

Supplement of

The climatic imprint of bimodal distributions in vegetation cover for West Africa

Z. Yin et al.

Correspondence to: Z. Yin (zun.yin@foxmail.com)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

There is a contentious debate about whether the MODIS VCF product [Hansen et al., 2003] is suitable for bimodality research. Hanan et al. [2014, 2015] pointed out that the multimodality found in the MODIS woody cover product [Staver et al., 2011, Hirota et al., 2011] may be attributable to the Classification And Regression Tree (CART) method, which is used for woody cover estimation [Hansen et al., 2003]. Moreover, the aboveground biomass data derived from MODIS NBAR product (MOD43B4.V4, Nadir Bidirectional reflectance distribution function Adjusted Reflections) also used the CART method [Baccini et al., 2008], which might suffer from the same problem. Through data analysis by Baccini et al. [2008] and Staver and Hansen [2015] it shows that the CART method has potential to cause artificial bias in the satellite estimation. However in this supplement we will show that the bimodality in the data sets we used for analysis is not the reflection of the CART algorithm.

1 MODIS VCF product (MOD44B)

The key point is whether the observed multimodality is caused by the artificial bias due to CART. To address this question, it is necessary to know where biases and multimodality are located. Figure 1 in Staver and Hansen [2015] provides the validation of the MODIS VCF product. In Fig. 1(b) (validation at Africa), the bias lies between 10–30%. Woody cover at 40% exists in validation data but is absent in MODIS estimation. Simultaneously, bias does not occur at the range between 50 and 70%. Thus if the observed bimodality [Staver et al., 2011, Hirota et al., 2011] was caused by the CART, two peaks in the density distribution will present at 10–30% and 50–70%. However, the threshold of bimodality discovered [Staver et al., 2011, Hirota et al., 2011] is at 60%, implying that the lack of observed woody cover in MODIS at 60% is not caused by the CART.

Further evidence is the histograms of MODIS product and observed data (Figure 2 in Staver and Hansen [2015]). If the bimodality was caused by the CART, there should be a sink of MODIS woody cover at 60% compared with the validation data. However, the histogram of the MODIS product coincides with that of observed data very well (the trend is much clearer for the global region, see Fig. 2(a) in Staver and Hansen [2015]). In this paper we only focus on the bimodality between savanna and forest (gap occurs at 60%). Even if the MODIS product is not well resolved at woody cover values below 30% [Staver and Hansen, 2015], the low woody cover part is still hardly overestimated over 60% by the CART (see Fig. 1 in Staver and Hansen [2015]). Thus we conclude that it is reasonable to consider that part as savanna in our analysis.

2 Aboveground biomass data

Figure 5 in Baccini et al. [2008] illustrates the validation of the aboveground biomass data. Note that 1 Mg ha^{-1} is equal to 0.05 kgC m^{-2} . Then the threshold found between forest and savanna (7 kgC m^{-2}) is at 140 Mg ha^{-1} . Although a bias also exist, it does not effect the bimodality and the threshold. It perfectly meets the requirement raised by Hanan et al. [2015] as: “the discontinuities in satellite estimation should surely be accompanied by similar discontinuities in validation data”, when they replied to Staver and Hansen [2015]. Moreover, Baccini et al. [2008] also used another independent source (Lidar GLAS measurements) for validation, which did not use the CART method. Figure 7 in Baccini et al. [2008] illustrates the result. It clearly shows discontinuity in the observed tree height but not in the satellite estimation, implying that the bimodality in the aboveground biomass data set is not effected by the CART , at least at 140 Mg ha^{-1} (equal to 7 kgC m^{-2} in this paper).

References

A. Baccini, N. Laporte, S. J. Goetz, M. Sun, and H. Dong. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. *Environmental Research Letters*, 3(4):045011, 2008.

Niall P Hanan, Andrew T Tredennick, Lara Prihodko, Gabriela Bucini, and Justin Dohn. Analysis of stable states in global savannas: is the cart pulling the horse? *Global Ecology and Biogeography*, 23(3):259–263, 2014.

Niall P. Hanan, Andrew T. Tredennick, Lara Prihodko, Gabriela Bucini, and Justin Dohn. Analysis of stable states in global savannas –a response to staver and hansen. *Global Ecology and Biogeography*, 24(8):988–989, 2015.

M. C. Hansen, R. S. DeFries, J. R. G. Townshend, M. Carroll, C. Dimiceli, and R. A. Sohlberg. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. *Earth Interactions*, 7(10):1–15, 2003.

M. Hirota, M. Holmgren, E. H. Van Nes, and M. Scheffer. Global resilience of tropical forest and savanna to critical transitions. *Science*, 334(6053):232–235, 2011.

A. C. Staver, S. Archibald, and S. A. Levin. The global extent and determinants of savanna and forest as alternative biome states. *Science*, 334(6053):230–232, 2011.

A. Carla Staver and Matthew C. Hansen. Analysis of stable states in global savannas: is the cart pulling the horse? –a comment. *Global Ecology and Biogeography*, 24(8): 985–987, 2015.