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Abstract

Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dis-
solved nitrogen (TDN), is transported with not only in river channels but also across
the entire river basin, including via ground water and migratory animals. In general,
TPN export from an entire river basin to the ocean is larger than TDN in a mountainous
region. Since marine derived nutrients (MDN) are hypothesized to be mainly trans-
ported as suspended matters from the ground surface, it is necessary to investigate
the contribution of MDN to the forest floor (soils) in order to quantify the true role of
MDN at the river ecosystem scale. This study investigated TN export from an entire
river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha)
and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The
maximum potential contribution of TN entering the river basin by salmon was found to
be 23.8 % relative to the total amount of TN exported from the river basin. The con-
tribution of particulate nitrogen based on suspended sediment from the ocean to the
river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of
nitrogen (615N).

1 Introduction

SIA is increasingly being used to examine connectivity in coastal aquatic-terrestrial
ecosystems, such as the input of MDN from the open ocean to coastal and widely
river ecosystems (Wyatt et al., 2010a, b, 2012). In the case of river ecosystems, the
transportation of nutrients, such as nitrogen and phosphorus, by migrating fish results
in enhancement of biofilms and planktonic productivity in river systems (Juday et al.,
1932; Cederholm and Peterson, 1985; Bilby et al., 1996; Gresh et al., 2000; Chaloner
et al., 2002; Moore and Schindler, 2004; Yanai and Kochi, 2005; Levi and Tank, 2013).
Most of those cases, many terrestrial consumers like mammals, birds, fishes and in-
sects have been shown to play a large role in terms of providing MDN to watersheds
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(Donaldson, 1966; Ben-David et al., 1997a; Hilderbrand et al., 1999; Gende et al.,
2002; Naiman et al., 2002; Wilkinson et al., 2005; Bartz and Naiman, 2005). Moreover,
MDN inputs have been shown as important processes controlling the productivity of
ecosystem. For example, Merz and Moyle (2006) found that the contribution of MDN to
the foliar nitrogen of wine grapes was about 18 to 25 %. Also, Hilderbrand et al. (1999)
demonstrated that trees and shrubs near spawning streams receive 24 to 26 % of the
foliar nitrogen from MDN, while Helfield and Naiman (2002) suggested that 15.5 to
17.8 % of spruce foliage nitrogen is provided from MDN. Thus, isotopic methods as
intrinsic geospatial tracer provided quantification of cross-ecosystem transfer of nutri-
ents. In particular, migrating fish, such as salmon, have been found to be necessary for
a sustainable nutrient-cycle system due to their important role as nutrient transporters
(Ben-David et al., 1998; Wipfli et al., 1998; Yanai and Kochi, 2005; Gende et al., 2007;
Hocking and Reimchen, 2009; Hocking and Reynolds, 2011). Additionally, MDN has
been demonstrated to be important not only for river ecosystems but also potentially
for upstream lakes (Kline et al., 1990, 1993; Schindler et al., 2003).

When we consider nutrient flux in a river flowing from the upstream end into the
ocean, the flux depends on nutrients supplied not only inside the river itself but
also from the entire river basin (Dutta and Nakayama, 2010; Alam and Dutta, 2012;
Riggsbee et al., 2008). Also, particulate nutrient flux, which is given from surface soils
dominantly, is revealed to be larger than dissolved nutrient generally in a mountainous
region (Nakayama et al., 2011). Cederholm et al. (1989) demonstrated that mammals
and birds consume migrating fish, which may result in the secondary dispersion of MDN
across the river basin associated with the movement of these consumers. Other studies
have revealed that mammals incorporate MDN from salmon, which may subsequently
lead to re-export to the ocean through river flows (Bilby et al., 1996; Ben-David et al.,
1997a, b; Hilderbrand et al., 1999; Szepanski et al., 1999; Reimchen, 2000). However,
the contribution of MDN to surface soils, which may be transported from a river basin to
the ocean as suspended sediments, at the river basin scale has not been adequately
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quantified in natural systems because of difficulty to show those complex food web and
accurate biomass.

In this study we present the TN transport across an entire river basin to the ocean,
the potential contribution of TN from the ocean to a river basin by salmon, and the con-
tribution of MDN to surface soils in a river basin. Integrated stable isotope researches
in the geological, hydrological and biological aspects allowed us to estimate nutrient
budgets in natural river basin and convinced us to conserve the ocean river connectiv-

ity.

2 Geophysical setting

Our target area, the Shiretoko Peninsula, was registered as a World Natural Heritage
area in July of 2005. Shiretoko is located at the southernmost extent of drift ice and
its ecological systems exhibit high biodiversity and high rates of nutrient circulation,
particularly due to runs of pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon
from the Sea of Okhotsk. Potential runs of salmon along the coast of Hokkaido in the
Sea of Okhotsk have been estimated at about 29 900 000 individuals a year (Hokkaido
National Fisheries Research Institute, Fisheries Research Agency, 2009), equivalent to
2590 tons of total nitrogen. The size of the Okhotsk coastal region of Hokkaido is about
24000 km2, which corresponds to that the mean total nitrogen input from the ocean is
about 108 kg km ™2 yr_1 if we assume that all salmon run up rivers and the total nitro-
gen is distributed into the river basins completely. Shiretoko is located on the northeast
coast of Hokkaido, Japan (approximately 43°57' to 44°21' N and 144°58’ to 145°23' E),
and has a width, length and maximum altitude of about 15, 50 km and 1660 m, respec-
tively (Fig. 1). The Rausu River basin was selected as a main study area because its
watershed is the largest in the region and it is considered a representative watershed
in the Shiretoko Peninsula. The watershed area, river length, and the mean river slope
are 32.5 km2, 7km, 1/7, respectively. Because of the steep slope, nutrient flux due to
suspended sediments is larger than dissolved nutrient flux in the Rausu River basin
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(Nakayama et al., 2011). Field experiments were carried out over 5 years from 2008 to
2012. In order to compare with the Rausu River basin, the field observation regarding
stable isotope analysis was also carried out in 2014 in the Rusa River basin. The water-
shed area, river length, and the mean river slope are 9.2 km2, 5.5km, 1/7, respectively

(Fig. 1).

3 Methods
3.1 Nitrogen from a river basin to the ocean

TN, TDN and TPN were measured at St.0 around the river mouth from 2007 to 2009 in
the Rausu River basin (Fig. 2). The nitrogen concentration of filtered and non-filtered
water samples were analyzed by the cadmium reduction-colorimetric method. Annual
TN and annual TDN exports to the ocean were evaluated using the river discharge
at St.0 with TDN-discharge and TPN-discharge curves. The TDN-discharge and TPN-
discharge curves were produced using ten different peak discharge floods and base
flow discharges. As river discharge was not measured during the winter season from
January to March, a storage function method was applied to estimate river discharge
from 2008 to 2012 (Michael, 1978; Michael et al., 1979). The validity of the storage
function method was confirmed through comparison with the observed river discharge
from April to December.

3.2 Salmon runs

To evaluate the contribution of salmon to soil organic matter (SOM), salmon runs were

investigated in the Rausu River. Salmon were caught at the river mouth for artificial in-

cubation and release, providing an estimate of the number of salmon caught by the ap-

paratus (Hokkaido National Fisheries Research Institute, Fisheries Research Agency,

2009). The apparatus for catching salmon consisted of lattice fence, which does not

obstruct flood flow or completely block the runs of salmon. Therefore, it was necessary
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to quantify the capture rate of the apparatus in order to estimate the actual volume
of salmon runs. Field observations were conducted in the Tokorohoronai River, which
is located in the same region of Hokkaido and has a custom to remove its apparatus
before and after salmon run seasons, allowing us to monitor the salmon escapement
from the apparatus and the salmon run under the open condition at the same place.
The capture rate of the apparatus was calculated with numbers of salmons passing
the observation point which has a channel section of 3m in width and 0.2 m in depth,
instead of the Rausu River because its river width (about 15m) is too wide to cover
the entire width. We used two infrared cameras (SM-AVIR-602S, Hero Corp., lzumo,
Japan) placed 2m above the river surface and recorded videos in all day to moni-
tor the individual salmon passing this 3 m section. Videos were taken from the 25 to
28 November (before removal of the apparatus) and from the 4 to 7 December (af-
ter removal of the apparatus) in 2013. The number of salmon runs was calculated as
the differences of the numbers of individuals running to upstream and those to down-
stream at the observation point. No salmon were captured and tagged for individual
identification. There was no influence of rainfall during the observation period.

3.3 Stable isotope analysis

MDN, such as nitrogen, are generally supplied from the ocean to surface soils in a river
basin as SOM, which includes feces of mammals, droppings of birds, and the remains
of salmon preyed upon by mammals, birds and insects. To focus on the influence of
SOM on particulate nitrogen in the river basin soils, soil particles with diameter of less
than 500 um after rinsing in 1N-HCL solution were used in the analysis. Therefore, it
cannot be allowed to evaluate how much TN is exported from the river basin to the
ocean. However, TPN export from an entire river basin is revealed to be larger than
TDN in the Rausu River basin due to the steep slope (Nakayama et al., 2011). In gen-
eral, some proportion of the nitrogen is reduced due to denitrification, which indicates
the increase in 6'°N of soil (Yamada et al., 1996). Wada et al. (1984) demonstrated
that denitrification seems to have a small effect on the variation of 6'°N of SOM under
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aerobic conditions close to the groundsurface in the natural forest. Rennie et al. (1976)
revealed that isotope ratio of nitrogen is identical with organic nitrogen in the natural
forest, which suggests that denitrification does not involve any isotope fractionations.
Mckinley et al. (2013) also demonstrates that 5N of groundsurface soil is in aerobic
conditions in forests when water table is not close to the groundsurface. Since our sam-
pling was carried out within 5cm thickness from the groundsurface and groundsuface
soil is not saturated due to the steep slope, sampled SOM is considered to be under
aerobic conditions. Therefore, we made an attempt to estimate the contribution of MDN
to SOM as a sequel to an accumulation, which directly corresponds to the suspended
sediments transporting particulate nutrient through a river to the ocean, by sampling
surface soils across the Rausu River basin (Fig. 2). Surface soil samples were taken
at 12, 20 and 21 stations in 2008, 2009 and 2012, respectively. In 2008, fewer samples
were taken as we did not have permission to sample surface soils in special protec-
tion zones. Surface soils were sampled from three different points at each station in
a volume of 15cm x 15cm x 5¢cm (height x width x depth). Surface soil sampling sta-
tions in 2012 are shown in Fig. 2. Since previous studies have revealed that surface
soil transport is related to the spatial distribution of surface soil type, land-use type and
vegetation (Ishida et al., 2010), the location of each sampling station was selected by
dividing the river basin into 21 domains (sub-basin areas) that vary in soil type and
vegetation. The spatial distribution of surface soil type is divided into 6 categories. Al-
though the spatial pattern in vegetation is complicated, the vegetation can generally be
categorized in terms of altitude. Since Shiretoko is protected as natural World Heritage
area, all areas studied are classified as forest and have high vegetation cover. Stable
isotope ratios of carbon (6130) and nitrogen (615N) were measured using a Delta Plus
Advantage mass spectrometer (Thermo Electron) coupled with an elemental analyzer
(Flash EA 1112, Thermo Electron) at the Port and Airport Research Institute, Japan
(Table 1 for 5'3C and 6"°N of SOM). Stable isotope ratios are expressed in § notation
as the deviation from standards in parts per thousand (%.) according to the following
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equation:
613C’615N = [Hsample/Rstandard -1] (1)

where R="2C/"?C or "°N/"N.

Vienna Pee Dee Belemnite and atmospheric nitrogen were used as the isotope stan-
dards of carbon and nitrogen, respectively. The analytical precision in the mass spec-
trometer system based on the standard deviation of the internal reference (L-histidine)
replicates was < 0.15%o. for both 5'3C and 6"°N. The contribution of MDN to SOM in
surface soils was evaluated by applgllng a two source mlxmg model based on stable
isotope analysis (SIA) of carbon (6 °C) and nitrogen (5 N) (Kline et al., 1998; Moore
and Semmens, 2008; Hossler and Bauer, 2012). Three soil samples were collected at
each sampling station in order to account for small scale variability in SOM (Fig. 2 and
Table 1). Salmon tissue isotopes were considered representative of the isotope com-
position of ocean productivity. To isotopically characterize terrestrial productivity, we
considered one terrestrial end-members (sources): Soil Samples exhibiting the Low-
est values of 6'°C and 6'°N (hereafter SSL), and thus assumed to have the highest
terrestrial contribution to SOM. SSL was collected close to the top of the mountain,
where MDN is not expected to influence isotope values. Representative soil samples
collected in the same river basin were chosen because they have isotopically similar
characteristics to the target soil samples in this study.

The contribution of MDN to SOM was evaluated using a two sources mixing model
based on the measured 6'°C and 6'°N. The average contribution in the Rausu River
basin was computed using each sub-basin area obtained from the Thiessen method.

fo_mon +fc_on =1 (2)
fo_MpNS *Csaimon + fo_LonG Csst = 6'°Cy (3)
'N_mDN *+ fn_LOn =1 (4)
fu_MDNO "Nsaimon + fn_LonS Nes = 6 °Ngy (5)
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where fc \ypn and 7 | py are the contributions of MDN and land-derived nutrient (LDN)

by carbon, 61308a|m0n, 6 13033L and 613080" are the stable isotope ratios of carbon for
salmon, SSL and soil samples, respectively, fy ypy and fy | py are the contributions

of MDN and LDN by nitrogen, 615Nsa|mon, 615NSS,_ and 615N30” are the stable isotope
ratios of nitrogen for salmon, SSL and soil samples, respectively.

As bamboo grass (Sasa senanensis) is the dominant species in the study area,
bamboo grass was collected at 13 soil sampling points (St.1, St.2, St.3, St.4, St.7,
St.8, St.10, St.11, St.12, St.13, St.14, St.17, and St.21). Furthermore, droppings of
sea eagles (Haliaeetus spp.) and feces of brown bear (Ursus arctos), which are typical
migratory mammals and birds in Shiretoko, were collected to investigate whether or not
they include MDN and thus contribute to SOM. Samples of feces and droppings for SIA
analysis offer a major advantage, i.e. no isotopic fractionation and thus ideal to use the
stable isotope values as a MDN tracer (Fry, 2006). Chum salmon tissues and droppings
of sea eagles were collected at the river mouth and feces of brown bear were collected
at St.14. The samples were pre-treated by rinsing with chloroform-methanol solution
(2:1) prior to SIA, to remove isotopically fractionated metabolites, such Metabolites in
the samples were removed by urea and ammonium (Kuwae et al., 2008, 2012).

4 Results and Discussion

4.1 Estimation of nitrogen export to the ocean

During 2007 to 2009 the concentration of TDN was observed to be constant,
0.090mg L (SD 0.022mg L ), regardless of the discharge in the Rausu River. In con-
trast, TPN was revealed to be a function of river discharge (r2 = 0.88; Eq. 6) (Fig. 3).
TPN showed a strong correlation with suspended sediment (SS) concentrations, with
SS concentration increasing with increasing river discharge (Fig. 3). TPN was modeled
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by using our field observation results, discharge and TPN as Eq. (6).
TPN = 0.0032 x Q""" (6)

where @ is the river discharge (m3 s_1).

The validity of the storage function method model was confirmed using the observed
river discharge from April to September of 2009, which resulted in a Coefficient of
Determination (CoD) of 0.61. The reliability of the model has been shown to be high
enough for the analysis of river discharge when the CoD is more than 0.6 (Dutta and
Nakayama, 2010). Annual mean export of TDN, TPN and TN from 2008 to 2012 were
5210, 14750 and 19960 kgyr‘1, respectively. Since the size of the Rausu River basin
of Shiretoko is 32.5 km2, the annual mean exports of TDN, TPN and TN per unit catch-
ment area were 160, 454 and 614 kg km™2 yr‘1, respectively (Table 2). The average
concentrations of TDN and TPN from 2008 to 2012 were 0.090 and 0.216 mg L™,
which agrees with a previous study at the site (Nakayama et al., 2011).

4.2 Contribution of salmon runs to nitrogen input from the ocean

The average number of salmon passing the cameras in the Tokorohoronai River dur-
ing the 4 days while the apparatus for catching salmon was present was 0.49 h'.
The average numbers for 4 days after the apparatus was removed from the river was
0.61h7", so the rate of capture of salmon by the apparatus (CS) was estimated as
20 %: (0.61-0.49)/0.61 = 0.20. Since the field observations were conducted at the end
of November and the beginning of December after the peak of salmon runs, floods may
damage the apparatus for catching salmon and the estimated capture rate, 20 %, may
be underestimated. Therefore, we attempted to apply two different larger rates of cap-
ture of salmon, 50 and 80 %, in order to show the possible nutrient re-export from the
ocean due to salmon runs.

In the Rausu River of Shiretoko, the annual average numbers of salmon caught by
the apparatus at the river mouth were 3075 and 10580 for chum and pink salmon,
respectively, from 2001 to 2009. By assuming that all apparatuses have the same
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rate of capture, the potential for chum and pink salmon runs can be estimated as
15375 and 52900 (CS 20 %), 6150 and 21 160 (CS 50 %), and 3844 and 13225 (CS
80 %), respectively. The average weight of chum and pink salmon are 3.3 and 2.0kg,
respectively (Makiguchi et al., 2007), with a nitrogen content of about 30.4gkg'1
(Larkin and Slaney, 1997). Therefore, annual TN potentially transported by chum and
pink salmon is estimated to be 1542 and 3216 kg yr'1 (CS 20%), 617 and 1287 kgyr'1
(CS 50%), and 386 and 804 kgyr_1 (CS 80%), respectively. Finally, the annual TN
transported by chum and pink salmon per unit catchment area can be estimated as
146 kgkm™2yr~' (CS 20 %), 59 kgkm™2yr~' (CS 50 %), and 37 kgkm 2 yr~' (CS 80 %),
(SD 19kg km™2 yr'1), which corresponds to the contribution of TN by salmon, 23.8 %
(CS 20 %), 9.5% (CS 50 %), and 6.0 % (CS 80 %), relative to the annual outflow of TN
per unit area (considered to be 100 %) (Table 2).

4.3 Contribution of MDN to SOM in the Rausu River basin

Both 6'3C and 6'°N of SOM were lower than those of salmons (Fig. 4). Interestingly,
SSL has almost the same value of the mean 6'°N of bamboo grass, which may sug-
gest that bamboo grass can be considered to be as LDN. The stable isotope ratios in
sea eagle droppings and brown bear feces were higher than LDN, indicating that sea
eagles and bears are also one of the transporter of MDN to SOM. In the case of multi-
ple food sources, feces and droppings are likely to be enriched in relatively indigestible
food sources, when compared with stomach contents or assimilated materials (Spon-
heimer et al., 2003; Kuwae et al., 2008). Therefore, in the present study, feces and
droppings are likely to be enriched in LDN (e.qg., plants) because LDN would be more
indigestible than MDN (e.g., fishes). However, such an enrichment does not affect the
qualitative investigation, i.e., whether or not feces and droppings include MDN and thus
contribute to SOM. Since brown bears are previously thought to be the major terrestrial
consumer of spawning salmon, they may impact re-export of nutrient from the ocean
across the river basin, such as through release of MDN-rich urine and feces (Hilder-
brand et al., 1999). Rennie et al. (1976) demonstrated that 5'°N is associated with soil
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organic matter, which is given as leaf litters, droppings from birds, feces from animals
and so on. Also, Wada et al. (1984) revealed that 5"°N is almost identical with organic
nitrogen in natural forests. Therefore, it is important to understand the influence of sea
eagles and bears on nutrient-cycle system. However, from Fig. 4, we cannot quantify
the relative contribution of sea eagles and bears to total MDN transport.

The isotopic composition of salmon as representative of oceanic 5"°N and 6'C
were 10.99 and -20.54, respectively. The 5"°N and 6'°C of SSL were -3.19 and
—29.48, respectively. Therefore, the three year average estimate of the contribu-
tion of MDN to SOM for 6'°N depending on the choice of terrestrial isotope values
was obtained e.g. 22.9% (SD 3.6 %) by using a two sources mixing model (Fig. 5).
As the reference, the three year average estimate of the contribution of MDN to
SOM for 6'3C was 17.7% (SD 1.1%) (Fig. 5). Since annual export of TPN per
unit area from the Rausu River basin to the ocean was 454 kg km ™2 yr‘1, annual re-
export of TPN originally derived from the ocean is estimated to be 104 kg km™2 yr‘1
(= 454kgkm™2yr~' x22.9%) (SD 16kgkm™2yr~' = 454kgkm™2yr~" x 3.6 %) based on
the contribution of MDN to SOM (Fig. 5 and Table 2).

Wada et al. (1984) demonstrated that 5"°N of SOM in the forest has significant vari-
ation in the surface soil, such as about —3 to —2%. at Jumoniji in Chichibu and at Mt.
Shigayama, and about 1 to 5%, at Memuro in the eastern Hokkaido. 5'5N of about 1 to
5 %o at Memuro was obtained in the Hokkaido Agricultural Experimental Station, which
is located 10 km from the center of Obihiro city where 150 000 people live. Therefore,
the values of about 1 to 5%. at Memuro are expected to include the influence of emis-
sion of anthropogenic nitrogen. 5"°N of about —3 to —2%. in surface soil at Jumoniji and
at Mt. Shigayama may support our assumption that the larger the 5"°N is, the higher
the contribution of MDN becomes. In order to confirm our assumption, we carried out
the similar field observation at the Rusa River basin (Fig. 6). In the Rausu River, only
a part of the area is registered as a special protection zone of the Natural World Her-
itage region, but the whole area of the Rusa River is covered by a special protection
zone. The Rusa River basin is thus considered as more protected and natural area as
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the Natural World Heritage compared to the Rausu River. Therefore, the contribution
of MDN is expected to be larger in the Rusa River basin compared to the Rausu River
basin (Fig. 2). As a result, the spatial average of 5"°N in the Rusa River basin was
obtained as 1.1 %o, which is 1.0 %o larger than the Rausu River basin. It may be thus
suggested that the higher value of 5"°N of SOM in surface soil is associated with the
contribution of MDN. However, it should be noted that this value for MDN re-export is
estimated without contribution of marine derived TDN and thus should be considered
the minimum annual MDN re-export from the viewpoint of TN.

5 Conclusions

In recent decades, field experiments and stable isotope analyses have been employed
to understand the contribution of runs of salmon to river ecosystems. In river ecosys-
tems, runs of salmon are thought to play a large role in the sustainability of nutrient
circulation due to their contribution to mammals that incorporate MDN and disperse it
across the entire river basin, with the MDN potentially re-exported to the ocean through
river flows. In previous studies, the input of TN from the ocean to river basin ecosys-
tems has been actively investigated, since it can control ecosystems in which salmon
run upstream for spawning, but the contribution of TN from the ocean across an entire
river basin has not been examined in detail. This is despite the fact that waterfalls and
the other obstacles, which inhibit runs of salmon, are known to reduce the transport of
MDN upstream. Therefore, this study quantifies the role of salmon in transporting MDN
across an entire river basin of the Shiretoko World Natural Heritage area using stable
isotope analysis.

Annual TN transport estimated for pink salmon was twice that for chum salmon,
which suggests that pink salmon play a greater role in the input of TN across the
Rausu River basin. The potential contribution of TN by salmon was 23.8 % (CS 20 %),
9.5% (CS 50%), and 6.0% (CS 80 %), while the contribution of MDN to SOM was
22.9% (SD 3.6 %). Therefore, the annual potential contribution of salmon to TN may be
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146 kgkm 2 yr~' (CS 20%), 59 kgkm™2yr~' (CS 50 %), and 37 kgkm™2yr~' (CS 80 %),
which provides valuable support for an influence of MDN on the ecological systems
across this river basin (Table 2).
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Table 1. 5'°N and 6'3C of SOM in the Rausu River basin in 2012.

Station number  6'°N (%)  6'3C (%)
St.1 -0.8 -27.6
St.2 -0.1 -27.0
St.3 -0.1 -27.1
St.4 0.9 -27.1
St.5 -1.1 -27.5
St.6 1.7 -28.0
St.7 0.8 -29.0
St.8 0.4 -29.0
St.9 2.2 -28.0
St.10 2.2 -27.6
St.11 0.3 -27.5
St.12 0.3 -26.8
St.13 -0.4 -29.0
St.14 0.7 -29.0
St.15 0.4 -29.3
St.16 -0.3 -27.8
St.17 2.0 -275
St.18 -2.1 -27.1
St.19 -1.3 -28.7
St.20 0.6 -28.0
St.21 0.7 -27.8
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were 22.9 %. (b) Average contributions of MDN based on SSL for 5'3C were 17.7 %.
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