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Abstract

Timely and accurate monitoring of pasture biomass and ground-cover is necessary in
livestock production systems to ensure productive and sustainable management of for-
age for livestock. Interest in the use of proximal sensors for monitoring pasture status in
grazing systems has increased, since such sensors can return data in near real-time,
and have the potential to be deployed on large properties where remote sensing may
not be suitable due to issues such as spatial scale or cloud cover. However, there are
unresolved challenges in developing calibrations to convert raw sensor data to quanti-
tative biophysical values, such as pasture biomass or vegetation ground-cover, to allow
meaningful interpretation of sensor data by livestock producers. We assessed the use
of multiple proximal sensors for monitoring tropical pastures with a pilot deployment of
sensors at two sites on Lansdown Research Station near Townsville, Australia. Each
site was monitored by a Skye SKR-four-band multi-spectral sensor (every 1min), a
digital camera (every 30 min), and a soil moisture sensor (every 1 min), each operated
over 18 months. Raw data from each sensor were processed to calculate a number of
multispectral vegetation indices. Visual observations of pasture characteristics, includ-
ing above-ground standing biomass and ground cover, were made every 2 weeks. A
methodology was developed to manage the sensor deployment and the quality control
of the data collected. The data capture from the digital cameras was more reliable than
the multi-spectral sensors, which had up to 63 % of data discarded after data cleaning
and quality control. We found a strong relationship between sensor and pasture mea-
surements during the wet season period of maximum pasture growth (January to April),
especially when data from the multi-spectral sensors were combined with weather data.
RatioNS34 (a simple band ratio between the near infrared (NIR) and lower shortwave
infrared (SWIR) bands) and rainfall since 1 September explained 91 % of the variation
in above-ground standing biomass (RSE = 593 kg DM ha™', p < 0.01). RatioNS34 to-
gether with rainfall explained 95 % of the variation in the percentage of green vegetation
observed in 2-dimensions (%Green2D) (RSE = 6%, p < 0.01). The Green Leaf Algo-
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rithm index derived from the digital camera images and the rainfall accumulated since
the 1 September explained 91 % of the variation in %Green2D (RSE = 9%, p < 0.01,
df = 20), but had a poor relationship with biomass. Although proximal sensors observe
only a small area of the pasture, they deliver continual and timely pasture measure-
ments to inform timely decision-making on-farm.

1 Introduction

Frequent and accurate monitoring of pastures in livestock production systems is neces-
sary to facilitate timely and appropriate management decisions. Traditional methods for
measuring pasture biomass (e.g. pasture cuts, visual assessments and plate meters),
(Sanderson et al., 2001) are time-consuming and error-prone, leading to an increased
interest in automated monitoring methods. While remote sensing of the landscape from
satellite-based platforms gives extensive spatial coverage, its usefulness can be limited
by irregular availability of suitable images, which in tropical environments can be further
restricted by cloud cover, particularly during the wet season. Converting raw satellite
images to a measure that is useful for on-farm decision making is also problematic
due to the cost and processing requirements for operational delivery (e.g. Handcock
et al., 2008). Continual monitoring using proximal sensors has the advantage over
satellite images of capturing rapid-changes in the proportions of photosynthetically-
active vegetation (PV) (i.e. green) and non photosynthetically-active vegetation (NPV)
(i.e. dead/dry). Such changes in the feed-base can signal that farm-management in-
terventions are necessary for better utilization of resources and reducing detrimental
environmental impacts due to overgrazing. For example, at the end of the wet season
in tropical environments, beef producers need to assess how much green feed remains
in the paddocks to determine if there is sufficient feed to carry the cattle through the
dry season, or to adjust stocking rates accordingly (O’Reagain et al., 2014), provide
supplemental feed, or move animals.
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With recent advances in wireless sensor networks and improved mobile network
coverage, the delivery of monitoring data from sensors in remote cattle enterprises
in a near-real time data stream has become feasible. While proximal sensors monitor
a small area or point and do not provide the extensive coverage of satellite imagery,
when strategically placed within the farm these sensors have the potential to deliver
continual data on the feed-base and allow more responsive management decisions.

In the present study, proximal sensors refer to in-situ sensors placed within several
metres of the surface to be monitored, or placed in the shallow sub-surface environ-
ment, and providing repeat measurements at discrete intervals over periods of days
to years. This distinguishes fixed proximal sensors from those which are mobile via
robotic or aerial platforms (e.g. Von Bueren et al., 2015; Hamilton et al., 2007), vehicle-
mounted sensors (e.g. King et al., 2010), or hand-held such as a field spectroradiome-
ter (e.g. Peddle et al., 2001). While each of these moveable sensor types has their
own advantages, such as covering large areas for the mobile sensors, or in targeted
measurements in the case of hand-held sensors, none have the ability for easy long
temporal coverage which is provided by fixed proximal sensors. Proximal sensors are
of particular interest in extensive grazing enterprises in remote regions where access
to repeat monitoring is costly and difficult, yet where remote sensing is not suitable due
to issues such as scale or cloud cover.

There has been recent growth in the use of in-situ proximal environmental sensors
for a wide range of monitoring, including soils (Allen et al., 2007; Zerger et al., 2010)
and ecological studies (Collins et al., 2006; Hamilton et al., 2007; Szewczyk et al.,
2004), temperate pastures (Zerger et al., 2010; Gobbett et al., 2013), forests (Eklundh
et al., 2011), and sub-alpine grasslands (Sakowska et al., 2014), or to complement
measurements made from flux towers (Balzarolo et al., 2011; Gamon, 2015). Networks
to support the improvement of such sensors have recently been developed, such as
through SpecNet (http://specnet.info), and the projects presented in the current special
issue.
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With minimal processing, the data obtained from sensors, such as spectral re-
flectance, can be related to biophysical values and provide useful qualitative informa-
tion. An example is the well-established field of multi-spectral sensing using vegetation
indices (e.g. Tucker, 1979). Vegetation indices are frequently calibrated to the biophys-
ical properties of the vegetation such as leaf area index (Turner et al., 1999), biomass
(Pearson et al., 1976; Handcock et al., 2008), percentage vegetation cover (Lukina
et al., 1999), or the fraction of photosynthetically active radiation absorbed by a canopy
(Richardson et al., 2007; Myneni and Williams, 1994; Guerschman et al., 2009). Con-
verting sensor data to quantitative biophysical values such as pasture biomass and
groundcover, allows easier interpretation of the sensor data for making management
decisions by livestock producers.

The aim of this study was to quantify how well multiple proximal sensors could be
used to monitor tropical pasture biomass, which requires both obtaining reliable data,
and calibrating that data to biophysical values. To address this goal we assessed how
the relationships between sensor and field observations of pastures differed between
the wet and dry seasons in a tropical pasture grazed by cattle. The multi-spectral sen-
sor data were calibrated using repeated visual observations of pasture characteristics
supplemented by data from digital cameras, soil moisture sensors and weather data.
We also developed methods for the management of multiple proximal sensors deployed
for pasture monitoring in a tropical environment and the quality control of such data
which extends on previous work in temperate pastures (Gobbett et al., 2013).

2 Methods

2.1 Field site and sensor nodes

The sensors deployed in this study were located at the Commonwealth Scientific
and Industrial Research Organisation’s (CSIRO) Lansdown Research Station near
Townsville, Queensland, Australia (19°39'42"” S and 146°51'12" E, elevation 63 m).
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Paddocks used in this study contained pastures dominated by Urochloa spp., Chloris
spp., and Stylosanthes spp. Data were collected over 545 days between 23 Septem-
ber 2011 and 21 March 2013.

Based on daily precipitation and temperature data collected by the Bureau of Mete-
orology (BoM) from the “Woolshed” station (approximately 45 km NW of the study site)
the tropical climate in the study region is characterised by a wet-season from Novem-
ber to April where monsoonal storms bring intermittent periods of heavy rainfall, and
a winter dry-season with little or no rainfall. The average annual rainfall of 1139 mm falls
mainly during the wet season, and the average monthly temperatures range is 20.8 to
28.5°C in January, and 10.4 to 21.8°C in July.

Two identical sensor nodes (Fig. 1) were mounted with the same array of equip-
ment (multi-spectral sensors, digital camera, soil moisture sensor, wireless networking
infrastructure), and providing spatially-coincident data with both high temporal- and
spatial-resolution. The nadir-pointing sensors were located at a height of 2.5 m above
the ground. At this height the downward-pointing multi-spectral sensor had a 25° field
of view (FOV) sensing approximately 0.97 m? of area at ground level, although this
area changes across the season as the vegetation height changes. See Balzarolo
et al. (2011) for a discussion of optical sensor configurations.

The nodes were approximately 200 m apart in areas of the paddock visually as-
sessed to be uniform and similar at the time of installation. One node was unfenced,
permitting access to the area under the node by cattle grazing in the paddock. The
second node was enclosed by a 30 m by 30 m fence which excluded cattle from graz-
ing within the enclosure, but allowed access by kangaroos and other small herbivores.
Each node included a solar-powered sensor hub which relayed captured sensor data
to a wireless sensor network (WSN) installed on the research farm, and via an inter-
net connection to a centralized enterprise database. All equipment was temporarily
removed for a week during a controlled property burn in mid-December 2011.
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2.2 Soil moisture sensors

A Decagon “56TM” soil moisture sensor (Decagon Devices, USA) was installed to mon-
itor the volumetric water content (VWC) of the soil. The VMC is the volume of water
per unit of total volume, determined by measuring the dielectric constant of the soil, as
well as soil temperature from a thermistor. The 5TM sensors were buried at a depth of
15 cm under the soil surface below the multi-spectral sensors. This depth was used to
capture soil moisture near the surface, yet reduce the possibility of damage from tram-
pling by cattle. The 5TM sensors recorded soil moisture and soil temperature readings
at 1 min intervals. We extracted an average of VMC for the period between 12:00 and
13:00 for each day, resulting in a time series of daily VWC (i.e. SoilMoisture) and soil
temperature data during the study period.

2.3 Weather data

The nearest BoM weather stations were at “Woolshed”, “Charters Towers Airport” (both
inland), and “Townsville Airport” (coastal), approximately 45kmNW, 70 km SW and
40 km N of the study site, respectively. Daily maximum ambient temperature averaged
for the two inland stations had a strong relationship with temperature data from 12:00
from the 5TM soil moisture sensor, so these datasets were used interchangeably. The
5TM soil moisture sensors were additionally used as the main source of soil moisture
data.

At the time of this study a new meteorological station at the Lansdown Research Sta-
tion had recently been installed, but the data were not available for the study period.
Given the spatial heterogeneity of precipitation events, the nationally available interpo-
lated climate surfaces from BoM were thought to be too coarse for our small study site.
A comparison of data from nearby BoM stations with the in-situ soil moisture sensors
at our nodes showed a strong correlation with the average of the precipitation recorded
at “Charters Towers Airport” and “Townsville Airport” stations, so this station average
precipitation was used as the best of the available options for precipitation.
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The start and end of the wet season was determined using a method designed for
the North Australian climate (Lo et al., 2007) in which the start of the wet season is
defined as the date after 1 September when 50 mm of precipitation has accumulated.
Bureau of Meteorology precipitation data from the “Townsville Airport” station were
used to define the start and end of the wet and dry seasons, as this station had the
most complete time-series of the nearby stations. Using this method, the 2011/12 wet
season at our study site started on the 5 December 2011, and the 2012/13 wet season
started on 1 January 2013.

2.4 Digital cameras and the VegMeasure semi-automated classification

Digital cameras were deployed at the study site to provide an automated assessment
of ground cover (see Zerger et al., 2012), to serve as a visual cross-check of the multi-
spectral data, and to assist in identifying surface water. At each of the two nodes we
deployed a Pentax Optio WG-1 digital camera in a downward-pointing position that im-
aged the same FOV as the multi-spectral sensors. This model camera was selected
as it was inexpensive, weatherproof and had an inbuilt intervalometer to enable auto-
matic shooting at fixed intervals. At 2.5m the 13.8 megapixel digital cameras recorded
images with an approximate 0.6 mm ground resolution. The cameras were configured
with flash off, sensitivity at ISO 200, autofocus and automatic white balance enabled.
Digital images (approximately 1 to 4 MB each) were captured every 30 min and were
manually downloaded at approximately 2-week intervals.

The images from the cameras contained un-calibrated red, green and blue (RGB)
spectral bands. There has been extensive work on automated and semi-automated
classification of such time series of digital photographs for the purposes of vegeta-
tion monitoring (e.g. Ewing and Horton, 1999; Karcher and Richardson, 2005; Bennett
et al., 2000). As the focus of the current study was on the calibration of the multi-
spectral sensor data, we chose to use a semi-automated method, VegMeasure (John-
son et al., 2003), to extract a green cover fraction of the time-series of digital camera
images from each node. VegMeasure has been utilized and validated in a number of
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studies (e.g. Booth et al., 2005; Louhaichi et al., 2001) and provides a rapid method to
classify a series of images into green and non-green using the Green Leaf Algorithm
(GLA). The GLA applies the following spectral band ratio (Louhaichi et al., 2001):

(G-R)+(G-B)
(G+R+G+B)

: (1)

where G is the digital number of the green band, R is the digital number of the red band
and B is the digital number of the blue band. The proportion of the pixels in each image
in which the band ratio exceeds a user defined threshold is reported as the GLA.

For each day in the study period, the camera image taken nearest in time to 12:00
was selected, and the time-series was quality controlled for days when there was site
maintenance work under the node. One photo with a mix of PV (i.e. green) and NPV
vegetation was manually selected as a calibration image (14 May 2012, 12:13:55 GMT,
on the unfenced node). To derive a threshold value for the GLA, one hundred random
points were manually assigned to two classes: “white” = green vegetation and “black” =
non-green vegetation background material including litter and soil). The resulting GLA
threshold of 0.095 was verified using a random selection of images and used to process
all images to extract the green proportion. The GLA was used as a crosscheck of the
green fraction determined from the multi-spectral dataset and from field measurement.

2.5 Multi-spectral sensors

We used a paired sensor setup (Fig. 1) with the downward-pointing sensor having
a conical field of FOV of 25°, allowing it to sense reflected light only from the ground
directly beneath the sensor. The upward-pointing sensor was fitted with a cosine dif-
fusing filter to alter its FOV to a full hemispherical view, permitting the albedo of the
surface to be assessed relative to the incident solar radiation. Sensors were checked
and cleaned fortnightly and the sensor station coated with insecticide to deter crawling
and flying insects.
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The multispectral sensors mounted on each of the two nodes were paired Skye
SKR-1850 four-band weatherproof sensors (Skye-Instruments, 2012a) configured with
bands in the green (0.545 to 0.547 um), red (0.644 to 0.646 um), near infrared (NIR)
(0.834 to 0.837 um) and the lower SWIR (1.028 to 1.029 um) spectral range (wave-
lengths in brackets indicate band widths). These bands were chosen as the NIR band
is widely used in monitoring vegetation “greenness” from multispectral sensors (Tucker,
1979), and the SWIR region of the electromagnetic spectrum is sensitive to plant
moisture content (Tucker, 1980). Additionally, these bands were chosen as both the
SWIR and upper NIR spectral data can be used to help differentiate PV from both
NPV and soil (Asner, 1998), and broad-band SWIR indices have been used to cap-
ture seasonally-varying NPV proportions resulting from repeat grazing of pastures by
livestock (Handcock et al., 2008).

2.6 Vegetation indices

Spectral bands in the NIR region are commonly used to calculate a large range of
vegetation indices, such as the normalized difference vegetation index (NDVI) (Tucker,
1979). A variety of vegetation indices are possible from combinations of these four
broad spectral bands, some of which have become used for specific applications. How-
ever, due to the complexity of calculating indices from this particular Skye sensor model
(see below), our index choice was limited to simple ratios and normalized difference
band ratios (Jackson and Huete, 1991) which we selected to highlight seasonal as-
pects of the green and dry mix of the tropical pastures (Table 1).

The sensors provided a calibrated numeric output for each spectral band every
minute and data volumes were small enough to be transmitted in near real-time via
the WSN. After calibrating raw sensor data using individual Skye sensor calibration co-
efficients, vegetation indices were calculated. It is not possible to calculate reflectance
directly from the Skye SKR-1850 sensor. However, Skye provides formulae which use
the measured sensitivities of the individual sensors to calculate ratio-style indices such
as NDVI (Skye-Instruments, 2012b). These indices are mathematically equivalent to
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those calculated from reflectance. Using the NDVI example from Skye, we developed
formulae for the vegetation indices shown in Table 1.

2.7 Quality control of the sensor data

The types of processing required for high-frequency multispectral time-series are illus-
trated with an example of a typical diurnal time-series of multispectral data with a read-
ing every minute (Fig. 2). Both raw sensor current and the calculated NDVI values are
typically low during the night-time hours. The period of rapidly increasing sensor values
at dawn is extremely noisy due to variable early-morning illumination and the scattering
of sunlight through a thicker atmosphere at low elevations. At dusk a mirrored pattern
of decrease (data not shown), also seen in Weber et al. (2008: Fig. 3a). Apart from the
spike in high NDVI values when a green leaf was held in front of the sensor (approxi-
mately 13:00), the middle part of the day is the period of relatively stable values of NDVI
with random variation compared to the noise in the raw current resulting from variable
solar illumination or clouds. To calculate a single daily value from the diurnal cycle of
the daily time-series, multi-spectral sensor data, vegetation index values from the mid-
dle part of the day (10:00 to 14:00) were selected and the median value calculated to
reduce noise due to small fluctuations in illumination.

Data from a particular day were discarded if they met any of the filtering criteria listed
in Table 2. Data were not discarded under conditions where changes in the spectral
values were considered to be a signal rather than noise. For example, rapid increases
over time in values of NDVI corresponded to rapid growth at the start of the wet season.
The digital camera images were used as a verification check of the multi-spectral data.

The filtering criteria were developed to screen the daily multi-spectral data series for
large fluctuations (Table 2), such as data outliers, spikes, high noise levels, clipping
and calibration issues, which can commonly result from anomalies at the sensor or
during data transmission (Collins et al., 2006; Ni et al., 2009). For example, the night-
time raw current reading should remain relatively constant excluding minor night-time
light reflections or electronic noise. Large deviations from night-time baseline current
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values indicated a technical issue (Table 2, category (a)). The baseline current could
also change suddenly if the sensor was swapped for new equipment, or for logisti-
cal reasons such as if there was a maintenance ladder underneath the sensor (see
Table 2, category (b)). We also developed filtering rules based on the expected spec-
tral response of tropical pastures (see Table 2, category (c)). For example, NDVI for
vegetation should not be less than zero (Holben, 1986; Jackson and Huete, 1991). In
developing these filtering rules, the vegetation indices stood as proxy for their individ-
ual constituent bands as it was not possible to use spectral reflectance from the Skye
SKR-1850 sensors directly. Some of the filtering rules excluded valid spectral signals
that were not errors, but which were not applicable to our goal of monitoring pastures
(Table 2, category (d)). For example, surface water under the vegetation due to heavy
rainfall was identified by visual inspection of the camera images combined with the
soil moisture data, and filtered because it was not a valid measurement of the pasture
status even though it was a valid sensor signal.

2.8 Field measurements of vegetation made under the sensor nodes

Visual observations of pasture biomass (weight of above ground vegetation dry mat-
ter (DM) per unit of area) for the sensors FOV were recorded by trained field staff at
2-3 week intervals during the study period. Destructive sampling of the area under the
sensors was not desirable as this would have restricted the range of pasture biomass
measurements to only low values, and the pastures would not re-grow rapidly enough
for accurate visual assessment of biomass if they were cut to ground level. Above-
ground standing biomass (kg DM ha‘1) (called TotalBiomass henceforth) was therefore
assessed by comparing the sensor FOV area with pasture standard photographs. To-
talBiomass was not divided into green and dry components as this is difficult to do in
this environment, although the green proportion was estimated using the method that
follows.

The fraction of bare ground and the fractional coverage by PV (i.e. green) and of
NPV (i.e. % dead/dry), are widely used for assessing landscape degradation (Richard-
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son et al., 2007; Myneni and Williams, 1994; Guerschman et al., 2009). However for
a non-expert in remote sensing the fractional cover is a less familiar measurement than
TotalBiomass to interpret and use. We made visual field assessments of fractional cov-
erage, by PV (i.e. green) and of NPV (i.e. % dead/dry, as seen in two dimensions from
above, across a 1 m by 1 m area under the sensors as follows:

% TotalVegetation2D + % BareGround + % Litter2D = 100 % (2)

where % BareGround is the percentage bare-ground as seen in 2D, % Litter2D is the
percentage of litter which is not attached to any plant, and % TotalVegetation2D is the
percentage of vegetation still attached to the plant, including both green (PV) and dry
(NPV) vegetation as both typically remain on the plant as the plant season during the
dry season.

We also visually assessed the percentage of just the visible green proportion of the
vegetation, as seen in both two dimensions, looking down at the plot (% Green2D),
and three dimensions, looking at the whole plants within the plot (% Green3D). While
not as useful as actual measurements of green biomass, these 2-D and 3-D visual
assessments give the nearest approximation of green vegetation without destructive
samplings and separating green and dry material.

Finally, the area was divided into four quadrants and vegetation height (Vegetation-
Height, cm) was measured for each of the four quadrants as well as for the total area
the height at which 95 % of the vegetation was below, and all five measurements were
averaged.

2.9 Model development

To use an indirect sensor measure (e.g. NDVI) to predict biophysical variables (e.g.

biomass), it is necessary to model the relationship between the two measurements.

Based on the previous work of Handcock et al. (2008) where climate variables were

used to improve the performance of the model developed from multi-spectral satellite

images and biomass measured by cuts of the temperate dairy pastures, we included
18019
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a number of climatic variables in our model development: daily minimum and maximum
temperature (i.e. Ty, and Tya C), daily total rainfall (Rain, mm), the accumulated rain-
fall since the 1 September (i.e. RainAcc-1Sept, mm), soil volumetric water content (i.e.
SoilMoisture, %), and the number of days since the 1 January (YearDay).

Model development was restricted to data gathered during the period that is of most
interest to cattle producers — from January to April (days 1 to 130 of the year). This
period covers the majority of the wet season period of green pasture growth and the
critical period at the end of the wet season. These results were also compared to
models developed for the dry season (May through December) and to results from
across the entire year.

Although previous work in temperate dairy pastures showed saturation of the veg-
etation indices for high biomass values (Handcock et al., 2008), and this saturation is
well supported in the literature (e.g. Sellers, 1985), we did not use non-linear models
in the present analysis. This was because visual inspection of the data showed that
the relationships between the combinations of dependent and independent variables
were linear, making a non-linear model inappropriate. Additionally, the small number
of matching time points between the field data and sensor data during the wet season
was considered to be too small for developing non-linear relationships.

The least squares linear regression models were developed using the R statisti-
cal package (R-Core-Team, 2013) to test how well each biophysical measurement
could be predicted from either a single independent sensor variable, or two inde-
pendent variables where one was sensor derived and one was climate or time re-
lated. Indices derived from two sensors, or two multispectral indices, were not com-
bined in the model due to potential correlation between measurements. The indepen-
dent variables included: vegetation indices derived from the filtered daily dataset from
the multi-spectral sensors (i.e. NDVI, gNDVI, NVI-GR, NVI-SR, and RatioNS34) and
the digital cameras (i.e. GLA), as well as the daily weather variables (i.e. Tyyin, Tyaxs
Rain, RainAcc-1Sept, SoilMoisture, YearDay). The dependent variables were; the vi-
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sual biophysical measurements made at the field sites (TotalBiomass, % BareGround,
% Litter2D, % TotalVegetation2D, % Green2D, % Green3D, and VegetationHeight).

After the sensor and field data were filtered to ensure corresponding daily data were
available for both the dependent and independent variables, there was not sufficient
matching field and multi-spectral data to split the dataset into calibration and validation
subsets. We do, however, compare relationships with biophysical values developed for
the multi-spectral sensors and the digital cameras, as each provided an independent
measurement of the pasture. While this is not ideal, it was a restriction due to the pilot
nature of the project and the large amount of data filtering required.

3 Results
3.1 Multi-spectral sensor data

As a result of the rigorous data cleaning using the criteria in Table 2, for the 545 days
of data collected at each node, 48 % of days of data from the unfenced node were
discarded, and 63 % of days of data from the fenced node were discarded. This large
number of filtered days of data reflects the experimental nature of the pilot deployment
of the sensors, which resulted in technical and environmental issues with the sensor
deployment. However, the rigorous data cleaning we applied was necessary to provide
quality data for the model development.

Figure 3 illustrates this data cleaning by showing the time-series of NDVI values
from the unfenced node, before (raw) and after filtering. In comparison to the digital
cameras, the design of the housing for the Skye SKR-1850 sensors led to significant
problems with insects such as mud-wasps nesting in the sensor tubes (Fig. 4 a and b),
spiders building webs across the sensor openings, and water ingress below the cosine
correction filters which were fitted to the upward pointing sensors.
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3.2 Field measurements

The field measurements made at each of the two nodes (Fig. 5) illus-
trate the rapid vegetation growth at the start of the wet season followed
by senescence during the dry season. Despite the two nodes being located
only 200m apart, the measurements of TotalBiomass (Fig. 5a) exhibit differ-
ences of almost 2000 kg DM ha~' between nodes for the period following the
end of the 2011-12 wet-season. The time series of VegetationHeight (Fig. 5b)
is less distinctly different between the nodes compared to TotalBiomass, and
slowly decreases through the dry-season. In contrast, the observations of

% Green2D, and % Green3D (Fig. 5¢c—d) are comparatively similar between the two
nodes.

3.3 Time series of digital camera images and GLA

Over the 545 day study period, the digital cameras captured 22642 images from the
camera mounted at the unfenced node and 23210 from the fenced node. Data capture
from the cameras was more reliable than for the multi-spectral sensors with the loss
of only 13 days of data from the unfenced node, and 10 days of data from the fenced
node, both due to data card failure.

Figure 6 shows a time series of images from the digital camera at the fenced node,
with each 6 week period represented by one image taken at approximately 12:00. The
seasonal progression of vegetation is clearly illustrated by these images, from the new
green growth of the vegetation at the start of the wet season, followed by senescence
during the move into the dry season and the sudden removal of all vegetation following
the 2011 controlled-burn. The camera images again illustrate how, as the wet season
progresses, the tall grasses dominate the canopy followed by the gradual drying of the
canopy in the transition into the dry season.

Figure 7 shows the daily time series of GLA calculated from digital camera images
at each node. These results show that the digital cameras and GLA can successfully
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capture the seasonal changes in green vegetation, corresponding with the rapid growth
of green vegetation at the start of the wet season followed by a decrease to zero during
the dry season.

3.4 The relationship between sensor data and field estimates

Table 3 shows the regression relationships between field measurements of Total-
Biomass and % Green2D (dependent variables) and the sensor-derived GLA, NDVI,
and RatioNS34 (independent variables) for data across the whole year, the wet sea-
son, and the dry season. Models developed using data from the whole year or for data
from outside the wet season performed poorly. For example, with data from the entire
year the NDVI explained only 3 % of the variation in TotalBiomass, with a residual stan-
dard error (RSE) of 1523 kg DM ha™’ (p = 0.308), and the relationship with % Green2D
is equally poor (RSE = 2%, p = 0.368). These results for the dry season are not un-
expected given that at that time the pastures contain mainly senesced vegetation, but
the spectral bands of the sensors are sensitive to green vegetation. For the relation-
ships with data from across the year this dry-season response is confounded with the
discretely different wet season green vegetation growth, as we would expect in a tropi-
cal pasture system. Similar outcomes for models developed using data from the whole
year or the dry season were found for all combinations of variables (Table 3 shows only
selections of these results but all combinations were tested).

In contrast, during the wet season RatioNS34 alone explained 59 % of the varia-
tion in TotalBiomass, with an RSE of 1208 kg DM ha™’ (p <0.01), and the relationship
with % Green2D is equally good (96 % of variation explained, RSE = 5.7 %, p < 0.01).
Similar outcomes for models developed using data from the wet season were found
for all combinations of variables (Table 3 shows only a selection of these results but
again all combinations were tested). Based on these results we focus on developing
relationships for the wet season.

Table 4 shows the regression relationships for the three top models of wet-season
data for each biophysical variable (dependent variable), and models with either a spec-
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tral index, or a spectral index and climate variable (independent variables). For models
with only a single spectral index as the independent variable, both VegetationHeight (in-
dependent variable = RatioNS34) and % Green2D (independent variable = RatioNS34)
had the strongest relationships, explaining 81 % and 96 % of the variation in the bio-
physical variables, respectively.

For all other biophysical variables, the 2-variable models with multi-spectral data
and the addition of climate data outperformed the 1-variable models explaining greater
than 86 % of the variance. The climate variables in these top models were from both
weather station data (e.g. RainAcc-1Sept) and from separate sensors on the node
(e.g. SoilMoisture). For example, RatioNS34 and RainAcc-1Sept explained 91 % of the
variation in TotalBiomass, and RatioNS34 and Rain explained 95 % of the variation in
% Green2D. RatioNS34 was the best performing multi-spectral sensor index, being the
multi-spectral index included in all of the top ranked 1-variable models and the majority
of the top ranked 2-variable models.

Table 5 shows regression relationships for the three top ranked models of wet-
season data for each biophysical variable (dependent variable), and models with ei-
ther only GLA, or GLA and climate variables (independent variables). For models with
only GLA as the independent variable, both % Green3D and % Green2D had strong
relationships, explaining 83 % and 87 % of the variation in the biophysical variables,
respectively. This is expected as GLA is designed to capture the green component
of vegetation which is similar to what is captured by assessments of % Green2D and
% GreengD.

For all other biophysical variables the top ranked 2-variable models with GLA and the
addition of climate data outperformed the 1-variable models, explaining between 50 %
and 91 % of the variance, respectively. For example, GLA and SoilMoisture explained
90 % of the variation in % Green3D (RSE =7%, p <0.01, df = 16), while GLA and
RainAcc-1Sept explained 91 % of the variation in % Green2D (RSE = 9%, p < 0.01,
df = 20). Unsurprisingly, the biophysical variable most poorly predicted from GLA was
% BareGround, with the top ranked model with YearDay explaining only 50 % of the
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variation in % BareGround (RSE = 15%, p < 0.01, df = 20). TotalBiomass had weaker
relationships with GLA than was found with the multi-spectral indices with the best
model with GLA and YearDay explaining only 67 % of the variation in TotalBiomass
(RSE = 957kgDMha™", p < 0.01, df = 20).

4 Discussion

The tropical pasture conditions in the present study presented unique technical is-
sues that had to be overcome as part of the deployment of proximal sensors, including
marked wet and dry seasons, high humidity, rapidly growing vegetation, fire and in-
sects.

4.1 Assessing pasture status

In this study, the time-series of images from the digital cameras and multi-spectral sen-
sors at each node clearly captured the changes in the tropical pastures; from the period
of green-up at the start of the wet season, the period of green vegetation growth dur-
ing the wet season and the gradual senescence and drying-off of the vegetation. Poor
relationships between the sensor and field measurements outside of the wet season
period are not surprising since NPV is difficult to discern in the NIR spectral region.
The lower SWIR band of our multi-spectral sensors was also in the lower part of the
SWIR range, which is not as responsive to dry vegetation as the longer SWIR bands.

When combined with climate data, the multi-spectral indices were a better predictor
of TotalBiomass than GLA, with the model with RatioNS34 and RainAcc-1Sept ex-
plaining 91 % of the variation in TotalBiomass and an RSE of 593 kg DM ha™'. While
this RSE is greater than the industry standard in field measurements of a dairy pasture
system of approximately 400 kg DM ha‘1, although in a temperature pasture (LHuillier
and Thomson, 1988), this result is encouraging for a pilot study.
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Fractional cover was successfully predicted, with indices calculated from either the
multi-spectral sensors or the digital camera data, combined with climate data, explain-
ing high proportions of the variation in % Green2D (95 and 91 % respectively, RSEs of
6 and 9 %, respectively). These strong relationships between the two dimensional vari-
ables and field measurements are not unexpected as they both are observed by looking
down on the canopy, as different from biomass or % Green3D which are measured in
three dimensions.

The multi-spectral sensors were a better predictor of % BareGround than the digital
cameras, explaining 90 and 50 % of the variation, respectively (RSEs of 5 and 15%
respectively). These results indicate that while both sensor types are suitable for mon-
itoring aspects of fractional cover in this tropical pasture system, alternative indices
extracted from the digital cameras would need to be explored to improve how well
% BareGround can be monitored. These results are again not unexpected, as while
both sensors view the canopy in two dimensions, the GLA is focussed on the green
proportion of the canopy while the band-choice for multi-spectral indices can be made
to capture both green and dead aspects of the vegetation.

Fractional cover has the potential to be a valuable part of a multiple data-source ap-
proach to providing on-farm data to farmers for sustainable pasture management. Al-
though fractional cover is widely used in landscape degradation studies, particularly in
regional monitoring (Richardson et al., 2007; Myneni and Williams, 1994; Guerschman
et al., 2009), it is a more recent measurement compared to pasture biomass which has
long been used in livestock production systems. Fractional cover is therefore a less
familiar measurement than biomass to interpret and use. However, as fractional cover
measurements become more widely available (e.g. Guerschman et al., 2009) and ex-
amples of its use in operational farm management become available, it is likely that this
will change, as occurred when NDVI started to become available for use in agriculture.
Sensor nodes could be strategically placed in sensitive areas to monitor areas that are
becoming over-grazed, for example to signal an alert to move stock.
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Due to our stringent data cleaning protocols, which excluded a large amount of data
from the multispectral sensors, the models we developed had low degrees of freedom.
Future automatic data filtering could also be implemented, for example using spectral
data to filter surface water, rather than the manual method we used where we identified
surface water using the digital camera images. Our field measurements were made
throughout the year, whereas the best models results (Tables 4 and 5) were only for
the wet season, when the green vegetation that the spectral bands of the sensors are
sensitive to is present. This is compared to the long period of senesced pastures during
the dry season which the chosen spectral bands have only limited sensitivity to. Future
studies should focus field data collection on the wet season to improve the available
data for modelling. This study was run for less than two years, which covers a limited
range of pasture conditions as a result of inter-annual variability in climate and differing
grazing and pasture management. Further research can be focussed on validating
the models. If further studies do not show consistent relationships between sites and
years, one option for calibration would be to have the farmer performing a controlled
set of calibration measurements once or twice during the growing season to calibrate
a particular sensor deployment.

4.2 Comparing camera and multi-spectral sensors

In the extensive database cleaning illustrated in Fig. 3 and Table 2 we focused on
post-collection filtering methods, as the experimental nature of our deployment meant
that data could not be screened in real time. In an operational system additional rules
could be implemented as there are approaches to sensor data cleaning and outlier
detection (e.g. Basu and Meckesheimer, 2007; Huemmrich et al., 1999; Liu et al., 2004)
including implementing data quality control algorithms within the WSN (e.g. Collins
et al., 2006; Jeffery et al., 2006; Zhang et al., 2010). In addition to the data cleaning
rules we developed, and as the field deployment progressed, we modified the sensor
maintenance protocols and infrastructure. This knowledge can also be used in future
deployments.
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We found the digital cameras to be more robust than the multi-spectral sensors in
terms of data flow, with up to 63 % of days of data from our Skye sensors being dis-
carded during data quality control. While the stringent filter criteria (Table 2) may have
resulted in some “clean” data being excluded, this was weighed up against the greater
impact of having un-trustworthy data for modelling. The long periods of erroneous multi-
spectral data made this model of sensor unreliable in this environment. In comparison
to the digital camera, the design of the Skye SKR-1850 sensors led to significant prob-
lems, including insect infestations in the sensor tubes, and water ingress below the
cosine correction filters which were fitted to the upward pointing sensors. While we
were able to mitigate the effects of these issues by regular maintenance of the sensors
and post-acquisition data cleaning, we found that the Skye SKR-1850 was not stable
enough in our tropical environment for an operational deployment on a farm. For ex-
ample, we had the complete failure of one sensor which then had to be replaced by
new equipment. Improved designs for the Skye sensor housing are likely to address
many of these issues by having a covered sensor face and also being able to calculate
reflectance directly (e.g. the SKR 1860D 4 channel sensor design Skye-Instruments
2013). Repeating this study with the newer sensor design is expected to address many
of the issues that we had with the multispectral sensors, so that the focus of future
studies will be on gathering multispectral measurements, not on data filtering. In sit-
uations where only the earlier model Skye sensors are available, it may be possible
to use a method employed by Harris et al. (2014) who were able to overcome similar
limitations of earlier models of a SKR-1800 sensor by using a cross-calibration method
between the upward- and downward-pointing sensors to retrieve reflectance. While not
recommended by the manufacturer, such a method would be useful for deployments
where the calibration certificates had expired, or where reflectance was a requirement.

Cross calibration of sensors could also be useful in situations where there is a mix of
sensor types deployed to capture spatial variability in the landscape. The growing avail-
ability of lower cost sensors provides an alternative to expensive but highly calibrated
sensors such as the Skye SKR-1850, with arrays of lower cost sensors relying on mul-
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tiple sensor redundancy rather than absolute sensor accuracy. Multi-spectral sensors
have the potential to be deployed relatively inexpensively if these technical issues can
be resolved. In our pilot study the digital camera images were downloaded manually,
but as described by Gobbett et al. (2013) in an operational system the cameras could
be solar powered and deliver data across a network that had sufficient bandwidth, par-
ticularly if daily image capture rather than every 30 min was found to be adequate.

There were benefits to having both multi-spectral sensors and digital cameras as
they complement each other in data interpretation. In an operational setting with cost
constraints, a single digital camera could be used to give visual feedback on pasture
status to the producer, while using a wide deployment of spectral sensors as the main
data source. In our study, the climate variables in the top ranked models were from
either weather station data or from separate sensors (soil moisture) on the node. A re-
mote sensor node may be enhanced by the addition of a low cost rainfall sensor. How-
ever, if sensor setup does not allow for an extra sensor to measure soil moisture or
rainfall, these results are encouraging as they indicate that a nearby meteorological
station could be used instead.

4.3 Overcoming the limitations of proximal sensors in heterogeneous pastures

An important question about the use of proximal sensors mounted on static nodes
is whether the spatial heterogeneity of pastures is adequately captured by the small
area on the ground that the sensors observe, assuming an appropriate number of
sensors are deployed. The small FOV of an individual sensor is in contrast to the
spatially-extensive data obtained from satellite and airborne sensing platforms, and
more recently from mobile platforms such as ground vehicles (e.g. King et al., 2010)
helicopters, un-manned aerial vehicles (UAV) (e.g. Von Bueren et al., 2015), and robotic
setups to move sensors (Hamilton et al., 2007). However, in an operational setting it
may not be necessary to spatially sample the landscape exhaustively, as occurs from
an imaging platform such as a satellite; the landscape only needs to be sampled suf-
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ficiently so that the expected spatial variability in the paddock is covered to enable
a farm-management decision to be made at critical points in the season.

Options for addressing these spatial sampling concerns of point-based proximal sen-
sors in an operational system include placing multiple sensors strategically in key pad-
dock zones such that the sensors capture the range of paddock variability. Remote
sensing images, even if captured only once or twice per year, could be used to aid in
the delineation of suitable zones in conjunction with local farmer knowledge. Data from
this setup could then be aggregated up to the scale of a farm management unit to cre-
ate a robust time-series of observations. Alternatively, the sensors could be mounted
on a mobile platform that monitors the pastures along a series of waypoints at set
times in the day. Unlike the set revisit times of satellite-based remotely sensed images,
helicopters and UAVs have the potential for more flexible data capture under cloudy
conditions. However, data from these platforms have more complex capture and pro-
cessing requirements due to the stability of the imaging platform and the capture of
strips of image data in separate flight lines. Increasingly, these processing limitations
of mobile platforms are being mitigated by advances in automating image processing
(Colomina and Molina, 2014), but they still have the limitation of providing intermittent
rather than continuous monitoring. More importantly, while capturing raw image data
from these systems is relatively easy, creating an operational system to convert the
data to something the producer can use for decisions making is more complex.

While there are limitations of using point-based sensors for monitoring heteroge-
neous tropical pastures, this is balanced by the benefits of having a near real-time
continuous data stream for monitoring. For example, an ideal pasture monitoring sys-
tem would combine data from multiple sources; proximal sensing data for repeated
and continuous monitoring of the pastures, and remote sensing images collected at
a limited number of times when a spatial assessment of pasture status is required. An
automatic sensor system could also be set up to trigger a notification to a smart phone
or tablet, when a critical threshold in feed availability or bare-ground has been reached.
These data sources could also be combined with other precision farm management
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technologies, such as walk over weighing (Gonzélez et al., 2014), and emerging low
power sensor network systems (e.g. http://www.taggle.com.au). For these combined
sensor technologies to be used on-farm outside of the current research pilot deploy-
ment would require future technical development to streamline their installation and
operational use.

5 Conclusions

This project successfully gathered proximal sensor data of tropical pastures over
18 months. As this was a pilot deployment of the multiple sensors in this environment
we had a number of technical issues that limited the amount of sensor data that was
available for comparing to the field measurements. Issues such as insects and dust
are common to sensor deployments in all environments, and while mitigated by sensor
maintenance, are an issue that would need to be addressed in an automated fashion if
multiple autonomous sensors are to be deployed over long time periods. Other issues,
such as the gross failure of our multispectral sensor model due to moisture entry were
exacerbated by the tropical conditions, but these issues are likely to be greatly reduced
in the newer model sensors that have been developed, particularly when choosing
low-cost sensor models. Using multispectral sensors with an improved design should
provide more robust data collection and require less stringent data filtering. Data pro-
cessing steps such as noise filtering and the necessity of calibration are common to
all spectral sensor deployments, and should be considered part of the operational de-
ployment methodology. Regular maintenance, whether manual or automated, should
include re-calibration of sensors due to degradation over time, and the cross-calibration
needs of deployments of multiple sensors. Focussing data extraction on the middle part
of the day is also common to all sensor deployments, and in an operation setting can
be used to limit data acquisition and resource when combined with limiting data acqui-
sition to the critical wet season period of vegetation growth. While we found the digital
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cameras to be more robust than the multi-spectral sensors in terms of data acquisition,
we recommend having a system with both sensor types to aid in data interpretation.

Overall, we found that the limitations of proximal sensors mounted on static nodes
are balanced by their ability to monitor continually and deliver near real-time data with-
out being affected by clouds, and their potentially for being deployed autonomously in
remote locations in extensive farming systems. Although our pilot deployment of mul-
tiple sensors in the tropical environment only had two nodes, during the wet season
(January to April) period of maximum pasture growth we found strong relationships
between sensor and field measurements. These results show that proximal sensors,
particularly when multiple sensors are combined in the same deployment, have the
ability to provide a valuable alternative to physical assessments of pasture, particularly
as continuous monitoring permits the rapid identification of changing conditions and
informed and timely management decision-making on-farm.
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Table 1. Vegetation indices calculated from the multi-spectral sensor data. p = reflectance

(Oto1).

Index Name Equation Reference

NDVI (OniR = Prea)/ (ONIR + Prea) (Tucker, 1979)

RatioNS34  pyir/Piowerswin A broadband ratio index (e.g. Hand-
cock et al., 2008)

NVI-GR (Ogreen = Pred)/ (Ogreen + Pred) A generic broadband normalized
ratio index (Jackson and Huete,
1991)

gNDVI (pNIR - pgreen)/(leR + pgreen) (Gitelson etal, 1996)

NVI-SR (plowerSWIR - :ored)/(plowerSWIR + pred) A generic broadband normalized

ratio index (Jackson and Huete,
1991)
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Table 2. Criteria for filtering multi-spectral data for a day. Daily data were removed if they met

any one of the following criteria.

Filtering Category

Data source

Criteria for deleting that day’s data.

(a) Spike in readings or readings
out of range, such as from a sen-
sor issue

Night-time (00:00 to 01:00)
median value of raw current.

One or more of the multi-spectral sensor
bands in the paired node has a night-time me-
dian value of raw current > 10000 mV.

One or more of the multi-spectral sensor
bands (raw current) in the paired node is > 3
STD from the band mean value.

Day-time (12:00 to 13:00)
median value of indices.

Data out of range (i.e. NDVI < 0.1) (Holben,
1986; Jackson and Huete, 1991).

(b) Physical/logistical

Project metadata.

Work being done in the area under the node,
sensors have been removed for maintenance
or because the paddocks are being burned
etc.

(c) Tests of spectral indices

Day-time (12:00 to 13:00)
median value of indices.

There are no data available during the midday
period from one or more of the sensors, which
would restrict the calculation of a full suite of
indices.

NDVI < 0 (not likely in tropical pastures).

RatioNS34 > 2, indicating a technical error as
pastures should not have values in this range.

RatioNS34 drops to zero briefly then returns
to previous value, indicating a technical error
with the sensor.

(gNDVI < 0 or NVI-GR > -0.10) and the date
and weather data indicates that is in the dry
season (i.e. the changing values are unlikely
due to surface water.

(d) Masking valid spectral data

Digital

camera

images,

project metadata, and soil

moisture data.

Surface water was identified by a combination
of data sources and masked as it confounded
the pasture signal.
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Table 3. Linear regression statistics for models with a single independent variable. RSE units

are % for % Green2D, and kg DM ha~! for TotalBiomass.

RZ

Period  Model RSE df p value
allyear % Green2D = -10.19 x NDVI + 16.73 13.2 40 0.02 0.368
dry % Green2D = 158.73 x NDVI - 26.19 228 30 0.50 0.000
wet % Green2D = 129.24 x NDVI - 16.92 116 8 0.82 0.000
allyear % Green2D = —-25.95 x RatioNS34 + 45.5 30.9 30 0.08 0.122
dry % Green2D = -25.95 x RatioNS34 + 45.5 30.9 30 0.08 0.122
wet % Green2D = 279.61 x RatioNS34 — 201.89 57 8 0.96 0.000
allyear % Green2D = 192.24 x GLA + 5.626 13.7 37 0.79 0.000
dry % Green2D = 192.24 x GLA + 5.626 13.7 37 0.79 0.000
wet % Green2D = 74.344 x GLA + 23.155 104 21 0.87 0.000
all year TotalBiomass = 2016.6 x NDVI + 1751 1523 30 0.03 0.308
dry TotalBiomass = 2016.6 x NDVI + 1751 1523 30 0.03 0.308
wet TotalBiomass = 6214 x NDVI - 1459 1469 8 0.40 0.051
allyear TotalBiomass = —134.6 x RatioNS34 +2501.3 1549 30 0.00 0.870
dry TotalBiomass = —134.6 x RatioNS34 + 2501.3 1549 30 0.00 0.870
wet TotalBiomass = 15199 x RatioNS34 — 11977 1208 8 0.59 0.009
allyear TotalBiomass = 3811 x GLA +2138 1409 37 0.12 0.030
dry TotalBiomass = 3811 x GLA + 2138 1409 37 0.12 0.030
wet TotalBiomass = 2441 x GLA + 1040.8 1351 21 0.30 0.007
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Table 4. Linear regression statistics for the three best models of wet-season data for each bio-
physical variable (dependent variable) and (a) models with one spectral index, and (b) models
with one spectral index and one climate variable. RSE units are kgDMha™" for TotalBiomass,

cm for VegetationHeight, and % for the other dependent variables.

R2

Biophysical (a) Model (spectral) RSE df p value
15199 x RatioNS34 — 11977 1208.0 8 0.59 0.009
TotalBiomass 6214 x NDVI - 1459 1469.0 8 0.40 0.051
10464 x gNDVI - 4049 1487.0 8 0.38 0.057
227.71 x RatioNS34 - 170.93 10.6 8 0.81 0.000
VegetationHeight 107.46 x NDVI -21.55 127 8 0.72 0.002
164.745 x NVI-GR + 39.865 13.8 8 0.68 0.004
290.13 x RatioNS34 - 202.47 11.3 8 0.86 0.000
% Green3D 243.31 x gNDVI - 76.68 127 8 0.82 0.000
139.31 x NDVI - 13.51 13.6 8 0.79 0.001
279.61 x RatioNS34 — 201.89 57 8 0.96 0.000
% Green2D 129.24 x NDVI - 16.92 116 8 0.82 0.000
220.61 x gNDVI - 72.53 119 8 0.81 0.000
240.3 x RatioNS34 — 154.48 171 8 0.64 0.005
% TotalVegetation2D 107.836 x NDVI + 6.334 199 8 0.52 0.018
180.35 x gNDVI - 37.88 20.4 8 0.49 0.023
—108.44 x RatioNS34 + 114.61 11.7 8 0.44 0.036
% Litter2D —-85.696 x NVI-GR + 14.214 11.7 8 0.44 0.037
-50.92 x NDVI + 43.32 122 8 0.39 0.053
—-129.2 x RatioNS34 + 137.91 99 8 0.61 0.008
% BareGround —-102.6 x gNDVI + 78.52 109 8 0.52 0.018
-55.94 x NDVI + 50.28 11,7 8 0.46 0.031
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Table 4. Continued.

Biophysical (b) Model (spectral + climate) RSE df R? p value
2834.31 x RatioNS34 + 3.10 x RainAcc-1Sept - 2524.45 593 7 0.91 0.000
TotalBiomass 980.24 x NVI-GR + 3.38 x RainAcc-1Sept — 78.78 615 7 091 0.000
337.90 x NDVI + 3.41 x RainAcc-1Sept — 293.67 622 7 0.91 0.000
236.72 x RatioNS34 — 1.70 x Rain — 175.55 57 7 0.95 0.000
VegetationHeight 117.86 x NDVI - 2.06 x Rain — 22.98 70 7 093 0.000
205.10 x gNDVI - 2.42 x Rain - 75.18 75 7 0.92 0.000
183.75 x NVI-SR - 0.78 x SoilMoisture — 31.55 84 4 092 0.007
% Green3D 131.70 x NDVI - 0.38 x SoilMoisture + 0.45 84 4 092 0.007
239.96 x gNDVI - 0.51 x SoilMoisture — 65.33 80 4 092 0.006
236.72 x RatioNS34 - 1.70 x Rain — 175.55 57 7 0.95 0.000
% Green2D 117.86 x NDVI - 2.06 x Rain — 22.98 7.0 7 0.93 0.000
205.10 x gNDVI - 2.42 x Rain — 75.18 75 7 092 0.000
360.77 x RatioNS34 — 3.496 x SoilMoisture — 222.80 112 4 0.90 0.011
% TotalVegetation2D  332.866 x NVI-GR - 4.878 x SoilMoisture + 136.58 124 4 0.87 0.016
163.146 x NVI-GR - 6.409 x Ty, + 206.36 11.7 7 0.86 0.001
—-61.13 x NDVI + 2.019 x Rain + 44.721 6.3 7 0.86 0.001
% Litter2D —-80.68 x NVI-SR + 2.109 x Rain + 59.137 6.5 7 0.85 0.001
—-118.14 x RatioNS34 + 1.825 x Rain + 119.59 6.8 7 0.83 0.002
—159.02 x RatioNS34 + 1.162 x SoilMoisture + 148.21 50 4 090 0.010
% BareGround —86.55 x NDVI + 1.576 x SoilMoisture + 43.69 50 4 090 0.010
—76.95 x RatioNS34 + 3.668 x Ty, — 26.474 54 7 0.90 0.000
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Table 5. Linear regression statistics for the three top performing models of wet-season data for ~ ©
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Biophysical variable  (a) Model (GLA) RSE df R? p value h
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Table 5. Continued.

Biophysical variable  (b) Model (GLA + climate) RSE df R? p value
509.204 x GLA + 35.661 x YearDay + 350.34 956.7 20 0.67 0.000
TotalBiomass 907.013 x GLA + 2.316 x RainAcc-1Sept + 473.932 1102.0 20 0.56 0.000
2667.67 x GLA — 167.88 x Rain + 1310.21 1116.0 20 0.55 0.000
54.968 x GLA —2.084 x Rain +22.203 144 20 0.70 0.000
VegetationHeight 41.026 x GLA + 0.206 x YearDay + 14.88 16.7 20 0.60 0.000
44.396 x GLA + 0.012 x RainAcc-1Sept + 15.99 171 20 0.57 0.000
57.917 x GLA - 0.174 x SoilMoisture + 46.62 71 16 0.90 0.000
% Green3D 53.066 x GLA +0.013 x RainAcc-1Sept + 36.076 95 20 0.86 0.000
53.806 x GLA + 0.141 x YearDay + 36.442 9.8 20 0.85 0.000
63.352 x GLA + 0.017 x RainAcc-1Sept + 19.095 8.8 20 0.91 0.000
% Green2D 63.189 x GLA + 0.206 x YearDay + 19.169 89 20 0.91 0.000
75.813 x GLA - 1.09 x Rain + 24.905 9.2 20 0.90 0.000
38.298 x GLA + 0.427 x YearDay + 29.089 13.0 20 0.80 0.000
% TotalVegetation2D  64.565 x GLA —2.308 x Rain + 41.068 13.7 20 0.78 0.000
43.318 x GLA + 0.027 x RainAcc-1Sept + 30.664 14.7 20 0.74 0.000
—27.354 x GLA +2.456 x T, —27.108 8.8 20 0.61 0.000
% Litter2D —15.415 x GLA - 0.015 x RainAcc-1Sept + 30.009 9.1 20 0.59 0.000
—15.067 x GLA - 0.188 x YearDay + 30.015 9.2 20 0.58 0.000
—23.629 x GLA - 0.235 x YearDay + 41.268 152 20 0.50 0.001
% BareGround —-38.112 x GLA + 1.312 x Rain + 34.619 156.3 20 0.49 0.001
—28.328 x GLA - 0.012 x RainAcc-1Sept + 39.686 16.0 20 0.44 0.003
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Figure 1. The unfenced node with (a) the paired multi-spectral sensors with the cosine diffusion
filter fitted only to the upward-pointing sensor, (b) the digital camera, (c) solar panel power
supply, and (d) relay hardware to send data to the WSN.

18045

Jaded uoissnosiq

Jladed uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

BGD
12, 18007-18051, 2015

Combining
multi-spectral
proximal sensors and
digital cameras

R. N. Handcock et al.

' III III


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/18007/2015/bgd-12-18007-2015-print.pdf
http://www.biogeosciences-discuss.net/12/18007/2015/bgd-12-18007-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

1200

1000 A

o
(=3
(=}

Raw current (mV)

N
=)
S

200

0

Figure 2. Example of the diurnal cycle of sensor data during the dry season when a large green
leaf was held up to the multi-spectral sensors on the fenced node to test its response (4 Octo-
ber 2011). Note: for the NDVI values (a) night-time values, (b) the ramp-up after dawn (approx.
6:30a.m.), (c) the relatively stable values for the middle part of the day, (d) the spike in NDVI
when the sensors recorded an elevation of NIR reflectance in response to green vegetation
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Figure 4. Skye multi-spectral sensors showing (a) mud wasps, and (b) wasp larvae in sensor

tubes.
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Figure 5. Field observation time series from the two nodes of (a) TotalBiomass, (b) Vegetation-
Height, (c) % Green3D, and (d) % Green2D. The black dashed line indicates the timing of the
controlled burn, and the blue lines the start of the wet seasons.
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Figure 7. Time series of the Green Leaf Algorithm (GLA) calculated from digital camera images
at each node, using a daily image from approximately 12:00. The black dashed vertical line
indicates the timing of the controlled burn, and the blue lines the start of the wet seasons.
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