

REVISED
Title Page

Date of submission	July 20, 2015
Type of contribution	Regular paper
Number of text pages	20
Number of Tables	05
Number of Figures	03

Title: Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of Chilli (*Capsicum annuum* L.)

Names of the Authors: **M. Kaleem Abbasi*, Nighat Musa, and M. Manzoor**

Postal addresses of the authors: Department of Soil and Environmental Sciences, Faculty of Agriculture, The University of Poonch, Rawalakot Azad Jammu and Kashmir, Pakistan

Short Title: Efficiency of Rock Phosphate with PSB

*Correspondence address

M. Kaleem Abbasi
 Department of Soil and Environmental Sciences, Faculty of Agriculture, The University of Poonch, Rawalakot Azad Jammu and Kashmir, Pakistan
 Tel.: +92 (0) 5824 960041
 Fax: +92 (0) 5824 960004
 E-mail: mkaleemabbasi@gmail.com

1 **Mineralization of soluble P fertilizers and insoluble rock phosphate in response**
2 **to phosphate solubilizing bacteria and poultry manure and their effect on the**
3 **growth and P utilization efficiency of Chilli (*Capsicum annuum* L.)**

4

5 **Abstract**

6 The ability of soil microorganisms and organic manures to convert insoluble phosphorus (P) to an accessible
7 form offers a biological rescue system for improving P utilization efficiency in soil-plant systems. Our objective
8 was to examine the P mineralization potential of two soluble P fertilizers (SPF) i.e. single super phosphate
9 (SSP) and di-ammonium phosphate (DAP) and insoluble rock phosphate (RP) with and without phosphate
10 solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P-
11 utilization efficiency (PUE) of chilli (*Capsicum annuum* L.). An incubation study was carried-out on a loam
12 (slightly alkaline) soil with 12 treatments including T_0 : control; T_1 : RP; T_2 : SSP; T_3 : DAP; T_4 : PM; T_5 :
13 $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP; T_6 : $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP; T_7 : $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM; T_8 : RP+PSB; T_9 : $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB; T_{10} :
14 $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB; T_{11} : $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB. Phosphorus mineralization was measured by analyzing
15 extractable P from the amended soil incubated under controlled condition at 25°C for 0, 5, 15, 25, 35, 60 days
16 period. A complementary greenhouse experiment was conducted in pots with chilli (*Capsicum annuum* L.) as a
17 test crop. Growth, yield, P-uptake and PUE of the chilli was determined during the study. Results indicated
18 that P mineralization in soil amended with RP was $6.0\text{--}11.5\text{ mg kg}^{-1}$, while both soluble P fertilizers resulted
19 in $68\text{--}73\text{ mg P kg}^{-1}$ at day 0, which decreased by 79-82% at the end of incubation. Integrated use of PSB and
20 PM with RP in T_{11} stimulated P mineralization by releasing a maximum of 25 mg P kg^{-1} that was maintained
21 at high levels without any loss. Use of PSB decreased soil pH. In the greenhouse experiment, RP alone or
22 RP+PSB did not have a significant impact on plant growth. However, combined use of RP, PM and PSB in
23 T_{11} resulted in similar growth, yield and P-uptake of chilli as DAP. The PUE of applied P varied from 4 to
24 29% and was higher in the treatments that included PSB. We conclude that use of PSB and PM with insoluble
25 RP or with soluble P fertilizers could be a promising approach to enhance P availability from both low-grade
26 RP and SPF for crop production in intensive cropping systems.

27

28

29 1 Introduction

30 Phosphorus (P) is the second important key plant nutrient which affects the overall growth of plants by
31 influencing the key metabolic processes such as cell division and development, energy transport (ATP, ADP),
32 signal transduction, macromolecular biosynthesis, photosynthesis and respiration (Shenoy and Kalagudi, 2005;
33 Khan et al., 2009, Khan et al., 2014). Soils contain very little total P of 0.02–0.5% (w/w) (Fernandez et al.,
34 2007), of which only 0.1% is available to plants (Zou et al., 1992). Thus, P needs to be applied to soils as soluble
35 P fertilizers, a smaller part (1%) is utilized by plants and remainder (~99%) is rapidly converted into insoluble
36 complexes (Mehta et al., 2014) due to precipitation reactions with Al^{3+} and Fe^{3+} in acidic, and Ca^{2+} in calcareous
37 soils (Khan et al., 2009). These metal ion complexes precipitate about 80% of added P fertilizer. Hence, the
38 recovery efficiency of P is not more than 20% of applied P in the world soils (Qureshi et al., 2012). Considering
39 the low recovery of applied and native P and the high cost of chemical phosphatic fertilizers besides increasing
40 concern of environmental degradation (Aziz et al., 2006; Khan et al., 2014), it is important to find viable
41 solutions to increase P fertilizer use efficiency. Two management options can be effective: i) increase the
42 recovery and solubility of applied P fertilizers and ii) to replace the expensive chemical P fertilizers with novel,
43 cheaper, more ecologically friendly but nevertheless efficient P sources, such as use of indigenous rock
44 phosphates (RPs).

45 Interest in the use of RPs as alternative P sources has been increased in recent times due to their
46 relative low cost and utilization potentials (Zapata and Zaharah, 2002; Akande et al., 2010). It has been
47 suggested that the production of P fertilizer from RP is estimated to peak within the next 30 years because of
48 the rising costs of synthetic fertilizers presently available in the market (Cordell et al., 2009; Beardsley, 2011;
49 Ekelöf et al., 2014). Application of RPs directly to the soils has yielded some positive results in acidic soils but
50 the efficacy of such material is almost negligible in neutral and alkaline soils (Begum et al., 2004). However,
51 there are reports that Syrian RP was an effective P fertilizer for rape plants (*Brassica napus* L.) in alkaline soil
52 ($pH=7.72$; Habib et al., 1999) and for maize grown in an acidic Lilysoil ($pH=3.95$; Alloush and Clark, 2001).
53 Therefore, efforts have been made to find suitable ways to improve the solubility and efficiency of indigenous
54 RPs.

55 Numerous studies have been conducted to evaluate the efficiency of different amendments to increase
56 the availability and solubility of P from native and applied sources including RP. Among these, organic

57 amendments including animal manures, plant residues, and green manures (Alloush, 2003; Toor, 2009; Aria et
58 al., 2010; Adesanwo et al., 2012), composts (Nishanth and Biswas, 2008; Wickramatilake et al. 2010; Saleem et
59 al., 2013), and bacterial inoculation (Panhwar et al., 2011; Gupta et al. 2011) are considered beneficial for
60 improving the P efficiency. In addition, combined application of water soluble P fertilizers with RP is another
61 option to increase the efficiency of RP-P. Mashori et al. (2013) used maize as a test crop in a pot experiment to
62 examine the relative performance of RP, SSP, RP+SSP with and without FYM. They reported that RP+SSP
63 (25+75%) with FM (10 t ha⁻¹) (RP+SSP+FYM) increased maize growth, dry matter, leaf P content and P
64 uptake followed by the treatment receiving RP+SSP (50+50%).

65 Soil microorganisms have generally been found effective in making P available to the plants from both
66 inorganic and organic sources by solubilizing and mineralizing complex P compounds (Wani et al., 2007; Khan
67 et al., 2014). In particular, P-solubilizing bacteria (PSB) are reported to play a significant role in increasing P
68 efficiency of both native and applied P and improving the growth and yield of various crops (Khan et al., 2009).
69 It is generally accepted that the mechanism of P solubilization by PSB is associated with the release of low
70 molecular weight organic acids (Goldstein, 1995; Kim et al., 1997), which through their hydroxyl and carboxyl
71 groups chelate the cations bound to phosphate, thereby converting it into soluble forms (Kpomblekou and
72 Tabatabai, 2003; Chen et al., 2006).

73 Similarly, application of organic manures with phosphatic fertilizers is considered another possible
74 means of mobilizing P because of the acidic environment generated during decomposition of the manures
75 (Nishanth and Biswas, 2008). These organic manures increase the microorganisms, release acids in the root
76 rhizosphere and may help to solubilize P and to increase P availability to the plants (Fankem et al. 2006; Hu
77 et al., 2006). In addition, combined use of RP, soluble P fertilizers and bacterial inoculation is also considered
78 an option that may increase the efficiency of both RP and soluble P fertilizers. Experimentations on this option
79 are not common however, recently it has been reported that 50% of triple super phosphate (TSP) could be
80 substituted with RP when P-solubilizing bacterial inoculants *Enterobacter gegoviae*, *Bacillus pumilus*, and *Bacillus*
81 *subtilis* were applied with RP to wetland rice both under pot and field conditions (Rajapaksha et al., 2011).

82 Keeping in view the considerable expense involved in importing raw material for manufacturing P
83 fertilizers or P fertilizers directly imported, it is imperative to explore the possibility of the utilization of
84 indigenous RPs and the ways to increase the efficiency of other P fertilizers. Effects of PSB or organic manures

85 on the efficiency of both soluble and insoluble P fertilizers with regard to plant growth and yield have been
86 studied and are a topic of interest these days. However, the effect of these combinations on P release capacity
87 (mineralization) of both soluble and insoluble P sources especially RPs has been given little attention.
88 Therefore, the present study was conducted to examine the effect of poultry manure (PM) and PSB with soluble
89 P fertilizers (SSP and di-ammonium phosphate, DAP) and insoluble rock phosphate (RP) on P mineralization
90 capacity and their subsequent effect on growth, yields, P-uptake and P utilization efficiency (PUE) of chilli
91 (*Capsicum annuum* L.) grown in greenhouse.

92 **2 Materials and methods**

93 **2.1. Soil sampling/collection**

94 Surface bulk soil (0–15 cm) from a field under long-term wheat – maize management system in the Faculty of
95 Agriculture, The University of Poonch, Rawalakot Azad Jammu and Kashmir, Pakistan was collected during
96 spring 2013. The soil used in the experiment was classified as a Humic Lithic Eutrudepts (Inceptosols). The
97 field fresh soil was passed through a 2 mm sieve to eliminate coarse rock and plant material, thoroughly mixed
98 to ensure uniformity and stored at 4°C prior to use (not more than two weeks' time). A sub-sample of about
99 500 g was taken, air dried and passed through 2-mm sieve and used for the determination of physical and
100 chemical characteristics (Table 1). Soil texture was determined by the hydrometer method. Soil pH was
101 determined in a 1:2.5 (w/v) soil/water suspension. Soil organic carbon was determined by oxidizing organic
102 matter in soil samples with $K_2Cr_2O_7$ in concentrated sulphuric acid followed by titration with ferrous-
103 ammonium sulphate (Nelson and Sommers, 1982). Total N was determined by Kjeldahl distillation and
104 titration method (Bremner and Mulvaney, 1982). Available P from soil samples was determined according to
105 Soil and Plant Analysis Laboratory Manual (Ryan et al., 2001) using AB-DTPA method modified by
106 Soltanpour and Workman (1979). Exchangeable K was determined using a flame photometer following soil
107 extraction with 1 N ammonium acetate ($COOCH_3NH_4$) (Simard, 1993). The bulk density (BD) was determined
108 from undisturbed soil cores taken from the upper horizon (0–15 cm) at about five locations from the field. Bulk
109 density of the soil was calculated on a volume basis (Blake and Hartge, 1986).

110 **2.2 Collection of added amendments/materials**

111 The different amendments used in this study were rock phosphate (RP), single super phosphate (SSP), di-
112 ammonium phosphate (DAP), poultry manure (PM) and P-solubilizing bacteria (PSB). Rock phosphate was

113 collected from the Land Resources Research Institute (LRRI), NARC Islamabad, Pakistan. Major reserves of
 114 this RP are found in lagarban region of Hazara division positioned in the North East of Pakistan (Mashori et
 115 al., 2013). According to Memon (2005), the RP contains an average of 25.8% P_2O_5 along with 6% MgO. Di
 116 ammonium phosphate and SSP were purchased from the local market, while PM was collected from local farms
 117 located near by the university campus. A composite sample of well-dried PM was taken, crushed into smaller
 118 particles by hand pressing, homogenized, and passed through a 1-mm sieve before use. Total N in PM was
 119 determined by the Kjeldahl method of digestion and distillation (Bremner and Mulvaney, 1982). The P content
 120 was determined by the vanadomolybdate yellow color using spectrophotometer. Total N and P in PM were
 121 2.53% and 1.64%, respectively. The bio-power inoculant of PSB was provided by the National Institute of
 122 Biology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. The inoculant used in this study was a
 123 commercialized product containing K-1 (*Pseudomonas stutzeri*) as nitrogen fixer, ER-20 (*Azospirillum brasiliense*)
 124 as IAA producer and Ca-18 (*Agrobacterium tumefaciens*) as phosphate solubilizer.

125 **2.3 Experimental Procedures and details–incubation study**

126 The fresh soil samples stored in the refrigerator were taken and transferred into a glass jar. Soil samples were
 127 pre-incubated at 25 °C for 1-week prior to actual incubation to stabilize the microbial activity. A known weight
 128 of soil (30 g oven dry weight basis) was taken and transferred into 100 mL capacity jars. Moisture content of
 129 soil was adjusted to 60% of water holding capacity (WHC) by adding deionized water. There were 12
 130 treatments including control i.e. (unfertilized control); RP, SSP; DAP; PM; $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP; $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP;
 131 $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM; RP+PSB; $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB; $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB; $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB, six incubation periods: 0, 5,
 132 15, 25, 35, 60 days (after adding amendments) and three replications. A total of 216 treatment combinations
 133 (experimental units) were used at the start of the experiment.

134 Phosphorus from all the treatments/sources was applied on an equivalent basis i.e. at the rate of 90 mg P
 135 kg^{-1} soil as this is a recommended optimum P application rate for chilli production in the region. Nitrogen was
 136 also added to each jar (including control) at the rate of 100 mg N kg^{-1} as urea. The amount of N added as urea
 137 was adjusted after taking into account the amount supplied by DAP and PM. Following the addition of all
 138 amendments, soil was thoroughly mixed and the weight of each jar was recorded. Jars were covered with
 139 parafilm which was perforated with a needle to ensure natural gas exchange. All the amended jars were kept
 140 in an incubator at 25 ± 2 °C for a total of 60 days. Jars in the incubator were arranged according to the

141 completely randomized design. Soil moisture was checked/adjusted after every 2 days by weighing the jars
142 the required amount of distilled water was added when the loss was greater than 0.05 g. During this process,
143 care was taken not to disturb the soil either through stirring or shaking.

144 **2.4 Soil extraction and analysis**

145 Samples of all treatments incubated for different time intervals were analyzed for changes in soil available P
146 and pH. Triplicate samples from each treatment was taken from the incubator at 0, 5, 15, 25, 35, 60 days and
147 analyzed for available P by AB-DTP extraction method (Soltanpour and Workman, 1979). Soil (20 g) was
148 weighed in 125 mL Erlenmeyer flasks and 40 mL of extraction solution was added (1:2). The soil available P was
149 measured by ammonium molybdate (Murphy and Riley, 1962) using spectrophotometer. At each sampling
150 time, the remaining 10 g soil from each jar was taken and used for measuring the changes in pH in response
151 to different amendments. The soil pH was determined using a glass electrode in 1:2.5 (v/v) soil/water
152 suspension.

153 **2.5 Experimental procedures and details – greenhouse experiment**

154 To complement the incubation study, a greenhouse experiment was conducted in pots with chilli
155 (*Capsicum annuum* L.) as a test crop. Seedling nursery of chilli was grown by making nursery beds in the
156 greenhouse during the last week of April 2013. Chilli seeds of variety 'Pusa Jawla' were sown separately on
157 ridges. All the necessary culture practices were carried-out when needed. About 12 kg soil (passed through a
158 4-mm sieve) was placed in the cleaned earthen pots of 38 cm height and 18 cm width. There were 12 treatments
159 including a control i.e. (unfertilized control); RP, SSP; DAP; PM; $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP; $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP; $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM;
160 RP+PSB; $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB; $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB; $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB (same as used in incubation study) with
161 four replications to form a total of 48 treatment combinations. Pots were arranged according to a completely
162 randomized design. Addition of different amendments was made according to the methods/procedures
163 followed in the incubation study. However, PSB was grown in LB broth to lag phase, containing about 10^8
164 CFU ml⁻¹, applied to respective treatments by dipping roots of chilli plants in inoculum up to 20 minutes. On
165 attaining 5-8 leave stage, four healthy and vigorous plants from the nursery were transplanted into each pot.
166 All pots were equally irrigated when needed. The soil was moistened with water and maintained at 58% water-
167 filled pore space throughout the study.

168 Plant sampling was done at two stages of development i.e. one at vegetative stage (just before
 169 flowering) for measuring growth traits of plant including shoot length, root length, shoot dry weight, root dry
 170 weight, and shoot P contents, the second one at physiological maturity stage for measuring growth, shoot P
 171 contents and yield traits i.e. fruit length, number of fruits per plant, number of seeds per fruit, fruit yield and
 172 fruit P contents.

173 For the determination plant P content, vegetative tissue of a plant (shoot + leaves) and fruits were
 174 washed, cleaned, and then oven dried at 70 °C for 48 hours. The oven-dried samples were ground to pass
 175 through a 1-mesh sieve in a Micro Wiley Mill. The total P was determined after digestion in a triple acid
 176 mixture (HClO_4 , H_2SO_4 , and HNO_3 in the ratio of 1:3:9). Total P in the acid digest was determined by the
 177 vanadomolybdate phosphoric yellow color method (Olsen and Sommers, 1982). The P uptake and P utilization
 178 efficiency was computed according to the methods reported earlier (Abbasi et al., 2010).

179 At the end of the experiment i.e., after the final crop harvest, soil samples from each pot were taken to
 180 examine changes in soil properties. A composite sample from each pot was collected and air dried for 2 to 3
 181 days. The samples were ground and sieved to pass through a 2-mm mesh to remove rocks and large organic
 182 residues if present. Soil organic matter, total N, available P, K and pH of soil from each treatment were
 183 determined according to methods described earlier in Table 1.

184 **2.6 Statistical analysis**

185 All data from incubation experiment were statistically analyzed by multifactorial analysis of variance
 186 (ANOVA) using the software package Statistix 8.1. Least significant differences (LSD) are given to indicate
 187 significant variations between means of either treatments or time intervals. Confidence values (P) are given in
 188 the text for the significance between treatments, time interval and their interactions. Data from the greenhouse
 189 experiment was analyzed by one way analysis of variance and LSD is given to indicate significance variations
 190 among different treatments. A probability level of $P \leq 0.05$ was considered significant for both experiments.

191 **3 Results**

192 **3.1 P release capacity (mineralization) of added amendments**

193 Phosphorus release capacity (mineralization) of soil amended with RP varied between 6.0–11.5 mg kg⁻¹
 194 significantly ($P \leq 0.05$) higher than the control but lower than the remaining treatments (Table 2). Application
 195 of PSB with RP in RP+PSB did not show any remarkable effect on P mineralization except that a significant

196 increase was noticed on 25 and 60 days of incubation. Soil amended with the soluble P fertilizers i.e. SSP and
 197 DAP displayed the highest P mineralization of 73.3 and 68.5 mg kg⁻¹ immediately after application (day 0).
 198 However, initial P released significant ($P \leq 0.05$) decreased with subsequent incubations and at the end only 14
 199 mg P kg⁻¹ was left in the mineral P pool. The P released from the PM amended soil was progressively increased
 200 with time and the highest P concentration of 20.2 mg kg⁻¹ was recorded at day 35 compared to 10.4 mg kg⁻¹ at
 201 day 0. However, this increasing trend changed at day 60 where P contents declined to a background level i.e.
 202 9.6 mg kg⁻¹. Rock phosphate when combined with soluble P fertilizers (SSP, DAP) did not show any significant
 203 impact on P mineralization. However, P mineralization of the $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB and $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB
 204 treatments was significantly higher than their sole application throughout the incubation. Similarly, the P
 205 mineralization under $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB exhibited an increasing trend with subsequent incubation periods
 206 (showing no losses), a trend normally not common for phosphatic fertilizers.

207 The overall effect of different amendments on P mineralization (averaged across incubation timings)
 208 is presented in Figure 1. Results indicated that by applying 90 mg P kg⁻¹ from different P sources, RP was able
 209 to release only about 8 mg kg⁻¹ compared to 5 mg P kg⁻¹ in the control. Both soluble P fertilizers i.e. SSP and
 210 DAP displayed the highest P release capacity of about 30 mg kg⁻¹. The P mineralization tendency of soil
 211 amended with soluble P fertilizers+insoluble RP did not show any increasing effect. However, RP when
 212 combined with PM in $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM released significantly higher P compared to RP treatment (80%) and
 213 equivalent to that recorded under PM treatment. Effect of PSB on P release capacity of different P amendments
 214 was significant ($P \leq 0.05$). The efficiency of RP was increased by 17% when PSB was applied with RP (RP+PSB,
 215 T₈), 12% increase with $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB (T₉) compared to $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP (T₅), 18% increase with
 216 $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB (T₁₀) compared to $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP (T₆), and 28% increase with $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB (T₁₁)
 217 compared to $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM(T₇).

218 **3.2 Effect of different amendments on changes in soil pH**

219 Effect of different P amendments and their combinations on changes in soil pH over 60 days incubation is
 220 presented in Table 3. Soil amended with DAP, PM and SSP alone or with different combinations showed the
 221 maximum pH and among all, PM and DAP had the highest pH. However, except RP+PSB, pH of all the added
 222 amendments tended to decline with time. The pH of both DAP and PM significantly decreased at the end (day

223 60) and the reduction in pH compared to day 0 was 8%. Among different amendments RP showed the lowest
 224 pH.

225 Averaged across different amendments, the data presented in Figure 2 indicated that a combination of
 226 SSP, DAP and PM with RP significantly increased RP pH from 7.62 to 7.89, 7.88 and 7.83, respectively.
 227 However, application of PSB decreased soil pH. Average pH under the treatments RP, $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP,
 228 $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP, $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM was 7.80 while application of PSB with these four amendments tended to result in
 229 a decline of pH to 7.72. The maximum reduction in pH of about 15 units was recorded in the treatment where
 230 PSB was applied with PM.

231 **3.3 Growth and yield characteristics of chilli**

232 Different P treatments when applied alone or used in different combinations significantly ($p \leq 0.05$) increased
 233 chilli growth characteristics compared to the control i.e. shoot length (7-53%), root length (22-113%), shoot
 234 dry weight (SDW, 8-156%), and root dry weight (RDW, 12-108%) (Table 4). Among different P amendments,
 235 growth characteristics were maximum in the treatments under full DAP or DAP, SSP and PM with PSB. RP
 236 alone had little effect on plant growth but the response of RP+PSB over RP was: no effect on shoot length,
 237 54% increase in root length, 50% increase in SDW and 8% increase in RDW. Application of PSB with DAP,
 238 SSP and PM displayed a significant increase in growth characteristics over treatments without PSB. The
 239 relative increase in shoot length, root length, SDW and RDW due to PSB over the treatments without PSB
 240 (as a group) was 20, 14, 51 and 32%, respectively.

241 Yield and yield components responses of chilli to applied P treatments are presented in Table 4.
 242 Significant differences in fruit length (18-56%), number of fruits per plant (45-226%) fruit yield per plant (10-
 243 194%) and number of seeds per fruit (13-50%) were observed between the control (no-P) and the rest of the P
 244 treatments. Significant differences in yield components were also recorded among the sources of P, with DAP
 245 (full) and $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB producing the largest yields. Application of RP alone induced a significant increase
 246 in yields (over the control). However, the magnitude of increase was remarkably higher when PSB was
 247 combined with RP. The relative increase in fruit length, no. of fruits, fruit yield and number of seed due to
 248 RP+PSB was 18, 34, 14 and 16%, respectively compared to the RP alone. Between the two synthetic P
 249 fertilizers used (SSP, DAP), DAP showed superiority over SSP while PM also exhibited a comparative yields
 250 to DAP and SSP.

251 Integrated use of RP with SSP, DAP and PM (50:50) was not comparative to their full dose. However,
 252 combined used of these amendments with PSB resulted in yields significantly higher than their application
 253 without PSB and equivalent to or higher than the yields recorded under full P fertilizer treatments. For
 254 example, fruit length, no. of fruits, and fruit yield from the $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB, $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB,
 255 $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB treatments (as a group) was significantly higher (16, 44, and 40%, respectively) than their
 256 application without PSB. The highest fruit yields (10.4 g plant^{-1}) and the highest no. of fruits per plant (21.2)
 257 were recorded from the $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB treatment equivalent to that recorded from the full DAP (10.0 g
 258 and 19.9) but significantly higher than that from full SSP (7.2 g and 15.3).

259 **3.4 P content, P-uptake and P utilization efficiency**

260 The P content of plant biomass and fruits of chilli treated with different P sources and combinations was
 261 significantly ($P\leq 0.05$) higher compared to P content of the control (Table 5). Soil amended with DAP resulted
 262 in the highest P content of shoot ($1.33\text{ mg plant}^{-1}$) and fruit ($1.57\text{ mg plant}^{-1}$) as compared to SSP and other P
 263 amendments. However, fruit P content recorded from the PM and the $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB treatment (1.54 and
 264 $1.51\text{ mg plant}^{-1}$) were statistically equivalent (at par) to that recorded under DAP. P content of shoot and fruit
 265 under RP was significantly higher than the control (6 and 77%) and application of PSB with RP (RP+PSB)
 266 further increased shoot and fruit P by 6 and 5%, respectively compared to RP alone.

267 Application of phosphatic fertilizers had a significant effect ($P\leq 0.05$) on P-uptake of plant biomass and
 268 fruit of chilli compared to the control treatment (Table 5). The values ranged between $4.3\text{--}15.3\text{ mg plant}^{-1}$ for
 269 shoot and $4.4\text{--}15.7\text{ mg plant}^{-1}$ for fruit compared to 3.7 and 1.8 mg plant^{-1} in the control, respectively. Among
 270 different P sources and combinations, DAP exhibited the highest P-uptake while the PM and
 271 $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB treatments showed values (for fruit P-uptake) at par (statistically equivalent) with DAP.

272 The total P-uptake (shoot + fruit) in the control was 5.5 mg plant^{-1} that significantly increased to 8.7--
 273 $31.3\text{ mg plant}^{-1}$ following the application of different P sources. The DAP and $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB treatments
 274 exhibited the highest total P-uptake and the difference between the two was non-significant. The RP treatment
 275 alone resulted in a significant increase in P-uptake (8.7 mg plant^{-1}) compared to the control (5.5 mg plant^{-1}).
 276 The effectiveness of P fertilizers with regard to plant P-uptake was in the order: DAP > PM > SSP > RP. The
 277 total P-uptake under PM was significantly higher than the SSP (31%) but lower than the DAP (20%).

278 Application of PSB with different P sources resulted in a significant ($P \leq 0.05$) increase in P-uptake i.e. 20%
 279 with RP, 29% with $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP, 56% with $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP and 132% with $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM.

280 The P-utilization efficiency (PUE) of added P sources and their combinations ranged from 4% by RP
 281 to a maximum of 29% with DAP (Fig. 3). The PUE of SSP and PM was 14 and 23%, respectively showing
 282 higher PUE by PM compared to SSP. The PUE of RP was only 4% that increased to 6–8% when RP was
 283 combined with either PSB or SSP, DAP or PM. Results indicated a significant improvement in PUE when
 284 PSB was combined with P amendments. For example, the PUE of the $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB, $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB,
 285 $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB treatments was 14, 19 and 27% compared to 8, 7 and 7% from the $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP,
 286 $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP, and $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM treatments, respectively showing about 2–4fold increase in PUE due to PSB.
 287 The response of PUE to PSB was more prominent when PSB was combined with PM compared to its
 288 combination with DAP or SSP.

289 **4 Discussion**

290 **4.1 P release capacity of added amendments**

291 In order to determine the P release capacity (mineralization) of soluble and insoluble P fertilizers and their
 292 response to PM and PSB, an incubation study of 60 days was conducted under controlled laboratory conditions.
 293 The P release capacity of different amendments and their combinations varied with source and timings. Soluble
 294 P fertilizers i.e. SSP and DAP displayed the highest mineralization compared to the insoluble RP and organic
 295 PM. In most of the cases (except PM and combined treatment of $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB), there was a general trend
 296 of a rapid mineralization in the first few days of incubation followed by a gradual decrease and a sharp decline
 297 thereafter. The P mineralization trend (over time) observed in this study was in accordance with the previous
 298 studies where P mineralization of different P sources significantly decreased/declined with time (Begum et al.,
 299 2004; Toor, 2009; Toor and Haggard, 2009). This decreasing trend may be ascribed due to rapid conversion
 300 of available P into insoluble complexes (Mehta et al., 2014) by entering into the immobile pools through
 301 precipitation reaction with highly reactive Ca^{2+} ions (Khan et al., 2009). The soil under investigation was
 302 slightly alkaline (pH 7.57), non-calcareous (CaCO_3 0.68%) and having Ca content of 58.7 mg kg^{-1} . The soil Ca
 303 concentration was low but still its presence may contributed towards P fixation or precipitation. In addition,
 304 soil belong to Chinasi soil series and parent material is residuum-colluvium from shales. Therefore, it is likely
 305 that kaolinite may be a dominant clay mineral present in soil composition that adsorb high H_2PO_4^- . The other

306 possibility may be the fixation of some of the applied or native P on the surface of the clay particles in the
 307 presence of 24% clay content of the soil used in the study. As organic matter plays an important role in P
 308 solubilization through the acidifying and chelation mechanisms. The low organic matter in our soil may also
 309 be an important factor for overall low mineralization trend of P observed in this study.

310 Addition of RP alone released a maximum of 6% of the total P applied showing that mineralization
 311 capacity of RP-P even under favorable environmental conditions is low and the fertilizer value of this RP
 312 (alone) is quite negligible. These values were substantially lower than those reported for North Carolina and
 313 Syrian RP applied to an acid Lily soil showing P dissolutions of about 27% after 126 days of incubation.
 314 However, the observed values are in the range reported for Indian RP i.e. 6-8 mg kg⁻¹ applied under alkaline
 315 conditions (pH 8.5) (Begum et al., 2004). Similarly, application of RP alone to slightly alkaline soil (pH 7.9) at
 316 Faisalabad Pakistan did not show any significant effect on bioavailable P contents of the soil (Saleem et al.,
 317 2013). These reports suggested that RP works best in acidic soils while showed poor efficiency in neutral and
 318 alkaline soils. Under acidic conditions, organic acid anions with oxygen containing OH⁻ and COOH⁻ groups,
 319 have the ability to form stable complexes with cations such as Ca₂₊, Fe₂₊, Fe₃₊ and Al₃₊, that are commonly
 320 bound with phosphate (Jones, 1998). By complexing with cations on the mineral surface, organic acid anions
 321 loosen cation-oxygen bonds of the mineral structure and catalyze the release of cations to solution
 322 (Kpomblekou and Tabatabai, 1994). This is the major reason that why RP is more effective under acidic
 323 conditions.

324 Effect of PSB on P release capacity of different P amendments was significant ($P \leq 0.05$). Application of
 325 PSB with RP in RP+PSB (T₈) exhibited overall 17% higher mineralization than RP alone showing a
 326 solubilizing effect of PSB on RP. Jha et al. (2013) isolated ten PSB strains and tested them for mineral
 327 phosphate solubilization activity of RP and stated that all these strains could solubilize only 0.02–2.6% of the
 328 total RP-P applied. In addition, *Aspergillus niger* (a fungus), used in the industrial production of citric acid, has
 329 been recognized as one of the most effective organisms for RP solubilization (Abd-Alla and Omar, 2001).
 330 These results suggested that i) PSB increased P solubilization of added P fertilizers either from soluble or
 331 insoluble source and ii) the relative efficiency of PSB for releasing P was higher with PM compared to soluble
 332 or insoluble P fertilizers. Khan and Sharif (2012) conducted an incubation study in soil amended with PM,
 333 PM+RP and PM+RP+EM (EM, effective microorganisms) and reported that the extractable P was

334 significantly higher in the treatments PL+RP+EM, and PL+RP compared to PL only. Reddy et al. (2002)
 335 compared the efficiency of three isolates on the solubilization of RP and reported that all the isolates increased
 336 RP-P release efficiency by solubilize the tested RPs. Similar effects of bio- and organic fertilizers on RP
 337 availability and P fertilizers efficiency had also been reported in soils incubated for different incubation periods
 338 (Aria et al., 2010; Alzoubi and Gaibore, 2012). The mechanisms involved in the potential of PSB to solubilize
 339 P complexes or insoluble phosphates are well known and has been attributed to the processes of acidification,
 340 chelation, exchange reactions, and the production of organic acids (Chen et al., 2006; Ekin, 2010).

341 The mineralization of RP-P was unaffected when RP was combined with soluble P fertilizers (SSP,
 342 DAP) demonstrating that soluble P fertilizers had no solubilizing effect on RP. In contrast to our results,
 343 Begum et al. (2004) found a substantial improvement in extractable-P status when RP was combined with SSP
 344 and MAP (mono-ammonium phosphate). However, RP when combined with PM in $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM released
 345 significantly higher P compared to the RP alone (80%) and was equivalent to that recorded under full PM
 346 treatment showing that the additional P released from RP was associated with PM. Toor (2009) found a
 347 substantial increase in soil solution P following the application of PM with P fertilizers because of the release
 348 of organic acids during decomposition of the manure and production of carbon dioxide during organic matter
 349 decomposition that may increase the solubility of Ca^{2+} and Mg^{2+} phosphates.

350 The PSB tented to decline soil pH showing acidifying effect. The maximum reduction in pH of about
 351 15 units was recorded in the treatment where PSB was applied with PM. Effect of PSB on soil pH at different
 352 time intervals indicated that in some cases, addition of PSB temporarily increased soil pH more than other
 353 treatments. The general decrease in pH during the experiment could have arisen from a “move back to
 354 equilibrium” as well as due to increase in microbial activity. Our results were in accordance with the previous
 355 observations of Aira et al. (2010) and Khan and Sharif (2012) who reported a significant decrease in soil pH
 356 after applying PSB.

357 **4.2 Growth, yield, P-uptake and P utilization of chilli**

358 RP alone had little effect on plant growth but the response of RP+PSB over RP was: no effect on shoot length,
 359 54% increase in root length, 50% increase in SDW and 8% increase in RDW. The difference between the two
 360 treatments is attributed to the effect of PSB on releasing P either from RP or from native soil P thereby
 361 increased plant growth. Among four main P sources used (SSP, DAP, RP and PM), DAP showed superiority

362 over SSP and PM because of the highest P release capacity shown in the incubation study. However, the
363 efficiency of SSP for growth and yield characteristics of chilli was significantly lower than the DAP and PM
364 for most of the parameters studied. The P release capacity of SSP was higher than the PM throughout the
365 incubation while the growth and yield attributes was lower. The possible reasons for this discrepancy is not
366 understood however, in addition to supply P to plants the additional beneficial effects of PM on soil
367 physiochemical characteristics, root proliferation and plant nutrient uptake may affect the growth and yield of
368 plants grown in PM amended soil. The results of the present study indicated that application of RPs directly
369 to soils had shown positive effects on root dry weight and yield components of chilli but the efficacy of RP for
370 most of the growth characteristics was almost negligible.

371 Application of PSB with RP, SSP, DAP and PM or their combinations displayed a remarkable
372 improvement in the growth and yield of chilli. The treatment which received $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB produced
373 growth and yield comparable to that recorded from the full DAP showing that this mixed treatment may able
374 to save almost 50% of chemical P fertilizer. The higher response of plant growth to PSB might be due to
375 mobilization of available P by the native soil microflora, or increased PSB activity in the rhizosphere following
376 PSB application and consequently by enhanced P solubilization which enhanced growth and yield of plants
377 (Ekin, 2010). Combined application of PSB and PM with P fertilizers is considered an important management
378 strategy for mobilizing P where inert P is expected to be converted into plant available forms because of the
379 acidic environment prevailing during decomposition of organic manures (Nishanth and Biswas, 2008) and then
380 additional beneficial effects of PSB to the processes of acidification, chelation, exchange reactions, and the
381 production of organic acids (Chen et al., 2006; Ekin, 2010). These combined effects increased the efficiency of
382 applied materials thereby increased the growth and yield of the plant as observed in the present study. Our
383 results are in accordance to the previous studies conducted on the use of organic materials and PSB for
384 increasing the efficiency of applied P fertilizers and their subsequent effect on the growth and yields of plants
385 (Biswas and Narayanasamy, 2006; Nishanth and Biswas, 2008; Abbasi et al., 2013).

386 The effectiveness of P fertilizers with regard to plant P-uptake was in the order: DAP > PM > SSP >
387 RP. The total P-uptake under PM was significantly higher than the SSP (31%) but lower than the DAP (20%).
388 Application of PSB with different P sources resulted in a significant ($P \leq 0.05$) increase in P-uptake i.e. 20%
389 with RP, 29% with $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP, 56% with $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP and 132% with $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM. These results indicated

390 that use of PSB with PM had a dominating effect on increasing plant P-uptake compared to the application of
 391 other P sources. The overall PSB effect (group effect) displayed that total P-uptake under the treatments
 392 supplemented with PSB was $23.4 \text{ mg plant}^{-1}$ compared to $13.2 \text{ mg plant}^{-1}$ under the treatments without PSB
 393 showing a relative increase of 77% compared to the treatments without PSB.

394 Results of our incubation and pot experiment indicated that the total P uptake by the plants in response
 395 to the different amendments was significantly correlated with P mineralization ($r^2 = 0.64$) (determined at the
 396 end of the experiment at day 60) showing that P-uptake by plants is associated with the mineralization capacity
 397 of added P amendments. Similarly, the effect of added amendments on increasing root mass may also have
 398 affected the P-uptake as significant correlations were found between these two parameters ($r^2 = 0.71$). The
 399 increasing effect of P mineralization and plant root mass/density on P-uptake due to PSB and organic
 400 amendments had also been reported earlier (Lorion, 2004; Nishanth and Biswas, 2008; Abbasi et al., 2013).
 401 Wickramatilake et al. (2010) investigated P release capacity of RP treated with compost prepared from PM,
 402 cattle manure (CM), sewage sludge (SS), or P-adjusted sawdust (PSD) and reported that the uptake of P from
 403 RP by plants is enhanced by compost, especially PM or CM compost, the increase was four- to five-fold
 404 compared with no compost addition.

405 Results of this study showed that PUE of chemical P fertilizers commonly used in most parts of the
 406 world i.e. SSP and DAP was low i.e. 14 and 29%, respectively. However, this recovery of applied P is in
 407 accordance with the recovery efficiency of P generally reported (20–25%) (Qureshi et al., 2012). The organic
 408 P sources i.e. PM displayed higher PUE (23%) compared to SSP (14%) although the P mineralization capacity
 409 of SSP was significantly higher than PM. This favorable effect may be attributed to i) the increased P uptake
 410 by plants through enlarged proliferation of roots as the root mass of plants under PM was 17% higher than
 411 the root mass recorded under SSP ii) reduction in the activity of Ca^{2+} , Al^{3+} and Fe^{3+} ions by root exuded
 412 organic anions as reported earlier (Toor, 2009).

413 The PUE of RP and RP+PSB was just 4 and 7%, respectively indicating that RP alone was not able
 414 to generate any positive impact as a P fertilizer. However, the PUE of RP, SSP and DAP was remarkably
 415 increased when these sources were combined either with PM or PSB. Among different combinations,
 416 $\frac{1}{2}\text{RP} + \frac{1}{2}\text{PM} + \text{PSB}$ showed the significant contribution by increasing PUE to 27% equivalent to that recorded
 417 under full DAP treatment. This finding highlighted the importance of RP as a P source when combined with

418 organic and microbial amendments. The increased PUE may have resulted in increased dry matter yield
 419 (DMY), fruit yield and greater P accumulation as significant correlations existed between PUE and DMY ($r^2=$
 420 0.93), fruit yield ($r^2 = 0.97$), PUE and shoot and fruit P concentrations ($r^2= 0.86$. $r^2= 0.93$), and PUE and shoot
 421 and fruit P uptake ($r^2= 0.97$).

422 The role of organic amendments or PSB in improving P utilization from applied P fertilizers has been
 423 reported earlier by several researchers (Begum et al., 2004; Toor, 2009, Abbasi et al., 2013). This positive effect
 424 is attributed to the fact that release of organic acids from these amendments in the root rhizosphere can reduce
 425 fixation of applied P, induce greater P availability in the soil, and form phosphor-humic complexes that are
 426 easily assimilated by plants (Toor, 2009). These mechanisms can result in greater amounts of applied P in
 427 available forms to be used by plants.

428 **5 Conclusions**

429 Results of our incubation experiment indicate that chemical P fertilizers used in the study i.e. SSP and DAP
 430 released the highest P at the start of the experiment but this mineral P significantly decreased with subsequent
 431 incubation periods. At the end of the experiment (at day 60) about 80% of P initially present had disappeared
 432 from the system showing that the P recovery in the soil mineral pool was 20% of the total P applied from P
 433 fertilizers. Rock phosphate (RP) alone or RP+PSB released a maximum of 12 mg P kg^{-1} demonstrating that
 434 application of RP directly to the soil having slightly alkaline pH did not show any positive effect on overall P
 435 mineralization or P availability. However, use of PSB and PM with RP in the combined treatment
 436 ($\frac{1}{2}\text{RP}+\frac{1}{2}\text{PM}+\text{PSB}$) released a substantial amount of P (25 mg kg^{-1}) that remained at high levels (without any
 437 loss) until the end of incubation (day 60) showing that combination of PSB and PM with RP may be a feasible
 438 option for releasing P from insoluble RP for a longer period. When these amendments were applied to chilli
 439 under greenhouse conditions, DAP exhibited the highest growth, yield and P-uptake. RP alone was able to
 440 increase yield compared to the control but was not as effective as SSP, DAP and PM. Combinations of RP with
 441 either SSP or DAP in 50:50 proportion did not show any significant effect on P mineralization and subsequent
 442 plant growth and P-uptake. However, application of PM and PSB with RP in $\frac{1}{2}\text{RP}+\frac{1}{2}\text{PM}+\text{PSB}$ showed a
 443 remarkable effect and induced growth, yields, P-uptake comparable to that recorded under the DAP treatment.
 444 The P utilization efficiency of chilli supplemented with $\frac{1}{2}\text{RP}+\frac{1}{2}\text{PM}+\text{PSB}$ was not statistically different from
 445 that recorded from full DAP treatment (27% and 29%). The combination of PM and PSB with RP

446 ($\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB) therefore, hold a lot of promise as an efficient alternative to conventional P fertilizers
 447 especially its effectiveness for the utilization of RP. However, the results need to be confirmed under field
 448 conditions and the economic feasibility of its application needs to be quantified.

449 **References**

450 Abbasi, M. K., Mansha, S., Rahim, N., and Ali, A.: Agronomic effectiveness and phosphorus utilization
 451 efficiency of rock phosphate applied to winter wheat, *Agron. J.*, 105, 1606–1612, 2013.

452 Abbasi, M. K., Manzoor, M., and Tahir, M. M.: Efficiency of *Rhizobium* inoculation and P fertilization in
 453 enhancing nodulation, seed yield and P use efficiency by field grown soybean under hilly region of
 454 Rawalakot Azad Jammu and Kashmir, *J. Plant Nutr.*, 33, 1080–1102, 2010.

455 Abd-Alla, M. H., and Omar, S. A.: Survival of rhizobia/bradyrhizobia and a rock-phosphate-solubilizing
 456 fungus *Aspergillus niger* on various carriers from some agro-industrial wastes and their effects on
 457 nodulation and growth of faba bean and soybean, *J. Plant Nutr.*, 24, 261–272, 2001.

458 Adesanwo, O. O., Adetunji, M. T., and Diatta, S.: Effect of legume incorporation on solubilization of Ogun
 459 phosphate rock on slightly acidic soils in SW Nigeria, *J. Plant Nutr. Soil Sci.*, 175, 377–384, 2012.

460 Akande, M. O., Makinde, E. A., Oluwatoyinbo, F. I., and Adetunji, M. T.: Effects of phosphate rock application
 461 on dry matter yield and phosphorus recovery of maize and cowpea grown in sequence, *Afr. J. Environ.
 462 Sci. Technol.*, 4, 293–303, 2010.

463 Alloush, G. A.: Dissolution and effectiveness of phosphate rock in acidic soil amended with cattle manure,
 464 *Plant Soil*, 251, 37–46, 2003.

465 Alloush, G.A., and Clark, R.B.: Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic
 466 soil, *Commun Soil Sci. Plant Anal.*, 32, 231–254, 2001.

467 Alzoubi, M. M., and Gaibore, M.: The effect of phosphate solubilizing bacteria and organic fertilization on
 468 availability of Syrian rock phosphate and increase of triple superphosphate efficiency, *World J. Agric.
 469 Sci.*, 8, 473–478, 2012.

470 Aria, M. M., Lakzian, A., Haghnia, G. H., Berenji, A. R., Besharati, H., and Fotovat, A.: Effect of *Thiobacillus*,
 471 sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate, *Bioresour.
 472 Technol.*, 10, 551–554, 2010.

473 Aziz, T., Rahmatullah, Maqsood, M. A., Tahir, M. A., Ahmad, I., and Cheema, M. A.: Phosphorus utilization
 474 by six brassica cultivars (*Brassica juncea* L.) from tri-calcium phosphate; a relatively insoluble p
 475 compound, *Pak. J. Bot.*, 38, 1529–1538, 2006.

476 Beardsley, T. M.: Peak phosphorus, *BioSci.*, 61, 91, 2011.

477 Begum, M., Narayanasamy, G., and Biswas, D. R.: Phosphorus supplying capacity of phosphate rocks as
 478 influenced by compaction with water-soluble P fertilizers, *Nutr. Cycl. Agroecosyst.*, 68, 73–84, 2004.

479 Biswas, D. R., and Narayanasamy, G.: Rock phosphate enriched compost: an approach to improve low-grade
 480 Indian rock phosphate, *Bioresour. Technol.*, 97, 2243–2251, 2006.

481 Blake, G. R., and Hartge, K. H.: Bulk density, in: *Methods of Soil Analysis. Part 2. Chemical and
 482 Microbiological Properties*, edited by Page, A. L., Miller, R. H., and Keeney, D. R., SSSA, Madison,
 483 WI, 363–375, 1986.

484 Bremner, J. M., and Mulvaney, C. S.: Nitrogen – total, in: Methods of Soil Analysis. Part 2. Chemical and
 485 Microbiological Properties, edited by Page, A. L., Miller, R. H., and Keeney, D. R., SSSA, Madison,
 486 WI, 595–624, 1982.

487 Chen, Y. P., Rekha, P. O., Arun, A. B., Shen, F. T., Lai, W. A., and Young, C.C.: Phosphate solubilizing bacteria
 488 from subtropical soils and their tricalcium solubilizing abilities, *Appl. Soil Ecol.*, 34, 33–41, 2006.

489 Cordell, D., Drangert, J. O., and White, S.: The story of phosphorus: Global food security and food for
 490 thought, *Global Environ. Change*, 19, 292–305, 2009.

491 Ekelöf, J. E., Lundell, J., Asp, H., and Jensen, E. S.: Recovery of phosphorus fertilizer in potato as affected by
 492 application strategy and soil type, *J. Plant Nutr. Soil Sci.*, 177, 369–377, 2014.

493 Ekin, Z.: Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower
 494 (*Helianthus annus* L.) in the presence of phosphorous fertilizer, *Afr. J. Biotechnol.*, 9, 3794–3800, 2010.

495 Fankem, H., Nwaga, D., Deubel, A., Dieng, L., Merbach, W., and Etoa, F.X.: Occurrence and functioning of
 496 phosphate solubilizing microorganisms from oil palm tree (*Elaeis guineensis*) rhizosphere in Cameroon,
 497 *Afr. J. Biotechnol.*, 5, 2450–2460, 2006.

498 Fernandez, L. A., Zalba, P., Gomez, M. A., Sagardoy, M. A.: Phosphate-solubilization activity of bacterial
 499 strains in soil and their effect on soyabean growth under green house conditions, *Biol. Fertil. Soils*, 43,
 500 803–805, 2007.

501 Goldstein, A.H.: Recent progress in understanding the molecular genetics and biochemistry of calcium
 502 phosphate solubilization by Gram negative bacteria, *Biol. Agric. Hortic.*, 12, 185–193, 1995.

503 Gupta, M., Bisht, S., Singh, B., Gulati, A., and Tewari, R.: Enhanced biomass and steviol glycosides in *Stevia*
 504 *rebaudiana* treated with phosphate-solubilizing bacteria and rock phosphate, *Plant growth Regul.*, 65,
 505 449–457, 2011.

506 Habib, L., Chien, S. H., Carmona, G., and Henao, J.: Rape response to a Syrian phosphate rock and its
 507 mixture with triple superphosphate on a limed alkaline soil, *Commun. Soil Sci. Plant Anal.*, 30, 449–
 508 456, 1999.

509 Hu, X., Chen, J., and Guo, J.: Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu
 510 Mountain, Zhejiang, China, *World J. Microbiol. Biotechnol.*, 22, 983–990, 2006.

511 Jha, A., Saxena, J., and Sharma, V.: Investigation on phosphate solubilization potential of agricultural soil
 512 bacteria as affected different phosphorus sources, temperature, salt, and pH, *Commun. Soil Sci. Plant*
 513 *Anal.*, 44, 2443–2458, 2013.

514 Jones, D. L.: Organic acids in the rhizosphere – a critical review, *Plant Soil*, 205, 25–44, 1998.

515 Khan A. A., Jilani, G., Akhter, M. S., Naqvi, S. M. S., and Rasheed, M.: Phosphorous solubilizing Bacteria;
 516 occurrence, Mechanisms and their role in crop production, *J. Agric. Biol. Sci.*, 1, 48–58, 2009.

517 Khan, M., and Sharif, M.: Solubility enhancement of phosphorus from rock phosphate through composting
 518 with poultry litter, *Sarhad J. Agric.*, 28, 415–420, 2012.

519 Khan, M.S., Zaidi, A., and Ahmad, E.: Mechanism of phosphate solubilization and physiological functions of
 520 phosphate-solubilizing microorganisms. In: Khan, M.S., Zaidi, A., Musarrat, J. (Eds.), *Phosphate*
 521 *Solubilizing Microorganisms: Principles and application of micrphos technology*, Springer
 522 International Publishing Switzerland, pp. 31–62, 2014.

523 Kim, K.Y., Jordan, D., and Krishnan, H.B.: *Rahnella aquatilis*, a bacterium isolated from soybean rhizosphere,
524 can solubilize hydroxyapatite, *FEMS Microbiol. Lett.*, 153, 273–277, 1997.

525 Kpomblekou, K., and Tabatabai, M. A.: Effect of organic acids on release of phosphorus from phosphate
526 rocks. *Soil Sci.*, 158, 442–453, 1994.

527 Kpomblekou, K., and Tabatabai, M.A.: Effect of low-molecular weight organic acids on phosphorus release and
528 phytoavailability of phosphorus in phosphate rocks added to soils, *Agri. Ecosyst. Environ.*, 100, 275–
529 284, 2003.

530 Lorion, R.M.: Rock phosphate, manure and compost use in garlic and potato systems in a high intermontane
531 valley in Bolivia. A thesis submitted for the degree of Master of Science in Soil Science Washington
532 State University Department of Crop and Soil Sciences, 2004.

533 Mashori, N.M., Memon, M., Memon, K.S., and Kakr, H.: Maize dry matter yield and P uptake as influenced by
534 rock phosphate and single super phosphate treated with farm manure, *Soil Environ.*, 32, 130–134,
535 2013.

536 Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., and Shirkot, C.K.: Efficiency of plant growth-promoting P-
537 solubilizing *Bacillus circulans* CB7 for enhancement of tomato growth under net house conditions, *J.*
538 *Basic Microbiol.* 53, 1–12, 2014.

539 Memon, K.S.: Soil and Fertilizer phosphorus. In: Rashid, A., Memon, K.S., Bashir, E., Bantel, R. (Eds.), *Soil*
540 *Science*. National Book Foundation (NBF), Pakistan, pp. 291–338, 2005.

541 Murphy, J., and Riley, J.P.: A modified single solution method for the determination of phosphate in natural
542 waters, *Anal. Chim. Acta*, 27, 31–36, 1962.

543 Nelson, D. N., and Sommer, L. E.: Total carbon, organic carbon and organic matter, in: *Methods of Soil*
544 *Analysis Part 2 Chemical and Microbiological Properties*, edited by Page, A. L., Miller, R. H., and
545 Keeney, D. R., SSSA Madison, WI, 539–589, 1982.

546 Nishanth, D., and Biswas, D. R.: Kinetics of phosphorus and potassium release from rock phosphate and waste
547 mica enriched compost and their effect on yield and nutrient uptake by wheat (*Triticum aestivum*),
548 *Bioresour. Technol.*, 99, 3342–3353, 2008.

549 Olsen, S. R., and Sommers, L. E.: Phosphorus, in: *Methods of Soil Analysis Part 2 Chemical and*
550 *Microbiological Properties*, edited by Page, A. L., Miller, R. H., and Keeney, D. R., SSSA Madison,
551 WI, 403–430, 1982.

552 Panhwar, Q. A., Radziah, O., Zaharah, A. R., Sariah, M., and Razi, I. M.: Role of phosphate solubilizing bacteria
553 on rock phosphate solubility and growth of aerobic rice, *J. Environ. Biol.* 32, 607–612, 2011.

554 Qureshi, M. A., Ahmad, Z. A., Akhtar, N., and Iqbal, A.: Role of phosphate solubilizing bacteria (PSB) in
555 enhancing P-availability and promoting cotton growth, *J. Anim. Plant Sci.*, 22, 204–210, 2012.

556 Rajapaksha, R. M. C. P., Herath, D., Senanayake, A. P., and Senevirathne, M. G. T. L., Mobilization of rock
557 phosphate phosphorus through bacterial inoculants to enhance growth and yield of wetland rice,
558 *Commun. Soil Sci. Plant Anal.*, 42, 301–314, 2011.

559 Reddy, M. S., Kumar, S., Babita, K., and Reddy, M. S.: Biosolubilization of poorly soluble rock phosphates by
560 *Aspergillus tubingensis* and *Aspergillus niger*, *Bioresour. Technol.*, 84, 187–189, 2002.

561 Ryan, J., Estefan, G., and Rashid, A.: *Soil and Plant Analysis Laboratory Manual*. International Center for
562 Agricultural Research in the Dry Areas (ICARDA). Aleppo Syria, pp.172, 2001.

563 Saleem, M. M., Arshad, M., and Yaseen, M.: Effectiveness of various approaches to use rock phosphate as a
564 potential source of plant available P for sustainable wheat production. *Int. J. Agric. Biol.*, 15: 223–230,
565 2013.

566 Shenoy, V. V., and Kalagudi, G. M.: Enhancing plant phosphorus use efficiency for sustainable cropping,
567 *Biotechnol. Adv.* 23, 501–513, 2005.

568 Simard, R.R: Ammonium acetate-extractable elements, in: *Soil Sampling and Methods of Analysis*, edited by
569 Carter, M. R., Lewis Publishers Boca Raton FL, 39–42, 1993.

570 Soltanpour, P. N., and Workman, S.: Modification of the NaHCO_3 DTPA soil test to omit carbon black,
571 *Commun. Soil Sci. Plant Anal.*, 10, 1411–1420, 1979.

572 Toor, G. S., and Haggard, B. E.: Phosphorus and trace metal dynamics in soils amended with poultry litter and
573 granulates, *Soil use Manage.*, 25, 409–418, 2009.

574 Toor, G.S.: Enhancing phosphorus availability in low-phosphorus soils by using poultry manure and
575 commercial fertilizer, *Soil Sci.*, 174, 358–364, 2009.

576 Wani, P. A., Khan, M. S., and Zaidi, A.: Synergistic effects of the inoculation with nitrogen fixing and
577 phosphate-solubilizing rhizobacteria on the performance of field grown chickpea, *J. Plant Nutr. Soil
578 Sci.* 170, 283–287, 2007.

579 Wickramatilake, A. R. P., Kouno, K., and Nagaoka, T.: Compost amendment enhances the biological properties
580 of Andosols and improves phosphorus utilization from added rock phosphate, *Soil Sci. Plant Nutr.*, 56,
581 607–616, 2010.

582 Zapata, F., and Zaharah, A.R.: Phosphorous availability from phosphate rock and sewage sludge as influenced
583 by the addition of water soluble phosphate fertilizer, *Nutr. Cycl. Agroecosyst.*, 63, 43–48, 2002.

584 Zou, K., Binkley, D., and Doxtadar, K. G.: New methods for estimating gross P mineralization rates in soils,
585 *Plant Soil*, 147, 243–250, 1992.

586

587

588 **Table 1.** The initial physical and chemical characteristics of soil used in the study

Soil properties	values
Bulk density (g cm ⁻³)	1.32
Sand (g kg ⁻¹)	433.9
Silt (g kg ⁻¹)	326.0
Clay (g kg ⁻¹)	240.1
Textural class	loam
Soil pH (1:2.5H ₂ O)	7.57
Organic matter (g kg ⁻¹)	10.3
Organic carbon (g kg ⁻¹)	5.64
Total N (g kg ⁻¹)	0.53
NH ₄ ⁺ -N (mg kg ⁻¹)	8.85
NO ₃ ⁻ -N (mg kg ⁻¹)	7.21
Available P (mg kg ⁻¹)	4.70
Available K (mg kg ⁻¹)	98.5
Calcium Ca (mg kg ⁻¹)	58.7
Magnesium Mg (mg kg ⁻¹)	15.5
Iron Fe, (mg kg ⁻¹)	17.8
Manganese Mn (mg kg ⁻¹)	6.2
Zinc Zn (mg kg ⁻¹)	8.4
Copper Cu (mg kg ⁻¹)	3.79
CaCO ₃ content (%)	0.68
Cation exchange capacity (CEC) cmol ⁽⁺⁾ kg ⁻¹ soil	11.9

589

590

591

592 **Table 2.** Mineralization potential (P release capacity) of soluble P fertilizers and insoluble rock phosphate
 593 (RP) in response to phosphate solubilizing bacteria (PSB) and poultry manure (PM) applied to a loam soil
 594 incubated under controlled laboratory conditions at 25 °C over 60 days periods.

Treatments	Days after amendments application						LSD ($P \leq 0.05$)
	0	5	15	25	35	60	
Extractable (available) P (mg kg⁻¹ soil)							
Control	4.7	4.8	5.3	5.7	6.5	4.5	0.44
RP	6.0	7.7	9.9	6.2	11.5	6.2	1.02
SSP	73.3	30.5	21.6	18.8	21.7	13.5	2.25
DAP	68.4	29.4	23.0	19.5	20.5	14.1	2.37
PM	10.4	13.1	18.8	17.7	20.2	9.6	1.16
½RP+½SSP	42.9	21.0	14.6	21.0	5.8	6.9	2.34
½RP+½DAP	43.3	17.3	25.2	13.6	7.9	6.2	2.21
½RP+½PM	11.8	12.8	15.3	13.5	23.0	8.9	3.32
RP+PSB	6.1	6.3	10.4	11.5	11.4	9.8	1.13
½RP+½SSP+PSB	38.2	18.8	18.8	16.0	22.7	11.2	1.80
½RP+½DAP+PSB	44.6	20.9	16.9	16.0	23.1	13.0	2.30
½RP+½PM+PSB	12.7	12.4	16.8	17.5	25.2	24.2	2.21
LSD ($P \leq 0.05$)	1.23	2.11	1.45	1.11	1.21	1.15	

595 *RP = rock phosphate; SSP = single super phosphate; DAP = di-ammonium phosphate; PM = poultry manure; PSB =
 596 phosphate solubilizing bacteria; full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

597

598

599

600

601 **Table 3.** Changes in pH of the soil supplemented with soluble P fertilizers and insoluble rock phosphate(RP)
 602 along with phosphate solubilizing bacteria (PSB) and poultry manure (PM) and incubated under controlled
 603 laboratory conditions at 25 °C over 60 days periods.

Treatments	Days after amendments application						LSD ($P \leq 0.05$)
	0	5	15	25	35	60	
pH							
Control	7.57	7.74	7.82	7.68	7.6	7.29	0.11
RP	7.57	7.65	7.87	7.76	7.5	7.39	0.08
SSP	7.93	7.91	7.85	7.76	7.86	7.43	0.16
DAP	8.00	7.94	8.00	7.98	7.81	7.34	0.06
PM	8.10	7.93	8.07	8.10	7.96	7.49	0.13
$\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP	7.90	7.91	7.89	8.07	7.99	7.56	0.08
$\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP	7.92	7.96	8.01	8.03	7.71	7.62	0.09
$\frac{1}{2}$ RP+ $\frac{1}{2}$ PM	7.89	7.93	7.78	8.03	7.68	7.66	0.10
RP+PSB	7.52	7.59	7.46	7.47	7.69	7.63	0.09
$\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB	7.93	7.91	7.91	7.65	7.65	7.58	0.09
$\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB	7.95	7.92	7.93	7.77	7.69	7.63	0.08
$\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB	7.95	7.87	7.75	7.66	7.59	7.54	0.07
LSD ($P \leq 0.05$)	0.13	0.08	0.16	0.10	0.10	0.07	

604 *RP =rock phosphate; SSP = single super phosphate; DAP = di-ammonium phosphate; PM = poultry manure; PSB =
 605 phosphate solubilizing bacteria; full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.
 606

Table 4. Effect of soluble P fertilizers and insoluble rock phosphate (RP) applied alone or in combination with phosphate solubilizing bacteria (PSB) and poultry manure (PM) on the growth and yield characteristics of chilli (*Capsicum annuum* L.) grown in pots under greenhouse conditions at Rawalakot Azad Jammu & Kashmir.

Treatments	Shoot length (cm)	Root length (cm)	Shoot dry wt. (g plant ⁻¹)	Root dry wt. (g plant ⁻¹)	Fruit length (cm)	No of seeds fruit ⁻¹	No. of fruits plant ⁻¹	Fruit yield (g plant ⁻¹)
Control	30.0	8.8	4.8	1.13	6.1	33.7	6.7	3.5
RP	32.0	10.7	5.2	1.26	7.2	38.0	8.7	4.9
SSP	39.0	17.4	8.4	1.33	7.8	50.0	15.3	7.2
DAP	43.3	15.6	11.8	1.76	9.3	49.0	19.9	10.0
PM	31.3	14.2	10.9	1.56	8.5	42.7	13.7	9.9
½RP+½SSP	33.3	14.5	6.4	1.37	7.5	41.3	11.7	5.8
½RP+½DAP	34.2	17.5	7.9	1.42	7.7	48.7	13.0	6.6
½RP+½PM	32.2	16.2	6.9	1.36	7.6	50.0	13.3	6.4
RP+PSB	30.3	16.4	7.8	1.35	8.5	44.0	10.6	5.6
½RP+½SSP+PSB	32.3	16.7	9.5	1.40	8.4	40.3	14.9	7.2
½RP+½DAP+PSB	43.7	15.7	10.2	1.73	8.5	42.3	18.5	8.7
½RP+½PM+PSB	45.8	18.7	12.3	2.35	9.5	50.3	21.2	10.4
LSD (P≤0.05)	3.7	1.73	1.81	0.09	0.74	4.10	1.7	0.8

*RP = rock phosphate; SSP = single super phosphate; DAP = di-ammonium phosphate; PM = poultry manure; PSB = phosphate solubilizing bacteria; full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

Table 5. Effect of soluble P fertilizers and insoluble rock phosphate (RP) applied alone or in combination with phosphate solubilizing bacteria (PSB) and poultry manure (PM) on P content and P-uptake of chilli (*Capsicum annuum* L.) grown in pots under greenhouse conditions at Rawalakot Azad Jammu & Kashmir.

Treatments	Shoot P (mg g ⁻¹)	Fruit P (mg g ⁻¹)	Shoot P-uptake (mg plant ⁻¹)	Fruit P-uptake (mg plant ⁻¹)	Total P-uptake (mg plant ⁻¹)
Control	0.78	0.50	3.7	1.8	5.5
RP	0.83	0.89	4.3	4.4	8.7
SSP	1.03	1.30	8.7	9.3	18.0
DAP	1.33	1.57	15.3	15.7	31.3
PM	1.01	1.54	11.0	15.2	26.2
½RP+½SSP	0.89	1.12	5.7	6.5	12.2
½RP+½DAP	0.92	1.08	7.3	7.1	14.4
½RP+½PM	0.90	1.06	6.2	6.8	13.0
RP+PSB	0.88	0.94	6.9	5.3	12.1
½RP+½SSP+PSB	0.98	1.17	9.3	8.4	17.7
½RP+½DAP+PSB	1.10	1.28	11.2	11.2	22.4
½RP+½PM+PSB	1.17	1.51	11.4	15.5	30.1
LSD (P≤0.05)	0.11	0.13	1.81	1.95	2.11

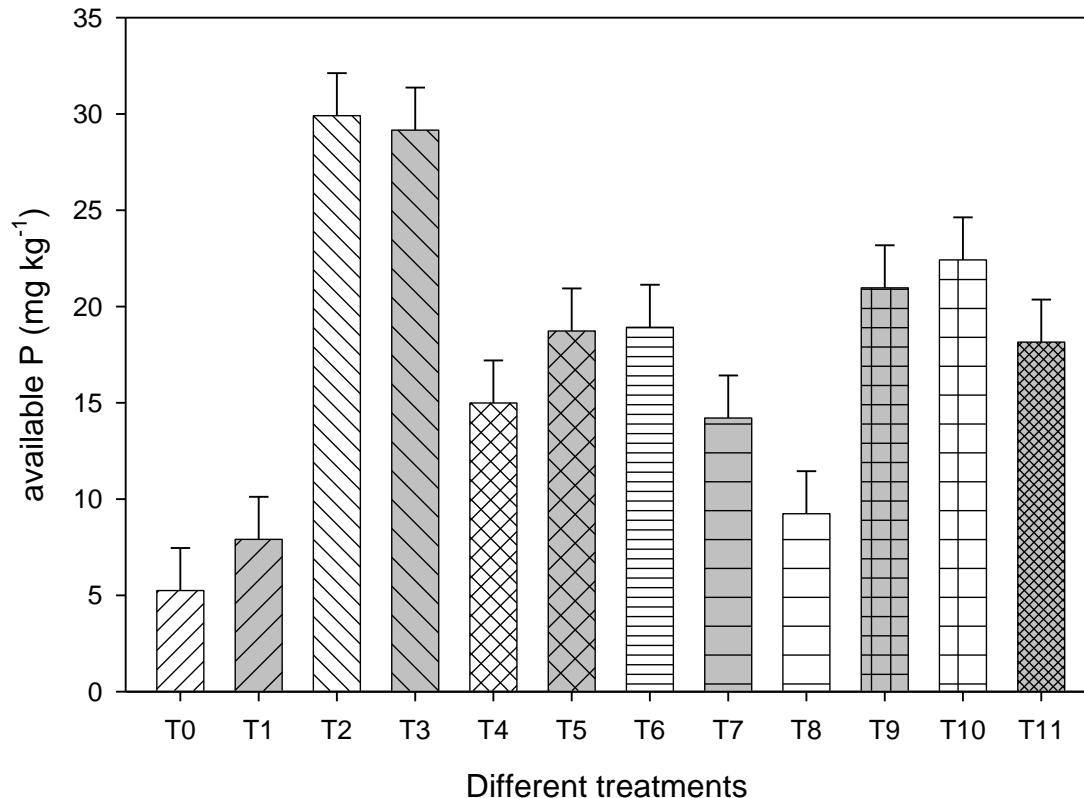

* RP= Rock Phosphate; SSP= Single Super Phosphate; DAP= Di ammonium Phosphate; PM= Poultry Manure; PSB= Phosphate Solubilizing Bacteria; full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

FIGURE CAPTIONS

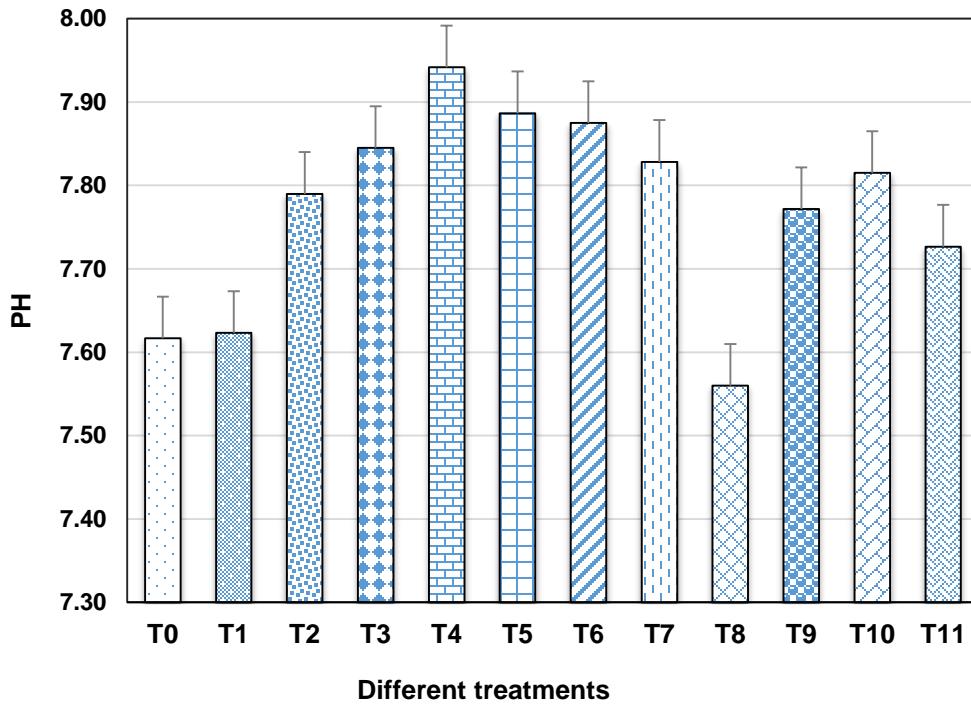

Figure 1. The P release capacity of different P sources applied alone or in combination with PSB and PM (average over incubation periods) to a soil incubated under controlled laboratory conditions at 25°C. The legend at x-axis represent T₀ = control; T₁ = RP; T₂ = SSP; T₃ = DAP; T₄ = PM full; T₅ = ½RP+½SSP; T₆ = ½RP+½DAP; T₇ = ½RP+½PM; T₈ = RP+PSB; T₉ = ½RP+½SSP+PSB; T₁₀ = ½RP+½DAP+PSB; T₁₁ = ½RP+½PM+PSB. Full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

Figure 2. Changes in pH of the soil (average over incubation periods) supplemented with different P sources applied alone or in combination with PSB and PM and incubated at controlled laboratory conditions at 25°C. The legend at x-axis represent T₀ = control; T₁ = RP; T₂ = SSP; T₃ = DAP; T₄ = PM full; T₅ = ½RP+½SSP; T₆ = ½RP+½DAP; T₇ = ½RP+½PM; T₈ = RP+PSB; T₉ = ½RP+½SSP+PSB; T₁₀ = ½RP+½DAP+PSB; T₁₁ = ½RP+½PM+PSB. Full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

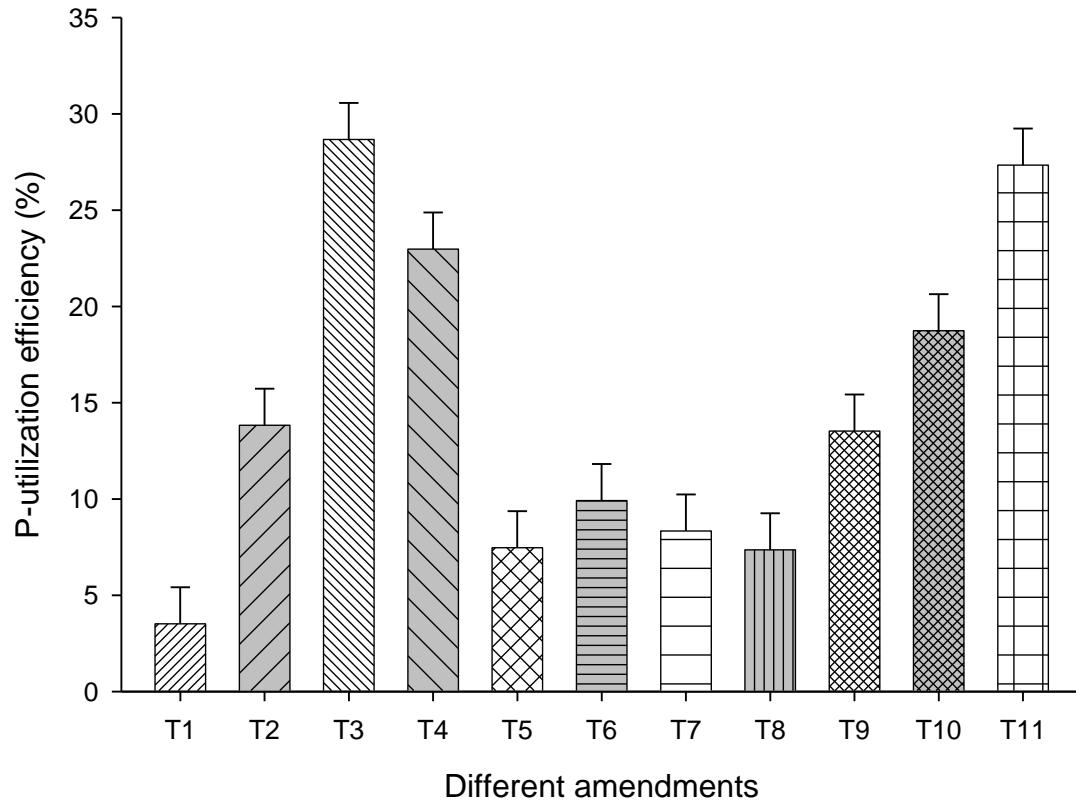

Figure 3. P utilization efficiency of chilli grown under greenhouse conditions following the application of different P sources applied alone or in combination with PSB and PM. The legend at x-axis represent T₁ = RP full; T₂ = SSP; T₃ = DAP; T₄ = PM; T₅ = ½RP+½SSP; T₆ = ½RP+½DAP; T₇ = ½RP+½PM; T₈ = RP+PSB; T₉ = ½RP+½SSP+PSB; T₁₀ = ½RP+½DAP+PSB; T₁₁ = ½RP+½PM+PSB. Full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

Figure 1. The P release capacity of different P sources applied alone or in combination with PSB and PM (average over incubation periods) to a soil incubated under controlled laboratory conditions at 25°C. The legend at x-axis represent T₀ = control; T₁ = RP; T₂ = SSP; T₃ = DAP; T₄ = PM; T₅ = $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP; T₆ = $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP; T₇ = $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM; T₈ = RP+PSB; T₉ = $\frac{1}{2}$ RP+ $\frac{1}{2}$ SSP+PSB; T₁₀ = $\frac{1}{2}$ RP+ $\frac{1}{2}$ DAP+PSB; T₁₁ = $\frac{1}{2}$ RP+ $\frac{1}{2}$ PM+PSB. Full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

Figure 2. Changes in pH of the soil (average over incubation periods) supplemented with different P sources applied alone or in combination with PSB and PM and incubated at controlled laboratory conditions at 25°C. The legend at x-axis represent T₀ = control; T₁ = RP; T₂ = SSP; T₃ = DAP; T₄ = PM; T₅ = ½RP + ½SSP; T₆ = ½RP + ½DAP; T₇ = ½RP + ½PM; T₈ = RP + PSB; T₉ = ½RP + ½SSP + PSB; T₁₀ = ½RP + ½DAP + PSB; T₁₁ = ½RP + ½PM + PSB. Full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.

Figure 3. P utilization efficiency of chilli grown under greenhouse conditions following the application of different P sources applied alone or in combination with PSB and PM. The legend at x-axis represent T₁ = RP; T₂ = SSP; T₃ = DAP; T₄ = PM; T₅ = $\frac{1}{2}$ RP + $\frac{1}{2}$ SSP; T₆ = $\frac{1}{2}$ RP + $\frac{1}{2}$ DAP; T₇ = $\frac{1}{2}$ RP + $\frac{1}{2}$ PM; T₈ = RP + PSB; T₉ = $\frac{1}{2}$ RP + $\frac{1}{2}$ SSP + PSB; T₁₀ = $\frac{1}{2}$ RP + $\frac{1}{2}$ DAP + PSB; T₁₁ = $\frac{1}{2}$ RP + $\frac{1}{2}$ PM + PSB. Full dose of P from different sources was applied at the rate of 90 mg P kg⁻¹ soil.