

1 **Reconstructions of biomass burning from sediment charcoal records**
2 **to improve data-model comparisons**

3
4 Jennifer R. Marlon^{1*}, Ryan Kelly², Anne-Laure Daniau³, Boris Vannière⁴, Mitchell J. Power⁵,
5 Patrick Bartlein⁶, Philip Higuera⁷, Olivier Blarquez⁸, Simon Brewer⁵, Tim Brücher⁹, Angelica
6 Feurdean^{10,11}, Graciela Gil Romera¹², Virginia Iglesias⁴, S. Yoshi Maezumi¹³, Brian Magi¹⁴,
7 Colin J. Courtney Mustaphi¹⁵, Tonishtan Zhihai¹⁶

8
9 1 Yale University, New Haven, USA

10 2 Boston University, USA

11 3 Centre National de la Recherche Scientifique (CNRS), Environnements et
12 Paléoenvironnements Océaniques et Continentaux (EPOC), Unité Mixte de Recherche (UMR)
13 5805, Université de Bordeaux, F-33400 Talence, France

14 4 Chrono-environnement UMR 6249 and MSHE USR 3124, CNRS, Univ. Bourgogne Franche-
15 Comté, F-25000 Besançon, France

16 5 University of Utah, Salt-Lake-City, USA

17 6 University of Oregon, Eugene, USA

18 7 University of Montana, Missoula, USA

19 8 Université du Québec à Montréal, Montréal, Canada

20 9 GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel,
21 Germany

22 10 Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main,
23 Germany; 11 Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania

24 12 IPE-CSIC, Zaragoza, Spain

25 13 University of Exeter, Exeter, UK

26 14 University of North Carolina at Charlotte, Charlotte, USA

27 15 University of York, York, UK

28 16 University of Shaanxi, Xi'an, China

29 **Abstract**

30 The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many
31 parts of the world, producing substantial impacts on ecosystems, people, and potentially climate.
32 Paleofire records based on charcoal accumulation in sediments enable modern changes in
33 biomass burning to be considered in their long-term context. Paleofire records also provide
34 insights into the causes and impacts of past wildfires and emissions when analyzed in
35 conjunction with other paleoenvironmental data and with fire models. Here we present new
36 1000-year and 22,000-year trends and gridded biomass burning reconstructions based on the
37 Global Charcoal Database version 3 (GCDv3), which includes 736 charcoal records (57 more
38 than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the
39 temporal trends in the data, allowing insights into likely controls on biomass burning at regional
40 to global scales. In the most recent few decades, biomass burning has sharply increased in both
41 hemispheres, but especially in the north, where charcoal fluxes are now higher than at any other
42 time during the past 22,000 years. We also discuss methodological issues relevant to data-model
43 comparisons, and identify areas for future research. Spatially gridded versions of the global
44 dataset from GCDv3 are provided to facilitate comparison with and validation of global fire
45 simulations.

46

47

1. Introduction

48

49 Fire has long been recognized as an important ecological process because of its influence on
 50 species distributions and role in shaping other key ecosystem properties (Bond and Keeley
 51 2005). Fire also affects regional and global biogeochemical and hydrologic cycles (Shakesby and
 52 Doerr 2006, van der Werf et al. 2006), geophysical processes (Morris and Moses 1987, DeBano
 53 2000), and the climate system (Randerson et al. 2006, Ward et al. 2012, Saleh et al. 2014).
 54 Nevertheless, large gaps remain in our understanding of the interactions between fire and
 55 climate, despite an increasing need to manage fire and its emissions (Keywood et al. 2013).

56

57 Fire activity has been characterized at a wide range of spatial and temporal scales using field
 58 observations and historical data (e.g., Mouillet and Field 2005, Gavin et al. 2007),
 59 dendrochronological data (e.g., Falk et al. 2011), satellites (e.g., Mouillet et al. 2014), ice
 60 cores (e.g., McConnell et al. 2007), and charcoal deposits in sediments, peat bogs, swamps, soils,
 61 and other environments (e.g., Whitlock and Bartlein 2004). Sedimentary records are unique
 62 among these data sources because of the broad temporal and spatial coverage they provide,
 63 which includes reconstructions of fire history at local to global spatial scales, and decadal to
 64 millennial temporal scales (e.g., Carcaillet et al. 2002, Brown 2005, Marlon et al. 2008, Iglesias
 65 and Whitlock 2014).

66

67 Results from paleofire research have helped lay a foundation for understanding the linkages
 68 among fire, climate, vegetation change, and human activities across a broad range of temporal
 69 and spatial scales. Fire-history data from sediment records highlight the importance of fire as a
 70 force of long-term global environmental change. Syntheses of data in the Global Charcoal
 71 Database (GCD), for example, reveal important variations in biomass burning during the last
 72 glacial period (Daniau et al. 2010), the last 21,000 years (Power et al. 2008, Daniau et al. 2012),
 73 and the last 2000 years (Marlon et al. 2008). With the increasing number of sites in the GCD,
 74 regional syntheses became possible, including long-term analyses of climate and human
 75 influences on burning in Australasia (Mooney et al. 2011, Williams et al. 2015), the
 76 Mediterranean (Colombaroli et al. 2009, Vanniere et al. 2011), the western US (Marlon et al.
 77 2012), and the Americas more broadly (Whitlock et al. 2007, Power et al. 2012).

78

79 Here we briefly review the history of biomass burning reconstructions based on charcoal data,
 80 and introduce version 3 of the GCD (GCDv3, n=736), which improves on GCDv1 (Power et al.
 81 2008) and GCDv2 (Daniau et al. 2012) by adding 57 records. We also present the GCDv3 in a
 82 new globally gridded format along with several broad-scale syntheses created using the open-
 83 source *paleofire* R package (Blarquez et al. 2014). The new gridded maps illustrate the spatial
 84 and temporal variability in fire activity over the past 22,000 years, highlighting recent departures
 85 from the long-term trends. The maps should be useful for modelers as well as others in the Earth
 86 sciences, particularly given the wide-ranging impacts of fire. Finally, we review several
 87 important limitations to charcoal-based records and identify promising future directions for the
 field.

88

2. Reconstructing Fire History with Sediment-Charcoal Data

89 Fire history research based on sediment-charcoal data has advanced rapidly in recent decades.
90 Early analyses of sedimentary charcoal were typically conducted to support studies focused
91 primarily on reconstructing past vegetation changes (Heusser 1995, Fuller et al. 1998, Haberle
92 1998, Behling 2001). A few early studies focused more directly on fire (Swain 1973, Burney
93 1987, Delcourt et al. 1998). In many cases, microscopic ($<100\mu\text{m}$) charcoal particles were tallied
94 alongside pollen grains. Pollen and charcoal particles were converted to concentrations using the
95 abundance of exotic markers of a known quantity added to each sample, and charcoal data were
96 presented as ratios of the relative abundance of charcoal to pollen. Records were usually sampled
97 at low temporal resolution due to the intensive labor and time required to analyze pollen.
98 Samples represented broad spatial areas because microscopic charcoal can travel hundreds of
99 kilometers (Clark 1988, Conedera and Tinner 2010). Variations in both pollen and charcoal
100 abundances can influence the ratios, however, and so changes in pollen productivity could
101 produce apparent changes in fire activity when none occurred. The differential production of
102 charcoal from grass versus wood species could also alter charcoal/pollen ratios. Thus, early
103 reconstructions based on microscopic charcoal-to-pollen ratios provided new and often useful
104 insights, but the information was relatively coarse and potentially unreliable for inferring past
105 regional fire activity.

106 Currently, most paleofire researchers analyze macroscopic charcoal particles ($>100\mu\text{m}$) sampled
107 contiguously from sediment cores to produce fire-history records that are more spatially and
108 temporally precise (e.g., “local” histories at decadal time scales) compared to earlier methods.
109 Macroscopic charcoal is typically quantified by simple particle counts or area measurements
110 made using image analysis (Carcaillet et al. 2001b). However, particles can also be characterized
111 using morphotypes. Two primary particle forms for non-arboreal charcoal exist: (1) cellular
112 ‘graminoid’ (thin rectangular pieces; one cell layer thick with pores and visible vessels and cell
113 wall separations) and (2) fibrous (collections or bundles of this filamentous charcoal clumped
114 together). Arboreal charcoal can be characterized by three morphotypes: (1) dark (opaque, thick,
115 solid, geometric in shape, some luster, and straight edges), (2) lattice (cross-hatched forming
116 rectangular ladder-like structure with spaces between) and (3) branched (dendroidal, generally
117 cylindrical with successively smaller jutting arms) (Jensen et al. 2007, Tweiten et al. 2009).

118 The analysis of high-resolution macroscopic charcoal records focuses on decomposing temporal
119 variations in particle measurements into low and high frequency signals. The low frequency
120 signals were originally termed “background” (Clark and Patterson 1997), and were thought to
121 primarily reflect non-fire processes within and around a site unrelated to fire occurrence, largely
122 due to sediment redeposition. The background component was therefore explicitly filtered out
123 and disregarded in analyses. Subsequent research, however, demonstrated that background
124 charcoal contains important information about the relative amount of biomass burned through
125 time (Haberle and Ledru 2001, Carcaillet et al. 2002), particularly when combined across
126 multiple records. Thus, the collection of many records into a single repository, including those of
127 insufficient resolution for local fire history reconstructions, became an important prerequisite for
128 reconstructing variations in biomass burning at regional to global spatial scales.

129 Recent studies demonstrate that background charcoal corresponds well with independent
130 evidence of area and/or biomass burned both at landscape scales (Higuera et al. 2011, Kelly et al.
131 2013) and regionally (Marlon et al. 2012). However, it is not possible to quantify absolute area

132 burned in the absence of a calibration dataset, and the influences of non-fire-related processes
133 such as erosion or vegetation change on biomass burning reconstructions remain poorly
134 understood (Aleman et al. 2013). These limitations highlight a need for more calibration studies
135 to understand how charcoal production and taphonomy relates to the area and amount of biomass
136 burned across a range of vegetation types and climate conditions.

137 Another recent advance in fire research is the reconstruction of fire frequency based on peaks in
138 sedimentary charcoal records. Fire frequency is an important component of the fire regime; but
139 such analyses require datasets with decadal resolution that are relatively uncommon in the GCD.
140 In order to reconstruct fire frequency, records must be sampled contiguously, have high temporal
141 resolution relative to the expected mean fire return intervals, and have sufficient particle counts
142 in each sample to separate peaks from “background” (Higuera et al. 2007, Higuera et al. 2010).
143 In addition, relatively stable sediment accumulation rates are ideal because peak frequencies will
144 vary with changes in sedimentation rates (Carcaillet et al. 2001a, Higuera et al. 2010). For these
145 reasons, our analyses of the GCDv3, which are focused on broad-scale changes in fire, are
146 limited to the reconstruction of fire activity or biomass burning rather than to changes in fire
147 frequencies.

148 Many other methodological approaches to long-term fire history reconstruction are developing
149 from a variety of combustion products in ice cores (Kehrwald et al. 2013), including the analysis
150 of ammonium (NH_4^+) (Savarino and Legrand 1998), methane (Fischer et al. 2008), carbon
151 monoxide (CO) (Wang et al. 2010), black carbon (Han et al. 2012, Lehndorff et al. 2015),
152 vanillic acid (McConnell et al. 2007), and levoglucosan (Zennaro et al. 2014), as indicators of
153 past fire activity. Laboratory and analytical methods are also advancing through the use of image
154 analysis for counting charcoal and charcoal morphotypes (Enache and Cumming 2006b, Jensen
155 et al. 2007, Thevenon and Anselmetti 2007, Gu et al. 2008, Moos and Cumming 2012).

156 Overall, the wealth of methods and approaches to fire research are providing a broad range of
157 insights into fire, both as an ecological process and as an integrated component of the Earth
158 system. Yet much work remains to understand the impact of wildfires and biomass burning
159 emissions on climate, and vice versa (Keywood et al. 2013). Research on human-fire interactions
160 using paleorecords is developing rapidly (Colombaroli et al. 2008, Perry et al. 2012, McLauchlan
161 et al. 2014, Munoz et al. 2014), but applying insights from paleofire research to fire management
162 and emissions reduction plans remains comparatively limited (Whitlock et al. 2003) (Cyr et al.
163 2009). By compiling diverse types of paleofire data in a central location and developing open-
164 source analysis tools to explore those data, research can advance more quickly on these topics.

165 **3. The Global Charcoal Database (Version 3)**

166
167 The structure and contents of earlier versions of the GCD are outlined in Power et al. (2010).
168 Here we review the database design and focus primarily on detailing new entries in GCDv3.
169 Version 3 extends the total number of sites in the GCD to 736. It includes 679 sites from version
170 2 (Daniau et al. 2012) as well as new sites from recent regional syntheses from Australasia
171 (Mooney et al. 2011), the Americas (Marlon et al., Power 2012#3017), and Europe (Vanniere et
172 al. 2011).
173

174 **3.1 Geographical distribution**

175
176 Sites in GCDv3 come from five continents and exhibit a wide variety of temporal resolutions
177 (Fig. 1). Most of the sites (436) are located in the Northern Hemisphere, which is due partly to its
178 larger land area and partly to sampling bias; 300 sites come from the Southern Hemisphere.
179 About 20% of Southern Hemisphere sites (178) are located in the tropics; most are located in
180 forested regions, although sites increasingly come from grasslands, shrublands, and woodlands
181 as well. The geographical distribution of the data reflects locations where fire research has
182 traditionally focused and the presence of suitable locations for paleoenvironmental indicators.
183 Sites are distributed between elevations of -9 to 4060 masl, with more than half (58%) below 500
184 masl; some records come from marine cores. Previous analyses of the distribution of GCD sites
185 in climate space showed that the dataset has relatively broad coverage with respect to global
186 biomes and climate gradients (Daniau et al. 2012). Many newly published fire history records
187 exist that can potentially be incorporated into subsequent versions of the GCD (Brown 2005,
188 Han et al. 2012, Harley et al. 2012, Iglesias et al. 2012, Daniau et al. 2013, Kelly et al. 2013,
189 Quintana-Krupinski et al. 2013, Tan and Huang 2013, Cordeiro et al. 2014, Courtney Mustaphi
190 and Pisaric 2014, Dunnette et al. 2014, Higuera et al. 2014, Iglesias and Whitlock 2014,
191 Neumann et al. 2014, Walsh et al. 2015) and many more are in development that will fill
192 important spatial gaps where fire is key, including Africa and the tropics.

193
194 **3.2. Type of records, data entry and database structure**

195
196 The majority of sites in the database are associated with a single record in which charcoal was
197 quantified using a single method. Yet, 96 sites in GCDv3 have more than one charcoal record,
198 typically because charcoal was quantified using multiple metrics or laboratory techniques.

199
200 The charcoal data and metadata from the GCDv3 are stored in several formats. The primary
201 complete dataset is stored in a Microsoft Access relational database with four main and 23
202 supporting tables. The four main tables hold 1) site metadata such as site name and type,
203 geographical coordinates, elevation, catchment size, data source, and dating type; 2) sample data,
204 including depths, volume, and estimated ages; 3) charcoal data, including quantity, units, and
205 quantification method; and 4) date information, including depth and type of dates, laboratory
206 identification numbers, material dated, and associated errors. Additional tables include
207 information such as the contact (i.e., the corresponding data contributor) and publications
208 associated with each record, index tables (e.g., linking sites to publications and contacts), and
209 full descriptions of codes used in the main tables. The original database was not designed to be a
210 long-term archival repository but rather a research database, and is therefore currently being
211 replaced with a new structure. A significant percentage of the site metadata, such as geographic
212 characteristics and methodological details, remains undocumented, however, and requires
213 completion if scientific questions that draw on such data are to be addressed.

214
215 In addition to the database format, the GCDv3 dataset is now available as part of the *paleofire* R
216 package (Blarquez et al. 2014) for use with the R computer programming environment (R
217 Development Core Team 2013). The R package currently lacks some of the metadata that are
218 contained in the full database, but the site metadata, charcoal data and modeled ages are
219 available. The complete GCD in the form of a relational database can be downloaded from the

220 GPWG.org and from the National Oceanic and Atmospheric Administration's (NOAA) National
221 Centers for Environmental Information (NCEI) website (URL:
222 <http://www.ncdc.noaa.gov/paleo/impd/gcd.html>).

223
224 Records in the GCD come from diverse environments (Appendix, Tables 1, 2). Most of the sites
225 in the database (n=390) are lacustrine, which are primarily natural lakes that are often of glacial
226 origin but may also be of tectonic, volcanic, or thermokarst origin. Other records (n=197) are
227 from terrestrial environments, such as bogs, marshes, mires, and fens. A smaller number of
228 records were obtained from soils (n=52), and from coastal/fluvial (n=35) or marine environments
229 (n=12). Depending on the objective of a particular study, some site types will be more suitable
230 than others. Marine records, for example, are among the longest in the database, making them
231 suitable for analyses of biomass burning during the last glacial cycle (Daniau et al. 2010). On the
232 other hand, marine sites have large catchment areas, making them suitable for regional but
233 unsuitable for fine-scale analyses of fire activity.

234
235 **3.3 Charcoal quantification methods**

236
237 Important differences exist in the types of quantification methods within the database. Taken
238 together, the 736 sites in GCDv3 have 134,269 charcoal samples with estimated ages. For most
239 of the sites, charcoal is quantified as concentration (n=402) or influx (n=212); 105 are expressed
240 in terms of charcoal to pollen ratios or similar measures of relative abundance; and the remaining
241 17 sites have uncommon units, such as cumulative probabilities or presence/absence of charcoal.
242 Influx is the preferred unit of measurement for most biomass burning reconstructions because it
243 accounts for variations in sedimentation rates over time, which can vary widely. If
244 concentrations, depths, and ages exist, then influx can be calculated prior to analyses. Charcoal-
245 to-pollen ratios, which were common in early analyses, are now relatively rare due to the
246 ambiguities inherent in their interpretation (Conedera et al. 2009).

247
248 Different laboratory methods are used to quantify charcoal (Table 3). The majority of charcoal
249 records included in the database (436 sites) are quantified using the pollen-slide method (POLS);
250 271 sites by sieving method (SIEV); 14 sites using image analysis (IMAG); and 15 sites were
251 quantified using other methods such as hand picking charcoal from soil samples, gravimetric
252 chemical assay (Winkler 1985), and charcoal separation by heavy liquid preparation. Several
253 records included were based on the cumulative probability of charcoal in alluvial fan deposits
254 (Pierce et al. 2004), and several records employed other chemical, thermal, or optical treatments
255 or some combination of these methods to quantify black or elemental carbon (Verardo et al.
256 1990).

257
258 **3.4. Chronology**

259
260 Accurate chronological dating of sediments is essential to paleo research. The quantity and
261 quality of dating controls in GCDv3 records vary widely (Fig. 2). Some records have numerous,
262 high precision AMS radiocarbon dates, while others have few dates and poorly constrained
263 chronologies with high or unknown uncertainties. Five common types of dates exist in the GCD,
264 including AMS ^{14}C , conventional ^{14}C , ^{210}Pb , pollen-based correlations, and stratigraphy markers
265 (e.g., tephras). Methods used to develop long record stratigraphies are based on $^{234}\text{U}/^{230}\text{Th}$ ratios

266 or orbital tie points. There are no major spatial patterns in the type of dating methods used, aside
267 from the terrestrial/marine distinction, and the use of tephras in areas with volcanic activity (e.g.
268 western coasts of the Americas). Differences in tephra dates among several records in the Pacific
269 Northwest that use an ash layer associated with the eruption of Mt. Mazama around 7700 years
270 before present (yr BP, where present is 1950 CE) (Bacon 1983) as a date in their depth-age
271 models appear to need revision, as the eruption date was subsequently dated in multiple studies
272 to 7627 ± 150 cal yr BP (Hallett et al. 1997, Zdanowicz et al. 1999). In general, radiocarbon dates
273 (AMS or conventional) are the most common dating method reported in the GCD. The ^{210}Pb
274 dating is used for dating uppermost sediments (i.e., spanning the past 150 years) because ^{210}Pb
275 has the shortest half-life of the radioisotopes. When the sediment-water interface is retrieved
276 during coring and is undisturbed, that core top sample is typically assigned the year in which the
277 core was obtained; this sample is marked as “stratigraphic” in the legend of Figure 2, and
278 accounts for the stack of orange-colored dots around 0 cal yr B.P. (i.e., 1950 CE).

280 4. Charcoal Data Standardization and Compositing

282 4.1. From raw data to standardized accumulation rates

284 Charcoal measurements can be obtained in a variety of ways, but the most common techniques
285 employ particle counts, area measurements, or relative abundances (Power et al. 2010). The
286 effects of local site characteristics such as lake size, watershed topography, and vegetation type
287 on absolute charcoal influx values (Marlon et al. 2006), along with the diversity of quantification
288 methods in common use (Conedera et al. 2009), results in values that vary over 13 orders of
289 magnitude (Power et al., 2010), making it impossible at this time to directly compare metrics of
290 biomass burned among sites. Charcoal records therefore must be standardized in order to
291 examine relative changes in charcoal influx over time (Power et al. 2010). Once standardized,
292 charcoal influx anomalies can be averaged from multiple records, even if the records are based
293 on different methods, creating a composite series in which maxima, minima, trends, and other
294 features can be identified and interpreted.

296 The charcoal syntheses presented here were standardized using a protocol (Marlon et al. 2008,
297 Power et al. 2010) that includes: (1) transforming non-influx values (e.g., concentration
298 expressed as particles cm^{-3}) to influx values (e.g., particles $\text{cm}^{-2} \text{ yr}^{-1}$) by dividing the
299 concentration values by sample deposition times (yr cm^{-1}); (2) homogenizing the variance using
300 the Box-Cox transformation; (3) rescaling the values using a minimax transformation to allow
301 comparisons among sites; and (4) rescaling values once more to Z-scores using a base period of
302 21,000 to 200 yrs BP. The base period ends at 200 yrs BP because of the large human impacts on
303 ignitions and suppression during the 19th and 20th centuries, which if included would obscure
304 variability in charcoal accumulation rates prior to this period. However, the transformed records
305 do extend into the 20th century (-50 yr BP, where CE 1950 = 0 BP). The most important step of
306 the transformation is the homogenization of the variance (Fig. 3), which serves to make small-
307 scale variations visible while also reducing the importance of high-value outliers.

309 4.2. Compositing multiple standardized time series

310 The purpose of compositing multiple charcoal records is to identify shared features and trends in
311 fire history that may exist in a given spatial or temporal domain (e.g., North America during the
312 Holocene). Given that individual charcoal time series are typically highly variable, averaging
313 multiple records can provide insights into changes in fire history that only manifest at broad
314 spatial scales (e.g., the impact of a changing climate within a given region). The variability in a
315 record comes from a variety of factors, including the stochastic nature of lightning-caused fires
316 (Bartlein et al. 2008), site-specific factors such as topography, soils, and local vegetation that
317 influence fire history, the complexities of charcoal production, transportation, and deposition ,
318 sediment sampling, and processing methods (Gavin et al. 2006). As a result, composite curves
319 that are based on few records also tend to show relatively high variability (Fig. 4, top panel). As
320 more records are included in the composite curve, the curve becomes smoother and the
321 confidence intervals around the mean narrow (Fig. 4, middle and bottom panels), because
322 averaging among many sites necessarily reduces peaks and other variations evident in individual
323 sites.

324 Although charcoal records are typically composited to examine trends in fire history in a given
325 geographic domain, composites can also be used to explore additional research questions. For
326 example, combining all available records in the GCD from islands might yield insights into
327 patterns of fire use associated with human colonization (McWethy et al. 2013). Alternatively,
328 contrasting fire history from lakes versus peat bogs or marine records might yield insights into
329 methodological questions about charcoal transportation and deposition. Compositing all records
330 available during a particular time period may also offer insights into globally influential events
331 like potential comet impacts (or lack thereof) (Marlon et al. 2009), volcanic events (Marlon et al.
332 2012), or into the effects of abrupt climate changes on fire (Daniau et al. 2010).

333
334 Irrespective of the research question, the process for compositing records is the same in each
335 case. Each record is standardized as described above, but only after it is resampled to a common
336 temporal resolution (“presampled”) in order to standardize the influence of each record on the
337 final composite curve. Presampling can be done using simple binning techniques, but a preferred
338 method is to fit a lowess curve to the series at regularly-spaced target points (e.g., at 20-year
339 intervals); the latter smooths over uncertainties in the sediment data as well as in the age model,
340 whereas binning creates artificial cut-off points between samples that are in reality uncertain.
341 After presampling, the records are standardized using a common base period, and a lowess curve
342 is again fitted to the pooled, transformed data using a fixed window width (e.g. 1000 years to
343 generate a record of nominally "millennial-scale" variability). Composite curves in this paper
344 were produced following these methods as implemented in the R *paleofire* package (Blarquez et
345 al. 2014).

346
347 Two issues that are not addressed by the above standardization and compositing approach relate
348 to age uncertainties and spatial representativeness. While compositing many records can
349 highlight regional trends in biomass burning, the different temporal uncertainty in individual
350 records can make it difficult to accurately determine the precise timing of changes, or to explore
351 questions about synchronicity, for example. The number of radiocarbon dates or other
352 chronological constraints in a record provide information about age uncertainties, and these dates
353 are available in the GCD. However, formally assessing every age-depth model for the records in
354 the GCD is a non-trivial task, and should ideally be undertaken with the researchers who

produced each record. Smoothing and gridding data accounts for age uncertainty in the records informally because the process only reveals trends and shifts in biomass burning that are robust across multiple records. More detailed analysis will always be needed however, to address research questions about the sequence of particular changes, or the precise timing of specific events. Similarly, the varying spatial representativeness of individual records are not accounted for in the compositing method described here. The myriad factors that affect charcoal production, transportation, and deposition in sediments means that there is no universal relationship between charcoal quantities and area burned that can be applied to all records. The conversion of all units to z-scores therefore allows the detection of trends in biomass burning over time but removes any information that may exist about the specific magnitude of area burned recorded by different records that make up a composite curve.

5. The Gridded Charcoal Dataset

To efficiently visualize GCDv3 and facilitate comparisons with model output, we present a spatially gridded version of GCDv3 using dot maps (Figs. 5, 6) alongside composite time-series curves (Figs. 5, 6). Vertical gray bars on the composite graphs indicate the time periods reflected in the maps. Each dot on the map represents a composite charcoal series constructed from all records within a fixed distance of the dot, such that the area represented by each dot is the same. However, the dots are positioned on a regular latitude/longitude grid, and the area of each grid cell varies by latitude (i.e., cells near the equator cover larger areas than those near the poles); spacing dots in this way maximizes the compatibility of the gridded charcoal dataset with other global data products. On such a grid, the absolute distance between dots (or nodes) decreases with distance from the equator. We defined the radius used to identify sites contributing to a dot as half the distance between diagonally adjacent dots at the equator (e.g., ~395 km for a $5^\circ \times 5^\circ$ grid). This radius ensures that all GCD sites contribute to at least one dot, but also causes sites to influence multiple dots, especially at high latitudes where dots are relatively close together in terms of absolute distance (Fig. 7). Finally, our gridding approach prevents interpolation into areas that are not represented in the GCD, which is desirable given the great spatial heterogeneity of fire regimes.

Anomaly maps illustrate the gridding approach at six discrete intervals during the past 1000 years (Fig. 5, left panel) and 22,000 years (Figs. 6, left panel). Maps from each 100-year period during the past millennium and each 1000-year interval since the last glacial maximum (LGM) are provided in the Supplementary Information. The charcoal values are plotted on a 5° grid, and the dots are colored and sized to reflect the value and statistical significance, respectively, of the biomass burning anomalies (Fig. 5 and 6, right panels). The maps include data from three 100-year intervals (Fig. 5) and three 1000-year intervals (Fig. 6). Red dots on the maps indicate positive mean z-scores for sites in that location relative to their own long-term mean, which was calculated using a base period between 1000-200 years (Fig. 5) and 21,000-200 cal yr BP (Fig. 6). Blue dots on the map indicate negative mean z-scores. Because each dot shows changes in biomass burning relative to its own long-term average *for that location*, comparisons among dot colors on a single map (i.e., for a specific time) cannot be used to infer geographic patterns in biomass burning. For example, it is possible (or very likely, in fact) that for a given time period, a blue dot in Africa represents more biomass burning than a red dot in the Arctic. By contrast,

401 changes in the color of a dot over time indicate meaningful temporal variability in the relative
402 rate of biomass burning. A red dot in one time period that changes to a blue dot in the same
403 location at another time period, for example, reflects an actual decrease in biomass burning over
404 time at that location. One point of note is that it is possible in some cases for a recent time period
405 to have less data than an older time period because samples from sediment cores are not
406 regularly spaced in time, and core sections or tops are sometimes lost or destroyed in the field or
407 during extraction. Most lake sediments provide continuous records, but soil and bog profiles
408 often have hiatuses when sites dry out or peat is burned, and occasionally this happens in lake
409 and marine sediments as well. Another reason that a site may have less data closer to present
410 than in the distant past is when sedimentation rates decline over time. In this case, a section of
411 the core that represents the most recent past may only have one or two samples, whereas sections
412 of the same size further down core may contain many samples.

413
414 A diagnostic map of the gridded charcoal data shows the effects of summarizing all data within a
415 constant specified distance from each dot (Fig. 7). Effectively, the gridding approach allows each
416 site to influence an equivalent spatial area on the map. However, it is helpful to keep in mind that
417 given the same number of sites at high latitudes and at the equator, the high-latitude sites will be
418 more smoothed relative to those at the equator, which is evident in the diagnostic maps from
419 different time periods. Another effect of using equal-area circles to construct the dot maps is that
420 a circle can be centered quite far from shore but still encompass a site on land. Thus dots may
421 represent terrestrial sites despite being plotted in the ocean on our maps (although in some cases
422 they represent charcoal data actually collected from marine cores; see Figs. 1 and 7 for a
423 comparison between location of sites and dots). Large (small) dots indicate biomass burning
424 anomalies that are (not) significantly different from zero.

425
426 Global biomass burning during the past millennium (Fig. 5) shows a gradual long-term decline
427 until the 17th century during the Little Ice Age (LIA, Mann et al. 2009), as observed in previous
428 reconstructions (Marlon et al. 2008). This decline is more pronounced in the Northern than
429 Southern Hemisphere (Fig. 5, top and bottom panels). After the LIA, global biomass burning
430 increases gradually until the 19th century, then rapidly until the 20th century. Maximum levels of
431 biomass burning in the Northern Hemisphere occur prior to maximum levels in the Southern
432 Hemisphere, and both hemispheres experience sharp declines in biomass burning during the
433 second half of the 20th century. The maps of biomass burning show the spatial heterogeneity
434 underlying the composite curves. Biomass burning in central and eastern North America is
435 highest from 1850-1950 CE, for example, whereas burning in western North America is highest
436 during the most recent period (1950-2010 CE). In contrast, burning in western and southern
437 Europe is generally higher 1000 years ago than it is in the past two centuries. Burning in
438 southeast Asia is very high from 1850-1950 CE, and remains high in several locations for the
439 period 1950-2010 CE where data are available.

440
441 The most recent upturn in fire activity globally, but particularly in the Northern Hemisphere
442 reconstruction, is supported by a larger data set than GCDv1. Marlon et al. (2008) used GCDv1
443 to document the large decrease in biomass burning in the 20th century, but the reconstruction had
444 large uncertainties in the trend over the last few decades. The addition of new records to versions
445 2 and 3 of the GCD, along with a finer-scale temporal focus now reveals the most recent
446 increases in fire activity observed not only in the charcoal data, but also in several lines of

447 independent evidence, including satellite and observational data (Giglio et al. 2013, Dennison et
448 al. 2014).

449
450 Global biomass burning since the LGM, 21,000 years ago shows a long-term increase (Fig. 6),
451 consistent with increasing temperatures, atmospheric CO₂ concentrations, and burnable biomass
452 (Daniau et al. 2012, Martin Calvo et al. 2014). The reconstructions from GCDv3 (red lines) are
453 very similar to those from GCDv2 (thin gray lines) for the globe, northern extratropics (>30° N
454 latitude), tropics (>30° N latitude and <30° S latitude), and southern extratropics (<30° S
455 latitude), with the exception of burning in the northern extratropics during the LGM, which
456 registers as very low with the additional records in GCDv3 as compared with GCDv2 (Fig. 6).
457 However, the northern and Southern Hemispheres show somewhat inverse patterns of burning
458 during the Holocene, with fire increasing steadily in the northern extratropics during the
459 Holocene, but declining in the early to mid-Holocene in the tropics and southern extratropics,
460 before increasing in the late Holocene.

461
462 The gridded maps provide insight into the spatial variations in biomass burning since the LGM.
463 Burning is generally higher in the past millennium than at any time since the LGM with the
464 exception of central-western South America (Fig. 6), where some locations had higher than
465 average burning during the mid-Holocene and below average burning in the past millennium.
466 Levels of burning during the LGM in turn were generally lower than at later periods, with a few
467 localized exceptions. Particularly high levels of biomass burning in the past millennium are
468 observed in many locations in the Southern Hemisphere (e.g., New Zealand, central Africa, the
469 Amazon, as well as in parts of the Northern Hemisphere (e.g., northeastern North America,
470 southern California, and the southern Iberian Peninsula). The maps also reveal spatial coherence
471 in regional biomass burning since the LGM, which likely reflects climate controls on fire in
472 some cases and human controls on fire in others – the degree of coherence alone cannot
473 distinguish causal mechanisms at this scale.

474
475 **6. Using Charcoal Data in Model Validation**

476 The development of the GCD is motivated by the need to understand the history of fire on Earth,
477 and the linkages among fire, climate, vegetation, and human activities. As the GCD continues to
478 expand, the expectation is that knowledge of fire histories will become more detailed. Analyzing
479 charcoal-based fire history records with modern data from satellites (e.g. van der Werf et al.
480 2010, Giglio et al. 2013), fire scars (e.g. Girardin and Sauchyn 2008, Marlon et al. 2012), or
481 historical records (e.g. Mouillet et al. 2006, Lamarque et al. 2010) is necessary to connect
482 relative or qualitative variations in biomass burning from charcoal records (Aleman et al. 2013)
483 to quantitative estimates of burned area or carbon emissions. To test hypotheses related to drivers
484 of fire activity over longer time scales, however, research needs to integrate paleofire data with
485 modeling approaches. As the spatial network of charcoal records become denser, there is
486 increasing opportunity to identify locations where varying types of fire records overlap, and thus
487 more opportunities to study changes in fire regimes that span multiple spatial and temporal
488 scales.

489 Fire modeling efforts have advanced rapidly in the last decade (Arora and Boer 2005, Kloster et
490 al. 2010, Kelley et al. 2014, Lasslop et al. 2014, Yue et al. 2014, Le Page et al. 2015), providing

491 a better understanding of the varied impacts that fires have on humans, the biosphere, and the
492 atmosphere (Harrison et al. 2010), as well as the mechanisms through which climate changes and
493 human activities affect fire regimes. Simulations of fire activity using physically-based empirical
494 relationships between flammability and its controlling variables, such as temperature and soil
495 moisture, have helped identify the global drivers of modern burning (Arora and Boer 2005,
496 Kloster et al. 2010, Pechony and Shindell 2010, Thonicke et al. 2010, Li et al. 2013, Pfeiffer et
497 al. 2013). Fire modeling studies have also qualitatively compared paleofire trends with simulated
498 global fire activity (Pechony and Shindell 2010, Kloster et al. 2012, Li et al. 2013), but
499 quantitative testing of the physically based relationships that drive fire models – the mechanics
500 of the models themselves – has only focused on modern climate conditions thus far. As a result,
501 large gaps in knowledge exist about how fire, climate, vegetation, and humans interact under
502 different climate conditions and over long timescales. Despite the fact that mechanistic global
503 fire models remain largely untested outside modern climate parameters, these models are being
504 used to predict the response of fires to ongoing climate change (Pechony and Shindell 2010,
505 Kloster et al. 2012).

506 The fire modeling studies that have explicitly considered paleofire data provide examples of the
507 challenges in comparing data and models. A study by Pechony and Shindell (2010) tested a
508 global fire model scheme within a Global Climate Model simulation of the past millennium, for
509 example, and found that at coarse spatial scales precipitation was the most important factor
510 driving multi-centennial variations in fire activity in the model. However, the spatial patterns
511 underlying these trends, and the extent to which finer-scale variations match paleofire evidence
512 are unknown. Moreover, the finding that precipitation is more important than temperature in
513 driving trends in fire activity globally contradicts analyses of paleodata (Daniau et al. 2012,
514 Marlon et al. 2012, Power et al. 2012, Marlon et al. 2013), as well as satellite remote-sensing
515 data (Bistinas et al. 2013), raising key questions about how temperature, precipitation, and their
516 interactions affect variations in global biomass burning. Another fire modeling study (Brücher et
517 al. 2014) compared model output to paleofire data from the GCD at regional scales from the
518 mid-Holocene until the pre-industrial era in the 18th century. Kloster et al. (2015) go one step
519 further to test the sensitivity of the same model to variations in fuel availability, fuel moisture,
520 and wind speed, as well as their synergy for the same regions and time period.

521 The new approach to gridding GCD data presented here (and included in the *paleofire* R
522 package) should help further paleofire data-model comparison studies. Whereas modeling
523 studies to date have focused on global or regional trends, the growing number of records in the
524 GCD allows for evaluation of model performance at finer spatial scales. Yet, site-specific
525 variability is often high among charcoal records, and driver datasets for many global fire models
526 may be of relatively coarse resolution. As a result it is ill-advised to compare model output to
527 individual charcoal records. The gridded approach offers a flexible compromise that can be tuned
528 in terms of spatial resolution depending on data availability, model driver datasets, and other
529 factors. As an example, we present here a global map of simulated area burned using the
530 CLIMBA model (Brücher et al. 2014), overlaid with gridded composite charcoal anomalies from
531 the GCD. CLIMBA consists of the EMIC CLIMBER-2 (CLIMate and BiosphERe) (Petoukhov
532 et al. 2000, Ganopolski et al. 2001) and JSBACH (Raddatz et al. 2007, Brovkin et al. 2009,
533 Reick et al. 2013, Schneck et al. 2013), which is the land component of the Max Planck Institute
534 Earth System Model (MPI-ESM, Giorgetta et al. 2013). Simulated area burned throughout the

535 Holocene was treated analogously to GCD data to produce a gridded map of area-burned
536 anomalies at 6000 BP relative to present (i.e., 6,000 BP z-scores minus 0 BP z-scores).

537 Overall, data-model agreement is weak, with many grid cells disagreeing in terms of the sign of
538 the anomaly estimated from the CLIMBA model versus GCD data (Fig. 8A). However, the
539 exercise shows promise for some regions. In eastern North America, for example, site-level GCD
540 data are difficult to reconcile with model output (Fig. 8B), but the gridded data product shows
541 that both data and model generally agree that 6000 BP was a period of lower fire activity than
542 present for the region (Fig. 8C). It is beyond the scope of this paper to evaluate the importance of
543 this agreement, or the causes of data-model mismatch in other regions throughout the globe.
544 Rather, we present the example as a proof-of-concept to motivate future studies. Important basic
545 research topics to pursue include evaluation of spatiotemporal patterns in data-model
546 comparisons, and a critical assessment of how uncertainties in both GCD data and fire model
547 output contribute to the comparisons.

548 Using fire history data from the GCD to constrain fire model simulations, or conversely, using
549 fire model simulations to understand variability in the fire history data from the GCD, requires
550 careful consideration of the uncertainties associated with both data types. For paleofire records,
551 quantifying and accounting for age uncertainties is a major concern, but progress is occurring on
552 this front through the development of Bayesian age-modeling methods (Blaauw and Christen
553 2011, Goring et al. 2012). Uncertainties in charcoal records also come from the many natural
554 processes related to charcoal production, transportation, and deposition, which interact to
555 produce variability in charcoal accumulation over time. These processes are being studied
556 through field experiments and calibration studies that will enable the development of higher
557 quality fire-history reconstructions and a better understanding of uncertainties (Tinner et al.
558 2006, Higuera et al. 2011, Aleman et al. 2013). An important source of uncertainty in global fire
559 models is the parameterization of the processes most directly controlling fire activity (e.g. human
560 influence, climate influence, e.g. Pechony and Shindell 2009, Pfeiffer et al. 2013). The
561 sensitivity of simulated fire activity to such parameterizations needs to be tested to understand
562 model uncertainty. Uncertainty in modern fire records arises from any extrapolation or
563 interpretation beyond the available fire records (Mouillet et al. 2006) or to limits in the satellite
564 data itself (Giglio et al. 2013). With detailed considerations of both the limits and uncertainties
565 of all data sources and model parameterizations, connecting GCD to fire models represents the
566 natural evolution in the effort to understand fires in the Earth system.

567 7. Future Recommendations

568 There are several research areas that, with further development, would facilitate rapid integration
569 of fire data and a more comprehensive understanding of fire across spatiotemporal scales. Here
570 we identify particular areas that would help address specific barriers to progress in paleofire
571 research.

- 572 1. *Charcoal calibration studies in diverse environments.* A major limitation of biomass
573 burning reconstructions is that they can only represent relative changes in burning from
574 an arbitrary baseline. Calibration studies that relate variability in charcoal accumulation
575 to fire regime characteristics from historical, fire-scar, satellite and other recent data

576 could allow additional information to be obtained from charcoal records. Given the
577 complexities of charcoal production, transportation and deposition, it is unlikely that the
578 absolute amount of biomass burning from a single paleofire time-series can be known,
579 but with a better understanding of how charcoal abundances relate quantitatively to area
580 burned or other fire-regime metrics, constraints on paleofire reconstructions can be
581 established and integrated into models that can then provide quantitative estimates of
582 variables like area burned and carbon emissions.

583 2. *Multiproxy studies of paleofire history.* Comparisons of paleofire data from multiple
584 sources, such as charcoal, black carbon, and levoglucosan, are needed to better
585 understand the roles of changes in area burned, fire frequency, fire type, and emissions in
586 carbon cycling and the climate system. The combustion of vegetation produces a wide
587 array of products, but many of these (e.g. ammonium and black carbon) are not specific
588 to biomass combustion. As a result, developing methods for effectively comparing
589 different types of data that imperfectly reflect fire emissions may improve our
590 understanding of fire by providing convergent evidence for particular features, enhancing
591 the temporal or spatial resolution of reconstructions, or refining our understanding of
592 proxy source areas. By improving our ability to compare and integrate diverse sources of
593 fire history information, we can more clearly identify and potentially offset the
594 weaknesses of each particular data type.

595 3. *Data-model comparisons of paleofire history.* A primary motivation for the development
596 of the GCD has been to create datasets for use in the development and validation of
597 global fire models. Mechanistic and process-based simulations of fire activity at multiple
598 spatiotemporal scales necessarily depend on an accurate understanding of the controls of
599 biomass burning. The GCD can directly inform fire models on this point. Paleofire data-
600 model comparisons are an emerging field in many respects. Spatiotemporal comparisons
601 of GCD to fire model output will help move research forward into deeper analyses of
602 how uncertainties associated with both the data and the models contribute to our
603 collective understanding of paleofire history and implications for future model-based fire
604 projections.

605 4. *Filling gaps in paleofire data.* Data collection from regions that are presently
606 underrepresented in the GCD (e.g., Africa, the tropics, tundra and heathlands, and the
607 boreal forests of Eurasia) is essential for learning how fire varied in response to climate
608 forcings and human activity in the past, particularly in unique vegetation types and in
609 biodiversity hotspots. Understanding fire-climate-vegetation interactions can supplement
610 our knowledge from data-poor areas, but given the contingencies and legacies that land-
611 use practices have on land cover and disturbance regimes (McLaughlan et al. 2014),
612 having data from specific geographic locations is often necessary.

613 5. *Comparisons between charcoal data and other spatially-extensive datasets.* The
614 development of large environmental datasets during the past few decades has opened up a
615 new frontier in global change science. New research into the interactions among climate,
616 vegetation, human activities and fire during the Holocene and in the more distant past can
617 now be supported by large simulated and observed paleoclimate datasets, pollen datasets,
618 and data on population growth, land-use, and land-cover change. Analyzing these
619 datasets jointly with the GCD can provide insights into how changes in fire regimes
620 affect rates of ecological change and biodiversity (Colombaroli et al. 2012), how fire

621 affects species migration (Edwards et al. 2015), or whether humans altered the climate
622 system using fire in the early Holocene (Marlon et al. 2013).

623 In addition to the research needs above, several practices could aid in the development of high
624 quality charcoal-based fire history reconstructions and facilitate data integration across labs, and
625 therefore across different environmental contexts. The practices may be more useful to new
626 researchers entering the field or establishing new labs.

- 627 1. *Continuous sampling of macroscopic charcoal data.* Although many researchers now
628 sample lacustrine sediment continuously and quantify macroscopic charcoal, many
629 continue to tally microscopic particles, or to sample discontinuously. Taking the latter
630 approach may be necessary due to methodological, funding, or other constraints, but
631 when it is possible, the former approach is more desirable. Research on charcoal particle
632 size classes supports macroscopic particles ($>100\mu\text{m}$) as a reliable indicator of local
633 (within 1-10+ kilometers of a study site) fire activity (Whitlock and Bartlein 2004),
634 whereas smaller particles integrate biomass burning from a larger spatial domain
635 (Conedera et al. 2009). If both macroscopic and microscopic particles can be tallied, they
636 may provide complimentary evidence of past fire regime change. However, if only one
637 particle size is collected, analysis of macroscopic charcoal usually provides a better
638 signal for local fire reconstruction. While continuous sampling is more time and cost-
639 intensive, it facilitates reconstructing event frequency, aligning multiple cores, detecting
640 unique events, and examining rates of change.
- 641 2. *Separating woody and herbaceous charcoal.* In environments that may have had grasses
642 as a fuel source, separate tallying of woody and herbaceous charcoal (e.g. Walsh et al.
643 2008) can be of great value (e.g. Daniau et al. 2013) in identifying temporal variability in
644 fuel types. Additional charcoal morphotypes can be observed and classified as well
645 (Enache and Cumming 2006a, Mustaphi and Pisaric 2014), but the application of these
646 methods remains largely untested. In the meantime, separate tallies only of woody and
647 herbaceous charcoal have already been shown to provide reliable information about fuel
648 sources (e.g., Wooller et al. 2000, Walsh et al. 2008, Maezumi et al. 2015) and are
649 recommended when possible.
- 650 3. *Data sharing and open-source code.* The importance of data sharing, and increasingly
651 code sharing, is now widely recognized in the scientific community (Easterbrook 2014,
652 Towards transparency 2014). Sharing data and code facilitates and encourages
653 reproducibility, allows comparative data analysis, and promotes scientific progress in
654 general (Herridge et al. 2015). Data sharing is also essential for addressing questions at
655 broad spatial scales, evaluating alternative laboratory and analytical methods, and
656 ensuring that limited research funds are used efficiently. Although sharing data and code
657 introduces overhead costs for data management and archive maintenance, the benefits to
658 individuals, the scientific community, and the public at large are increasingly recognized
659 as far outweighing these costs. The research presented in this paper is just one example
660 of the science that is possible with data and code sharing; we hope academic institutions,
661 publishers, and funders continue to encourage and incentivize such practices (Kattge et
662 al. 2014).

664

665

8. How to Access the Products

666

667 The complete GCDv1, v2 and v3 (this paper) Microsoft Access database with all available
668 metadata is stored and available at gpwg.org. Supporting information about the Global Charcoal
669 Database and the Global Palaeofire Working Group is also available at gpwg.org. Site metadata
670 and the charcoal data are accessible through the *paleofire* package (Blarquez et al. 2014) for R
671 (R Development Core Team 2013).

672

673

9. Conclusions

674

675 The GCDv3 incorporates 736 charcoal records and can now be gridded globally for the modeling
676 community to ease future data-model comparisons. Fire history reconstructions from the GCDv3
677 demonstrate that increases in biomass burning since the last glacial period were widespread, as
678 are unusually high levels of burning over the past several decades. Present day burning inferred
679 from the charcoal data is particularly high in western North America and southeastern
680 Australasia. Detailed reconstructions of temporal variations in biomass burning during the past
681 1000 years reveal that a global biomass burning decline from 1000 to the LIA was more
682 pronounced in the northern than Southern Hemisphere. In addition, variations in fire activity
683 during the past 200 years show very different spatial patterns. In general, data-model
684 comparisons with paleofire data provide a powerful method for testing hypotheses about
685 interactions between climate and fire outside the range of modern climate conditions. Results
686 from such data-model comparisons will highlight gaps and weaknesses in both data and models,
687 allowing targeted refinements to be identified and prioritized. We identify five areas of focus to
688 promote future progress in paleofire research, including (1) charcoal calibration studies in
689 diverse environments, (2) multiproxy studies of paleofire history, (3) paleofire data-model
690 comparisons, (4) filling gaps in paleo fire data, (5) comparisons between charcoal data and other
691 large datasets, and (6) enhanced data extraction from existing cores, like continuous sampling
692 and herbaceous charcoal identification.

693

694

Acknowledgements

695 We thank PAGES working group support for the GPWG. This research and paper was initiated
696 during the GPWG workshop 2013 held in Franche-Comté and supported by the UMR Chrono-
697 Environnement, the OREAS project, The University of Franche-Comté and the Région Franche-
698 Comté. JRM is supported by NSF grants BCS-1437074 and EF-1241870. PJB and BM are
699 supported by NSF grant BCS-1437074. ALD is supported by the project PICS CNRS 06484.
700 PEH was supported by NSF grant IIA-0966472. BV is supported by the project MISTRALS-
701 PaleoMEX.

702

703

Figure Captions

704

705

	Lacustrine (LACU)	Bog (BOGM)	Unknown (NOTK)	Soil (SOIL)	Coastal (COAS)	Marine (MARI)
Concentration (CONC)	178	120	33	43	22	8

Influx (INFL)	157	37	9	3	4	2
Proportion (COP0)	45	37	8	4	9	2
Other (OTHE)	10	3	2	2	0	0
Total	390	197	52	52	35	12

706 Table 1. Total number of sites by sediment and measurement type. The sediment types are
707 lacustrine (LACU), bog (BOGM), unknown (NOTK), soil (SOIL), coastal (COAS), and marine
708 (MARI). The measurement types stored in the database are concentration (CONC), influx,
709 (INFL), proportions (e.g., ratio of charcoal particles to pollen grains), and other (OTHE).

710
711
712

	Lacustrine (LACU)	Bog (BOGM)	Unknown (NOTK)	Soil (SOIL)	Coastal (COAS)	Marine (MARI)
Small (SMAL)	194	100	4	13	15	0
Medium (MEDI)	33	22	2	9	7	0
Large (LARG)	14	2	7	1	0	12
Unknown (NOTK)	149	73	39	29	13	0
Total	390	197	52	52	35	12

713 Table 2. Total number of sites by sediment type and catchment size. Catchment sizes are small
714 (<10km²), medium (>10.1km² and <500km²), large (>500km²), and unknown (NOTK).

715
716
717

	Proportion (COP0)	Concentration (CONC)	Influx (INFL)	Soil (SOIL)
Soil charcoal (CPRO)	0	0	0	1
Gravimetric (GRAV)	1	1	0	0
Hand Picked (HNPK)	0	7	0	0
Heavy Liquid Preparation (HVLQ)	0	4	0	0
Imaging Analysis (IMAG)	0	12	2	0
Oxidation Resistant Elemental Carbon OREC % of dry weight (OREC)	0	1	0	0
Pollen Slide (POLS)	81	259	98	0
Sieved (SIEV)	4	151	118	0
Total	86	435	218	1

718 Table 3. Total number of sites by quantification type and laboratory analysis method.

719

720

721

722 Figure 1. Location of paleofire sites and sampling density in the GCDv3.

723

724 Figure 2. Temporal and latitudinal distribution of dates used to develop chronologies for records
725 in the GCDv3 over the past 22,000 years.

726

727 Figure 3. Example of untransformed and transformed charcoal influx (using the box-cox
728 transformation) from Lago de Acessa, Tuscany, Italy (Vanniere et al. 2008). Number of particles
729 per influx class is shown (left panels).

730
731 Figure 4. Three 3000-year biomass burning curves from eastern North America based on sites
732 from an increasing number of adjacent grid cells show how the reconstructions become smoother
733 and confidence intervals narrow as the number of sites and the spatial area included expand.
734 Biomass burning reconstruction based on two adjacent grid cells containing a total of 19 records
735 (top panel); three adjacent grid cells containing 40 records (middle panel), including the 19 from
736 the top panel; and four adjacent grid cells representing a total of 59 records (bottom panel),
737 including all previous. In all panels, red lines are based on 400-year smoothing windows, black
738 lines based on 200-year windows, and bootstrap 95% confidence intervals from resampling by
739 site are shown as gray bands.

740
741 Figure 5. Trends in biomass burning (left panel) for the Northern Hemisphere, globe, and
742 Southern Hemisphere for the past 1000 years and spatially gridded biomass burning (right panel)
743 for the period 1950-2010 CE, 1850-1950 CE, and 950-1050 CE. Vertical gray bars through the
744 time series on the left panel correspond to the time intervals shown in the gridded dot maps on
745 the right panel. The charcoal influx anomaly base period for all panels is 1,000-1800 CE. The
746 smoothing window widths for the time-series (left panel) are 40 years (red line) and 20 years
747 (black line). Bootstrap-by-site confidence intervals (95%) are filled in gray.

748
749 Figure 6. Trends in biomass burning (left panel) from 22 to 0ka from the GCDv3 (red) and
750 GCDv2 (gray, Daniau et al. 2012) for the entire globe, northern extratropics ($>30^\circ$ N latitude),
751 tropics ($>30^\circ$ N latitude and $<30^\circ$ S latitude), and the southern extratropics ($<30^\circ$ S latitude),
752 along with spatially gridded biomass burning (right panel) for the periods 0-1ka, 5.5-6.5ka, and
753 20.5-21.5ka. Vertical gray bars on the left panel correspond to the intervals shown in the maps
754 (right panel). The charcoal influx anomaly base period for all panels is 21ka-200 cal yr BP; the
755 smoothing window width is 1000 years. Bootstrap-by-site confidence intervals (95%) are filled
756 in gray.

757
758 Figure 7. Diagnostic maps for the globally gridded data showing the number of sites per grid cell
759 at a) 0-1ka; b) 5.5-6.5ka; and c) 20.5-21.5ka.

760
761 Figure 8. Modeled (filled grid boxes, Brücher et al. 2014) vs. reconstructed (GCDv3) fire activity
762 at global (a) and regional (b, c) scales. Both data and model represent millennial anomalies at
763 6ka relative to present (i.e., mean z-scores for 5.5–6.5ka minus mean z-scores for 500 cal yr BP
764 to present). In all panels, green and pink symbols indicate GCD data that agrees or disagrees
765 (respectively) with model output in terms of the sign of the 6–0ka anomaly. In (a) and (c) the
766 data are gridded following methods presented in Section 5. In (b), anomalies for individual GCD
767 sites are plotted, with symbols indicating positive ('+') or negative ('o') anomalies; records that
768 do not span the full 6ka interval are shown (grey squares) but excluded from the analysis.

769
770
771
772

774 **References**

775

776

777 Aleman, J. C., O. Blarquez, I. Bentaleb, P. Bonté, B. Brossier, C. Carcaillet, V. r. Gond, S.
778 Gourlet-Fleury, A. Kpolita, I. n. Lefèvre, R. Oslisly, M. J. Power, O. Yongo, L. Bremond,
779 and C. Favier. 2013. Tracking land-cover changes with sedimentary charcoal in the
780 Afrotropics. *The Holocene* **23**:1853-1862.

781 Arora, V. K. and G. J. Boer. 2005. Fire as an interactive component of dynamic vegetation
782 models. *Journal of Geophysical Research* **110**:1-20.

783 Bacon, C. R. 1983. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade
784 Range, U.S.A. *Journal of Volcanology and Geothermal Research* **18**:57-117.

785 Bartlein, P., S. W. Hostetler, S. L. Shafer, J. O. Holman, and A. M. Solomon. 2008. Temporal
786 and spatial structure in a daily wildfire-start data set from the western United States
787 (1986-96). *International Journal of Wildland Fire* **17**:8-17.

788 Behling, H. 2001. Late Quaternary environmental changes in the Lagoa da Curuça region
789 (eastern Amazonia, Brazil) and evidence of *Podocarpus* in the Amazon lowland.
790 *Vegetation History and Archaeobotany* **10**:175-183.

791 Bistinas, I., D. Oom, A. C. L. Sá, S. P. Harrison, I. C. Prentice, and J. M. C. Pereira. 2013.
792 Relationships between human population density and burned area at continental
793 and global scales. *PLoS ONE* **8**:e81188.

794 Blaauw, M. and J. A. Christen. 2011. Flexible paleoclimate age-depth models using an
795 autoregressive gamma process. *Bayesian Analysis* **6**:457-474.

796 Blarquez, O., B. Vannière, J. R. Marlon, A.-L. Daniau, M. J. Power, S. Brewer, and P. J. Bartlein.
797 2014. paleofire: An R package to analyse sedimentary charcoal records from the
798 Global Charcoal Database to reconstruct past biomass burning. *Computers &*
799 *Geosciences* **72**:255-261.

800 Bond, W. J. and J. E. Keeley. 2005. Fire as a global 'herbivore': the ecology and evolution of
801 flammable ecosystems. *Trends in Ecology & Evolution* **20**:387-394.

802 Brovkin, V., T. Raddatz, C. H. Reick, M. Claussen, and V. Gayler. 2009. Global biogeophysical
803 interactions between forest and climate. *Geophysical Research Letters* **36**.

804 Brown, K. J., Clark, J.S., Grimm, E.C., Donovan, J.J., Mueller, P.G., Hansen, B.C.S., Stefanova, I.
805 2005. Fire cycles in North American interior grasslands and their relation to prairie
806 drought. *Proceedings of the National Academy of Sciences of the United States of*
807 *America* **102**:8865-8871.

808 Brücher, T., V. Brovkin, S. Kloster, J. R. Marlon, and M. J. Power. 2014. Comparing modelled
809 fire dynamics with charcoal records for the Holocene. *Climate of the Past* **10**:811-
810 824.

811 Burney, D. A. 1987. Late Quaternary stratigraphic charcoal records from Madagascar.
812 *Quaternary Research* **28**:274-280.

813 Carcaillet, C., H. Almquist, H. Asnong, R. H. W. Bradshaw, J. S. Carrión, M. J. Gaillard, K.
814 Gajewski, J. N. Haas, S. G. Haberle, P. Hadorn, S. D. Müller, P. J. H. Richard, I. Richoz, M.
815 Rösch, M. F. Sánchez Goñi, H. Von Stedingk, A. C. Stevenson, B. Talon, C. Tardy, W.
816 Tinner, E. Tryterud, L. Wick, and K. J. Willis. 2002. Holocene biomass burning and
817 global dynamics of the carbon cycle. *Chemosphere* **49**:845-863.

818 Carcaillet, C., Y. Bergeron, P. J. H. Richard, B. Fréchette, S. Gauthier, and Y. T. Prairie. 2001a.
819 Change of fire frequency in the eastern Canadian boreal forests during the Holocene:

820 does vegetation composition or climate trigger the fire regime? *Journal of Ecology*
821 **89**:930-946.

822 Carcaillet, C., M. Bouvier, B. Fréchette, A. C. Larouche, and P. J. H. Richard. 2001b.
823 Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for
824 local and regional fire history. *Holocene* **11**:467-476.

825 Clark, J. S. 1988. Particle motion and the theory of charcoal analysis: source area, transport,
826 deposition, and sampling. *Quaternary Research* **30**:pp. 67-80.

827 Clark, J. S. and W. A. Patterson. 1997. Background and local charcoal in sediments: scales of
828 fire evidence in the paleorecord. Pages 23-48 in J. S. Clark, H. Cachier, J. G.
829 Goldammer, and B. J. Stocks, editors. *Sediment records of biomass burning and*
830 *global change*. Springer-Verlag, Berlin.

831 Colombaroli, D., M. Beckmann, W. O. van der Knaap, P. Curdy, and W. Tinner. 2012. Changes
832 in biodiversity and vegetation composition in the central Swiss Alps during the
833 transition from pristine forest to first farming. *Diversity and Distributions*:n/a-n/a.

834 Colombaroli, D., W. Tinner, J. v. Leeuwen, R. Noti, E. Vescovi, B. Vanniere, M. Magny, R.
835 Schmidt, and H. Bugmann. 2009. Response of broadleaved evergreen Mediterranean
836 forest vegetation to fire disturbance during the Holocene: insights from the peri-
837 Adriatic region. *Journal of Biogeography* **36**:314-326.

838 Colombaroli, D., B. Vanniere, C. Emmanuel, M. Magny, and W. Tinner. 2008. Fire-vegetation
839 interactions during the Mesolithic-Neolithic transition at Lago dell'Accesa, Tuscany,
840 Italy. *Holocene* **18**:679-692.

841 Conedera, M. and W. Tinner. 2010. Long-term fire ecology of Switzerland. *Journal forestier
842 suisse* **161**:424-432.

843 Conedera, M., W. Tinner, C. Neff, M. Meurer, A. F. Dickens, and P. Krebs. 2009.
844 Reconstructing past fire regimes: methods, applications, and relevance to fire
845 management and conservation. *Quaternary Science Reviews* **28**:555-576.

846 Cordeiro, R. C., B. J. Turcq, L. S. Moreira, R. de Aragão Rodrigues, F. F. L. S. Filho, G. S.
847 Martins, A. B. Santos, M. Barbosa, M. C. G. da Conceição, R. de Carvalho Rodrigues, H.
848 Evangelista, P. F. Moreira-Turcq, Y. P. Penido, A. Sifeddine, and J. C. S. Seoane. 2014.
849 Palaeofires in Amazon: Interplay between Land Use Change and Palaeoclimatic
850 Events. *Palaeogeography, Palaeoclimatology, Palaeoecology*.

851 Courtney Mustaphi, C. J. and M. F. J. Pisaric. 2014. Holocene climate–fire–vegetation
852 interactions at a subalpine watershed in southeastern British Columbia, Canada.
853 *Quaternary Research* **81**:228-239.

854 Cyr, D., S. Gauthier, Y. Bergeron, and C. Carcaillet. 2009. Forest management is driving the
855 eastern North American boreal forest outside its natural range of variability.
856 *Frontiers in Ecology and the Environment* **7**:519-524.

857 Daniau, A.-L., M. F. S. Goñi, P. Martínez, D. H. Urrego, V. Bout-Roumazeilles, S. Desprat, and J.
858 R. Marlon. 2013. Orbital-scale climate forcing of grassland burning in southern
859 Africa. *Proceedings of the National Academy of Sciences* **110**:5069-5073.

860 Daniau, A.-L., S. P. Harrison, and P. J. Bartlein. 2010. Fire regimes during the last glacial.
861 *Quaternary Science Reviews* **29**:2918-2930.

862 Daniau, A. L., P. Bartlein, S. Harrison, I. Prentice, S. Brewer, P. Friedlingstein, T. Harrison -
863 Prentice, J. Inoue, K. Izumi, and J. Marlon. 2012. Predictability of biomass burning in
864 response to climate changes. *Global Biogeochemical Cycles* **26**.

865 DeBano, L. F. 2000. The role of fire and soil heating on water repellency in wildland
866 environments: a review. *Journal of Hydrology* **231**:195-206.

867 Delcourt, P. A., H. R. Delcourt, C. R. Ison, W. E. Sharp, and K. J. Gremillion. 1998. Prehistoric
868 human use of fire, the Eastern Agricultural Complex, and Appalachian oak-chestnut
869 forests: Paleoecology of Cliff Palace Pond, Kentucky. *American Antiquity* **63**:263-
870 278.

871 Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz. 2014. Large wildfire trends in
872 the western United States, 1984-2011. *Geophysical Research Letters* **41**:2928-2933.

873 Dunnette, P. V., P. E. Higuera, K. K. McLauchlan, K. M. Derr, C. E. Briles, and M. H. Keefe.
874 2014. Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain
875 subalpine watershed. *New Phytologist* **203**:900-912.

876 Easterbrook, S. M. 2014. Open code for open science? *Nature Geosci* **7**:779-781.

877 Edwards, M., L. Franklin-Smith, C. Clarke, J. Baker, S. Hill, and K. Gallagher. 2015. The role of
878 fire in the mid-Holocene arrival and expansion of lodgepole pine (*Pinus contorta*
879 var. *latifolia* Engelm. ex S. Watson) in Yukon, Canada. *The Holocene* **25**:64-78.

880 Enache, M. D. and B. F. Cumming. 2006a. Tracking recorded fires using charcoal
881 morphology from the sedimentary sequence of Prosser Lake, British Columbia
882 (Canada). *Quaternary Research* **65**:282-292.

883 Enache, M. D. and B. F. Cumming. 2006b. Tracking recorded fires using charcoal
884 morphology from the sedimentary sequence of Prosser Lake, British Columbia
885 (Canada). *Quaternary Research* **65**:282-292.

886 Falk, D. A., E. K. Heyerdahl, P. M. Brown, C. Farris, P. Z. Fulé, D. McKenzie, T. W. Swetnam, A.
887 H. Taylor, and M. L. Van Horne. 2011. Multi-scale controls of historical forest-fire
888 regimes: new insights from fire-scar networks. *Frontiers in Ecology and the
889 Environment* **9**:446-454.

890 Fischer, H., M. Behrens, M. Bock, U. Richter, J. Schmitt, L. Loulergue, J. Chappellaz, R. Spahni,
891 T. Blunier, M. Leuenberger, and T. F. Stocker. 2008. Changing boreal methane
892 sources and constant biomass burning during the last termination. *Nature*
893 **452**:doi:10.1038/nature06825.

894 Fuller, J. L., D. R. Foster, J. S. McLachlan, and N. Drake. 1998. Impact of human activity on
895 regional forest composition and dynamics in central New England. *Ecosystems* **1**:76-
896 95.

897 Ganopolski, A., V. Petoukhov, S. Rahmstorf, V. Brovkin, M. Claussen, A. Eliseev, and C.
898 Kubatzki. 2001. CLIMBER-2: a climate system model of intermediate complexity.
899 Part II: model sensitivity. *Climate Dynamics* **17**:735-751.

900 Gavin, D. G., D. J. Hallett, F. S. Hu, K. P. Lertzman, S. J. Prichard, K. J. Brown, J. A. Lynch, P.
901 Bartlein, and D. L. Peterson. 2007. Forest fire and climate change in western North
902 America: insights from sediment charcoal records. *Frontiers in Ecology and the
903 Environment* **5**:499-506.

904 Gavin, D. G., F. S. Hu, K. Lertzman, and P. Corbett. 2006. Weak climatic control of stand-scale
905 fire history during the late Holocene. *Ecology* **87**:1722-1732.

906 Giglio, L., J. T. Randerson, and G. R. van der Werf. 2013. Analysis of daily, monthly, and
907 annual burned area using the fourth-generation global fire emissions database
908 (GFED4). *Journal of Geophysical Research: Biogeosciences* **118**:317-328.

909 Giorgetta, M. A., J. Jungclaus, C. H. Reick, S. Legutke, J. Bader, M. Böttinger, V. Brovkin, T.
910 Crueger, M. Esch, and K. Fieg. 2013. Climate and carbon cycle changes from 1850 to

911 2100 in MPI - ESM simulations for the Coupled Model Intercomparison Project
912 phase 5. *Journal of Advances in Modeling Earth Systems* **5**:572-597.

913 Girardin, M. P. and D. Sauchyn. 2008. Three centuries of annual area burned variability in
914 northwestern North America inferred from tree rings. *Holocene* **18**:205-214.

915 Goring, S., J. W. Williams, J. L. Blois, S. T. Jackson, C. Paciorek, R. K. Booth, J. R. Marlon, M.
916 Blaauw, and C. Andres. 2012. Deposition times in the northeastern United States
917 during the Holocene: establishing valid priors for Bayesian age models. *Quaternary
918 Science Reviews* **48**:54-60.

919 Gu, Y. S., D. M. Pearsall, S. C. Xie, and J. X. Yu. 2008. Vegetation and fire history of a Chinese
920 site in southern tropical Xishuangbanna derived from phytolith and charcoal
921 records from Holocene sediments. *Journal of Biogeography* **35**:325-341.

922 Haberle, S. G. 1998. Late quaternary vegetation change in the Tari Basin, Papua New
923 Guinea. *Palaeogeography, Palaeoclimatology, Palaeoecology* **137**:1-24.

924 Haberle, S. G. and M. P. Ledru. 2001. Correlations among charcoal records of fires from the
925 past 16,000 years in Indonesia, Papua New Guinea, and Central and South America.
926 *Quaternary Research* **55**:97-104.

927 Hallett, D., L. V. Hills, and J. J. Clague. 1997. New accelerator mass spectrometry radiocarbon
928 ages for the Mazama tephra layer from Kootenay National Park, British Columbia,
929 Canada. *Canadian Journal of Earth Sciences* **34**:1202-1209.

930 Han, Y. M., J. R. Marlon, J. J. Cao, Z. D. Jin, and Z. S. An. 2012. Holocene biomass burning
931 trends in China from soot, char and charcoal in lake sediments. *Global
932 Biogeochemical Cycles* **26**:doi:10.1029/2011GB004197.

933 Harley, G. L., H. D. Grissino-Mayer, and S. P. Horn. 2012. Fire history and forest structure of
934 an endangered subtropical ecosystem in the Florida Keys, USA. *International Journal
935 of Wildland Fire* **104**:1-19.

936 Harrison, S. P., J. R. Marlon, and P. J. Bartlein. 2010. Fire in the Earth System. Pages 21-48 in
937 J. Dodson, editor. *Changing Climates, Earth Systems and Society*. Springer,
938 Dordrecht, The Netherlands.

939 Herridge, V., S. P. Birch, and M. Law. 2015. Open Quaternary: A New, Open Access Journal
940 for Quaternary Research. *Open Quaternary* **1**.

941 Heusser, C. J. 1995. Three late Quaternary pollen diagrams from southern Patagonia and
942 their palaeoecological implications. *Palaeogeography, Palaeoclimatology,
943 Palaeoecology* **118**:1-24.

944 Higuera, P., D. Gavin, P. Bartlein, and D. Hallett. 2010. Peak detection in sediment-charcoal
945 records: impacts of alternative data analysis methods on fire-history
946 interpretations. *International Journal of Wildland Fire* **19**:996-1014.

947 Higuera, P. E., C. E. Briles, and C. Whitlock. 2014. Fire-regime complacency and sensitivity
948 to centennial-through millennial-scale climate change in Rocky Mountain subalpine
949 forests, Colorado, USA. *Journal of Ecology* **102**:1429-1441.

950 Higuera, P. E., M. E. Peters, L. B. Brubaker, and D. G. Gavin. 2007. Understanding the origin
951 and analysis of sediment-charcoal records with a simulation model. *Quaternary
952 Science Reviews* **26**:1790-1809.

953 Higuera, P. E., C. Whitlock, and J. Gage. 2011. Linking tree-ring and sediment-charcoal
954 records to reconstruct fire occurrence and area burned in subalpine forests of
955 Yellowstone National Park, U.S.A. *The Holocene* **21**:327-341.

956 Iglesias, V. and C. Whitlock. 2014. Fire responses to postglacial climate change and human
957 impact in northern Patagonia (41–43°S). *Proceedings of the National Academy of
958 Sciences* **111**:E5545-E5554.

959 Iglesias, V., C. Whitlock, M. M. Bianchi, G. Villarosa, and V. Outes. 2012. Holocene climate
960 variability and environmental history at the Patagonian forest/steppe ecotone: Lago
961 Mosquito (42 degrees 29 ' 37.89 " S, 71 degrees 24 ' 14.57 " W) and Laguna del
962 Condor (42 degrees 20 ' 47.22 " S, 71 degrees 17 ' 07.62 " W). *Holocene* **22**:1297-
963 1307.

964 Jensen, K., E. A. Lynch, R. Calcote, and S. C. Hotchkiss. 2007. Interpretation of charcoal
965 morphotypes in sediments from Ferry Lake, Wisconsin, USA: do different plant fuel
966 sources produce distinctive charcoal morphotypes? *Holocene* **17**:907-915.

967 Kattge, J., S. Diaz, and C. Wirth. 2014. Of carrots and sticks. *Nature Geosci* **7**:778-779.

968 Kehrwald, N., C. Whitlock, C. Barbante, V. Brovkin, A.-L. Daniau, J. Kaplan, J. R. Marlon, M. J.
969 Power, K. Thonicke, and G. R. Van Der Werf. 2013. Recent advancements in wildfire
970 research. *Eos Trans. AGU*:421-423.

971 Kelley, D. I., S. P. Harrison, and I. C. Prentice. 2014. Improved simulation of fire-vegetation
972 interactions in the land surface processes and exchanges dynamic global vegetation
973 model (lpx-mv1). *Geoscience Model Development* **7**:2411-2433.

974 Kelly, R., M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker, and F. S. Hu. 2013. Recent
975 burning of boreal forests exceeds fire regime limits of the past 10,000 years.
976 *Proceedings of the National Academy of Sciences* **110**:13055-13060.

977 Keywood, M., M. Kanakidou, A. Stohl, F. Dentener, G. Grassi, C. P. Meyer, K. Torseth, D.
978 Edwards, A. M. Thompson, U. Lohmann, and J. Burrows. 2013. Fire in the Air:
979 Biomass Burning Impacts in a Changing Climate. *Critical Reviews in Environmental
980 Science and Technology* **43**:40-83.

981 Kloster, S., T. Brücher, V. Brovkin, and S. Wilkenskjeld. 2015. Controls on fire activity over
982 the Holocene. *Climate of the Past* **11**:781-788.

983 Kloster, S., N. Mahowald, J. T. Randerson, and P. J. Lawrence. 2012. The impacts of climate,
984 land use, and demography on fires during the 21st century simulated by CLM-CN.
985 *Biogeosciences* **9**:509-525.

986 Kloster, S., N. M. Mahowald, J. T. Randerson, P. E. Thornton, F. M. Hoffman, S. Levis, P. J.
987 Lawrence, J. J. Feddema, K. W. Oleson, and D. M. Lawrence. 2010. Fire dynamics
988 during the 20th century simulated by the Community Land Model. *Biogeosciences*
989 **7**:1877-1902.

990 Lamarque, J.-F., T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A.
991 Mieville, B. Owen, M. G. Schultz, D. Shindell, S. J. Smith, E. Stehfest, J. V. Aardenne, O.
992 R. Cooper, M. Kainuma, N. Mahowald, J. R. McConnell, V. Naik, K. Riahi, and D. P. v.
993 Vuuren. 2010. Historical (1850–2000) gridded anthropogenic and biomass burning
994 emissions of reactive gases and aerosols: methodology and application. *Atmospheric
995 Chemistry and Physics* **10**: 7017-7039, doi:10.5194/acp-10-7017-2010.

996 Lasslop, G., K. Thonicke, and S. Kloster. 2014. Spitfire within the mpi earth system model:
997 Model development and evaluation. *Advances in Modeling Earth Systems* **6**:740-
998 755.

999 Le Page, Y., D. Morton, B. Bond-Lamberty, J. M. C. Pereira, and G. Hurtt. 2015. Hesfire: A
1000 global fire model to explore the role of anthropogenic and weather drivers.
1001 *Biogeosciences* **12**:887-903.

1002 Lehndorff, E., M. Wolf, T. Litt, A. Brauer, and W. Amelung. 2015. 15,000 years of black
1003 carbon deposition – A post-glacial fire record from maar lake sediments (Germany).
1004 Quaternary Science Reviews **110**:15-22.

1005 Li, F., S. Levis, and D. S. Ward. 2013. Quantifying the role of fire in the Earth system - Part 1:
1006 Improved global fire modeling in the Community Earth System Model (CESM1).
1007 Biogeosciences **10**:2293-2314.

1008 Maezumi, S. Y., M. J. Power, F. E. Mayle, K. K. McLauchlan, and J. Iriarte. 2015. Effects of past
1009 climate variability on fire and vegetation in the cerrado savanna of the Huanchaca
1010 Mesetta, NE Bolivia. Climate of the Past **11**:835-853.

1011 Mann, M. E., Z. Zhang, S. Rutherford, R. S. Bradley, M. K. Hughes, D. Shindell, C. Ammann, G.
1012 Faluvegi, and F. Ni. 2009. Global signatures and dynamical origins of the Little Ice
1013 Age and Medieval Climate Anomaly. Science **326**:1256-1260.

1014 Marlon, J., P. Bartlein, C. Carcaillet, D. G. Gavin, S. P. Harrison, P. E. Higuera, F. Joos, M. J.
1015 Power, and C. I. Prentice. 2008. Climate and human influences on global biomass
1016 burning over the past two millennia. Nature Geoscience **1**:697-701.

1017 Marlon, J., P. Bartlein, M. K. Walsh, S. P. Harrison, K. J. Brown, M. E. Edwards, P. E. Higuera,
1018 M. J. Power, R. S. Anderson, C. E. Briles, A. Brunelle, C. Carcaillet, M. Daniels, F. S. Hu,
1019 M. Lavoie, C. J. Long, T. Minckley, P. J. H. Richard, A. C. Scott, D. S. Shafer, W. Tinner, C.
1020 E. Umbanhowar Jr, and C. Whitlock. 2009. Wildfire responses to abrupt climate
1021 change in North America. Proceedings of the National Academy of Sciences
1022 **106**:2519-2524.

1023 Marlon, J., P. J. Bartlein, and C. Whitlock. 2006. Fire-fuel-climate linkages in the
1024 northwestern USA during the Holocene. Holocene **16**:1059-1071.

1025 Marlon, J. R., P. J. Bartlein, A.-L. Daniau, S. P. Harrison, S. Y. Maezumi, M. J. Power, W. Tinner,
1026 and B. Vanniere. 2013. Global biomass burning: a synthesis and review of Holocene
1027 paleofire records and their controls. Quaternary Science Reviews **65**:5-25.

1028 Marlon, J. R., P. J. Bartlein, D. G. Gavin, C. J. Long, R. S. Anderson, C. E. Briles, K. J. Brown, D.
1029 Colombaroli, D. J. Hallett, M. J. Power, E. A. Scharf, and M. K. Walsh. 2012. Long-term
1030 perspective on wildfires in the western USA. Proceedings of the National Academy of
1031 Sciences **109**:E535-E543.

1032 Martin Calvo, M., I. C. Prentice, and S. P. Harrison. 2014. Climate versus carbon dioxide
1033 controls on biomass burning: a model analysis of the glacial–interglacial contrast.
1034 Biogeosciences **11**:6017-6027.

1035 McConnell, J. R., R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta,
1036 D. R. Pasteris, M. M. Carter, and J. D. W. Kahl. 2007. 20th-century industrial black
1037 carbon emissions altered Arctic climate forcing. Science **317**:1381-1384.

1038 McLauchlan, K. K., P. E. Higuera, D. G. Gavin, S. S. Perakis, M. C. Mack, H. Alexander, J. Battles,
1039 F. Biondi, B. Buma, D. Colombaroli, S. K. Enders, D. R. Engstrom, F. S. Hu, J. R. Marlon,
1040 J. Marshall, M. McGlone, J. L. Morris, L. E. Nave, B. Shuman, E. A. H. Smithwick, D. H.
1041 Urrego, D. A. Wardle, C. J. Williams, and J. J. Williams. 2014. Reconstructing
1042 Disturbances and Their Biogeochemical Consequences over Multiple Timescales.
1043 BioScience **64**:105-116.

1044 McWethy, D. B., P. E. Higuera, C. Whitlock, T. T. Veblen, D. M. J. S. Bowman, G. J. Cary, S. G.
1045 Haberle, R. E. Keane, B. D. Maxwell, M. S. McGlone, G. L. W. Perry, J. M. Wilmshurst, A.
1046 Holz, and A. J. Tepley. 2013. A conceptual framework for predicting temperate

1047 ecosystem sensitivity to human impacts on fire regimes. *Global Ecology and*
1048 *Biogeography* **22**:900-912.

1049 Mooney, S. D., S. P. Harrison, P. J. Bartlein, D. A.-L., J. Stevenson, K. C. Brownlie, S. Buckman,
1050 M. Cupper, J. Luly, M. Black, E. Colhoun, D. D'Costa, J. Dodson, S. Haberle, G. S. Hope,
1051 P. Kershaw, C. Kenyon, M. McKenzie, and N. Williams. 2011. Late Quaternary fire
1052 regimes of Australasia. *Quaternary Science Reviews* **30**:28-46.

1053 Moos, M. T. and B. F. Cumming. 2012. Climate–fire interactions during the Holocene: a test
1054 of the utility of charcoal morphotypes in a sediment core from the boreal region of
1055 north-western Ontario (Canada). *International Journal of Wildland Fire* **21**:640-652.

1056 Morris, S. E. and T. A. Moses. 1987. Forest fire and the natural soil erosion regime in the
1057 Colorado Front Range. *Annals of the Association of American Geographers* **77**:245-
1058 254.

1059 Mouillot, F. and C. B. Field. 2005. Fire history and the global carbon budget: a $1^\circ \times 1^\circ$ fire
1060 history reconstruction for the 20th century. *Global Change Biology* **11**:398-420.

1061 Mouillot, F., A. Narasimha, Y. Balkanski, J.-F. Lamarque, and C. B. Field. 2006. Global carbon
1062 emissions from biomass burning in the 20th century. *Geophysical Research Letters*
1063 **33**:L01801.

1064 Mouillot, F., M. G. Schultz, C. Yue, P. Cadule, K. Tansey, P. Ciais, and E. Chuvieco. 2014. Ten
1065 years of global burned area products from spaceborne remote sensing : a review :
1066 analysis of user needs and recommendations for future developments. *International*
1067 *Journal of Applied Earth Observation and Geoinformation* **26**:64-79.

1068 Munoz, S. E., D. J. Mladenoff, S. Schroeder, and J. W. Williams. 2014. Defining the spatial
1069 patterns of historical land use associated with the indigenous societies of eastern
1070 North America. *Journal of Biogeography* **41**:2195-2210.

1071 Mustaphi, C. J. C. and M. F. J. Pisaric. 2014. A classification for macroscopic charcoal
1072 morphologies found in Holocene lacustrine sediments. *Progress in Physical*
1073 *Geography* **38**:734-754.

1074 Neumann, F. H., G. A. Botha, and L. Scott. 2014. 18,000 years of grassland evolution in the
1075 summer rainfall region of South Africa: evidence from Mahwaqa Mountain,
1076 KwaZulu-Natal. *Vegetation History and Archaeobotany* **23**:665-681.

1077 Pechony, O. and D. Shindell. 2010. Driving forces of global wildfires over the past
1078 millennium and the forthcoming century. *Proceedings of the National Academy of*
1079 *Sciences* <http://www.pnas.org/cgi/doi/10.1073/pnas.1003669107>.

1080 Pechony, O. and D. T. Shindell. 2009. Fire parameterization on a global scale. *Journal of*
1081 *Geophysical Research* **114**:1-10.

1082 Perry, G. L. W., J. M. Wilmshurst, M. S. McGlone, D. B. McWethy, and C. Whitlock. 2012.
1083 Explaining fire-driven landscape transformation during the Initial Burning Period of
1084 New Zealand's prehistory. *Global Change Biology* **18**:1609-1621.

1085 Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and S.
1086 Rahmstorf. 2000. CLIMBER-2: a climate system model of intermediate complexity.
1087 Part I: model description and performance for present climate. *Climate Dynamics*
1088 **16**:1-17.

1089 Pfeiffer, M., A. Spessa, and J. O. Kaplan. 2013. A model for global biomass burning in
1090 preindustrial time: LPJ-LMfire (v1.0). *Geoscientific Model Development* **6**:643-685.

1091 Pierce, J., G. Meyer, and A. Jull. 2004. Fire-induced erosion and millennial-scale climate
1092 change in northern ponderosa pine forests. *Nature* **432**:87-90.

1093 Power, M. J., J. Marlon, N. Ortiz, P. J. Bartlein, S. P. Harrison, F. E. Mayle, A. Ballouche, R. H. W.
1094 Bradshaw, C. Carcaillet, C. Cordova, S. Mooney, P. I. Moreno, I. C. Prentice, K.
1095 Thonicke, W. Tinner, C. Whitlock, Y. Zhang, Y. Zhao, A. A. Ali, R. S. Anderson, R. Beer,
1096 H. Behling, C. Briles, K. J. Brown, A. Brunelle, M. Bush, P. Camill, G. Q. Chu, J. Clark, D.
1097 Colombaroli, S. Connor, A.-L. Daniau, M. Daniels, J. Dodson, E. Doughty, M. E.
1098 Edwards, W. Finsinger, D. Foster, J. Frechette, M.-J. Gaillard, D. G. Gavin, E. Gobet, S.
1099 Haberle, D. J. Hallett, P. Higuera, G. Hope, S. Horn, J. Inoue, P. Kaltenrieder, L.
1100 Kennedy, Z. C. Kong, C. Larsen, C. J. Long, J. Lynch, E. A. Lynch, M. McGlone, S. Meeks,
1101 S. Mensing, G. Meyer, T. Minckley, J. Mohr, D. M. Nelson, J. New, R. Newnham, R. Noti,
1102 W. Oswald, J. Pierce, P. J. H. Richard, C. Rowe, M. F. S. Goñi, B. N. Shuman, H.
1103 Takahara, J. Toney, C. Turney, D. H. Urrego-Sanchez, C. Umbanhowar, M. Vandergoes,
1104 B. Vanniere, E. Vescovi, M. Walsh, X. Wang, N. Williams, J. Wilmshurst, and J. H.
1105 Zhang. 2008. Changes in fire regimes since the Last Glacial Maximum: An
1106 assessment based on a global synthesis and analysis of charcoal data. *Climate
1107 Dynamics* **30**:887-907.

1108 Power, M. J., J. R. Marlon, P. J. Bartlein, and S. P. Harrison. 2010. Fire history and the Global
1109 Charcoal Database: A new tool for hypothesis testing and data exploration.
1110 *Palaeogeography, Palaeoclimatology, Palaeoecology* **291**:52-59.

1111 Power, M. J., F. E. Mayle, P. J. Bartlein, J. R. Marlon, R. S. Anderson, H. Behling, K. J. Brown, C.
1112 Carcaillet, D. Colombaroli, D. G. Gavin, D. J. Hallett, S. P. Horn, L. M. Kennedy, C. S.
1113 Lane, C. J. Long, P. I. Moreno, C. Paitre, G. Robinson, Z. Taylor, and M. K. Walsh. 2012.
1114 Climatic control of the biomass-burning decline in the Americas after AD 1500. *The
1115 Holocene* **23**:3-13.

1116 Quintana-Krupinski, N., J. R. Marlon, A. Nishri, J. H. Street, and A. Paytan. 2013. Climatic and
1117 human controls on the late Holocene fire history of northern Israel. *Quaternary
1118 Research* **80**:396-405.

1119 R Development Core Team. 2013. R: A language and environment for statistical computing,
1120 Vienna, Austria.

1121 Raddatz, T., C. Reick, W. Knorr, J. Kattge, E. Roeckner, R. Schnur, K.-G. Schnitzler, P. Wetzel,
1122 and J. Jungclaus. 2007. Will the tropical land biosphere dominate the climate–carbon
1123 cycle feedback during the twenty-first century? *Climate Dynamics* **29**:565-574.

1124 Randerson, J. T., H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. C. Mack,
1125 K. K. Treseder, L. R. Welp, F. S. Chapin, J. W. Harden, M. L. Goulden, E. Lyons, J. C. Neff,
1126 E. A. G. Schuur, and C. S. Zender. 2006. The impact of boreal forest fire on climate
1127 warming. *Science* **314**:1130-1132.

1128 Reick, C., T. Raddatz, V. Brovkin, and V. Gayler. 2013. Representation of natural and
1129 anthropogenic land cover change in MPI - ESM. *Journal of Advances in Modeling
1130 Earth Systems* **5**:459-482.

1131 Saleh, R., E. S. Robinson, D. S. Tkacik, A. T. Ahern, S. Liu, A. C. Aiken, R. C. Sullivan, A. A.
1132 Presto, M. K. Dubey, R. J. Yokelson, N. M. Donahue, and A. L. Robinson. 2014.
1133 Brownness of organics in aerosols from biomass burning linked to their black
1134 carbon content. *Nature Geoscience* **7**:647-650.

1135 Savarino, J. and M. Legrand. 1998. High northern latitude forest fires and vegetation
1136 emissions over the last millennium inferred from the chemistry of a central
1137 Greenlabd ice core. *Journal of Geophysical Research* **103**:8267-8279.

1138 Schneck, R., C. H. Reick, and T. Raddatz. 2013. Land contribution to natural CO₂ variability
1139 on time scales of centuries. *Journal of Advances in Modeling Earth Systems* **5**:354-
1140 365.

1141 Shakesby, R. A. and S. H. Doerr. 2006. Wildfire as a hydrological and geomorphological
1142 agent. *Earth-Science Reviews* **74**:269-307.

1143 Swain, A. M. 1973. A History of Fire and Vegetation in Northeastern Minnesota as Recorded
1144 in Lake Sediments. *Quaternary Research* **3**:383-396.

1145 Tan, Z. and C. C. Huang. 2013. Holocene wildfire history in loess tableland in the middle
1146 reaches of the Yellow River of China. *The Holocene* **23**:1466-1476.

1147 Thevenon, F. and F. S. Anselmetti. 2007. Charcoal and fly-ash particles from Lake Lucerne
1148 sediments (Central Switzerland) characterized by image analysis: anthropologic,
1149 stratigraphic and environmental implications. *Quaternary Science Reviews*
1150 **26**:2631-2643.

1151 Thonicke, K., A. Spessa, I. C. Prentice, S. P. Harrison, L. Dong, and C. Carmona-Moreno. 2010.
1152 The influence of vegetation, fire spread and fire behaviour on biomass burning and
1153 trace gas emissions: results from a process-based model. *Biogeosciences* **7**:1991-
1154 2011.

1155 Tinner, W., S. Hofstetter, F. Zeugin, M. Conedera, T. Wohlgemuth, L. Zimmermann, and R.
1156 Zweifel. 2006. Long-distance transport of macroscopic charcoal by an intensive
1157 crown fire in the Swiss Alps - implications for fire history reconstruction. *The
1158 Holocene* **16**:287-292.

1159 Towards transparency. 2014. Towards transparency. *Nature Geosci* **7**:777-777.

1160 Tweiten, M. A., S. C. Hotchkiss, R. K. Booth, R. R. Calcote, and E. A. Lynch. 2009. The response
1161 of a jack pine forest to late-Holocene climate variability in northwestern Wisconsin.
1162 *Holocene* **19**:1049-1061.

1163 van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, and P. S. Kasibhatla. 2006.
1164 Interannual variability in global biomass burning emission from 1997 to 2004.
1165 *Atmospheric Chemistry and Physics* **6**:3423-3441.

1166 van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C.
1167 Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen. 2010. Global fire emissions and
1168 the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-
1169 2009). *Atmospheric Chemistry and Physics* **10**:11707-11735.

1170 Vanniere, B., D. Colombaroli, E. Chapron, A. Leroux, W. Tinner, and M. Magny. 2008. Climate
1171 versus human-driven fire regimes in Mediterranean landscapes: the Holocene
1172 record of Lago dell'Accesa (Tuscany, Italy). *Quaternary Science Reviews* **27**:1181-
1173 1196.

1174 Vanniere, B., M. J. Power, N. Roberts, W. Tinner, J. Carrión, M. Magny, P. Bartlein, D.
1175 Colombaroli, A. L. Daniau, W. Finsinger, G. Gil-Romera, P. Kaltenrieder, R. Pini, L.
1176 Sadori, R. Turner, V. Valsecchi, and E. Vescovi. 2011. Circum-Mediterranean fire
1177 activity and climate changes during the mid-Holocene environmental transition
1178 (8500-2500 cal. BP). *The Holocene* **21**:53-73.

1179 Verardo, D. J., P. N. Froelich, and A. McIntyre. 1990. Determination of organic carbon and
1180 nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. *Deep Sea
1181 Research Part A: Oceanographic Research Papers* **37**:157-165.

1182 Walsh, M. K., J. R. Marlon, S. J. Goring, K. J. Brown, and D. G. Gavin. 2015. A Regional
1183 Perspective on Holocene Fire-Climate-Human Interactions in the Pacific Northwest

1184 of North America. *Annals of the Association of American Geographers* **105**:1135-
1185 1157.

1186 Walsh, M. K., C. Whitlock, and P. J. Bartlein. 2008. A 14,300-year-long record of fire-
1187 vegetation-climate linkages at Battle Ground Lake, southwestern Washington.
1188 *Quaternary Research* **70**:251-264.

1189 Wang, Z., J. Chappellaz, K. Park, and J. E. Mak. 2010. Large variations in southern
1190 hemisphere biomass burning during the last 650 years. *Science* **330**:1663-1666.

1191 Ward, D. S., S. Kloster, N. M. Mahowald, B. M. Rogers, J. T. Randerson, and P. G. Hess. 2012.
1192 The changing radiative forcing of fires: global model estimates for past, present and
1193 future. *Atmospheric Chemistry and Physics* **12**:10857-10886.

1194 Whitlock, C. and P. J. Bartlein. 2004. Holocene fire activity as a record of past environmental
1195 change. Pages 479-490 in A. R. Gillespie, S. C. Porter, and B. F. Atwater, editors.
1196 *Developments in Quaternary Science*. Elsevier, Amsterdam.

1197 Whitlock, C., P. I. Moreno, and P. Bartlein. 2007. Climatic controls of Holocene fire patterns
1198 in southern South America. *Quaternary Research* **68**:28-36.

1199 Whitlock, C., S. L. Shafer, and J. Marlon. 2003. The role of climate and vegetation change in
1200 shaping past and future fire regimes in the northwestern US and the implications for
1201 ecosystem management. *Forest Ecology and Management* **178**:5-21.

1202 Williams, A. N., S. D. Mooney, S. A. Sisson, and J. Marlon. 2015. Exploring the relationship
1203 between Aboriginal population indices and fire in Australia over the last 20,000
1204 years. *Palaeogeography, Palaeoclimatology, Palaeoecology* **432**:49-57.

1205 Winkler, M. G. 1985. Charcoal analysis for paleoenvironmental interpretation: a chemical
1206 assay. *Quaternary Research* **23**:313-326.

1207 Wooller, M. J., F. A. Street-Perrott, and A. D. Q. Agnew. 2000. Late Quaternary fires and
1208 grassland palaeoecology of Mount Kenya, East Africa: evidence from charred grass
1209 cuticles in lake sediments. *Palaeogeography, Palaeoclimatology, Palaeoecology*
1210 **164**:207-230.

1211 Yue, C., P. Ciais, P. Cadule, K. Thonicke, S. Archibald, B. Poulter, W. M. Hao, S. Hantson, F.
1212 Mouillet, P. Friedlingstein, F. Maignan, and N. Viovy. 2014. Modelling the role of fires
1213 in the terrestrial carbon balance by incorporating spitfire into the global vegetation
1214 model orchidee – part 1: Simulating historical global burned area and fire regimes.
1215 *Geoscience Model Development* **7**:2747-2767.

1216 Zdanowicz, C. M., G. A. Zielinski, and M. S. Germani. 1999. Mount Mazama eruption:
1217 Calendrical age verified and atmospheric impact assessed. *Geology* **27**:621-624.

1218 Zennaro, P., N. Kehrwald, J. McConnell, S. Schüpbach, O. Maselli, J. Marlon, P. Vallelonga, D.
1219 Leuenberger, R. Zangrand, and A. Spolaor. 2014. Fire in ice: two millennia of boreal
1220 forest fire history from the Greenland NEEM ice core. *Climate of the Past*
1221 **10**(5):1905-1924.

1222

1223