developed between sensor and field data are not confirmational, and should be used 27 

only to inform the design of future work. 28 

As this was a pilot deployment of the multiple sensors in this environment we had a number of 29 

technical issues that limited the amount of sensor data that was available for comparing to the 30 

field measurements.The design of a new sensor deployment would depend on the project goals. 31 

For example, to deliver operational data to farmers for decision making, to validate satellite 32 
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images, to test the design of sampling schemes using many low-cost sensors, or to use proximal 1 

sensors for monitoring an area for degradation. As a result of this pilot we recommend a number 2 

of considerations for a full deployment of multiple proximal sensors for monitoring tropical 3 

pastures: 4 

Sensor	choice	5 

 Utilising a multispectral sensor construction such as the Skye SKR 1860D sensor (Skye-6 

Instruments, 2013) will mitigate many of the technical issues we had with the 7 

multispectral sensor. The gross failure of our multispectral sensor model due to moisture 8 

entry was exacerbated by the tropical conditions, but these issues are likely to be 9 

mitigated by the newer model sensors. Using multispectral sensors with an improved 10 

design should also provide more robust data collection and require less stringent data 11 

filtering. 12 

 Including a multispectral sensor band in the upper SWIR range would help capture the 13 

changing balance between PV and NPV across the season. 14 

 While we found the digital cameras to be more robust at acquiring data compared to the 15 

multispectral sensors, we recommend having a system with both sensor types to aid in 16 

data interpretation and troubleshooting technical issues. 17 

 The soil moisture sensors provided valuable information about the soil moistures status. 18 

Having an on-site weather station would also benefit any data analysis, particularly for 19 

rainfall which is highly localised. A single weather station or rain gauge should be 20 

sufficient if the area where the sensors are deployed is small enough to not have widely 21 

varying rainfall.  22 

	Issues	such	as	insects	and	dust	are	common	to	sensor	deployments	in	all	23 

environments,	and	while	mitigated	by	sensor	maintenance,	are	an	issue	that	24 

would	need	to	be	addressed	in	an	automated	fashion	if	multiple	autonomous	25 

sensors	are	to	be	deployed	over	long	time	periods.Sensor	Deployment	26 

 Issues such as insects and dust are common to sensor deployments in all environments, 27 

and while mitigated by sensor maintenance, would need to be addressed in an automated 28 

fashion if multiple autonomous sensors are to be deployed over long time periods. 29 

 (Skye-Instruments, 2013) Other issues, such as the gross failure of our multispectral 30 

sensor model due to moisture entry were exacerbated by the tropical conditions, but these 31 
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issues are likely to be greatly reduced in the newer model sensors that have been 1 

developed, particularly when choosing low-cost sensor models. Using multispectral 2 

sensors with an improved design should provide more robust data collection and require 3 

less stringent data filtering. Data processing steps such as noise filtering and the necessity 4 

of calibration are common to all spectral sensor deployments, and should be considered 5 

part of the operational deployment methodology. Regular maintenance, whether manual 6 

or automated, should include re-calibration of sensors due to degradation over time, and 7 

the cross-calibration needs of deployments of multiple sensors. 8 

 Ideally there would be a number of sensors deployed which capture the pasture 9 

heterogeneity of a particular deployment.  10 

 There are also many technical choices that could be explored in a larger project, such as 11 

transferring image data across the WSN, or processing data at the sensor node. 12 

Data	processing	and	filtering	13 

 Data processing steps such as noise filtering and the necessity of calibration are common 14 

to all spectral sensor deployments, and should be considered part of the operational 15 

deployment methodology. 16 

  Focussing data extraction on the middle part of the day is recommended to reduce 17 

differences in illumination. Reducing are also common to all sensor deployments, and in 18 

an operation setting can be used to limit data acquisition the period when the sensors are 19 

acquiring data will also minimise the volume of data to be collected, and the 20 

corresponding energy, data storage, and transfer requirements of the deployment.  and 21 

resource when combined with limiting data acquisition to the critical wet season period of 22 

vegetation growth. While we found the digital cameras to be more robust than the multi-23 

spectral sensors in terms of data acquisition, we recommend having a system with both 24 

sensor types to aid in data interpretation. 25 

Calibration	of	sensor	data	26 

 For future sensor deployments in tropical pastures for decision making on-farm, we 27 

recommend limiting data acquisition to the critical periods of vegetation growth during 28 

the wet season and into the start of the dry season, which will also simplify the 29 

deployment resource requirements. 30 
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Field	data	collections	1 

 We recommend the use a non-destructive sampling method such as the BOTANAL, 2 

which includes a protocol for assessing and maintaining accuracy of visual measurements 3 

of pasture biomass and composition (Tothill et al., 1992;Orchard et al., 2000). (Friedel et 4 

al., 1988)Such a method would improve the accuracy and precision of the field data, 5 

although at a much higher resource requirement. This time requirement may be mitigated 6 

if the data collections are focussed at a shorter period during the year, rather than across 7 

the whole year such as in this current study.  8 

Although our pilot deployment of multiple sensors in the tropical environment only had two 9 

nodes, during the wet season (January to April) period of maximum pasture growth we found 10 

strong relationships between sensor and field measurements.   11 

Overall, we found that the limitations of proximal sensors mounted on static nodes are balanced 12 

by their ability to monitor continually and deliver near real-time data without being affected by 13 

clouds, and their potentially for being deployed autonomously in remote locations in an extensive 14 

farming grazing systems. Although our pilot deployment of multiple sensors in the tropical 15 

environment only had two nodes, during the wet season (January to April) period of maximum 16 

pasture growth we found strong relationships between sensor and field measurements. These 17 

results show that proximal sensors, particularly when multiple sensors are combined in the same 18 

deployment, have the ability to provide a valuable alternative to physical assessments of pasture. 19 

C, particularly as continuous monitoring permits the rapid identification of changing conditions 20 

and informed and timely management decision-making on-farm. Our pilot supports the design of 21 

future deployments in this environment and their potential for operational use. 22 

 23 
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 1 

Table 1 Vegetation indices calculated from the multi-spectralmultispectral sensor data. ρ = 2 

reflectance (0 to 1). 3 

  4 

Index 
Name 

Equation  Reference 

NDVI (ρNIR – ρred) / (ρNIR + ρred) (Tucker, 1979) 

RatioNS34 ρNIR / ρlowerSWIR A broadband ratio index (e.g. 
Handcock et al., 2008) 

NVI-GR (ρgreen – ρred) / (ρgreen + ρred) A generic broadband normalized 
ratio index (Jackson and Huete, 
1991) 

gNDVI (ρNIR – ρgreen) / (ρNIR + ρgreen) (Gitelson et al., 1996) 

NVI-SR (ρlowerSWIR – ρred) / (ρlowerSWIR + 
ρred) 

A generic broadband normalized 
ratio index (Jackson and Huete, 
1991) 

 5 

  6 
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Table 2 Criteria for filtering multi-spectralmultispectral data for a day. Daily data were removed 1 

if they met any one of the following criteria. 2 

 3 

Filtering 
Category 

Data source Criteria for deleting that day’s data. 

a) 
Spike in readings, 
or readings out of 
range, such as 
from a sensor 
issue 

Night-time (00:00 to 
01:00) median value of 
raw current. 

One or more of the multi-spectralmultispectral sensor 
bands in the paired node has a night-time median 
value of raw current > 10000 mV 
One or more of the multi-spectralmultispectral sensor 
bands in the paired node has (raw current) in the 
paired node is > 3 STD from the band mean value.

Day-time (12:00 to 13:00) 
median value of indices. 

Data out of range  (i.e. NDVI < between 0 and 0.1) 
(Holben, 1986;Jackson and Huete, 1991). 

  
RatioNS34 drops to zero but within one day returns to 
the previous value. 

b) 
Physical / 
logistical 

Project metadata. 

Work being done in the area under the node, sensors 
have been removed for maintenance or because the 
paddocks are being burned etc.  

 
Day-time (12:00 to 13:00) 
median value of raw 
current. 

There are no data during the midday period from one 
or more of the sensors, which would restrict the 
calculation of a full suite of indices. 

c) 
Appropriate data 
for the 
environment c) 
Tests of spectral 
indices 

Day-time (12:00 to 13:00) 
median value of indices. 

NDVI < 0 (not likely in tropical pastures).There are no 
data available during the midday period from one or 
more of the sensors, which would restrict the 
calculation of a full suite of indices. 

  
RatioNS34 > 2, indicating a technical error as pastures 
should not have values in this range. 

  

RatioNS34 drops to zero but within one day returns to 

the previous value.NDVI < 0 (not likely in tropical 

pastures). 

  
RatioNS34 > 2, indicating a technical error as pastures 
should not have values in this range. 

 . 

(gNDVI < 0 or NVI-GR > - 0.10) and the date and 
weather data indicates that is in the dry season (i.e. the 
changing values are unlikely to be due to surface 
water.RatioNS34 drops to zero briefly then returns to 
previous value, indicating a technical error with the 
sensor. 

  
(gNDVI < 0 or NVI-GR > - 0.10) and the date and 
weather data indicates that is in the dry season (i.e. the 
changing values are unlikely due to surface water. 
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d) 
Masking valid 
spectral data 

Digital camera images, 
project metadata, and soil 
moisture data. 

Surface water was identified by a combination of data 
sources and masked as it confounded the pasture 
signal.Surface water was identified by a combination 
of data sources and masked as it confounded the 
pasture signal. 

 1 

  2 
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Table 3 Linear regression statistics for models with a single independent variable.Bias-adjusted 1 

bootstrap point estimates and (in parenthesis, the lower and upper bound of the corresponding 2 

95% pivotal bootstrap confidence intervals), for all GAM combinations of sensor-derived 3 

indices and a) TotalBiomass, b) %BareGround, c) %Litter2D, d) %TotalVegetation2D, e) 4 

%Green3D, f) %Green2D, and g) VegetationHeight. See Figure 8 for graphs comparing these 5 

results. 6 

 7 

Dependent variable 
Independent 
variable 

All data Wet season Dry season 

a)  
TotalBiomass 

GLA 0.07 (0.00, 0.19) 0.21 (0.00, 0.51) -0.02 (0.00, 0.14) 
RatioNS34 0.15 (0.00, 0.38) 0.18 (0.00, 0.65) 0.02 (0.00, 0.28) 
NVI-SR 0.08 (0.00, 0.30) 0.72 (0.28, 0.98) 0.07 (0.00, 0.28) 
NVI-GR 0.21 (0.00, 0.43) 0.14 (0.00, 0.63) 0.17 (0.00, 0.40) 
NDVI 0.16 (0.00, 0.36) 0.49 (0.00, 0.87) -0.03 (0.00, 0.13) 
gNDVI -0.04 (0.00, 0.10) 0.58 (0.00, 0.93) -0.11 (-0.03, 0.0) 

b)  
%BareGround 

GLA 0.03 (0.00, 0.10) 0.26 (0.00, 0.58) 0.05 (0.00, 0.13) 
RatioNS34 0.11 (0.00, 0.25) 0.20 (0.00, 0.65) 0.04 (0.00, 0.22) 
NVI-SR 0.10 (0.00, 0.28) 0.53 (0.00, 0.88) 0.17 (0.00, 0.34) 
NVI-GR 0.13 (0.00, 0.33) -0.05 (0.00, 0.53) 0.26 (0.00, 0.45) 
NDVI 0.18 (0.00, 0.37) 0.45 (0.00, 0.79) 0.13 (0.00, 0.31) 
gNDVI 0.01 (0.00, 0.13) 0.65 (0.09, 0.92) -0.06 (0.00, 0.03) 

c)  
%Litter2D 

GLA 0.24 (0.06, 0.39) 0.31 (0.00, 0.57) 0.11 (0.00, 0.30) 
RatioNS34 -0.01 (0.00, 0.13) 0.06 (0.00, 0.54) -0.08 (-0.03, 0.00) 
NVI-SR 0.07 (0.00, 0.25) -0.10 (0.00, 0.55) -0.09 (0.00, 0.04) 
NVI-GR 0.19 (0.00, 0.42) 0.09 (0.00, 0.64) 0.10 (0.00, 0.31) 
NDVI 0.18 (0.00, 0.42) 0.05 (0.00, 0.64) -0.01 (0.00, 0.21) 
gNDVI 0.13 (0.00, 0.36) -0.25 (0.00, 0.57) -0.06 (0.00, 0.09) 

d)  
%TotalVegetation2D  

GLA 0.17 (0.00, 0.31) 0.52 (0.17, 0.75) 0.07 (0.00, 0.20) 
RatioNS34 0.04 (0.00, 0.19) 0.27 (0.00, 0.69) -0.11 (-0.02, 0.00) 
NVI-SR 0.12 (0.00, 0.31) 0.56 (0.00, 0.92) 0.02 (0.00, 0.20) 
NVI-GR 0.22 (0.00, 0.46) 0.12 (0.00, 0.63) 0.19 (0.00, 0.41) 
NDVI 0.22 (0.00, 0.44) 0.49 (0.00, 0.87) 0.06 (0.00, 0.24) 

gNDVI 
0.06 (0.00, 0.25)-
0.03 (0, 0.08) 

0.47 (0.00, 
0.89)0.48 (0, 0.89) 

-0.03 (0.00, 0.08)-0.03 (0, 
0.08) 

e)  
%Green3D 

  
 
 

GLA 
0.87 (0.80, 
0.93)0.77 (0.58, 
0.91) 

0.77 (0.64, 
0.87)0.77 (0.64, 
0.87) 

0.77 (0.57, 0.91)0.77 (0.58, 
0.91) 

RatioNS34 
0.10 (0.00, 
0.35)0.02 (0, 
0.26) 

0.81 (0.53, 
1.00)0.81 (0.52, 
0.99) 

0.01 (0.00, 0.26)0.02 (0, 
0.26) 

NVI-SR 0.77 (0.60, 0.88) 0.59 (0.13, 0.87) 0.66 (0.37, 0.83) 
NVI-GR 0.66 (0.40, 0.84) 0.44 (0.00, 0.80) 0.51 (0.06, 0.80) 
NDVI 0.66 (0.41, 0.84) 0.59 (0.15, 0.86) 0.40 (0.00, 0.72) 
gNDVI 0.66 (0.43, 0.82) 0.68 (0.27, 0.89) 0.41 (0.01, 0.67) 

f)  
%Green2D 

GLA 0.86 (0.79, 0.92) (na) 0.76 (0.52, 0.92) 
RatioNS34 0.05 (0.00, 0.30) (na) -0.07 (0.00, 0.16) 
NVI-SR 0.72 (0.55, 0.84) (na) 0.58 (0.23, 0.77) 
NVI-GR 0.65 (0.36, 0.84) (na) 0.44 (0.00, 0.75) 
NDVI 0.64 (0.39, 0.83) (na) 0.42 (0.00, 0.74) 
gNDVI 0.63 (0.35, 0.79) (na) 0.39 (0.00, 0.69) 

g) 
VegetationHeight 

GLA 0.24 (0.01, 0.41) 0.41 (0.00, 0.71) 0.09 (0.00, 0.23) 
RatioNS34 0.15 (0.00, 0.34) 0.31 (0.00, 0.77) 0.10 (0.00, 0.32) 
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 NVI-SR 0.33 (0.07, 0.52) 0.66 (0.19, 0.95) 0.28 (0.00, 0.50) 
NVI-GR 0.27 (0.00, 0.49) 0.49 (0.00, 0.90) 0.22 (0.00, 0.44) 
NDVI 0.25 (0.00, 0.45) 0.61 (0.12, 0.95) 0.06 (0.00, 0.27) 
gNDVI 0.06 (0.00, 0.23) 0.42 (0.00, 0.83) -0.05 (0.00, 0.05) 

 1 

 RSE units are % for %Green2D, and kg DM ha-1 for TotalBiomass. 2 

 3 

Period Model RSE df R2 p-value 

all year 

dry 

wet 

all year 

dry 

wet 

%Green2D = -10.19 * NDVI + 

16.73 
13.2 40 0.02 0.368  

%Green2D = 158.73 * NDVI - 

26.19 
22.8 30 0.50 0.000  

%Green2D = 129.24 * NDVI -

16.92 

%Green2D = -25.95 * RatioNS34 

+ 45.5 

11.6 

30.9 

8 

30 

0.82 

0.08 

0.000 

0.122 
 

%Green2D = -25.95 * RatioNS34 

+ 45.5 
30.9 30 0.08 0.122  

%Green2D = 279.61 * 

RatioNS34 - 201.89
5.7 8 0.96 0.000  

all year 

dry 

wet 

all year 

dry 

wet 

%Green2D = 192.24 * GLA + 

5.626 

13.7 37 0.79 0.000  

%Green2D = 192.24 * GLA + 

5.626 

13.7 37 0.79 0.000  

%Green2D = 74.344 * GLA + 

23.155 

TotalBiomass = 2016.6 * NDVI 

+ 1751 

10.4 

1,523 

21 

30 

0.87 

0.03 

0.000 

0.308 

 

 

TotalBiomass = 2016.6 * NDVI 

+ 1751 

1,523 30 0.03 0.308  

TotalBiomass = 6214 * NDVI - 

1459 

1,469 8 0.40 0.051  

all year 

dry 

wet 

all year 

dry 

wet 

TotalBiomass = -134.6 * 

RatioNS34 + 2501.3

1,549 30 0.00 0.870  

TotalBiomass = -134.6 * 

RatioNS34 + 2501.3

1,549 30 0.00 0.870  

TotalBiomass = 15199 * 

RatioNS34 - 11977 

TotalBiomass = 3811 * GLA + 

2138 

1,208 

1,409 

8 

37 

0.59 

0.12 

0.009 

0.030 

 

 

TotalBiomass = 3811 * GLA + 

2138 

1,409 37 0.12 0.030  

TotalBiomass = 2441 * GLA + 

1040.8 

1,351 21 0.30 0.007  

 4 

  5 
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Table 4 statistics for the three best models of wet-season data for each biophysical variable 1 

(dependent variable) and a) models with one spectral index, and b) models with one spectral 2 

index and one climate variable. RSE units are kg DM ha-1 for TotalBiomass, cm for 3 

VegetationHeight, and % for the other dependent variables. 4 

 5 

Biophysical  a) Model (spectral) RSE df R2 
p-
value 

TotalBiomass  
15199 * RatioNS34 - 11977 
6214 * NDVI - 1459 

10464 * gNDVI - 4049 

1208.0 

1469.0 
1487.0 

8 

8 
8 

0.59 

0.40 
0.38 

0.009 

0.051 
0.057 

VegetationHeight  
227.71 * RatioNS34 - 170.93 
107.46 * NDVI - 21.55 

164.745 * NVI-GR + 39.865 

10.6 

12.7 
13.8 

8 

8 
8 

0.81 

0.72 
0.68 

0.000 

0.002 
0.004 

%Green3D 
290.13 * RatioNS34 - 202.47 
243.31 * gNDVI - 76.68 

139.31 * NDVI - 13.51 

11.3 

12.7 
13.6 

8 

8 
8 

0.86 

0.82 
0.79 

0.000 

0.000 
0.001 

%Green2D  
279.61 * RatioNS34 - 201.89 
129.24 * NDVI - 16.92 

220.61 * gNDVI - 72.53 

5.7 

11.6 
11.9 

8 

8 
8 

0.96 

0.82 
0.81 

0.000 

0.000 
0.000 

%TotalVegetation2D  
240.3 * RatioNS34 - 154.48 
107.836 * NDVI + 6.334 

180.35 * gNDVI - 37.88 

17.1 

19.9 
20.4 

8 

8 
8 

0.64 

0.52 
0.49 

0.005 

0.018 
0.023 

%Litter2D  
-108.44 * RatioNS34 + 114.61 
-85.696 * NVI-GR + 14.214 

-50.92 * NDVI + 43.32 

11.7 

11.7 
12.2 

8 

8 
8 

0.44 

0.44 
0.39 

0.036 

0.037 
0.053 

 %BareGround  
-129.2 * RatioNS34 + 137.91 
-102.6 * gNDVI + 78.52 

-55.94 * NDVI + 50.28 

9.9 

10.9 
11.7 

8 

8 
8 

0.61 

0.52 
0.46 

0.008 

0.018 
0.031 

 6 

  7 
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Table 4  (Continued …) 1 

 2 

Biophysical b) Model (spectral + climate) RSE df R2 
p-
value

TotalBiomass 

2834.31 * RatioNS34 + 3.10 * RainAcc-1Sept - 2524.45 

980.24 * NVI-GR + 3.38 * RainAcc-1Sept - 78.78 

337.90 * NDVI + 3.41 * RainAcc-1Sept - 293.67 

593 

615 

622 

7 

7 

7 

0.91 

0.91 

0.91 

0.000 

0.000 

0.000 

VegetationHeight 

236.72 * RatioNS34 - 1.70 * Rain - 175.55 

117.86 * NDVI - 2.06 * Rain - 22.98 

205.10 * gNDVI - 2.42 * Rain - 75.18 

5.7 

7.0 

7.5 

7 

7 

7 

0.95 

0.93 

0.92 

0.000 

0.000 

0.000 

%Green3D 

183.75 * NVI-SR - 0.78 * SoilMoisture - 31.55 

131.70 * NDVI - 0.38 * SoilMoisture + 0.45 

239.96 * gNDVI - 0.51 * SoilMoisture - 65.33 

8.4 

8.4 

8.0 

4 

4 

4 

0.92 

0.92 

0.92 

0.007 

0.007 

0.006 

%Green2D 

236.72 * RatioNS34 - 1.70 * Rain - 175.55 

117.86 * NDVI - 2.06 * Rain - 22.98 

205.10 * gNDVI - 2.42 * Rain - 75.18 

5.7 

7.0 

7.5 

7 

7 

7 

0.95 

0.93 

0.92 

0.000 

0.000 

0.000 

%TotalVegetation2D 

360.77 * RatioNS34 - 3.496 * SoilMoisture - 222.80 

332.866 * NVI-GR - 4.878 * SoilMoisture + 136.58 

163.146 * NVI-GR - 6.409 * TMin + 206.36 

11.2 

12.4 

11.7 

4 

4 

7 

0.90 

0.87 

0.86 

0.011 

0.016 

0.001 

%Litter2D 

-61.13 * NDVI + 2.019 * Rain + 44.721 

-80.68 * NVI-SR + 2.109 * Rain + 59.137 

-118.14 * RatioNS34 + 1.825 * Rain + 119.59 

6.3 

6.5 

6.8 

7 

7 

7 

0.86 

0.85 

0.83 

0.001 

0.001 

0.002 

%BareGround 

-159.02 * RatioNS34 + 1.162 * SoilMoisture + 148.21 

-86.55 * NDVI + 1.576 * SoilMoisture + 43.69 

-76.95 * RatioNS34 + 3.668 * TMax - 26.474 

5.0 

5.0 

5.4 

4 

4 

7 

0.90 

0.90 

0.90 

0.010 

0.010 

0.000 

 3 

  4 
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 1 

Table 5 Linear regression statistics for the three top performing models of wet-season data for 2 

each biophysical variable (dependent variable) and a) models with GLA, and b) models with 3 

GLA and one climate variable. RSE units are kg DM ha-1 for TotalBiomass, cm for 4 

VegetationHeight, and % for the other dependent variables. 5 

Biophysical variable a) Model (GLA) RSE df R2 p-value 

TotalBiomass  2441.6 * GLA + 1040.8 1351.0 21 0.30 0.007 

VegetationHeight  52.163 * GLA + 18.859 17.2 21 0.55 0.000 

%Green3D 61.472 * GLA + 39.181 10.3 21 0.83 0.000 

%Green2D  74.344 * GLA + 23.155 10.4 21 0.87 0.000 

%TotalVegetation2D  61.457 * GLA + 37.364 17.3 21 0.63 0.000 

%Litter2D -25.245 * GLA + 26.378 10.3 21 0.44 0.001 

%BareGround  -36.345 * GLA + 36.725 16.2 21 0.40 0.001 

 6 

Biophysical variable b) Model (GLA + climate) RSE df R2 
p-
value

TotalBiomass  

509.204 * GLA + 35.661 * YearDay + 350.34 

907.013 * GLA + 2.316 * RainAcc-1Sept + 
473.932 
2667.67 * GLA - 167.88 * Rain + 1310.21 

956.7 

1102.0 

1116.0 

20 

20 

20 

0.67 

0.56 

0.55 

0.000 

0.000 

0.000 

VegetationHeight  
54.968 * GLA - 2.084 * Rain + 22.203 
41.026 * GLA + 0.206 * YearDay + 14.88 

44.396 * GLA + 0.012 * RainAcc-1Sept + 15.99 

14.4 

16.7 

17.1 

20 

20 

20 

0.70 

0.60 

0.57 

0.000 

0.000 

0.000 

%Green3D 
57.917 * GLA - 0.174 * SoilMoisture + 46.62 
53.066 * GLA + 0.013 * RainAcc-1Sept + 36.076 

53.806 * GLA + 0.141 * YearDay + 36.442 

7.1 

9.5 

9.8 

16 

20 

20 

0.90 

0.86 

0.85 

0.000 

0.000 

0.000 

%Green2D  
63.352 * GLA + 0.017 * RainAcc-1Sept + 19.095 
63.189 * GLA + 0.206 * YearDay + 19.169 

75.813 * GLA - 1.09 * Rain + 24.905 

8.8 

8.9 

9.2 

20 

20 

20 

0.91 

0.91 

0.90 

0.000 

0.000 

0.000 

%TotalVegetation2D  
38.298 * GLA + 0.427 * YearDay + 29.089 
64.565 * GLA - 2.308 * Rain + 41.068 

43.318 * GLA + 0.027 * RainAcc-1Sept + 30.664 

13.0 

13.7 

14.7 

20 

20 

20 

0.80 

0.78 

0.74 

0.000 

0.000 

0.000 

%Litter2D 
-27.354 * GLA + 2.456 * Tmin - 27.108 
-15.415 * GLA - 0.015 * RainAcc-1Sept + 30.009 

-15.067 * GLA - 0.188 * YearDay + 30.015 

8.8 

9.1 

9.2 

20 

20 

20 

0.61 

0.59 

0.58 

0.000 

0.000 

0.000 

%BareGround 
-23.629 * GLA - 0.235 * YearDay + 41.268 
-38.112 * GLA + 1.312 * Rain + 34.619 

-28.328 * GLA - 0.012 * RainAcc-1Sept + 39.686 

15.2 

15.3 

16.0 

20 

20 

20 

0.50 

0.49 

0.44 

0.001 

0.001 

0.003 
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 1 

 2 

Figure 1 The unfenced node with (a) the paired multi-spectralmultispectral sensors with the 3 

cosine diffusion filter fitted only to the upward-pointing sensor, (b) the digital camera, (c) 4 

solar panel power supply, and (d) relay hardware to send data to the WSN.  5 

 6 

  7 
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 1 

 2 

 3 

Figure 2 Example of the diurnal cycle of sensor data during the dry season when a large green 4 

leaf was held up to the multi-spectralmultispectral sensors on the fenced node to test its response 5 

(4th October 2011). Note: for the NDVI values a) night-time values, b) the ramp-up after dawn 6 

(approx. 6:30 AM), c) the relatively stable value for the middle part of the day, d) the spike in 7 

NDVI when the sensors recorded an elevation of NIR reflectance in response to green vegetation 8 

being held up to the sensor. 9 

  10 
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 1 

 2 

Figure 3 Time-series of NDVI values from the unfenced node showing the raw and screened 3 

NDVI and the accumulated precipitation since 1st September (mm) from “Townsville Airport” 4 

BoM weather station. The black dashed vertical line indicates the timing of the controlled burn, 5 

and the blue lines the start of the wet seasons. 6 

  7 
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 1 

a)

 

b) 

 

 2 

Figure 4 Skye multi-spectralmultispectral sensors showing (a) mud wasps, and (b) wasp larvae in 3 

sensor tubes. 4 

  5 
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a) b)  

 

Figure 5 Field observation time seriestime-series from the two nodes of (a) TotalBiomass, (b) VegetationHeight, (c) %Green3D, and (d) 

%Green2D. The black dashed line indicates the timing of the controlled burn, and the blue lines the start of the wet seasons. 
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c) d)

 

Figure 5 Continued … 
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Figure 6 Time seriesTime-series of a year of images from the digital camera at the fenced node, 

with each 6- week period represented by one image from approximately noon. Dates represent 

the start of the 6--week period .The red line indicates the controlled burn in December 2011.
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Figure 7 Time seriesTime-series of the Green Leaf Algorithm (GLA) calculated from digital 

camera images at each node, using a daily image from approximately 12:00. The black 

dashed vertical line indicates the timing of the controlled burn, and the blue lines the start of 

the wet seasons. 
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Figure 8 Bias-adjusted bootstrap point estimates and their corresponding 95% pivotal bootstrap 

confidence intervals, for GAM combinations of sensor-derived indices and a) TotalBiomass, b) 

%BareGround, c) %Litter2D, d) %TotalVegetation2D, e) %Green3D, f) %Green2D, and g) 

VegetationHeight. See Error! Reference source not found. for the values. 

 


