1 Dr. S.W.A. Naqvi

- 2 Handling Associate Editor
- 3 Biogeosciences
- 4 Dear Dr. S.W.A. Naqvi,
- 5
- 6 We are resubmitting to you the revised manuscript No. bg-2015-465 "Sex-associated
 7 variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in
 8 the southern Gulf of California". We carefully read the reviewers comments, suggestions and
 9 questions and we rewrote, delete or added paragraphs to the manuscript as needed.
 10 In the revised manuscript the changes or additions were marked in different color according to
- 11 the Anonymous Referee: gray (Anonymous Referee #1), blue (Anonymous Referee #2).

1

12 Bellow we address the substantive questions or suggestions of each reviewer.

14 Comments from Anonymous Referee #1

15 General Comments:

This is an interesting paper that follows from the authors' earlier work (Cabral-Tena et 16 17 al, 2013) which demonstrated that growth rates differed between male and female colonies of 18 Porites panamensis in the southern Gulf of California. Here, they demonstrate that there are 19 also significant differences between male and female colonies in the stable isotopic signatures of δ^{18} O and δ^{13} C and present two possible explanations for these differences in this 20 gonochoric brooding coral species. Aside from the differences associated with sex, the study 21 22 adds to our understanding of the isotopic tracers and their relationships with environmental 23 parameters and growth characteristics. The findings also have implications for isotopic 24 analyses and their environmental interpretation for gonochoric brooding species such as P. 25 panamensis though the vast majority of massive Porites used in paleoclimatic reconstructions are gonochoric spawners rather than brooders (Baird et al. 2009). Although, as the authors 26 27 indicate, gonochoric spawning requires less energy than brooding, it would be interesting to 28 know whether there are also growth and isotopic differences in the commonly used massive species such as P. lobata and P. lutea. This study may be a prompt for either the authors or 29 30 others to undertake such a comparison as evidence for such differences would have

- 31 implications for paleoclimatic reconstructions from massive coral records. Overall, I consider
- 32 this study to be sound and worthy of publication after some minor changes (mostly for
- 33 clarification). The paper could also benefit from a final editing by someone with English as
- 34 their first language but generally the writing is clear.

35 Specific comments

- 36 Page 18796, lines 2-3: delete 'near'; add (SST) after 'temperature'.
- 37 Page 18796, line 6: 'lesser extent' than what?
- 38 Page 18796, lines 7-8: make it clear that these growth differences refer to the gonochoric
- 39 brooding coral P. panamensis.
- 40 Page 18796, line 9: replace 'assess this difference' with 'test this'.
- 41 Page 18796, line 11: add country after 'La Paz'.
- 42 Page 18796, line 12: photosynthetically active radiation (PAR).
- 43 Page 18796, line 18: change 'implies' to 'could introduce'.
- 44 Page 18796, lines 25-26: again make it clear that these findings relate to one gonochoric
- 45 brooding species though they may have implications for commonly used gonochoric
- 46 spawning species such as P. loabta and P. lutea.

- 47 Page 18797: lines 2-4: Make it clear that this does not refer to all corals, only certain 48 species; also it is not only their growth that is affected by environmental conditions but
- 49 that materials (isotopic and trace elements) are incorporated into the skeleton during
- 50 growth.
- 51 Page 18797, line 8: delete 'changes'
- 52 Page 18797, line 9: change 'events' to 'variability and change'.
- 53 Page 18797, line 11: change 'from' to 'with'.
- 54 Page 18797, line 19: change 'estimate' to 'measure'; I am not necessarily convinced
- 55 that _13C has been as easy to interpret as _18O.
- 56 Page 18798, line 15: 'upwelling events that bring nutrients to surface waters'.
- 57 Page 18798, line 21: be consistent throughout ms, here 'vital effect', elsewhere 'Vital
- 58 effect'; 'constant along the growth'.
- 59 Page 18799, line 20: replace 'recording was' with 'measurements were'.
- 60 Page 18800, line 4: what year were the colonies collected? Also, what was the approximate
- 61 size of the colonies? Are these the same 10 colonies from La Paz presented in
- 62 Cabral-Tena et al (2013)? If so, then say so.
- 63 Page 18800, line 15: replace 'labelled' with 'identified as'.
- 64 Page 18800, line 17: replace 'labelled' with 'identified as'.
- 65 Page 18801, line 1: replace 'placed in' with 'located on'.
- 66 Page 18801, line 20: delete 'equal'.
- 67 Page 18801, lines 21-22: What is meant by 'different sampling resolutions' when they
- 68 were all sampled at 1 mm resolution? Is it sampling resolution in relation to different
- 69 linear extension rates of the samples?
- 70 Page 18801, line23 to Page 18802, line 2: suggest move this description of 71 statisticalanalyses to separate section of Materials and Methods.
- 72 Page 18802, line 2: 'linear'.
- 73 Page 18802, lines 4-15: provide the temporal resolution of the various data sets (e.g.
- 74 daily, weekly or monthly?) and the time periods they cover.
- Page 18802, line 10: indicate the time period of this comparison and temporal resolution
 of the data.
- 77 Page 18802, lines 15-18: delete first sentence and add the description of the Regime
- 78 shift change software to the suggested new section on statistical analyses.
- 79 Page 18802, lines 21-24: Please provide details of the years covered by each of the
- 80 colony growth and isotopic records. Could provide this in a Supplementary Table,

81 possibly with all the annual growth and isotopic data?

- 82 Page 18802, Results: Please make it clear throughout the Results what the temporal
- 83 resolution of the data being compared is e.g. annual, monthly, seasonal? Also whether
- 84 time series or average colony values are being compared.
- 85 Page 18803, lines 6-7: Unclear what 'strongly correlated between sexes' means what
- 86 is being correlated here? Also, suggest using 'significantly' rather than 'strongly'.
- significantly correlated between sexes (r = 0.45, p > 0.000001), thus both sexes showed thesame seasonal pattern
- 89 Page 18803, line 15: Refer to Fig. 1b.
- 90 Page 18804, line 2: 'correlate with'.
- 91 Page 18804, lines 4-5: Delete first sentence and add period covered to second sentence.
- 92 Page 18804, lines 10-11: 'small seasonal variation' compared to what?
- 93 Page 18805, line 4: here and elsewhere change 'strong' to 'significant'.
- 94 Page 18805, line 6: delete 'Table 4'.
- 95 Page 18805, lines 17-25: Please make it clear what the temporal resolution of these
- 96 different studies is, and how they compare to this study. High correlation coefficients
- 97 can always be obtained when simply correlating two annual cycles (see Lough 2004.
- 98 Palaeo Palaeo Palaeo 204: 115-143).
- 99 Page 18806, line 19: 'depleted in nutrients'.
- 100 Page 18808, line 14: 'fast extension rates' fast compared to what? Compare to other
- 101 reported average Porites spp. linear extension rates?
- 102 Page 18808, line 16: 'are more enriched than in male'.
- 103 Page 18809: line 6: 'associated with colony'.
- 104 Page 18811, line 8: delete 'would'.
- 105 Page 18812, lines 6-9: Suggest emphasise that this study based on a gonochoric
- 106 brooder and that the majority of paleoclimatic reconstructions from massive Indo-
- 107 Pacific Porites spp. have been based on gonochoric spawners. Thus a fruitful area
- 108 of future research would be to determine whether the sex differences the authors have
- 109 identified are also characteristic of gonochoric spawners such as P. lobata and P. lutea.
- 110 Page 18820, Table 1: Indicate years covered by each series.
- 111 Page 18821, Table 2: Indicate temporal resolution of data and also time period covered
- 112 by correlations.
- 113 Page 18822, Table 3: Indicate temporal resolution of data and also time period covered
- 114 by correlations.
- 115 Page 18823, Table 2: Indicate temporal resolution of data and also time period covered

- 116 by correlations.
- 117 Page 18824, Figure 1: Explain the shift in the rainfall mean in the figure caption.
- 118 Page 18826, Figure 3: Is this based on all annual data for all years from each colony? If
- 119 so, make this clear in figure caption.
- 120 Page 18827, Figure 4: Is this based on all annual data for all years from each colony?
- 121 If so, make this clear in figure caption.
- 122 Response to Anonymous Referee #1
- 123 General comments
- 124 Thank you very much for your comments, we have taken into account all your suggestions,
- 125 We carefully read the comments, suggestions and questions and we rewrote, delete or added
- 126 paragraphs to the manuscript as needed. Bellow we address the questions or suggestions.

127 Specific comments

- 128 We made the necessary changes and will be included in the manuscript as follows:
- 129 Page 18796, lines 2-3: delete 'near'; add (SST) after 'temperature'.
- 130 Coral δ^{18} O variations are used as a proxy for changes in sea surface temperature (SST) and 131 seawater isotope composition.
- 132 Page 18796, line 6: 'lesser extent' than what?
- 133 Coral growth rate is known to influence the δ^{18} O and δ^{13} C isotope record to a lesser extent 134 than environmental variables.
- 135 Page 18796, lines 7-8: make it clear that these growth differences refer to the gonochoric
- 136 brooding coral P. panamensis.
- Recent published data show differences in growth parameters between female and male coralin the gonochoric brooding coral *Porites panamensis*
- 139 Page 18796, line 9: replace 'assess this difference' with 'test this'.
- 140 to test this, this study describes changes in the skeletal δ^{18} O and δ^{13} C
- 141 Page 18796, line 11: add country after 'La Paz'.
- four female and six male *Porites panamensis* coral collected in Bahía de La Paz, Mexico,
 whose growth bands spanned 12 years.
- 144 Page 18796, line 12: photosynthetically active radiation (PAR).
- 145 The isotopic data were compared to SST, precipitation, photosynthetically active radiation146 (PAR)
- 147 Page 18796, line 18: change 'implies' to 'could introduce'.
- 148 A difference in the skeletal δ^{18} O could introduce an error
- 149 Page 18796, lines 25-26: again make it clear that these findings relate to one gonochoric

150 brooding species though they may have implications for commonly used gonochoric

151 spawning species such as P. loabta and P. lutea.

152 Although these findings relate to one gonochoric brooding species, they may have some

153 implications for the more commonly used gonochoric spawning species such as *Porites lutea* 154 and *Porites lobata*.

155 Page 18797: lines 2-4: Make it clear that this does not refer to all corals, only certain 156 species; also it is not only their growth that is affected by environmental conditions but

- 157 that materials (isotopic and trace elements) are incorporated into the skeleton during
- 158 growth.
- 159 Massive hermatypic coral are useful as recorders of oceanic conditions because their growth
- 160 and skeletal materials incorporated during growth are affected by environmental variables, the
- 161 calcareous material is deposited in annual density bands that allow for the determination of
- 162 events over time

163 Page 18797, line 8: delete 'changes'

- 164 centennial timescale of El Niño–Southern Oscillation (ENSO), the Pacific Decadal165 Oscillation (PDO),
- 166 Page 18797, line 9: change 'events' to 'variability and change'.
- 167 pre- and post-industrial climate variability and change
- 168 Page 18797, line 11: change 'from' to 'with'.
- 169 predictable way with environmental variations
- 170 Page 18797, line 19: change 'estimate' to 'measure'; I am not necessarily convinced
- 171 that _13C has been as easy to interpret as _18O.
- 172 skeletal δ^{18} O and δ^{13} C are the most common measurements because they are relatively easy to 173 measure
- 174 Page 18798, line 15: 'upwelling events that bring nutrients to surface waters'.
- 175 coral skeletal δ^{13} C decrease during upwelling events that bring nutrients to surface waters
- 176 Page 18798, line 21: be consistent throughout ms, here 'vital effect', elsewhere 'Vital
- 177 effect'; 'constant along the growth'.
- 178 We have cheked all the ms and have changed all "Vital" to "vital.
- This departure from equilibrium is referred to as "the vital effect" and appears to be constantalong the coral growth axis
- 181 Page 18799, line 20: replace 'recording was' with 'measurements were'.
- 182 Oxygen and carbon isotope measurements were used to
- 183 Page 18800, line 4: what year were the colonies collected? Also, what was the approximate

6

184 size of the colonies? Are these the same 10 colonies from La Paz presented in

185 Cabral-Tena et al (2013)? If so, then say so.

- 186 The specimens were collected in 2011 at depths of 3–4 m. Divers used hammer and chisel to
- 187 remove the colonies from the substrate. A fragment from each colony was fixed in Davison's
- 188 solution for a histological examination and identification of sex (Howard and Smith, 1983).
- 189 These are the same ten colonies presented in the Cabral-Tena et al. (2013) study.
- 190 Page 18800, line 15: replace 'labelled' with 'identified as'.
- 191 The colonies were identified as female
- 192 Page 18800, line 17: replace 'labelled' with 'identified as'.
- 193 the colonies were identified as male
- 194 Page 18801, line 1: replace 'placed in' with 'located on'.
- 195 Optical density tracks were located on the maximum growth
- 196 Page 18801, line 20: delete 'equal'.
- 197 minimum δ^{18} O value in a year to summer
- 198 Page 18801, lines 21-22: What is meant by 'different sampling resolutions' when they
- 199 were all sampled at 1 mm resolution? Is it sampling resolution in relation to different
- 200 linear extension rates of the samples?
- 201 To eliminate the effects of different sampling resolutions on the calculation of mean coral 202 δ^{18} O values due to differences in linear extension rates of each colony, the results were 203 interpolated to create four equally spaced values per year
- 204 Page 18801, line23 to Page 18802, line 2: suggest move this description of 205 statisticalanalyses to separate section of Materials and Methods.
- 206 A new section in Materials and Methods was written as follows:
- 207 2.5 Statistical analyses
- 208 Normality and homoscedasticity of the data were tested using Kolmogorov-Smirnov and
- 209 Bartlett tests, respectively. Student's t-test for independent samples with uneven variance was
- 210 used to assess statistical differences in δ^{18} O and δ^{13} C between sexes. Pearson's correlation test
- 211 and simple linear regressions were used to estimate relationships between mean skeletal
- 212 extension rate, skeletal density, and calcification rate with isotope data of both sexes. An
- 213 ANCOVA test was used to assess the differences between slopes and the y-intercept of linear
- 214 equations of δ^{13} C versus δ^{18} O plots of the results of male and female data.
- 215 Pearson's correlation test and simple linear regressions were used to estimate relationships
- 216 between environmental data and isotope data of both sexes. Regime shift index for
- 217 environmental and isotope data were calculated with the Sequential Regime Shift Detection
- 218 Software (Rodionov, 2004).

- 219 Page 18802, line 2: 'linear'.
- 220 differences between slopes and the y-intercept of linear equations
- 221 Page 18802, lines 4-15: provide the temporal resolution of the various data sets (e.g.
- 222 daily, weekly or monthly?) and the time periods they cover.
- 223 Monthly SST, PAR, and concentration of chlorophyll *a* data were obtained from the NOAA
- live access server (http://las.pfeg.noaa.gov/oceanWatch/oceanwatch.php), the environmental
 data spanned from 1997 to 2009
- 226 Page 18802, line 10: indicate the time period of this comparison and temporal resolution
- of the data.
- 228 Compared in situ and satellite data were both monthly covering from 2003 to 2007.
- 229 Page 18802, lines 15-18: delete first sentence and add the description of the Regime
- 230 shift change software to the suggested new section on statistical analyses.
- 231 This was included in the new section of materials and methods.
- 232 Page 18802, lines 21-24: Please provide details of the years covered by each of the
- 233 colony growth and isotopic records. Could provide this in a Supplementary Table,
- 234 possibly with all the annual growth and isotopic data?
- 235 This will be included in the supplementary material.
- 236 Page 18802, Results: Please make it clear throughout the Results what the temporal
- 237 resolution of the data being compared is e.g. annual, monthly, seasonal? Also whether
- 238 time series or average colony values are being compared.
- We detailed along all the results section that the time series is from 1997 to 2009, and theresolution of data is quarterly.
- 241 Page 18803, lines 6-7: Unclear what 'strongly correlated between sexes' means what
- is being correlated here? Also, suggest using 'significantly' rather than 'strongly'.
- significantly correlated between sexes (r = 0.45, p > 0.000001), thus both sexes showed the same seasonal pattern
- 245 Page 18803, line 15: Refer to Fig. 1b.
- changing from 15.76 to 30.25 mm, with a RSI of 0.30 (p = 0.01), as seen in Figure 1b.
- 247 Page 18804, line 2: 'correlate with'.
- 248 significantly correlate with
- 249 Page 18804, lines 4-5: Delete first sentence and add period covered to second sentence.
- 250 The linear regression (Fig. 3) equations for δ^{18} O dependence on SST (1997-2009) were:
- 251 Page 18804, lines 10-11: 'small seasonal variation' compared to what?
- 252 We deleted this sentence.
- 253 Page 18805, line 4: here and elsewhere change 'strong' to 'significant'.

- 254 Changes from "strong" to "significant" were made in all cases.
- 255 Page 18805, line 6: delete 'Table 4'.
- annual skeletal density was found (Table 4; r = -0.78, p = 0.001).
- 257 Page 18805, lines 17-25: Please make it clear what the temporal resolution of these
- 258 different studies is, and how they compare to this study. High correlation coefficients
- can always be obtained when simply correlating two annual cycles (see Lough 2004.
- 260 Palaeo Palaeo Palaeo 204: 115-143).
- 261 The requested information was included; the paragraph will read as follows:

Our isotope data showed a significant dependency of skeletal δ^{18} O on SST , with a low 262 r (-0.45 in female coral, and -0.28 in male coral), and a gentle slope of the δ^{18} O-SST 263 calibration equations (0.09\% °C⁻¹ F; 0.11\% °C⁻¹ M; Fig. 3), compared with slopes (>0.20\% 264 $^{\circ}C^{-1}$) in *Porites* spp. in other areas of the Pacific: the Great Barrier Reef (Gagan et al., 1994), 265 Costa Rica (Carriquiry, 1994), Panama (Wellington and Dunbar, 1995), and the Galapagos 266 267 Archipelago (McConnaughey, 1989). These studies show high correlation coefficients (better than -0.80) of δ^{18} O and SST, all these studies have isotopic records varying to 5 to 40 years 268 long, and with a high temporal resolution sampling (weekly to monthly). Our results are 269 270 similar to studies reporting small correlation coefficients of δ^{18} O and SST (less than -0.70) and a gentle slope (<0.17% °C⁻¹) of the δ^{18} O–SST calibration equations, such as at 271 Clipperton Atoll (Linsley et al., 1999), Fiji (Le Bec et al., 2000), and Guam (Asami et al., 272 273 2004). These studies have long isotopic records (20 to 25 years) and a high temporal 274 resolution sampling (daily to monthly) compared to our data (12 years of data with a quarterly 275 sampling resolution).

- 276 Page 18806, line 19: 'depleted in nutrients'.
- 277 becomes depleted in nutrients.
- 278 Page 18808, line 14: 'fast extension rates' fast compared to what? Compare to other
- 279 reported average Porites spp. linear extension rates?
- 280 The average yearly extension rates of all sampled coral can be considered as fast (1.05 cm yr^{-1}
- 281 F, and 1.27 cm yr⁻¹ M) in accordance with the work of McConnaughey (1989).
- 282 Page 18808, line 16: 'are more enriched than in male'.
- 283 All δ^{18} O ratios of female colonies are more enriched in ¹⁸O than in male colonies
- 284 Page 18809: line 6: 'associated with colony'.
- 285 "vital effect" associated with colony sex,
- 286 Page 18811, line 8: delete 'would'.

287 exemplify what a difference in δ^{18} O

- 288 Page 18812, lines 6-9: Suggest emphasize that this study based on a gonochoric
- 289 brooder and that the majority of paleoclimatic reconstructions from massive Indo-
- 290 Pacific Porites spp. have been based on gonochoric spawners. Thus a fruitful area
- 291 of future research would be to determine whether the sex differences the authors have
- 292 identified are also characteristic of gonochoric spawners such as P. lobata and P. lutea.
- Changes to the last paragraph of the discussion were made considering your suggestions andwill read as follows:
- This study provides evidence of sex-associated variations in coral skeletal δ^{18} O and 295 δ^{13} O of *P. panamensis*. This has some implications and has to be considered when climate 296 conditions are estimated based on comparisons of δ^{18} O and δ^{13} O values of gonochoric 297 brooder coral genera, if sex identification is not taken into account when possible. The 298 299 findings of this study are based on a gonochoric brooder species (P. panamensis), while the 300 majority of paleoclimatic reconstructions in the Indo-Pacific and Caribbean have been based 301 on massive gonochoric spawners (such as Montastrea cavernosa, Porites lutea and Porites 302 lobata), so, it remains unclear if the same phenomena (sex-associated variations in coral skeletal δ^{18} O and δ^{13} O) can be observed in gonochoric spawners. This may have some serious 303 implications in the paleoclimatic reconstructions studies made so far leading to erroneous 304 305 conclusions due to errors in isotopic estimation; variability of isotopic data may have been 306 overestimated due to the mixing of male and female isotopic data in past studies. Thus, a 307 fruitful area of future research would be to determine whether the sex differences identified in 308 this study are also characteristic of gonochoric spawners.

309 Page 18820, Table 1: Indicate years covered by each series.

- 310 Table 1. Summary of the overall average extension rate, skeletal density, calcification rate,
- 311 δ^{18} O and δ^{13} C of *Porites panamensis* colonies from Bahía de La Paz, Gulf of California. Time
- 312 period of data is from 1997 to 2009.
- Page 18821, Table 2: Indicate temporal resolution of data and also time period covered
 by correlations.
- 315 **Table 2.** Correlation coefficients between skeletal δ^{18} O of *Porites panamensis* colonies and:
- 316 Sea surface temperature, precipitation, photosynthetically active radiation and chlorophyll a
- 317 from Bahía de La Paz. Time period covered by correlations is from 1997 to 2009. Temporal
- resolution of data is quarterly. **Bold** numbers indicate significant (p < 0.05) correlations.

319 Page 18822, Table 3: Indicate temporal resolution of data and also time period covered

- 320 by correlations.
- **Table 3.** Correlation coefficients between skeletal δ^{13} C of *Porites panamensis* colonies and:
- 322 Sea surface temperature, precipitation, photosynthetically active radiation and chlorophyll a
- 323 from Bahía de La Paz. Time period covered by correlations is from 1997 to 2009. Temporal
- resolution of data is quarterly. **Bold** numbers indicate significant (p < 0.05) correlations.
- 325 Page 18823, Table 2: Indicate temporal resolution of data and also time period covered
- 326 by correlations.
- 327 Table 4. Correlation coefficients between skeletal extension rate,
- 328 skeletal density and calcification rate, and skeletal $\delta^{18}O$ and $\delta^{13}C$ of
- 329 Porites panamensis colonies from Bahía de La Paz. Time period
- 330 covered by correlations is from 1997 to 2009. Temporal resolution of
- 331 data is yearly. **Bold** numbers indicate significant (p < 0.05)
- 332 correlations.

333 Page 18824, Figure 1: Explain the shift in the rainfall mean in the figure caption.

- Fig. 1. (a) Seasonal variation in δ^{18} O composition (VPDB) from *Porites panamensis* coral colonies along the major growth axis. Blue lines represent male colonies; Red lines represent female colonies; red dotted line female colonies' regime mean; blue dotted line, male colonies' regime mean. (b) Satellite sea surface temperature and precipitation (1997–2009) records. Sea surface temperature (red line; °C), mean sea surface temperature (dotted red line; °C), precipitation (blue line; mm), mean precipitation (dotted blue line; mm). Note the regime shift in the precipitation mean in 2003.
- Page 18826, Figure 3: Is this based on all annual data for all years from each colony? If
 so, make this clear in figure caption.
- 343 Fig. 3. Linear regressions between satellite derived sea surface temperature (°C) and skeletal
- 344 δ^{18} O (VPDB) of female, and male *Porites panamensis* coral from Bahía de La Paz. Time
- 345 period covered by analyses is from 1997 to 2009. Temporal resolution of data is quarterly.
- 346 This includes all isotopic data of all colonies. Line equations and coefficients are shown.
- 347 Page 18827, Figure 4: Is this based on all annual data for all years from each colony?
- 348 If so, make this clear in figure caption.
- 349 Fig. 4. Plot of δ^{13} C vs. δ^{18} O of female (red dots), and male (blue dots) *Porites panamensis*
- 350 coral from Bahía de La Paz. This includes all isotopic data of all colonies. Line equations and
- 351 coefficients (red represents females; blue represents males) are shown.

352 Comments from Anonymous Referee #2

353 General Comments:

This article represents differences of oxygen and carbon stable isotope in the *Porites panamensis* for both male and female colony skeletons. I am interested in the oxygen isotope date in fig 1, which shows obvious differences in oxygen isotope for skeletons in male and female colonies.

- Reading many of articles focusing on the stable isotope study in biological carbonate such as
- coral and foraminifera, it is important to remember the basis of stable isotope geochemistry to
- 360 reconstruct the paleoclimate conditions. Why does many of biogeoscientists use the stable
- isotope compositions in oxygen and carbon in biological carbonates? Since Harold Urey
- 362 represent the application of stable isotope in Jurassic Pee Dee Belemnite to reconstruct the
- 363 paleo temperature based on the theory of isotope effect in chemical equilibrium in biological
- carbonate, it became possible to reconstruct paleotemperature in earth history. In each
- 365 chemical reaction, stable isotope composition in both origin and product has quantitative
- 366 relationship involving the parameter of reaction condition such as temperature and/or reaction
- rate etc. (Sharp (2006) represent these theory as text book.) Because foraminifera and shells
- 368 form their skeletons in the isotope equilibrium, oxygen isotopes and temperature in seawater
- 369 have quantitative relationship.
- 370 For coral skeleton, it is considered as oxygen and carbon are supplied from seawater. But
- 371 their forming involves multistep chemical reactions with isotope disequilbrium in the
- 372 biological body, because coral skeleton forms much faster than foraminifera and/or shells.
- 373 Then isotope composition in the biological carbonate are often blinded. McConnaughey
- 374 (1989a) made clear the multistep reaction in the forming of coral skeleton.
- 375 He represented which chemical reactions cause the isotope disequilibrium in the forming
- 376 process of coral skeleton and revealed the isotopic trends for both carbon and oxygen isotope
- 377 compositions named "kinetic isotope effect", which is called as "vital effect" before
- 378 McConnaughey (1989). This paper does not seem to understand why isotope composition in
- 379 biological carbonate are paleoenviolomental indicator. Authors claim that isotope
- 380 compositions in oxygen and carbon shows sex associated variations. However, their
- 381 explanation about differences of physiology for both male and female are shown in line 411-
- 382 419 only. For geochemists, this paper does not involve critical physiological chemical
- 383 reaction for both male and female corals. For biologists, this paper does not involve what and

- 384 how chemical reaction makes change the isotope compositions between chemical origin and
- 385 product.
- 386 I would recommend that authors add much contents of this part. Almost readers may wonder
- 387 what causes the differences in physiological pathway with chemical reaction for both male
- 388 and female corals. Isotope compositions in chemical product such as biological carbonate are
- 389 controlled by chemical conditions in each chemical reaction, excluding isotope compositions
- 390 in chemical origins. Understanding of theory in stable isotope compositions is more important
- 391 than statistics analysis.
- 392 Specific comments
- 393 2 Materials and methods
- 394 2.1 Collection and identification of gender
- Please show the map of study site. Almost readers may not be familiar with Gulfs of
 California and/or Mexico.
- 397 2.3 Isotope analysis
- 398 p 169 Micromill procedure is the bases of coral isotope study. Many of readers may wonder
- 399 if powder samples are milled by machine or hand. Milling machine makes the milling to
- 400 keep equal intervals in coral skeleton, but it is difficult by hand milling procedure. Please
 401 describe this process.
- 402 3.1 Skeletal growth
- 403I would like to recommend to show X-ray photographs and graph of skeletal density along404growth axis. It is difficult for reader to understand the relationship between isotope
- 405 compositions and skeletal growth along growth axis.
- 406 3.2 Skeletal isotope composition and environmental data
- 407 The sentences in the line between 243 and 265 should be moved into discussion section.
- 408 line 255-257: I do not think that authors show the calculation for d180 in seawater based 409 on the d180 of coral skeleton for current coral. Many of readers may misunderstand that
- this papers discussing about environmental aspects. I think that authors discuss about
- 411 biological aspect for isotope variation:
- 412 4. Discussion line 296-394: These sentences seem like review for related papers, but not 413 essential. Please shorten.
- 414 In this paper, only sentences between 413 and 419 explain about the mechanism, which
- cause sex-associated isotope variations. I think authors should discuss this mechanism with
 deeper insight
- 417 Omata et al. (2008) attempted the isolation for both kinetic effects and metabolic effects.
- 418 Please read this article.
- 419 Anonymous Referee #2
- 420 General comments:

421 Thank you very much for your comments, we have taken into account all your 422 suggestions, We carefully read the comments, suggestions and questions, first we would like 423 to clarify that the aim of this paper is not to describe or solve the biochemical or physiological 424 chemical reactions or mechanisms during coral skeletal formation that in the end result in the reported sex-associated variations in coral skeletal δ^{18} O and δ^{13} C isotopic composition, we 425 426 seek to describe the coral skeletal isotopic data we found and assess the implications of 427 estimating climatic conditions if the coral sex identification is not taken into account when 428 possible since most of the studies in the Indo-Pacific and Caribbean have been based on 429 massive gonochoric corals (such as Montastrea cavernosa, Porites lutea and Porites lobata), 430 and how this may have some serious implications in the paleoclimatic reconstructions studies 431 made so far leading to erroneous conclusions due to errors in isotopic estimation since 432 variability of isotopic data may have been overestimated due to the mixing of male and 433 female isotopic data in past studies. Regarding the Sex-associated variations in coral skeletal 434 oxygen and carbon isotopic composition, we suggest two hypotheses, so they can be tested or 435 refuted in future works, so, describing the mechanism responsible for the isotopic signal 436 difference between sexes should be the aim of another more complex study. Or in other 437 words, once the base results have been achieved (different sexes have different growth rates, 438 calcification rates and isotopic signal) pointed in this work and in the Cabral-Tena et al. 439 (2013) study, the next step should be to uncover the mechanisms behind it. Without the first 440 part (since this is the first article to note or point this phenomenon), the next question cannot 441 be answered or formulated. Also, we have no problem in show the dates of isotopic data in 442 figure 1 as suggested by the referee in the major comments.

- 443 Specific comments
- 444 2 Materials and methods
- 445 2.1 Collection and identification of gender

446 Please show the map of study site. Almost readers may not be familiar with Gulfs of 447 California and/or Mexico.

448 We have no problem to show the map of the study area if necessary, we can also suggest

reading the Cabral-Tena *et al.* (2013) study since these are the same ten colonies presented in

450 that work.

451 The figure would be like this:

453

454 **2.3** *Isotope analysis p* **169**

455 Micromill procedure is the bases of coral isotope study. Many of readers may wonder if

456 powder samples are milled by machine or hand. Milling machine makes the milling to keep 457 equal intervals in coral skeleton, but it is difficult by hand milling procedure. Please

- 458 describe this process.
- 459 We rephrased as follows:

- 460 Continuous samples of aragonite powder were collected along each coral's maximum growth
- 461 axis using a drill with a 0.1 mm bit. Each sample was ~1 mm apart, the milling process was
- done by hand milling.
- 463 3.1 Skeletal growth

I would like to recommend to show X-ray photographs and graph of skeletal density along growth axis. It is difficult for reader to understand the relationship between isotope compositions and skeletal growth along growth axis.

We can include new figures, X-ray photographs and graph of skeletal density along growth axis. Also we can also suggest reading the Cabral-Tena *et al.* (2013) study since these are the same ten colonies presented in that work.

470 The figure would be like this:

	- AND ADD TO THE REAL PROPERTY OF
2009	2009
2008	2008
2007	2007
2006	2006
2005	2005
2004	2004
	2003
2003	2002
2002	2002
2001	2001
2000	2000
1999	1999
1998	1998
1997	1997
BLP 31(ඊ)	BLP 33(♀)

471

- 472 **3.2** Skeletal isotope composition and environmental data
- 473 The sentences in the line between 243 and 265 should be moved into discussion section.
- 474 We agree to move these sentences to the dissusion section
- 475 line 255-257: I do not think that authors show the calculation for d180 in seawater based
 476 on the d180 of coral skeleton for current coral. Many of readers may misunderstand that

this papers discussing about environmental aspects. I think that authors discuss about biological aspect for isotope variation:

This is correct, we report that the variations of Oxygen isotopic composition of sea water vary 0.11‰ in a year, this represents different percentages of isotopic seasonal variation in coral skeletons: 29.72% in female colonies, and 38.53% in male colonies of the average seasonal variation in δ^{18} O.

483 We rephrased it as follows:

The expected seasonal variation of approximately 0.11‰ of δ^{18} O in seawater (0.43 psu) represents 29.72% of δ^{18} O seasonal variation in female colonies, and 38.53% in male colonies.

487 4. Discussion line 296-394: These sentences seem like review for related papers, but

488 not essential. Please shorten.

489 We eliminated some information and rephrased it as follows:

Asami et al. (2004) suggest that the low correlation coefficient between δ^{18} O and SST, 490 and the gentle slope in the δ^{18} O–SST calibration equations are related to small seasonal 491 variations in SST (<3 °C), or the greater influence of $\delta^{18}O_{sw}$. The seasonal variation in SST of 492 our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause. 493 Variations in $\delta^{18}O_{sw}$ represent 29.72% in female coral, and 38.53% in male coral, of the 494 average seasonal δ^{18} O variation. We found a significant regime shift in the δ^{18} O data of 495 496 colonies of both genders, that coincides with a regime shift in rainfall. This means that the δ^{18} O of coral in Bahía de La Paz is influenced more by the δ^{18} O_{sw} than in other places in the 497 498 Pacific.

We found a positive relationship between skeletal $\delta^{18}O$ and $\delta^{13}C$ in our data. Swart et 499 al. (1996b) suggest that this means that the maximum photoperiod in Bahía de La Paz occurs 500 during winter (high $\delta^{18}O = \text{low SST}$, high $\delta^{13}C = \text{high photosynthesis}$). Hence, photosynthesis 501 might be less intense until the nutrient-rich waters of winter promote the growth of 502 zooxanthellae and restore photosynthesis intensity (Jokiel, 2004; Franklin et al., 503 2006). Skeletal δ^{13} C (Fig. 2) was higher between November and January (lowest SST and 504 PAR), and lower from June through August (highest SST and PAR), suggesting a positive 505 relationship between δ^{13} C and photosynthesis, and a dominant role of light-induced 506 photosynthesis on seasonal changes of δ^{13} C in coral. Still, the δ^{13} C–PAR correlations were 507 not significant, thus, photosynthesis was not stimulated or inhibited by light, and remained 508

509 near its maximum efficiency during the whole year, according to Sun et al. (2008). Other

510 factors may be affecting photosynthesis in addition to light, such as abundance of dissolved

- 511 nutrients. High concentrations of chlorophyll a occurred during periods of enrichment of ${}^{13}C$
- 512 in the coral skeleton (November through January); however, the correlations of skeletal $\delta^{13}C$
- 513 and chlorophyll *a* were not significant in any case.

Trends in coral skeletal δ^{13} C reflect seasonal variations in photosynthesis to respiration ratios in the δ^{13} C pool of coral (McConnaughey, 1989; McConnaughey et al., 1997). Respiration normally increases with temperature and lowers ¹³C in coral skeletons, which is reflected in our results, high SST = low δ^{13} C. No other environmental variables considered in this work explained this pattern in coral δ^{13} C, driven mainly by metabolic effects as described by Sun et al. (2008) in *Porites* coral of the South China Sea.

520 We found a negative correlation (r = -0.78, p = 0.001) between δ^{18} O and the skeletal density in female colonies, this is not consistent with studies that have observed that coral 521 522 skeletal high-density bands are enriched in¹⁸O (Klein et al., 1992; Al-Rousand, 2007). This may be due to a difference in timing of skeletal density bands in Porites coral species, as 523 524 described by Lough and Barnes (2000). In male coral, we found a negative correlation between the δ^{18} O and linear extension and calcification rates (r = -0.50, p = 0.045 and r = -525 0.44, p = 0.0008), this is consistent with the observations of other authors of *Porites* spp. coral 526 527 (McConnaughey, 1989; Felis et al., 2003). In Porites corals, skeletal extension and 528 calcification rates increases with SST, while skeletal density decreases (Lough and Barnes, 2000), so growth parameters of both sexes and δ^{18} O behave as expected .No significant 529 correlation was found between skeletal δ^{13} C and skeletal growth parameters in either males or 530 531 females, meaning that regardless of the skeletal extension rate, density or calcification rate, P. panamensis deposited a widely varying δ^{13} C, as reported by Allison et al. (1996) in Porites 532 coral from South Thailand, and by Swart et al. (1996b) in Montastrea annularis in Florida, 533 534 USA.

General consensus states that all coral skeletons contain appreciable amounts of carbon and oxygen in isotopic disequilibrium, and are depleted in ¹⁸O and ¹³C because of kinetic variations due to differences in coral growth. McConnaughey (1989) named this phenomenon "Vital effect". We found this to be true for all sampled coral (disequilibrium = 3.54% F, 3.80% M in δ^{18} O; 2.81% F, 2.53% M in δ^{13} C). McConnaughey (1989) considers kinetic depletion as a constant in coral with fast extension rates (>0.5 cm yr⁻¹). The average

541 yearly extension rates of all sampled coral were fast (1.05 cm yr⁻¹ for females, and 1.27 cm 542 yr⁻¹ for males). Thus, we assume kinetic disequilibrium is constant in all coral.

All δ^{18} O ratios of female colonies are more enriched in ¹⁸O than the ones in male colonies, with an average difference of ~0.31‰. Female δ^{13} C values were lower than the δ^{13} C of male colonies, with an average difference of ~0.28‰. All coral colonies in our study grew and calcified in the same environmental conditions. Thus, differences in the isotope record between coral growing in the same environment are attributed to differences in the "Vital effect" of each colony (Linsley et al., 1999; Felis et al., 2003).

Linsey et al. (1999) found differences of 0.4‰ in the δ^{18} O records of six *Porites* 549 lobata coral living in nearly identical environments, in the Clipperton atoll. Felis et al. (2003) 550 found a 1.28% difference in the δ^{18} O records of 11 coral of several *Porites* species, in three 551 sites in the northern part of the Gulf of Aqaba. None of the mentioned works considered the 552 sex of the colony as a factor explaining differences in the "Vital effect" of coral colonies. If 553 554 we pool the isotopic data of both sexes together, the differences between our isotopic records are 0.38% in the δ^{18} O record, and 0.29% in the δ^{13} C record. If we split our data by sex, the 555 differences in the isotopic records drop to 0.07% in the δ^{18} O, and to 0.02% in the δ^{13} C. In our 556 data, the sex of the colony explains 81% (δ^{18} O) and 93% (δ^{13} C) of the differences in the 557 558 "Vital effect" of coral colonies. Thus, the main source of differences in the isotope record is attributed to differences in the "Vital effect" associated to colony sex, for which we offer two 559 explanations; a simple one, and a complex one: 560

561 Energy expenditure during the formation of gametes causes differences in the formation of skeletal density bands, and carbon isotopic depletion in coral skeletons (Kramer 562 563 et al., 1993; Gagan et al., 1994). Cabral-Tena et al. (2013), and Carricart-Ganivet et al. (2013) found sex-dependent effects on the growth parameters and timing of density band formation 564 565 of coral, related to metabolic effects. We found that P. panamensis female colonies grew slower in comparison to male colonies $(1.05 \pm 0.04 \text{ cm yr}^{-1} \text{ vs. } 1.27 \pm 0.04 \text{ cm yr}^{-1})$. Faster 566 growing coral are more depleted in ¹⁸O and more enriched in ¹³C, relative to slower-growing 567 coral (McConnaughey, 1989; Felis et al., 2003), this may be the origin of the isotope data 568 difference between sexes (higher δ^{18} O and lower δ^{13} C in females), so a simplistic approach 569 might be that since the growth rates are different between sexes, the "Vital effect" will also be 570 different between sexes, thus explaining the differences we found in δ^{18} O and δ^{13} C between 571 572 sexes.

- 573 In this paper, only sentences between 413 and 419 explain about the mechanism, which
- 574 cause sex-associated isotope variations. I think authors should discuss this mechanism with 575 deeper insight
- 576 As mentioned in the major comments, the aim of this paper is not to describe or solve the
- 577 biochemical or physiological chemical processes during skeletal formation that result in the
- 578 reported variations in coral skeletal isotopic records associated to colony sex, we seek only to
- 579 point to our findings and how this may have some serious implications in the paleoclimatic
- 580 reconstructions studies made so far leading to erroneous conclusions, also, we suggest two
- 581 hypotheses, so they can be tested or refuted in future works, and

-Omata et al. (2008) attempted the isolation for both kinetic effects and metabolic effects.

583 Please read this article.

584 We applied the correction factor proposed by Heikoop et al. 2000 to isolate the kinetic and

585 metabolic effects in the δ^{13} C of male and female colonies, we chose Heikoop et al. (2000)

correction factor over Omata et al. (2008) because the temperature of skeleton precipitation
 was not the same during the entire study, this summarizes our results:

	Transformed	Transformed	Metabolic $\delta^{13}C$	Metabolic $\delta^{13}C$
	$\delta^{13}C \ \ Females$	$\delta^{13}C$ Males	Males (N=200)	Males (N=300)
	(N=200)	(N=300)		
Mean	5.082	6.30	6.23	7.43
SD	0.90	0.97	0.90	0.96

588 We also did the Student's T test to compare both sets of means (kinetic and metabolic) and 589 we found significant differences between the means of male and female colonies (t_{498} = 590 13.074 p< 0.000001 for Kinetic means; t_{498} =-13.98 p< 0.000001 Metabolic means).

593 As you can see, we found some interesting results when applying the correction factor, both 594 transformed δ^{13} C and metabolic δ^{13} C seem to be higher in males, thus supporting our 595 hypothesis stating that an intense activity of the Ca-ATPase enzyme will result in carbon 596 heavier skeleton. Ca-ATPase enzyme activity is related positively to energy availability in 597 corals (Cohen and Holcomb 2009), so it would explain why both kinetic effect (skeletal 598 growth) and metabolic effect (coral photosynthesis / respiration) are higher in male corals, 599 since male corals grow faster than female colonies.

600 We can include these results in the manuscript if necessary.

601

⁵⁹¹ The overall average of δ^{13} C in female colonies was $-1.66 \pm 0.38\%$, and $-1.38 \pm 0.37\%$ in 592 male colonies (Table 1).

602	Sex-associated variations in coral skeletal oxygen and carbon isotopic	
603	composition of Porites panamensis in the southern Gulf of California	
604		
605	R. A. Cabral-Tena ¹ , A. Sánchez ² , H. Reyes-Bonilla ³ , A. H. Ruvalcaba-Díaz ² , E. F.	Con formato: Español (México)
606	Balart ¹	
607		
608	¹ Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur	
609	23096, Mexico	
610	² Centro Interdisciplinario de Ciencias Marinas–Instituto Politécnico Nacional (CICIMAR-	
611	IPN), La Paz, Baja California Sur 23096, Mexico	
612	³ Departamento de Biología Marina, Universidad Autónoma de Baja California Sur (UABCS),	
613	La Paz, Baja California Sur 23080, Mexico	
614		
615	Address correspondence to: E. F. Balart (<u>ebalart04@cibnor.mx</u>)	
616	Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN #195, La Paz,	Con formato: Español (México)
617	B.C.S. 23096, Mexico; Tel: +52-612-123-8484, Fax: +52-612-125-3625	
618		
619		
620		

621	Abstract		
622	Coral δ^{18} O variations are used as a proxy for changes in <u>near</u> -sea surface temperature (SST)		Con formato: Resaltar
623	and seawater isotope composition. Skeletal $\delta^{13}C$ of coral is frequently used as a proxy for		Con formato: Resaltar
624	solar radiation because most of its variability is controlled by an interrelationship between		
625	three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to		
626	influence the δ^{18} O and δ^{13} C isotope record to a lesser extent than <u>-environmental variables</u> .		Con formato: Resaltar
627	Recent published data show differences in growth parameters between female and male coral		
628	in the gonochoric brooding coral <i>Porites panamensis</i> ; thus, skeletal δ^{18} O and δ^{13} C are		Con formato: Resaltar
629	hypothesized to be different in each sex. To assess this difference test this, this study describes	\sum	Con formato: Fuente: Cursiva, Resaltar
630	changes in the skeletal δ^{18} O and δ^{13} C record of four female and six male <i>Porites panamensis</i>	\backslash	Con formato: Resaltar
631	coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The		Con formato: Resaltar
632	isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR),		Con formato: Resaltar Con formato: Inglés (Estados Unidos),
633	chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric		Resaltar
634	brooder whose growth parameters are different in females and males. Splitting the data by		
635	sexes explained 81% and 93% of the differences of δ^{18} O, and of δ^{13} C, respectively, in the		
636	isotope record between colonies. Both isotope records were different between sexes. δ^{18} O was		
637	higher in female colonies than in male colonies, with a 0.31% difference; $\delta^{13}C$ was lower in		
638	female colonies, with a 0.28‰ difference. A difference in the skeletal δ^{18} O implies could		Con formato: Resaltar
639	<u>introduce</u> an error in SST estimates of ≈ 1.0 °C to ≈ 2.6 °C. The δ^{18} O records showed a		
640	seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45 , -0.32),		
641	and gentle slopes (0.09‰ $^{\circ}C^{-1}$, 0.10‰ $^{\circ}C^{-1}$) of the $\delta^{18}O$ –SST relation. Seasonal variation in		
642	coral $\delta^{18}O$ represents only 52.37% and 35.66% of the SST cycle; 29.72% and 38.53% can be		
643	attributed to δ^{18} O variability in seawater. δ^{13} C data did not correlate with any of the		
644	environmental variables; therefore, variations in skeletal $\delta^{13}C$ appear to be driven mainly by		
645	metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal		
646	δ^{18} O and δ^{13} C signal, and suggest that environmental conditions and coral growth parameters		
647	affect skeletal isotopic signal differently in each sex. Although these findings relate to one		Con formato: Resaltar
648	gonochoric brooding species, they may have some implications for the more commonly used		
649	gonochoric spawning species such as <i>Porites lutea</i> and <i>Porites lobata</i> .		Con formato: Fuente: Cursiva, Resaltar
650		\langle	Con formato: Resaltar
651			Con formato: Fuente: Cursiva, Resaltar

652 1 Introduction

653		
654	Massive hermatypic cCoral are useful as recorders of oceanic conditions because their growth	
655	and skeletal materials incorporated during growth are is affected by environmental variables,	
656	and the calcareous material is deposited in annual density bands that allow for the	
657	determination of events over time (Druffel, 1997; Gagan et al., 2000; Grottolli and Eakin,	
658	2007; Lough and Barnes, 2000; Lough and Cooper, 2011). This memory of oceanographic	
659	conditions at the time of calcification, record variations at the intra-annual, inter-annual, inter-	
660	decadal, and sometimes centennial timescale of El Niño–Southern Oscillation changes	
661	(ENSO), the Pacific Decadal Oscillation (PDO), and pre- and post-industrial climate events	
662	variability and change (Grottoli and Eakin, 2007). Skeletal growth, isotope composition, and	
663	minor and trace element ratios in coral skeletons vary in a predictable way from with	
664	environmental variations in temperature, salinity, precipitation, cloud cover, fresh water	
665	discharge, upwelling, and pH (Dunbar and Wellington, 1981; Bernal and Carriquiry, 2001;	
666	Hönisch et al., 2004; Grottoli and Eakin, 2007). Among the proxies used in coral skeletons	
667	(trace element ratios, $\delta^{18}O$, $\delta^{13}C$, $\delta^{11}B$, $\delta^{15}N$), skeletal $\delta^{18}O$ and $\delta^{13}C$ are the most common	
668	measurements because they are relatively easy to measurements because they are relatively easy to	
669	al., 1994; Linsley et al., 1994; Swart et al., 1996a; Tudhope et al., 1996; Charles et al., 1997;	
670	Schrag, 1999).	
671	Most of the variability in skeletal δ^{18} O in calcifying organisms, including coral, results	
672	from a combination of temperature-induced isotopic fractionation of local seawater $\delta^{18} O$	
673	$(\delta^{18}O_{sw})$ that depends on changes in precipitation and oceanic evaporation, which affect	
674	salinity (Epstein et al., 1953). Depletion in carbonate $\delta^{18}O$ occurs as temperature increases in	
675	inorganic and biogenic carbonates (Allison et al., 1996). In tropical and subtropical oceans,	
676	variations in salinity caused by evaporation, rainfall, or river run-off affect skeletal $\delta^{18}O$ and	
677	need to be considered when establishing a skeletal δ^{18} O-SST relationship (Cole and	
678	Fairbanks, 1990; Carriquiry et al., 1994; Al Rousan et al., 2007; Sazzad et al., 2010).	
679	Variations of skeletal $\delta^{13}C$ are controlled mainly by an interrelationship between	
680	photosynthesis, respiration, and feeding. During high photosynthesis, zooxanthellae fixation	
681	of ${}^{12}CO_2$ increases, which leads to an increase in ${}^{13}CO_2$ in the coral carbon pool. Hence, coral	
682	skeletons formed during periods of high photosynthesis contain greater amounts of ^{13}C	
683	(Swart, 1983; McConnaughey, 1989; McConnaughey et al., 1997). During seasons with lower	
684	photosynthetic activity or when the photosynthesis to respiration ratio falls, coral skeletons	

Con formato: Resaltar
Con formato: Resaltar
Con formato: Resaltar

Con formato: Resaltar

Con formato: Resaltar Con formato: Resaltar

Con formato: Resaltar

685	would have lesser amounts of ¹² C. Changes in the photosynthesis–respiration ratio are
686	influenced by photoperiods, photo-intensity, and temperature; where longer photoperiods and
687	higher temperatures promote higher photosynthesis–respiration ratios (higher ¹³ C). If
688	maximum solar radiation occurs during summer, skeletal δ^{13} C will be inversely related to
689	δ^{18} O; if the maximum photoperiod occurs during colder seasons, δ^{13} C and δ^{18} O will be
690	positively related (Swart et al., 1996b). Since zooplankton have generally low isotope levels,
691	compared to coral skeletons and zooxanthelae, an increase in the heterotrophic activity of
692	coral should reduce the δ^{13} C of coral skeletons (Grottoli and Wellington, 1999). Felis et al.
693	(1998), and Bernal and Carriquiry (2001) demonstrated that levels of coral skeletal δ^{13} C
694	decrease during upwelling events that bring nutrients to surface waters, with high
695	concentrations of zooplankton related to decreasing zooxanthellae photosynthetic activity, and
696	an increase in coral heterotrophic feeding (Cole et al., 1993; Quinn et al., 1993).
697	The δ^{18} O and δ^{13} C in coral skeletons are depleted in ¹⁸ O and ¹³ C, in comparison to
698	inorganic aragonite precipitated under isotope equilibrium (Weber and Woodhead, 1972;
699	McConnaughey, 1989). This departure from equilibrium is referred to as "the vital effect" and
700	appears to be constant in along the coral growth axis (Land et al., 1975; McConnaughey,
701	1989; Barnes and Lough, 1992; Barnes et al., 1995; Wellington et al., 1996). Isotope
702	disequilibrium of coral skeletons results from coral precipitating their skeletons too quickly to
703	attain isotope equilibrium (McConnaughey, 1989). Hence, all coral skeletons contain
704	appreciable amounts of carbon and oxygen, which have not been allowed to equilibrate with
705	the ambient conditions and are isotopically depleted.
706	Variations in coral skeletal growth parameters (skeletal density, extension, and
707	calcification rate) are possible sources of deviation from oxygen and carbon isotope
708	fractionation, which affect the external controls of the isotopes (Allison et al., 1996; Lough et
709	al., 1996; Barnes et al., 1995; Cohen and Hart, 1997). Skeletal growth parameters in coral
710	have sex-based differences in some gonochoric species (Cabral-Tena et al., 2013; Carricart-
711	Ganivet et al., 2013), so it is possible for the sex of a coral colony to be another cause of
712	deviation in oxygen and carbon isotope fractionation. The influence of metabolic effects, such
713	as reproduction, is another factor affecting the δ^{18} O and δ^{13} C signal in skeletons (Kramer et
714	al., 1993; Gagan et al, 1994; Barnes et al., 1995; Taylor et al., 1995; Allison et al., 1996;
715	Cohen and Hart, 1997; Lough et al., 1996; Swart et al., 1996b).
716	The stony coral Porites panamensis has a wide distribution along the eastern tropical

717 Pacific, from Mexico to Ecuador, and tolerates a wide range of environmental conditions,

Con formato: Resaltar

718	including low temperature and high-turbidity that are often stressful to other coral species		
719	(Halfar et al., 2005; Reyes-Bonilla et al., 2007). This coral has extension rates ranging from		
720	0.4 to 1.2 cm yr ⁻¹ , along the coast of Mexico and Costa Rica (Guzmán and Cortés, 1989;		
721	Halfar et al., 2005; Cabral-Tena et al., 2013), where extension and calcification rates are		
722	different in males and females (Cabral-Tena et al., 2013). P. panamensis is a gonochoric		
723	brooder with reproductive activity throughout the year (Glynn et al., 1994; Carpizo-Ituarte et		
724	al., 2011; Rodríguez-Troncoso et al., 2011).		
725	This study describes changes in the skeletal isotopic oxygen and carbon record of six		
726	male and four female P. panamensis coral, collected in Bahía de La Paz, with growth density		
727	banding covering 12 years. Oxygen and carbon isotope recording wasmeasurements were	_	Con formato: Resaltar
728	used to assess a possible sex-associated variation in the coral skeletal $\delta^{18}O$ and $\delta^{13}C$ signal		
729	related to differences in the "vital effect" of colonies between sexes. The isotopic record was		
730	compared to surface seawater temperature (SST), rainfall, photosynthetically active radiation		
731	(PAR), concentration of chlorophyll <i>a</i> , and skeletal growth data.		
732			
733	2 Materials and methods		
734			
735	2.1 Collection and identification of gendersex		Con formato: Resaltar
736			
737	Ten colonies of <i>Porites panamensis</i> were collected in Bahía de La Paz (Fig. 1: 24°N, 110°W)		Con formato: Resaltar
738	during the main reproductive period (March) of this genus (Glynn et al., 1994; Carpizo-Ituarte		Con formato: Sangría: Primera línea:
739	et al., 2011; Rodriguez-Troncoso et al., 2011). The specimens were collected in 2011 at		Con formato: Resaltar
740	depths of 3–4 m. Divers used hammer and chisel to remove the colonies from the substrate. A		
741	fragment from each colony was fixed in Davison's solution for a histological examination and		
742	identification of sex (Howard and Smith, 1983). These are the same ten colonies presented in		Con formato: Resaltar
743	the Cabral-Tena <i>et al.</i> (2013) study.		Con formato: Fuente: Cursiva,
744	Coral fragments were first decalcified for 24 h in a solution containing 10% HCl, 0.7 g		Resaltar
745	EDTA, 0.008 g sodium potassium tartrate, and 0.14 g sodium tartrate in 1 liter of distilled		
746	water (Glynn et al., 1994). The tissue was then rinsed under running water until free of acid,		
747	and placed in 70% ethanol until processed by conventional histological techniques (Humason,		
748	1979). Transverse 8 μm sections were prepared with a rotator manual microtome, and stained		
749	with hematoxylin and eosin. After staining, the samples were studied under a compound		
750	microscope. The colonies were labeled were identified as female if any planulae or oocytes		Con formato: Resaltar

were observed, regardless of their stage of development; the colonies were <u>labeled_identified</u>
male if any spermatocytes were observed in the slide section.

753

754 **2.2 Growth parameters**

755

756 From each colony, three slices (7–8 mm thick) were cut along the major growth axis. Slices 757 were air-dried and X-rayed with a digital mammograph machine (Senographe 600T, GE 758 Healthcare, Little Chafont, UK). Images were made at 36 kVp for 980 mAs and 30 cm 759 source-to-subject distance. X-ray films were digitized with a Kodak DirectView Classic CR 760 System, at 75 dpi resolution. An aragonite step-wedge was included on each X-radiograph as 761 a reference for calculating skeletal density. The step-wedge was built from eight blocks cut from a shell of *Tridacna maxima*; each block had an area of 2.5 cm² and varied in thickness 762 from 0.09 to 1.18 cm. Optical density tracks were placed inlocated on the maximum growth 763 764 axis in the digital X-radiography of each slice; density was measured using the ImageJ 1.44 image processing program (http://imagej.nih.gov/ij). A data series of absolute density versus 765 766 distance was generated and dated backwards for each slice, using photodensitometry 767 (Carricart-Ganivet and Barnes, 2007). The coral year starts in the summer, with the highest 768 SST at the sampling site (Hudson et al., 1976). The maximum and minimum density for each 769 year (1993 through 2009) were identified in each density series.-

770 771

772 2.3 Isotope analysis

773

After the skeletal growth analysis, one slice covering the most extensive chronological
extension of each of the ten colonies was selected for isotope analysis. Continuous samples of
aragonite powder were collected along each coral's maximum growth axis using a drill with a
0.1 mm bit. Each sample was ~1 mm apart. The milling process was done by hand milling.

Aragonite powder was analyzed using an isotope ratio mass spectrometer (Delta V
Plus, Thermo Scientific, Waltham, MA) with an automated system for carbon analysis in an
acid bath (Finnigan Gas Bench II, Thermo Electron, Madison, WI). Each isotope sample had
<0.05‰ error. Reference NBS-19 (International Atomic Energy Agency, Vienna, Austria)

Con formato: Resaltar

783	was used as the isotope standard. The seasonal pattern of $\delta^{18}O$ was used to establish	
784	chronology. This is supported by the consistent pattern of annual density-band pairs described	
785	for Porites by Lough and Barnes (2000). Chronologies were established by designating the	
786	minimum δ^{18} O value in a year equal to summer (consistent with maximum SST). To	 Con formato: Resaltar
787	eliminate the effects of different sampling resolutions on the calculation of mean coral $\delta^{18}O$	
788	values due to differences in linear extension rates of each colony, the results were interpolated	Con formato: Resaltar
789	to create four equally spaced values per year. Normality and homoscedasticity of the data	Con formato: Resaltar
790	were tested using Kolmogorov Smirnov and Bartlett tests, respectively. Student's t test for	
791	independent samples with uneven variance was used to assess statistical differences in $\delta^{48}\Theta$	
792	and δ^{43} C between sexes. Pearson's correlation test and simple linear regressions were used to	
793	estimate relationships between mean skeletal extension rate, skeletal density, and calcification	
794	rate with isotope data of both sexes. An ANCOVA test was used to assess the differences	
795	between slopes and the y-intercept of lineal equations of δ^{43} C-versus δ^{18} O-plots of the results	
796	of male and female data.	
797	Heikoop et al. (2000) correction factor was applied to isolate the kinetic and metabolic	 Con formato: Resaltar
798	effects in the δ^{13} C of male and female colonies we chose Heikoop et al. (2000) correction	
799	factor over Omata et al. (2008) because the temperature of skeleton precipitation was not the	
800	same during the entire study.	
801		
802	2.4 Environmental data	
803		
804	Monthly SST, PAR, and concentration of chlorophyll <i>a</i> datawere obtained from the NOAA	 Con formato: Resaltar
805	live access server (http://las.pfeg.noaa.gov/oceanWatch/oceanwatch.php), the environmental	 Con formato: Resaltar
806	data spanned from 1997 to 2009, and and in situ thermograph temperature data (2003–2007)	
807	from the Marine Observatory for the Mexican Pacific region (Sicard-González et al., 2012).	
808	This information was used to compare satellite and <i>in situ</i> temperature data. Compared in situ	 Con formato: Resaltar
809	and satellite data were both monthly covering from 2003 to 2007. Both temperature records	 Con formato: Fuente: Cursiva, Resaltar
810	(satellite and in situ measurements) from Bahía de La Paz showed the same seasonal signal	Con formato: Resaltar
811	and a close fit ($r = 0.90$, $p < 0.05$). This result supports the use of satellite SST data for coral	
812	skeletal δ ¹⁸ O calibration. Monthly Rean ainfall data (1997-2009) were obtained from the Servicio	 Con formato: Resaltar
813	Meteorológico Nacional (<u>http://smn.cna.gob.mx/</u>). Some sea surface salinity data was	Con formato: Resaltar
814	obtained from previous published data in the study area (Obeso-Niebla, 2007). $\delta^{18}O_{sw}$ was	

815	calculated from the δ^{18} O relationship with the salinity equation for the Eastern Pacific	
816	(Fairbanks et al., 1997).	
817		
818	2.5 Statistical analyses	Con formato: Fuente: Negrita, Resaltar
819	Normality and homoscedasticity of the data were tested using Kolmogorov-Smirnov and	Con formato: Resaltar
820	Bartlett tests, respectively. Student's t-test for independent samples with uneven variance was	
821	used to assess statistical differences in δ^{18} O and δ^{13} C between sexes and to compare both sets	
822	of means obtained using the Heikoop et al. (2000) correction factor (kinetic and metabolic	
823	$\frac{\delta^{13}C}{c}$. Pearson's correlation test and simple linear regressions were used to estimate	Con formato: Resaltar
824	relationships between mean skeletal extension rate, skeletal density, and calcification rate	Con formato: Resaltar
825	with isotope data of both sexes. An ANCOVA test was used to assess the differences between	
826	slopes and the y-intercept of linearl equations of δ^{13} C versus δ^{18} O plots of the results of male	
827	and female data.	
828		Con formato: Resaltar
829	Pearson's correlation test and simple linear regressions were used to estimate relationships	Con formato: Sangría: Primera línea: 0 cm
830	between environmental data and isotope data of both sexes. Regime shift index for	
831	environmental and isotope data were calculated with the Sequential Regime Shift Detection	
832	Software (Rodionov, 2004).	
833		
834		
835	3 Results	
836		
837	3.1 Skeletal growth	
838		
839	All specimens were collected in March, a period of low SST in Bahía de La Paz. All X-	
840	radiographs had a low-density annual growth band in the apex of the slice. This means that <i>P</i> .	
841	panamensis form a low-density band in winter. Annual growth bands in each colony were	
842	dated and the sampling resolution for isotope analysis was determined.	
843	The average yearly extension rate was 1.05 ± 0.04 cm yr ⁻¹ for female colonies, and	
844	$1.27\pm0.04~\text{cm}~\text{yr}^{-1}$ for male colonies. The average skeletal density was $0.94\pm0.01~\text{g}~\text{cm}^{-3}$ for	
845	females, and 0.95 \pm 0.01 g cm $^{-3}$ for males. The average calcification rate was 0.97 \pm 0.04 g	
846	$cm^{-2} yr^{-1}$ for females, and 1.24 ± 0.03 g cm ⁻² yr ⁻¹ for males. Figure 2 shows an X-ray	Con formato: Resaltar
847	photographs and of skeletal density along the growth axis-	

849 3.2 Skeletal isotope composition and environmental data

850			
851	The $\delta^{18}O_{\underline{guarterly}}$ records of female and male coral colonies show a seasonal pattern (Fig.		Con formato: Resaltar
852	<u>43</u>) that was strongly significantly correlated between sexes ($r = 0.45$, $p > 0.000001$), thus		Con formato: Resaltar
853	both sexes showed the same seasonal pattern. δ^{18} O in female colonies, was higher than in		Con formato: Resaltar
854	male colonies (Fig. <u>3</u> +). The overall average δ^{18} O in female colonies was $-2.89 \pm 0.33\%$, and		
855	$-3.20 \pm 0.37\%$ in male colonies (Table 1). Overall, the δ^{18} O average of females is		
856	significantly higher than that of males (t ₄₉₈ = 9.34, $p > 0.00001$). Quarterly $\delta^{18}O$ time		Con formato: Resaltar
857	series data of all colonies showed a "regime shift" of the mean in 2004, from -2.75 to -3.14% ,		Con formato: Resaltar
858	with a regime shift index (RSI) of -0.69 ($p = 0.008$) in female colonies, and from -3.08 to $-$		
859	2.42% with a RSI of -0.65 ($p = 0.003$) in male colonies. This coincides with a regime shift in		
860	the rainfall mean of 2003, changing from 15.76 to 30.25 mm, with a RSI of 0.30 ($p = 0.01$), as		Con formato: Resaltar
861	seen in Figure 3b.		Con formato: Resaltar
862	The quarterly δ^{13} C time series showed a cyclic pattern in female and male colonies		Con formato: Resaltar
863	(Fig. 42) that was correlated between both genders seves $(r = 0.19, n = 0.005)$ thus both	<	Con formato: Resaltar
005	(i.i.g. $\underline{-}2$), that was concluded between both genders $\underline{\underline{sexs}}(r = 0.17, p = 0.003)$, this both		Con formato: Resaltar
804	sexes snowed the same seasonal pattern. The skeletal of C of remaie colonies was lower than		Con formato: Resaltar
865	the skeletal δ^{13} C of male colonies (Fig. <u>4</u> 2). The overall average of δ^{13} C in female colonies		
866	was $-1.66 \pm 0.38\%$, and $-1.38 \pm 0.37\%$ in male colonies (Table 1). The overall average of		
867	δ^{13} C in females is significantly lower than in males (t ₄₉₈ = -8.01, <i>p</i> > 0.00001). No regime		
868	shift was found in the δ^{13} C data of either sex.		
869	The δ^{18} O skeletal data series corresponds to the SST (Fig. <u>3</u>). Table 2 shows		
870	correlation coefficients between the $\delta^{18}O$ isotope data of coral colonies and environmental		
871	variables. The correlation coefficient between the isotope average time series data and SST		
872	was -0.45 ($p = 0.00003$) for female colonies, and -0.32 ($p = 0.0005$) for male colonies; the r-		
873	to-Z transformation showed that both correlation coefficients are equally strong significant (Z		Con formato: Resaltar
874	= -1469; $p = 0.07$). No significant correlation was found between the δ^{18} O skeletal data sets		
875	and the rainfall data. The δ^{13} C skeletal data series did not significantly correlate to with any of		Con formato: Resaltar
876	the environmental data variables in any of the colonies (Table 3). The temporal resolution of		Con formato: Resaltar
877	compared data (isotopes vs. anvironmental data) is quarterly in all asses		Con formato: Resaltar
077	The life life life state of the life life state of the life state		Con formato: Superíndice , Resaltar
878	The relationship between o"O and satellite derived SST for 13 years (1997–2009) was		Con formato: Resaltar
879	calibrated. The linear regression (Fig. 3) equations for $\delta^{18}O$ dependence on temperature were:	\langle	Con formato: Resaltar
880	SST = 7.0889 5.7193 (δ^{18} O), (r^2 = 0.23, p = 0.00003) for female coral, and		Con formato: Resaltar
			Con formato: Resaltar

881	SST = $14.739 - 2.9246 (\delta^{18}O) (r^2 = 0.10, p = 0.00007)$ for male coral.	
882	The annual range of $\delta^{48}\Theta$ was the difference between the highest $\delta^{48}\Theta$ measurement in	
883	January March, and the lowest in July September (1997–2008). The colonies had a small	
884	seasonal variation. The average amplitude was $0.37 \pm 0.15\%$ in female colonies, and $0.28 \pm$	
885	0.72% in male colonies. Satellite data of SSTs had an average amplitude cycle of 7.85 ± 0.77	
886	$^{\circ}$ C, and rainfall had an average annual amplitude of 3.55 \pm 16.07 mm. Using the calculated	
887	gradients of 0.09‰ °C ⁻¹ for female colonies, and 0.10‰ °C ⁻¹ for male colonies, the average	
888	seasonal variation of δ^{18} O would reflect a temperature change of 4.11 °C in female colonies,	
889	and 2.80 °C in male colonies. This is 52.37% in female colonies, and 35.66% in male colonies	
890	of the seasonal range of the SST. The expected variation of approximately 0.11‰ of δ^{18} O in	
891	seawater (0.43 psu) is 29.72% in female colonies, and 38.53% in male colonies of the average	
892	seasonal variation in ô ⁴⁸ O.	
893	The departure from isotope equilibrium of our samples was estimated with the	
894	equations by Grossman and Ku (1986), for δ^{18} O, and Romanek et al. (1992) for δ^{13} C. We	
895	found that the theoretical δ^{18} O value of coral aragonite that precipitates at equilibrium with	
896	seawater is -0.65‰, which means that our samples of coral have an average departure from	
897	isotope equilibrium of ~3.54‰ in females, and ~3.80‰ in males. For δ ¹³ C, we found a	
898	theoretical value of 1.15‰ for coral aragonite that precipitates at equilibrium with seawater.	
899	This means that average departure from isotope equilibrium is - 2.81‰ in females, and	
900	~2.53‰ in males.	
901	Heikoop et al. (2000) correction factor results are shown in Table 4. The overall	Con formato: Izquierda, Sangría: Primera línea: 1 25 cm. Espacio Antes:
902	average of δ^{13} C in female colonies was -1.66 ± 0.38 %, and -1.38 ± 0.37 % in male colonies.	0 pto, Interlineado: 1,5 líneas, Ajustar espacio entre texto latino y asiático.
903	Student's T test showed that both sets of means (kinetic and metabolic) are significally	Ajustar espacio entre texto asiático y números
904	different between male and female colonies (t ₄₉₈ = 13.074 p< 0.000001 for Kinetic means;	 Con formato: Subíndice
905	<u>t498=-13.98 p< 0.000001 Metabolic means).</u>	
906		
907		
908		
909	3.3 Skeletal isotopic composition and skeletal growth	
910		
911	The analysis showed that high density bands are depleted in ¹⁸ O and ¹³ C, which are deposited	
912	during summer; low density bands are enriched in ¹⁸ O and ¹³ C, which are deposited during	
913	winter. In female colonies, a strong significant negative correlation between the mean annual	 Con formato: Resaltar

914	coral δ^{18} O and <u>annual</u> skeletal density was found (Table <u>54</u> ; $r = -0.78$, $p = 0.001$) (Table 4).	<	Con formato: Resaltar
915	This suggests that denser skeletons are more depleted in δ^{18} O, compared to less dense		Con formato: Resaltar
916	skeletons, and no significant correlation was found between $\delta^{18}O$ and other skeletal growth		
917	parameters in female colonies; no significant correlations between mean annual coral $\delta^{13}C$		
918	and any growth parameters were found. In male colonies, there was a strong significant	_	Con formato: Resaltar
919	negative correlation between mean annual coral $\delta^{18}O$ and the <u>annual</u> linear extension and	_	Con formato: Resaltar
920	calcification rates (Table 54; $r = -0.50$ and -0.44 , $p = 0.045$ and 0.0008). This suggests that		
921	faster growing and calcifying colonies are more depleted in δ^{18} O. No significant correlation		
922	was found between δ^{18} O and skeletal density in male colonies; no significant correlation		
923	between any coral growth parameter and mean annual coral $\delta^{13}C$ was found.		
924			
925	4 Discussion		
926			
927	Our isotope data showed a significant dependency of skeletal $\delta^{18}O$ on SST , with a low		
928	r (-0.45 in female coral, and -0.28 in male coral), and a gentle slope of the δ^{18} O–SST		
929	calibration equations (0.09‰ $^{\circ}C^{-1}$ F; 0.11‰ $^{\circ}C^{-1}$ M; Fig. $\frac{35}{2}$), compared with slopes (>0.20‰		
930	$^{\circ}C^{-1}$) in <i>Porites</i> spp. in other areas of the Pacific: the Great Barrier Reef (Gagan et al., 1994),		
931	Costa Rica (Carriquiry, 1994), Panama (Wellington and Dunbar, 1995), and the Galapagos		
932	Archipelago (McConnaughey, 1989). These studies show high correlation coefficients (better		
933	than –0.80) of δ^{18} O and SST, all these studies have isotopic records varying to 5 to 40 years	_	Con formato: Resaltar
934	long, and with a high temporal resolution sampling (weekly to monthly). Our results are		
935	similar to studies reporting small correlation coefficients of δ^{18} O and SST (less than -0.70)		
936	and a gentle slope (<0.17‰ °C ⁻¹) of the $\delta^{18}O$ –SST calibration equations, such as at		
937	Clipperton Atoll (Linsley et al., 1999), Fiji (Le Bec et al., 2000), and Guam (Asami et al.,		
938	2004), These studies have long isotopic records (20 to 25 years) and a high temporal	<	Con formato: Resaltar
939	resolution sampling (daily to monthly) compared to our data (12 years of data with a quarterly	$\overline{\ }$	Con formato: Resaltar
940	sampling resolution)		
941	Asami et al. (2004) suggest that the low correlation coefficient between δ^{48} O and SST,		Con formato: Resaltar
942	and the gentle slope in the ³¹⁸ O SST calibration equations are related to small seasonal		
943	variations in SST (<3 °C), or the greater influence of 8 ⁴⁸ O _{sw} . The seasonal variation in SST of		
944	our study area is 7.85 \pm 0.77 °C, and the variation in δ^{18} O accounts for only 52.37% in female		
945	coral, and 35.66% in male coral, of the seasonal range, so the seasonal variation of SST is not		
946	likely to be the cause. Variations in $\delta^{18}\Theta_{sw}$ represent 29.72% in female coral, and 38.53% in		

947male coral, of the average seasonal δ^{18} O variation. We found a significant regime shift ($p \le 0.01$)9480.01) in the δ^{18} O data of colonies of both genders, that coincides with a regime shift ($p = 0.01$)949in rainfall (which changes the $\delta^{18}O_{sw}$). We think that a greater influence of $\delta^{18}O_{sw}$ is the most950likely source of our findings. This means that the $\delta^{18}O$ of coral in Bahía de La Paz is951influenced more by the $\delta^{18}O_{sw}$ than in other places in the Pacific.952Asami et al. (2004) suggest that the low correlation coefficient between $\delta^{18}O$ and SST,953and the gentle slope in the $\delta^{18}O_{-SST}$ calibration equations are related to small seasonal954variations in SST (<3 °C), or the greater influence of $\delta^{18}O_{sw}$. The seasonal variation in SST of955our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause.956Variations in $\delta^{18}O_{sw}$ represent 29.72% in female coral, and 38.53% in male coral, of the957average seasonal $\delta^{18}O$ variation. We found a significant regime shift in the $\delta^{18}O$ data of958colonies of both genders, that coincides with a regime shift in rainfall. This means that the	
948 0.01) in the δ^{18} O data of colonies of both genders, that coincides with a regime shift ($p = 0.01$) 949 in rainfall (which changes the δ^{18} O _w). We think that a greater influence of δ^{18} O _w is the most 950 likely source of our findings. This means that the δ^{18} O of coral in Bahía de La Paz is 951 influenced more by the δ^{18} O _w than in other places in the Pacific. 952 Asami et al. (2004) suggest that the low correlation coefficient between δ^{18} O and SST, 953 and the gentle slope in the δ^{18} O-SST calibration equations are related to small seasonal 954 variations in SST (<3 °C), or the greater influence of δ^{18} O _{sw} . The seasonal variation in SST of 955 our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause. 956 Variations in δ^{18} O _{sw} represent 29.72% in female coral, and 38.53% in male coral, of the 957 average seasonal δ^{18} O variation. We found a significant regime shift in the δ^{18} O data of 958 colonies of both genders, that coincides with a regime shift in rainfall. This means that the	
 949 in rainfall (which changes the δ¹⁸O_{sw}). We think that a greater influence of δ¹⁸O_{sw} is the most 950 likely source of our findings. This means that the δ¹⁸O of coral in Bahía de La Paz is 951 influenced more by the δ¹⁸O_{sw} than in other places in the Pacific. 952 Asami et al. (2004) suggest that the low correlation coefficient between δ¹⁸O and SST, 953 and the gentle slope in the δ¹⁸O-SST calibration equations are related to small seasonal 954 variations in SST (<3 °C), or the greater influence of δ¹⁸O_{sw}. The seasonal variation in SST of 955 our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause. 956 Variations in δ¹⁸O_{sw} represent 29.72% in female coral, and 38.53% in male coral, of the 957 oulonies of both genders, that coincides with a regime shift in rainfall. This means that the 	
950likely source of our findings. This means that the δ^{18} O of coral in Bahía de La Paz is951influenced more by the $\delta^{18}O_{sw}$ than in other places in the Pacific.952Asami et al. (2004) suggest that the low correlation coefficient between $\delta^{18}O$ and SST,953and the gentle slope in the $\delta^{18}O$ -SST calibration equations are related to small seasonal954variations in SST (<3 °C), or the greater influence of $\delta^{18}O_{sw}$. The seasonal variation in SST of955our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause.956Variations in $\delta^{18}O_{sw}$ represent 29.72% in female coral, and 38.53% in male coral, of the957average seasonal $\delta^{18}O$ variation. We found a significant regime shift in the $\delta^{18}O$ data of958colonies of both genders that coincides with a regime shift in rainfall. This means that the	
951influenced more by the $\delta^{18}O_{sw}$ than in other places in the Pacific.952Asami et al. (2004) suggest that the low correlation coefficient between $\delta^{18}O$ and SST,953and the gentle slope in the $\delta^{18}O_{-SST}$ calibration equations are related to small seasonal954variations in SST (<3 °C), or the greater influence of $\delta^{18}O_{sw}$. The seasonal variation in SST of955our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause.956Variations in $\delta^{18}O_{sw}$ represent 29.72% in female coral, and 38.53% in male coral, of the957average seasonal $\delta^{18}O$ variation. We found a significant regime shift in the $\delta^{18}O$ data of958colonies of both genders, that coincides with a regime shift in rainfall. This means that the	
952 Asami et al. (2004) suggest that the low correlation coefficient between δ^{18} O and SST, 953 and the gentle slope in the δ^{18} O–SST calibration equations are related to small seasonal 954 variations in SST (<3 °C), or the greater influence of δ^{18} O _{sw} . The seasonal variation in SST of 955 our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause. 956 Variations in δ^{18} O _{sw} represent 29.72% in female coral, and 38.53% in male coral, of the 957 average seasonal δ^{18} O variation. We found a significant regime shift in the δ^{18} O data of 958 colonies of both genders that coincides with a regime shift in rainfall. This means that the	
953 and the gentle slope in the δ^{18} O–SST calibration equations are related to small seasonal 954 variations in SST (<3 °C), or the greater influence of δ^{18} O _{sw} . The seasonal variation in SST of 955 our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause. 956 Variations in δ^{18} O _{sw} represent 29.72% in female coral, and 38.53% in male coral, of the 957 average seasonal δ^{18} O variation. We found a significant regime shift in the δ^{18} O data of 958 colonies of both genders, that coincides with a regime shift in rainfall. This means that the	
954variations in SST (<3 °C), or the greater influence of $\delta^{18}O_{sw}$. The seasonal variation in SST of955our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause.956Variations in $\delta^{18}O_{sw}$ represent 29.72% in female coral, and 38.53% in male coral, of the957average seasonal $\delta^{18}O$ variation. We found a significant regime shift in the $\delta^{18}O$ data of958colonies of both genders, that coincides with a regime shift in rainfall. This means that the	
955 our study area is 7.85 ± 0.77 °C, so the seasonal variation of SST is not likely to be the cause. 956 Variations in $\delta^{18}O_{sw}$ represent 29.72% in female coral, and 38.53% in male coral, of the 957 average seasonal $\delta^{18}O$ variation. We found a significant regime shift in the $\delta^{18}O$ data of 958 colonies of both genders, that coincides with a regime shift in rainfall. This means that the	
956 <u>Variations in $\delta^{18}O_{sw}$ represent 29.72% in female coral, and 38.53% in male coral, of the</u> 957 <u>average seasonal $\delta^{18}O$ variation. We found a significant regime shift in the $\delta^{18}O$ data of 958 colonies of both genders, that coincides with a regime shift in rainfall. This means that the</u>	
957 <u>average seasonal δ^{18}O variation. We found a significant regime shift in the δ^{18}O data of 958 colonies of both genders, that coincides with a regime shift in rainfall. This means that the</u>	
958 colonies of both genders, that coincides with a regime shift, in rainfall. This means that the	
colonies of cour genetics, that conferences with a regime sintre in rainfain. This means that the	
959 δ^{18} O of coral in Bahía de La Paz is influenced more by the $\delta^{18}O_{sw}$ than in other places in the	
960 Pacific.	
961	
962 The linear regression (Fig. 5) equations for δ^{18} O dependence on SST (1997-2009) Con formato: Resaltar	
963 were: Con formato: Resaltar	
964 <u>SST = 7.0889 - 5.7193 (δ^{18}O), (r^2 = 0.23, p = 0.00003) for female coral, and</u>	
965 <u>SST = 14.739 - 2.9246 (δ^{18}O) (r^2 = 0.10, p = 0.00007) for male coral.</u>	
966 The annual range of δ^{18} O was the difference between the highest δ^{18} O measurement in	
967 January–March, and the lowest in July–September (1997–2008) The average amplitude was	
968 $0.37 \pm 0.15\%$ in female colonies, and $0.28 \pm 0.72\%$ in male colonies. Satellite data of SSTs	
had an average amplitude cycle of 7.85 ± 0.77 °C, and rainfall had an average annual	
970 amplitude of 3.55 ± 16.07 mm. Using the calculated gradients of 0.09% °C ⁻¹ for female	
971 <u>colonies, and 0.10% °C⁻¹ for male colonies, the average seasonal variation of δ^{18}O would</u>	
972 reflect a temperature change of 4.11 °C in female colonies, and 2.80 °C in male colonies. This	
973 is 52.37% in female colonies, and 35.66% in male colonies of the seasonal range of the SST.	
974 The expected seasonal variation of approximately 0.11% of δ^{18} O in seawater (0.43 psu)	
975 represents 29.72% of δ^{18} O seasonal variation in female colonies, and 38.53% in male	
976 <u>colonies.</u>	
977 The departure from isotope equilibrium of our samples was estimated with the	
978 equations by Grossman and Ku (1986), for δ^{18} O, and Romanek et al. (1992) for δ^{13} C. We	
979 <u>found that the theoretical δ^{18}O value of coral aragonite that precipitates at equilibrium with</u>	
32	

980	seawater is -0.65 %, which means that our samples of coral have an average departure from	
981	isotope equilibrium of ~3.54‰ in females, and ~3.80‰ in males. For δ^{13} C, we found a	
982	theoretical value of -1.15‰ for coral aragonite that precipitates at equilibrium with seawater.	
983	This means that average departure from isotope equilibrium is ~2.81‰ in females, and	
984	~2.53‰ in males.	
985		
986	We found a positive relationship between skeletal δ^{18} O and δ^{13} C in our data, where r =	
987	0.42 in females, and r = 0.58 in males. Swart et al. (1996b) suggest that this means that the	
988	maximum photoperiod in Bahía de La Paz occurs during winter (high of 18 O = low SST, high	
989	δ^{43} C = high photosynthesis). When the SST peaks in the summer and surface seawater	
990	generally becomes depleted of nutrients, zooxanthellae disperse (Hoegh Guldberg, 1999;	Con formato: Resaltar
991	Barton and Casey, 2005). Hence, photosynthesis might be less intense until the nutrient rich	
992	waters of winter promote the growth of zooxanthellae and restore photosynthesis intensity	
993	(Jokiel, 2004; Franklin et al., 2006).	
994	We found a positive relationship between skeletal δ^{18} O and δ^{13} C in our data. Swart et	Con formato: Resaltar
995	al. (1996b) suggest that this means that the maximum photoperiod in Bahía de La Paz occurs	
996	during winter (high $\delta^{18}O = \text{low SST}$, high $\delta^{13}C = \text{high photosynthesis}$). When the SST peaks	
997	in the summer and surface seawater generally becomes depleted in nutrients, zooxanthellae	Con formato: Resaltar
998	disperse (Hoegh-Guldberg, 1999; Barton and Casey, 2005). Hence, photosynthesis might be	
999	less intense until the nutrient-rich waters of winter promote the growth of zooxanthellae and	
1000	restore photosynthesis intensity (Jokiel, 2004; Franklin et al., 2006).	
1001		
1002	Skeletal δ^{13} C (Fig. 2) was higher in both genders, between November and January	Con formato: Resaltar
1003	(lowest SST and PAR), and lower from June through August (highest SST and PAR),	
1004	suggesting a positive relationship between δ^{13} C and photosynthesis, and a dominant role of	
1005	light induced photosynthesis on seasonal changes of δ^{13} C in coral. Still, the δ^{13} C PAR	
1006	regressions and correlations were not significant, meaning that photosynthesis was not	
1007	stimulated or inhibited by light, and remained near its maximum efficiency during the whole	
1008	year, according to Sun et al. (2008), in Porites in southern China. They suggest that other	
1009	factors may be affecting photosynthesis in addition to light, such as abundance of dissolved	
1010	nutrients. High concentrations of chlorophyll a occurred during periods of relative enrichment	
1011	of ¹³ C in the coral skeleton (November through January), when fixation by algae of the	

saltar

1012	isotopically lighter carbon enriches δ^{13} C in coral skeletons (Allison et al., 1996); however, the		
1013	correlations of skeletal δ^{13} C and chlorophyll <i>a</i> were not significant in any case.		
1014	Skeletal δ^{13} C (Fig. 4) was higher in both sexes between November and January	Con formato:	Resaltar
1015	(Jamest CCT and DAD) and James from the discust (Lister CCT and DAD)	Con formato:	Resaltar
1015	(lowest SSI and PAR), and lower from Julie through August (highest SSI and PAR),	Con formato:	Resaltar
1016	suggesting a positive relationship between $\delta^{13}C$ and photosynthesis, and a dominant role of	Con formato:	Resaltar
1017	light-induced photosynthesis on seasonal changes of $\delta^{13}C$ in coral. Still, the $\delta^{13}C$ -PAR		
1018	correlations were not significant, thus, photosynthesis was not stimulated or inhibited by light,		
1019	and remained near its maximum efficiency during the whole year, according to Sun et al.		
1020	(2008). Other factors may be affecting photosynthesis in addition to light, such as abundance		
1021	of dissolved nutrients. High concentrations of chlorophyll a occurred during periods of		
1022	enrichment of ¹³ C in the coral skeleton (November through January); however, the		
1023	correlations of skeletal δ^{13} C and chlorophyll <i>a</i> were not significant in any case.		
1024			
1025	Trends in coral skeletal δ^{13} C reflect seasonal variations in metabolic effects, that is,	Con formato:	Resaltar
1026	modifications of photosynthesis to respiration ratios in the δ^{13} C pool of coral. Higher coral		
1027	respiration reduces coral δ^{43} C (McConnaughey, 1989; McConnaughey et al., 1997).		
1028	Respiration normally increases with temperature and lowers ⁴³ C in coral skeletons, which is		
1029	reflected in our results, high SST = low δ^{43} C. No other environmental variables considered in		
1030	this work explained this pattern in coral δ^{13} C, driven mainly by metabolic effects as described		
1031	by Sun et al. (2008) in <i>Porites</i> coral of the South China Sea.		
1032	<u>Trends in coral skeletal δ^{13}C reflect seasonal variations in photosynthesis to respiration</u>	Con formato:	Resaltar
1033	ratios in the δ^{13} C pool of coral (McConnaughey, 1989; McConnaughey et al., 1997).		
1034	Respiration normally increases with temperature and lowers ¹³ C in coral skeletons, which is		
1035	reflected in our results, high SST = low δ^{13} C. No other environmental variables considered in		
1036	this work explained this pattern in coral δ^{13} C, driven mainly by metabolic effects as described		
1037	by Sun et al. (2008) in <i>Porites</i> coral of the South China Sea.		
1038			
1039	We found a negative correlation ($r = -0.78$, $p = 0.001$) between δ^{18} O and the skeletal	Con formato:	Resaltar
1040	density in female colonies, i.e. More dense skeletons are depleted in $\delta^{18}O$. This is not		
1041	consistent with studies that have observed that coral skeletal high density bands are enriched		
1042	in ¹⁸ O (Klein et al., 1992; Al Rousand, 2007). This may be due to a difference in timing of		
1043	skeletal density bands in different Porites coral species, as described by Lough and Barnes		

1044	(2000). In male coral, we found a negative correlation between the δ^{18} O and linear extension
1045	and calcification rates ($r = -0.50$, $p = 0.045$ and $r = -0.44$, $p = 0.0008$), meaning that the
1046	faster a colony grows and calcifies, the more it is depleted in δ^{18} O. This is consistent with the
1047	observations of other authors of Porites spp. coral (McConnaughey, 1989; Felis et al., 2003).
1048	In <i>Porites</i> corals, SST is a dominating control of variations in growth parameters and of δ^{18} O;
1049	the skeletal extension and calcification rate increases with SST, while skeletal density
1050	decreases (Lough and Barnes, 2000), so the growth parameters of both sexes and $\delta^{48}O$ behave
1051	as expected; that is, an increase in SST = a decrease in density = δ^{48} O enrichment in females,
1052	and an increase in SST = an increase in extension and calcification rate = δ^{48} O enrichment in
1053	males. No significant correlation was found between skeletal δ^{13} C and skeletal growth
1054	parameters in either males or females, meaning that regardless of the skeletal extension rate,
1055	density or calcification rate, <i>P. panamensis</i> deposited a widely varying δ^{43} C, as reported by
1056	Allison et al. (1996) in Porites coral from South Thailand, and by Swart et al. (1996b) in
1057	Montastrea annularis in Florida, USA.
1058	We found a negative correlation ($r = -0.78$, $p = 0.001$) between δ^{18} O and the skeletal
1059	density in female colonies, this is not consistent with studies that have observed that coral
1060	skeletal high-density bands are enriched in ¹⁸ O (Klein et al., 1992; Al-Rousand, 2007). This
1061	may be due to a difference in timing of skeletal density bands in Porites coral species, as
1062	described by Lough and Barnes (2000). In male coral, we found a negative correlation
1063	between the δ^{18} O and linear extension and calcification rates ($r = -0.50$, $p = 0.045$ and $r = -0.045$
1064	0.44, p = 0.0008), this is consistent with the observations of other authors of <i>Porites</i> spp. coral
1065	(McConnaughey, 1989; Felis et al., 2003). In Porites corals, skeletal extension and
1066	calcification rates increases with SST, while skeletal density decreases (Lough and Barnes,
1067	2000), so growth parameters of both sexes and δ^{18} O behave as expected .No significant
1068	correlation was found between skeletal δ^{13} C and skeletal growth parameters in either males or
1069	females, meaning that regardless of the skeletal extension rate, density or calcification rate, P.
1070	panamensis deposited a widely varying δ^{13} C, as reported by Allison et al. (1996) in Porites
1071	coral from South Thailand, and by Swart et al. (1996b) in Montastrea annularis in Florida,
1072	USA.
1073	
1074	General consensus states that all coral skeletons contain appreciable amounts of

1075 carbon and oxygen in isotopic disequilibrium, and are depleted in ¹⁸O and ¹³C because of

Con formato: Resaltar

1076	Lingth and discussion design and the second second structure is designed the interview of the second	
1076	kinetie variations due to unterences in corai growth. Larger isotopie disequitionum occurs	
1077	when coral grows faster (Land et al., 1975; McConnaughey, 1989; Aharon, 1991).	
1078	McConnaughey (1989) named this phenomenon "Vital effect". We found this to be true for	
1079	all sampled coral (disequilibrium = 3.54‰ F, 3.80‰ M in δ^{18} O; 2.81‰ F, 2.53‰ M in δ^{13} C).	
1080	McConnaughey (1989) considers kinetic depletion as a constant in coral with fast extension	
1081	rates (>0.5 cm yr ⁻¹). The average yearly extension rates of all sampled coral were fast (1.05	Con formato: Resaltar
1082	em yr ⁴ -for females, and 1.27 cm yr ⁴ -for males). <mark>Thus, we assume kinetic disequilibrium is</mark>	Con formato: Resaltar
1083	constant in all coral	Con formato: Resaltar
1005	constant in an contra-	Con formato: Resaltar
1084	General consensus states that all coral skeletons contain appreciable amounts of	Con formato: Resaltar
1085	carbon and oxygen in isotopic disequilibrium, and are depleted in ¹⁸ O and ¹³ C because of	
1086	kinetic variations due to differences in coral growth. McConnaughey (1989) named this	
1087	phenomenon "vital effect". We found this to be true for all sampled coral (disequilibrium =	Con formato: Resaltar
1088	<u>3.54‰ F, 3.80‰ M in δ¹⁸O; 2.81‰ F, 2.53‰ M in δ¹³C). McConnaughey (1989) considers</u>	Con formato: Resaltar
1089	kinetic depletion as a constant in coral with fast extension rates (>0.5 cm yr ⁻¹). The average	
1090	yearly extension rates of all sampled coral can be considered as fast (1.05 cm yr ⁻¹ F, and 1.27	Con formato: Resaltar
1091	<u>cm yr⁻¹ M) in accordance with the work of McConnaughey (1989). Thus, we assume kinetic</u>	Con formato: Resaltar
1092	disequilibrium is constant in all coral.	
1093		
	10	Con formato: Pecaltar
1094	All 8 ^{+*} O ratios of female colonies are more enriched in ^{+*} O than the ones in male	Con formato: Resaltar
1095	colonies, with an average difference of -0.31‰ (female average minus male average). Female	Con formato: Resaltar
1096	δ^{43} C values were lower than the δ^{13} C of male colonies, with an average difference of -0.28‰.	
1097	All coral colonies in our study grew and calcified in the same environmental conditions (SST,	
1098	$\delta^{48}\Theta_{sw,}$ -PAR, Chlorophyll <i>a</i> _etc.). Thus, differences in the isotope record between coral	
1099	growing in the same environment are attributed to differences in the "Vital effect" of each	Con formato: Resaltar
1100	colony (Linsley et al., 1999; Felis et al., 2003).	Con formato: Resaltar
1101	All δ^{18} O ratios of female colonies are more enriched in ¹⁸ O than in male colonies, with	Con formato: Resaltar
1102	an average difference of ~0.31‰. Female δ^{13} C values were lower than the δ^{13} C of male	
1103	colonies, with an average difference of ~0.28%. All coral colonies in our study grew and	
1104	calcified in the same environmental conditions. Thus, differences in the isotope record	
1105	between coral growing in the same environment are attributed to differences in the "vital	Con formato: Resaltar
1106	effect" of each colony (Linsley et al., 1999; Felis et al., 2003).	Con formato: Resaltar
1107		

1108	Linsey et al. (1999) found differences of 0.4‰ in the δ ¹⁸ O records of six <i>Porites</i>	Con formato: Resaltar
1109	lobata coral living in nearly identical environments (2 km of each other), in the Clipperton	
1110	atoll. Felis et al. (2003) found a 1.28‰ difference in the δ^{18} O records of 11 coral of several	
1111	Porites species (not detailed by the authors), in three sites in the northern part of the Gulf of	
1112	Aqaba. None of the mentioned works considered the sex of the colony as a factor explaining	
1113	differences in the "Vital effect" of coral colonies. If we pool the isotopic data of both sexes	
1114	together, the differences between our isotopic records are 0.38% in the $\delta^{48}O$ record, and	
1115	0.29‰ in the 8 ⁴³ C record (similar to the observations of Felis et al., 2003). If we split our data	
1116	by sex, the differences in the isotopic records drop to 0.07‰ in the δ^{18} O, and to 0.02‰ in the	
1117	δ^{13} C. In our data, the sex of the colony explains 81% (δ^{18} O) and 93% (δ^{13} C) of the differences	
1118	in the "Vital effect" of coral colonies. Thus, the main source of differences in the isotope	
1119	record is attributed to differences in the "Vital effect" associated to colony sex, for which we	
1120	offer two explanations; a simple one, and a complex one:	
1121	-Linsey et al. (1999) found differences of 0.4‰ in the δ^{18} O records of six Porites	Con formato: Resaltar
1122	lobata coral living in nearly identical environments, in the Clipperton atoll. Felis et al. (2003)	
1123	found a 1.28% difference in the δ^{18} O records of 11 coral of several <i>Porites</i> species, in three	
1124	sites in the northern part of the Gulf of Aqaba. None of the mentioned works considered the	
1125	sex of the colony as a factor explaining differences in the "vital effect" of coral colonies. If	Con formato: Resaltar
1126	we pool the isotopic data of both sexes together, the differences between our isotopic records	Con formato: Resaltar
1127	are 0.38‰ in the δ^{18} O record, and 0.29‰ in the δ^{13} C record. If we split our data by sex, the	
1128	differences in the isotopic records drop to 0.07‰ in the δ^{18} O, and to 0.02‰ in the δ^{13} C. In our	
1129	data, the sex of the colony explains 81% (δ^{18} O) and 93% (δ^{13} C) of the differences in the "vital	Con formato: Resaltar
1130	effect" of coral colonies. Thus, the main source of differences in the isotope record is	Con formato: Resaltar
1131	attributed to differences in the "vital effect" associated with colony sex, for which we offer	Con formato: Resaltar
1132	two explanations; a simple one, and a complex one:	Con formato: Resaltar
1133		Con formato: Resaltar
1134	Energy expenditure during the formation of gametes causes differences in the	Con formato: Resaltar
1135	formation of skeletal density bands, and carbon isotopic depletion in coral skeletons (Kramer	
1136	et al., 1993; Gagan et al., 1994). Cabral Tena et al. (2013), and Carricart Ganivet et al. (2013)	
1137	found sex dependent effects on the growth parameters and timing of density band formation	
1138	of coral, related to metabolic effects. We found that P. panamensis female colonies grew	
1139	slower in comparison to male colonies (1.05 \pm 0.04 cm yr ⁴ vs. 1.27 \pm 0.04 cm yr ⁴). Faster	
1140	growing coral are more depleted in ⁴⁸ O and more enriched in ⁴³ C, relative to slower-growing	

1141	coral (McConnaughey, 1989; Felis et al., 2003), this may be the origin of the isotope data	
1142	difference between sexes (higher δ^{18} O and lower δ^{13} C in females), so a simplistic approach	
1143	might be that since the growth rates are different between sexes, the "Vital effect" will also be	Co
1144	different between sexes, thus explaining the differences we found in $\delta^{48}O$ and $\delta^{43}C$ between	Co
1145	sexes.	
1146	Energy expenditure during the formation of gametes causes differences in the	Co
1147	formation of skeletal density bands, and carbon isotopic depletion in coral skeletons (Kramer	
1148	et al., 1993; Gagan et al., 1994). Cabral-Tena et al. (2013), and Carricart-Ganivet et al. (2013)	
1149	found sex-dependent effects on the growth parameters and timing of density band formation	
1150	of coral, related to metabolic effects. We found that P. panamensis female colonies grew	
1151	slower in comparison to male colonies $(1.05 \pm 0.04 \text{ cm yr}^{-1} \text{ vs. } 1.27 \pm 0.04 \text{ cm yr}^{-1})$. Faster	
1152	growing coral are more depleted in ¹⁸ O and more enriched in ¹³ C, relative to slower-growing	
1153	coral (McConnaughey, 1989; Felis et al., 2003), this may be the origin of the isotope data	
1154	difference between sexes (higher δ^{18} O and lower δ^{13} C in females), so a simplistic approach	
1155	might be that since the growth rates are different between sexes, the "vital effect" will also be	Co
1156	different between sexes, thus explaining the differences we found in $\delta^{18}O$ and $\delta^{13}C$ between	Co
1157	sexes.	
1158	A more complex explanation for this sex-associated difference in coral isotopic data	
1159	could result from the role Ca-ATPase (enzyme strongly associated with coral calcification)	
1160	activity has in the mechanism of the "yv ital effect". Adkins et al. (2003), and Rollion-Bard et	Co
1161	al. (2003) found that the Ca-ATPase activity in deep sea and symbiotic coral establishes a pH	
1162	gradient between the coral cell wall and the extracellular calcifying fluid (ECF). The pH	
1163	gradient (more basic in the ECF) promotes a passive CO_2 flux into the ECF and controls the	
1164	mixing of carbon with isotopically heavier signature from the seawater-dissolved inorganic	
1165	carbon, thus, the intense activity of Ca-ATPase will result in a carbon heavier skeleton.	
1166	Oxygen isotopes also respond to the pH of the ECF, proportions of the dissolved carbonate	
1167	species are pH dependent. At low pH the dominant species is H ₂ CO ₃ , at intermediate pH it is	
1168	HCO_3^{-} , and at high pH, CO_2^{3-} is the dominant species. McCrea (1950) demonstrated that the	
1169	δ^{18} O of carbonates is related to the proportion of HCO ₃ ⁻ and CO ₂ ⁻³ in the solution (CO ₂ ⁻³⁻ is	
1170	isotopically lighter). Thus, pH controls the relative fractions of dissolved HCO_3^{-1} and CO_2^{-3} in	
1171	the ECF and the kinetics of their isotopic equilibration with water, before carbonate	
1172	precipitation. An intense activity of Ca-ATPase will result in oxygen lighter skeletons.	
1173	According to this theory, a higher activity of the Ca-ATPase enzyme will result in carbon	

Con formato: Resaltar Con formato: Resaltar

Con formato: Resaltar

Con formato: Resaltar Con formato: Resaltar

Con formato: Resaltar

1174	heavier skeletons and oxygen lighter skeletons. Cohen and Holcomb (2009) mention that the
1175	activity of ATPase depends on the amount of energy available for the calcification for coral.
1176	Cabral-Tena et al. (2013) suggest it is possible that male <i>P. panamensis</i> have more available
1177	energy for calcification, which would mean males have a higher activity of the Ca-ATPase,
1178	which results in enriched C^{13} and depleted O^{18} skeletons, in comparison to female skeletons,
1179	as seen in our data (-1.66‰ F vs1.38‰ M δC^{13} ; -2.89‰ F vs3.20‰ M δO^{18}). This
1180	complex mechanism of the origin of the " v^{\downarrow} ital effect" might explain why we found a sex-
1181	associated variation in coral skeletal oxygen and carbon isotopic composition of Porites
1182	panamensis.
1183	Kramer et al. (1993), and Gagan et al. (1994) suggested that energy expenditure during
1184	the formation of gametes may cause differences in the isotopic depletion in coral skeletons;
1185	Kramer et al. (1993) observed depletions in isotope data during reproductive seasons,
1186	regardless of the sex of the coral, and found minimum $\delta^{13}C$ values in skeletons of <i>Oribicella</i>
1187	faveolata during spawning seasons (summer), although this phenomenon was also observed in
1188	other coral species which produce gametes the whole year (O. faveolata has only one
1189	reproductive event per year). The results obtained by Kramer et al. (1993) were inconclusive,
1190	but suggested a lag effect of isotope signal, associated with the initiation and duration of the
1191	reproductive cycle. It is possible that the sex-associated variation we found in isotope data is
1192	due to the reproductive strategy of P. panamensis. P. panamensis is a gonochoric brooding
1193	species with reproductive and larval release events through the whole year in the Pacific coast
1194	of Mexico (Carpizo-Ituarte et al., 2011; Rodriguez-Troncoso et al., 2011). Energy costs of
1195	reproduction in gonochoric spawners are lower than in gonochoric brooding species where
1196	energy is required not only for egg production, but also for larval development (Szmant,
1197	1986). This implies that there should be sex-associated variations in the coral skeletal isotope
1198	data of other gonochoric brooding coral, as some massive Porites (which can be spawners or
1199	brooders; Glynn et al., 1994; Baird et al., 2009).
1200	We found some interesting results when applying the Heikoop et al. (2000) correction factor
1201	to isolate the kinetic and metabolic effects in the $\delta^{13}C$ of male and female colonies, both
1202	transformed $\delta^{13}C$ and metabolic $\delta^{13}C$ seem to be higher in males, thus supporting the
1203	hypothesis stating that an intense activity of the Ca-ATPase enzyme will result in carbon
1204	heavier skeleton. Ca-ATPase enzyme activity is related positively to energy availability in
1205	corals (Cohen and Holcomb 2009), so it would explain why both kinetic effect (skeletal

Con formato: Resaltar

Con formato: Interlineado: 1,5 líneas

growth) and metabolic effect (coral photosynthesis / respiration) are higher in male corals, since male corals grow faster than female colonies.

1208 <u>Considering</u> δ^{18} O of coral skeletons is used to estimate SST in different sites and 1209 conditions, the next part of the discussion seeks to exemplify what would a difference in δ^{18} O 1210 1211 between sexes would represent in terms of errors in SST estimation. Using the widely 1212 accepted paleotemperature equations for calcite (Epstein et al., 1953) and aragonite (Grossman and Ku, 1986), a ~0.31‰ difference between sexes would represent an error in 1213 SST estimates of ~1.47 °C and ~1.33 °C. Using accepted SST–coral δ^{18} O relationships from 1214 different regions of the Pacific, derived from *Porites* spp., the δ^{18} O difference between sexes 1215 1216 would represent an error of ~1.75 °C (Red Sea; Al-Rousand et al., 2003), ~1.71 °C (Great 1217 Barrier Reef; Gagan et al., 1994), ~1.31 °C (Costa Rica; Carriquiry, 1994), ~1.39 °C (Central 1218 and Eastern Tropical Pacific; Druffel, 1985), ~1.47 °C (The Galapagos; McConnaughey, 1989), and ~1.47 °C in SST estimates, for the commonly admitted paleotemperature 1219 1220 calibration in coral (0.21‰ per °C). δ^{13} C of coral skeletons has been used as a proxy for the photosynthetic activity of 1221 1222 zooxanthellae (mainly driven by light). Until now, no general rule applies to how much δ^{13} C means how much radiance (like the dependence of δ^{18} O to SST resulting in paleotemperature 1223 equations), but a difference of ~0.28% in coral δ^{13} C between sexes should be taken into 1224 account for this kind of applications, since it may influence the descriptions of the variability 1225 in δ^{13} C of coral skeletons. δ^{13} C of coral skeletons is also used to correct the δ^{18} O data when 1226 estimating the SST at which coral grew, by using the regression line equations obtained from 1227 1228 the δ^{13} C vs. δ^{18} O plots (Smith et al., 2000). When we compared the regression line equations obtained from the δ^{13} C vs. δ^{18} O plots of both sexes, the ANCOVA showed that both the slope 1229 (F₄₉₈= 9.619, p=0.002) and the y-intercept (F₄₉₈= 222.5, p<0.00001) are different between 1230 equations (fig 64.). Also, Fisher's r-to-z transformation (z=-2.34, p=0.01) showed that the 1231 δ^{13} C vs. δ^{18} O correlation coefficients are significantly different between sexes, i.e. the 1232 relationship in δ^{13} C vs. δ^{18} O is different in both sexes; this has important implications because 1233 it could add a variability source to the use of the δ^{13} C vs. δ^{18} O regression line as corrector for 1234 1235 δ^{18} O data, if the sex of the colony is not taken into account in the analysis. This study provides evidence of sex associated variations in coral skeletal δ^{18} O and 1236 δ^{13} O of *P. panamensis*. This has some implications and has to be considered when climate

1237

Con formato: Resaltar

Con formato: Resaltar

Con formato: Resaltar

1238	conditions are estimated based on comparisons of δ^{18} O and δ^{13} O values of gonochoric coral	
1239	genera, if sex identification is no taken into account when possible.	
1240	This study provides evidence of sex-associated variations in coral skeletal $\delta^{18}O$ and	
1241	δ^{13} C of <i>P. panamensis</i> . This has some implications and has to be considered when climate	
1242	conditions are estimated based on comparisons of $\delta^{18}O$ and $\delta^{13}C$ values of gonochoric brooder	
1243	coral genera, if sex identification is not taken into account when possible. The findings of this	
1244	study are based on a gonochoric brooder species (P. panamensis), while the majority of	Con formato: Resalt
1245	paleoclimatic reconstructions in the Indo-Pacific and Caribbean have been based on massive	
1246	gonochoric spawners (such as Montastrea cavernosa, Porites lutea and Porites lobata), so, it	
1247	remains unclear if the same phenomena (sex-associated variations in coral skeletal δ^{18} O and	
1248	δ^{13} O) can be observed in gonochoric spawners. This may have some serious implications in	Con formato: Resalt
1249	the paleoclimatic reconstructions studies made so far leading to erroneous conclusions due to	Con formato: Resalt
1250	errors in isotopic estimation; variability of isotopic data may have been overestimated due to	Con formato: Resalt
1251	the mixing of male and female isotopic data in past studies. Thus, a fruitful area of future	
1252	research would be to determine whether the sex differences identified in this study are also	
1253	characteristic of gonochoric spawners.	
1254		
1255	Acknowledgements We thank Carmen Rodríguez-Jaramillo and Eulalia Meza-Chávez for	
1256	assisting with histological procedures; Ira Fogel and Carlos Ruiz provided editorial services;	
1257	Mario Cota, David Paz, and Alejandro Aldana assisted in the field work; Carlos Soto	
1258	Carrasco and Jorge Cobos Anaya helped prepare coral material; Luis E. Calderón Aguilera	
1259	and Carlos Orión Norzagaray López assisted in the X-radiographand; and Noemi Bocanegra	
1260	assisted in the laboratory. All are at CIBNOR. This project was funded by CIBNOR project	
1261	EP0.02 and SEP-CONACYT grant 157993. R.A.C.T. is a recipient of a fellowship from	
1262	CONACYT (212435).	
1263		
1264	References	
1265		
1266	Adkins, J. F., Boyle, E. A., Curry, W. B. and Lutringer, A.: Stable isotopes in deep-sea corals	
1267	and a new mechanism for "vital effects", Geochim. Cosmochim. Acta., 67, 1129-	
1268	1143, 2003.	
1269	Aharon, P.: Recorders of reef environment histories: stable isotopes in corals, giant clams and	
1270	calcareous algae, Coral Reefs. 10, 71–90, 1991.	

- Allison, N., Tudhope, A. W. and Fallick, A. E.: Factors influencing the stable carbon and
 oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South
 Thailand, Coral Reefs. 15, 43–57, 1996.
- Al-Rousand, S., Felis, T., Manasrah, R. and Al-Horani, F.: Seasonal variations in the stable
 oxygen isotopic composition in Porites corals from the northern Gulf of Aqaba, Red
 Sea, Geochem. J., 41, 333–340, 2007.
- Asami, R., Yamada, T., Iryu, Y., Meyer, C. P., Quinn, T. and Paulay, G.: Carbon and oxygen
 isotopic composition of a Guam coral and their relationship to environmental variables
 in the western Pacific, Palaeogeogr. Palaeoclimatol. Palaeoecol., 212, 1–22, 2004.
- Baird, A. H., Guest, J. R. and Willis, B. L.: Systematic and biogeographical patterns in the
 reproductive biology of scleractinian corals, Ann. Rev. Ecol. Syst., 40, 531–571, 2009.
- Barnes, D. J. and Lough, J. M.: Systematic variations in the depth of skeleton occupied by
 coral tissue in massive colonies of Porites from the Great Barrier Reef, J. Exp. Mar.
 Biol. Ecol., 159, 113–128, 1992.
- Barnes, D. J., Taylor, R. B. and Lough, J. M.: On the inclusion of trace materials into massive
 coral skeletons. Part II: distortions in skeletal records of annual climate cycles due to
 growth processes, J. Exp. Mar. Biol. Ecol., 194, 251–275, 1995.
- Barton, A. D. and Casey, K. S.: Climatological context for large scale bleaching, Coral Reefs,
 24, 536–554, 2005.
- Bernal, G. R. and Carriquiry, J. D.: Stable isotope paleoenvironental record of a coral from
 Cabo Pulmo, entrance to the Gulf of California, Mexico, Cienc. Mar., 27, 155–174,
 2001.
- 1293 Cabral-Tena, R. A., Reyes-Bonilla, H., Lluch-Cota, S., Paz-Garcia, D. A., Calderon-Aguilera,
 1294 L. E., Norzagaray-Lopez, O. and Balart, E. F.: Different calcification rates in males
 1295 and females of the coral Porites panamensis in the Gulf of California, Mar. Ecol. Prog.
 1296 Ser., 476, 1–8, 2013.
- 1297 Carpizo-Ituarte, E., Vizcaíno-Ochoa, V., Chi-Barragán, G., Tapia-Vázquez, O., Cupul-
- 1298 Magaña, A. L. and Medina-Rosas, P.: Evidence of sexual reproduction in the
- hermatypic corals Pocillopora damicornis, Porites panamensis, and Pavona gigantea in
 Banderas Bay, Mexican Pacific, Cienc. Mar., 37, 97-112, 2011.
- 1301 Carricart-Ganivet, J. P. and Barnes, D. J.: Densitometry from digitized images of X-
- radiographs: methodology for measurement of coral skeletal density, J. Exp. Mar.Biol. Ecol. 344, 67-72, 2007.

- 1304 Carricart-Ganivet, J. P., Vásquez-Bedoya, L.F., Cabanillas-Terán, N. and Blanchon, P.:
- Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea sidera, Coral Reefs, 32, 769-777, 2013.
- Carriquiry, J.D.: ¹⁸O Fractionation in the coralline aragonite of Porites lobata: Implications in
 oceanic paleothermometry studies, Cienc. Mar., 20: 585–606, 1994.
- Carriquiry, J. D., Risk, M. J. and Schwarcz, H. P.: Stable isotope geochemistry of corals from
 Costa Rica as proxy indicator of the El Niño/Southern Oscillation (ENSO), Geochim.
 Cosmochim. Acta., 58, 335–351, 1994.
- Charles, C. D., Hunter, D. E. and Fairbanks, R. G.: Interaction between the ENSO and the
 Asian monsoon in a coral record of tropical climate, Science, 277,925–928, 1997.
- Cohen, A. L. and Hart, S. R.: The effect of colony topography on climate signals in coral
 skeleton, Geochim. Cosmochim. Acta, 61: 3905–3912, 1997.
- Cohen, A. L. and Holcomb, M.: Why corals care about ocean acidification uncovering themechanism, Oceanography, 22, 118-127, 2009.
- Cole, J. E., Fairbanks, R. G. and Shen, G. T.: Recent variability in the southern oscillation:
 isotopic results from a Tarawa atoll coral, Science, 260, 1790-1793, 1993.
- 1320 Cole, J. E. and Fairbanks, R. G.: The Southern Oscillation recorded in the δ^{18} O of corals from 1321 Tarawa Atoll, Paleoceanography, 5, 669–683, 1990.
- 1322 Druffel, E. R. M.: Detection of El Niño and decade time scale variations of sea surface
- 1323 temperature from banded coral records: Implications for the carbon dioxide cycle, in:
- 1324 The carbon cycle and atmospheric CO natural variations, Archea to present, Sundquist
- 1325 E. T. and Broecker, W. S., American Geophysical Union, Washington, DC, doi:
- 1326 10.1029/GM032p0111, 1985.
- Druffel, E. R. M.: Geochemestry of corals: proxies of past ocean chemistry, ocean circulation,
 and climate, Proc. Natl. Acad. Sci. USA., 94, 8354-8361, 1997.
- Dunbar, R. G. and Wellington, G. M.: Stable isotopes in a branching coral monitor seasonal
 temperature variation, Nature, 293, 453–455, 1981.
- 1331Dunbar, R. G., Wellington, G. M., Colgan, M. W. and Glynn, P. W.: Eastern Pacific sea1332surface temperature since 1600 A.D.: the δ^{18} O record of climate variability in
- 1333 Galapagos corals, Paleoceanography, 9, 291–315, 1994.
- 1334 Epstein, S., Buschbaum, R., Lowenstam, H. A. and Urey, H. C.: Revised carbonate-water
- 1335 isotopic temperature scale, Geol. Soc. Am. Bull., 64, 1315–1325, 1953.
- 43

- Fairbanks, R. G., Evans, M. N., Rubenstone, J. L., Mortlock, R. A., Broad, K., Moore, M. D.
 and Charles, C. D.: Evaluating climate indices and their geochemical proxies
 measured in corals, Coral Reefs, 16, S93–S100, 1997.
- Felis, T., Patzold, J., Loya, Y. and Wefer, G.: Vertical water mass mixing and plankton
 blooms recorded in skeletal stable carbon isotopes of a Red Sea coral, J. Geophys.
 Res., 103: (30), 730–739, 1998.
- Felis, T., Pätzold, J. and Loya, Y.: Mean oxygen-isotope signatures in Porites spp. corals:
 inter-colony variability and correction for extension-rate effects, Coral Reefs, 22, 328–
 336, 2003.
- Franklin, D. J., Cedrés, C. and Hoegh-Guldberg, O.: Increased mortality and photoinhibition
 in the symbiotic dinoflagellates of the Indo–Pacific coral Stylophora pistillata (Esper)
 after summer bleaching, Mar. Biol., 149, 633–642, doi: 10.1007/s00227-005-0230-z.,
 2006.
- Gagan, M. K., Chivas, A. R. and Isdale, P. J.: High-resolution isotopic records from corals
 using ocean temperature and mass-spawning chronometers, Earth Planet. Sci. Lett.,
 121, 249–258, 1994.
- Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M., Dunbar, R. B. and
 Schrag, D. P.: New views of tropical paleoclimates from corals, Quaternary. Sci. Rev.,
 19, 45–64, 2000.
- Glynn, P. W., Colley, S. B., Eakin, C. M., Smith, D. B., Cortés, J., Gassman, N. J., Guzmán,
 H. M., Del Rosario, J. B. and Feingold, J. S.: Reef coral reproduction in the eastern
 Pacific: Costa Rica, Panamá and the Galápagos Islands (Ecuador). II. Poritidae, Mar.
 Biol., 118, 191-208, 1994.
- Grossman, E. L and Ku T. L.: Oxygen and carbon isotope fractionation in biogenic aragonite:
 temperature effects, Chem. Geol., 59, 59–74, 1986.
- Grottoli, A. G. and Wellington, G. M.: Effect of light and zooplankton on skeletal δ¹³C values
 in the eastern Pacific corals Pavona clavus and Pavona gigantean, Coral Reefs 18, 2941, 1999.
- 1364Grottoli, A. G. and Eakin, C. M.: A review of modern coral δ^{18} O and Δ^{14} C proxy records,1365Earth. Sci. Rev., 81, 67–91, 2007.
- Guzmán, H. M. and Cortés, J.: Growth rates of eight species of scleractinian corals in the
 eastern Pacific (Costa Rica), Bull. Mar. Sci., 44, 1186-1194, 1989.
- 44

- Halfar, J., Godinez-Orta, L., Rieg, B. J., Valdez-Holguin, E. and Borges, J. M.: Living on the
 edge: high-latitude Porites carbonate production under temperate eutrophic conditions,
 Coral Reefs, 24, 582-592, 2005.
- Hoegh-Guldberg, O.: Climate change, coral bleaching and the future of the world's coral
 reefs, Mar. Freshw. Res., 50, 839–866, 1999.
- Hönisch, B., Hemming, N. G., Grottoli, A. G., Amat, A., Hanson, G. N. and Bijma, J.:
 Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and
- 1375 vital effects, Geochim. Cosmochim. Acta. 68, 3675–3685, 2004.
- Howard, D. W. and Smith, C. S.: Histological techniques for marine bivalve mollusks. NOAA
 Tech Memo NMFSF/ NEC-25. US Department of Commerce, Woods Hole, MA,
 1983.
- Hudson, J. H., Shinn, E. A., Halley, R. B. and Lidz, B.: Sclerochronology: A tool for
 interpreting past environments, Geology, 4, 361–364, 1976.
- 1381 Humason, G.L.: Animal tissue techniques, W. H. Freeman, San Francisco, 1979.
- Jokiel, P.L.: Temperature stress and coral bleaching, in: Rosenberg, E. and Loya, Y. (Eds.),
 Coral Health and Disease, Springer-Verlag, Heidelberg, pp. 401–425, 2004.
- Klein, R., Pätzold, J., Wefer, G. and Loya, Y.: Seasonal variation in the stable isotopic
 composition and skeletal density pattern of the coral Porites lobata (Gulf of Eliat, Red
 Sea), Mar. Biol., 112, 259–263, 1992.
- Kramer, P. A., Swart, P. K. and Szmant, A. M.: The influence of different sexual reproductive
 patterns on density banding and stable isotopic compositions of corals, Proc. of the 7th
 International Coral Reef Symposium, Guam, 1, 222, 1993.
- Land, L. S, Lang, J. C. and Barnes, D. J.: Extension rate a primary control on the isotopic
 composition of West Indian (Jamaican) scleractinian reef coral skeletons, Mar. Biol.,
 33, 221–233, 1975.
- Le Bec, N., Julliet-Leclere, A., Corrége, T., Blamart, D. and Delcroix, T.: A coral δ¹⁸O of
 ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific).
 Geophys. Res. Lett. 27, 387–3900, 2000
- 1396 Linsley, B. K., Dunbar, R. B., Wellington, G. M. and Mucciarone, D. A.: A coral-based
- reconstruction of intertropical convergence zone variability over Central America
 since 1707, J. Geophys. Res., 99, 9977–9994, 1994.

1399	Linsley, B. K., Messier, R. G. and Dunbar, R. B.: Assessing between-colony oxygen isotope		
1400	variability in the coral Porites lobata at Clipperton Atoll, Coral Reefs, 18, 13–27,		
1401	1999.		
1402	Lough, J. M., Barnes, D. J. and Taylor, R. B.: The potential of massive corals for the study of		
1403	high-resolution climate variations in the past millennium, in: Jones, P. D., Bradley, R.		
1404	S. and Jouzel, J. (eds) Climate variations and forcing mechanisms of the last 2000		
1405	years, Pub NATO Advanced Research Workshop series, Springer-Verlag, Berlin, pp		
1406	357–373, 1996.		
1407	Lough, J. M. and Barnes, D. J.: Environmental controls on growth of the massive coral		
1408	Porites, J. Exp. Mar. Biol. Ecol., 245, 225-243, 2000.		
1409	Lough, J. M. and Cooper, T. F.: New insights from coral growth band studies in an era of		
1410	rapid environmental change, Earth. Sci. Rev., 108, 170-184, 2011.		
1411	McConnaughey, T.A.: ¹³ C and ¹⁸ O disequilibrium in biological carbonates: I Patterns,		
1412	Gechim. Cosmochim. Acta., 53, 151–162, 1989.		
1413	McConnaughey, T. A., Burdett, J., Whelan, J. F., and Paull, C. K.: Respiration and		
1414	photosynthesis: Effects on the carbon-13 content of biological carbonates, Geochim.		
1415	Cosmochim. Acta, 61, 611-622, 1997.		
1416	McCrea, J. M.: On the isotopic chemistry of carbonates and a paleotemperature scale, J.		
1417	Chem. Phys., 18, 849–857, 1950.		
1418	Obeso-Niebla, M., Shirasago-Germán, B., Gaviño-Rodríguez, J. H., Obeso-Huerta, H., Pérez-		
1419	Lezama, E. L. and Jiménez-Illescas, A. R.: Hydrography at the north mouth of La Paz		
1420	Bay, Baja California Sur, México, Cienc. Mar., 33, 281–291, 2007.		
1421	Quinn, T. M., Taylor, F. W., Crowley, T. J.: A 173 year stable isotope record from a tropical		
1422	south Pacific coral, Quaternaty. Sci. Rev., 12, 407-418, 1993.	_	Con formato: Español (México)
1423	Reyes-Bonilla, H., González-Romero, S., Cruz-Piñón, G. and Calderón-Aguilera, L.E.:		
1424	Corales pétreos, in: Danemann G, Ezcurra E (eds) Bahía de los Ángeles: recursos		
1425	naturales y comunidad. Línea Base 2007, Secretaria de Medio Ambiente y Recursos	_	Con formato: Español (México)
1426	Naturales, PRONATURA, Instituto Nacional de Ecología, San Diego Natural History		
1427	Museum, Ensenada, Mexico, pp 291–318, 2007.		
1428	Rodionov, S. N.: A sequential algorithm for testing climate regime shifts, Geophys. Res. Lett.		
1429	31, L09204, doi:10.1029/2004GL019448, 2004.		

- Rodríguez-Troncoso, A. P., Carpizo-Ituarte, E., Leyte-Morales, G. E, Chi-Barragán, G. and
 Tapia-Vázquez, O.: Sexual reproduction of three coral species from the Mexican
 South Pacific, Mar. Biol., 158, 2673-2683, 2011.
- 1433 Rollion-Bard, C., Chaussidon, M. and France-Lanord, C.: pH control on oxygen isotopic

1434 composition of symbiotic corals, Earth. Planet. Sci. Lett., 215, 275–288, 2003.

Romanek, C. S., Grossman, E. L. and Morse, J, W.: Carbon isotopic fractionation in synthetic
aragonite and calcite: Effects of temperature and precipitation rate, Geochim.

1437 Cosmochim. Acta, 56, 419-430, 1992.

- Sazzad, H. M. D., Wijaya, A. R., Tanaka, K. and Ohde, S.: Environmental effects on the
 stable carbon and oxygen isotopic compositions and skeletal density banding pattern
 of Porites coral from Khang Khao Island, Thailand, Afr. J. Biotechnol., 9, 5373–5382,
 2010.
- Schrag, D. P.: Rapid analysis of high-precision Sr/Ca ratios in coral and other marine
 carbonates, Paleoceanography, 14, 97–102, 1999.
- Sicard-González, M. T., Tripp-Valdéz, M. A., Ocampo, L., Maeda-Martínez, A. N., and
 Lluch-Cota, S. E.: Coastal sea surface temperature records along the Baja California
 Peninsula, Oceánides, 27, 65–69, 2012.
- Smith, J. E., Scwarcz, H. P. and Risk, M. J.: Paleotemperatures from deep-sea corals:
 Overcoming "vital effects", Palaios, 15:(1), 25-32, 2000.
- 1449Sun, D., Su, R., McConnaughey, T. A. and Bloemendal, J. Variability of skeletal growth and1450 δ^{13} C in massive corals from the South China Sea: Effect of photosynthesis, respiration1451and human activities, Chemical Geology, 255, 414-425, 2008.
- Swart, P. K.: Carbon and oxygen isotope fractionation in sclereactinian corals: a review,
 Earth-Sci. Rev., 19:51-80, 1983.
- 1454 Swart, P. K., Dodge, R. E. and Hudson, H. J.: A 240-year stable oxygen and carbon isotopic
 1455 record in a coral from South Florida: implications for the prediction of precipitation in
 1456 Southern Florida, Palaios, 11, 362–373, 1996a.
- Swart, P. K., Leder, J. J., Szmant, A. M. and Dodge, R. E.: The origin of variations in the
 isotopic record of sclereactinian corals: II, Carbon. Geochim. Cosmochim. Acta, 60:
 2871-2885, 1996b.
- 1460 Szmant, A. M.: Reproductive ecology of Caribbean reef corals, Coral Reefs, 5, 43–54, 1986.

- Taylor, R. B., Barnes D. J. and Lough J. M.: On the inclusion of trace materials into massive
 coral skeletons. 1. Materials occurring in the environment in short pulses. J. Exp. Mar.
 Biol. Ecol. 185:255–278, 1995
- 1464 Tudhope, A. W., Lea, D. W., Shimmield, G. B., Chilcott, C. P. and Head, S.: Monsoon
- climate and Arabian Sea coastal upwelling recorded in massive corals from southernOman, Palaios, 11, 347–361, 1996.
- Weber, J. N. and Woodhead, P. M. J.: Temperature dependence of oxygen-18 concentration
 in reef coral carbonates, J. Geophys. Res., 77, 464–473, 1972.
- Wellington, G. M. and Dunbar, R.B.: Stable isotopic signature of El Niño–Southern
 Oscillation events in eastern tropical Pacific reef corals, Coral Reefs, 14, 5–25, 1995.
- 1471 Wellington, G. M., Dunbar, R. B. and Merlen, G.: Calibration of stable oxygen isotope
- signatures in Galapagos corals, Paleoceanography, 11, 467–480, 1996.
- 1473 Author contributions
- 1474 RACT and EFB conceived and designed the study; RACT, AHRD and AS processed
- 1475 isotopically the material. RACT, AS, HRB and EFB analyzed the data. All authors discussed
- 1476 the results and wrote the manuscript.

1477 **Table 1.** Summary of the overall average extension rate, skeletal density, calcification rate,

1478 | δ^{18} O and δ^{13} C of *Porites panamensis* colonies from Bahía de La Paz, Gulf of California. <u>Time</u>

Avg $\delta^{18}O$ Avg $\delta^{13}C$ Colony Sex Avg Ext Avg Den Avg Cal $(g \text{ cm}^{-2} \text{ yr}^{-1})$ $(\mathrm{cm} \mathrm{yr}^{-1})$ $(g \text{ cm}^{-3})$ (‰) (‰) BLP32 F 1.06 ± 0.32 0.87 ± 0.04 0.88 ± 0.25 -2.94 ± 0.35 -1.66 ± 0.38 BLP33 F 0.94 ± 0.22 0.98 ± 0.01 0.93 ± 0.22 -2.88 ± 0.32 -1.65 ± 0.39 BLP36 F 1.05 ± 0.31 0.93 ± 0.04 1.03 ± 0.29 -2.89 ± 0.33 -1.67 ± 0.38 BLP40 F 1.10 ± 0.19 0.94 ± 0.02 1.03 ± 0.17 -2.87 ± 0.31 -1.66 ± 0.39 -1.39 ± 0.37 BLP31 М $1.21\pm\ 0.61$ 0.90 ± 0.08 1.21 ± 0.44 -3.19 ± 0.38 -1.37 ± 0.37 BLP34 Μ 1.35 ± 0.30 0.98 ± 0.04 1.33 ± 0.29 -3.25 ± 0.38 -1.39 ± 0.37 BLP35 Μ 1.59 ± 0.31 0.95 ± 0.01 1.61 ± 0.28 -3.19 ± 0.37 -1.39 ± 0.38 BLP37 М 1.28 ± 0.34 0.96 ± 0.03 1.23 ± 0.34 -3.21 ± 0.39 -1.39 ± 0.38 BLP38 М 0.83 ± 0.36 0.88 ± 0.02 0.75 ± 0.33 -3.19 ± 0.37 -1.38 ± 0.37 BLP39 Μ 1.39 ± 0.40 1.00 ± 0.02 1.40 ± 0.40 -3.18 ± 0.37 Avg F F 1.05 ± 0.04 0.94 ± 0.01 0.97 ± 0.04 -2.89 ± 0.33 -1.66 ± 0.38 Avg M М 1.27 ± 0.04 0.95 ± 0.01 1.24 ± 0.03 -3.20 ± 0.37 -1.38 ± 0.37

1480

1479

period of data is from 1997 to 2009.

1481

49

1482 **Table 2.** Correlation coefficients between skeletal δ^{18} O of *Porites panamensis* colonies and:

1483 Sea surface temperature, precipitation, photosynthetically active radiation and chlorophyll *a*

1484	from Bahía de La Paz	ime period covered by correlations is from	1997 to 2009. Tempora

	Colony	Sev	SS	ST	Precipitation		PAR Chlorophyl		ohyll a	
		ыл	r	p	r	p	r	p	r	p
	BLP32	F	-0.36	0.007	0.10	0.44	-0.41	0.02	-0.08	0.55
	BLP33	F	-0.35	0.01	0.07	0.58	-0.40	0.03	-0.11	0.44
	BLP36	F	-0.37	0.006	0.08	0.55	-0.42	0.02	-0.11	0.42
	BLP40	F	-0.38	0.006	0.08	0.54	-0.41	0.02	-0.11	0.43
	BLP31	Μ	-0.28	0.04	0.05	0.68	-0.36	0.05	-0.06	0.64
	BLP34	Μ	-0.26	0.06	0.06	0.65	-0.31	0.09	-0.08	0.53
	BLP35	Μ	-0.29	0.03	0.06	0.67	-0.36	0.05	-0.06	0.65
	BLP37	Μ	-0.28	0.04	0.06	0.65	-0.34	0.06	-0.07	0.60
	BLP38	Μ	-0.29	0.03	0.06	0.67	-0.36	0.04	-0.05	0.68
	BLP39	Μ	-0.28	0.04	0.05	0.69	-0.36	0.05	-0.06	0.64

1485 resolution of data is quarterly. Bold numbers indicate significant (p < 0.05) correlations.

1486

1487

50

Table 3. Correlation coefficients between skeletal δ^{13} C of *Porites panamensis* colonies and: 1488

Sea surface temperature, precipitation, photosynthetically active radiation and chlorophyll a 1489

from Bahía de La Paz. Time period covered by correlations is from 1997 to 2009. Temporal 1490

Colony	Sex	SS	Т	Precipitation		PA	R	Chlorophyll a		
		r	p	r	р	r	p	r	р	
BLP32	F	0.19	0.17	-0.07	0.62	-0.11	0.54	0.10	0.45	
BLP33	F	0.17	0.22	-0.04	0.73	-0.12	0.51	0.11	0.43	
BLP36	F	0.17	0.22	-0.06	0.63	-0.16	0.38	0.09	0.51	
BLP40	F	0.15	0.28	-0.07	0.62	-0.11	0.54	0.08	0.52	
BLP31	Μ	0.005	0.97	-0.01	0.89	-0.33	0.07	0.24	0.08	
BLP34	Μ	0.03	0.79	-0.02	0.86	-0.35	0.05	0.25	0.07	
BLP35	Μ	0.01	0.93	-0.02	0.84	-0.35	0.06	0.26	0.05	
BLP37	Μ	0.01	0.92	-0.01	0.93	-0.32	0.08	0.25	0.07	
BLP38	Μ	0.003	0.98	-0.01	0.93	-0.32	0.09	0.25	0.07	
BLP39	Μ	0.02	0.88	-0.02	0.88	-0.33	0.07	0.24	0.09	

resolution of data is quarterly. Bold numbers indicate significant (p < 0.05) correlations. 1491

													10				
1492	Table 4.	Heiko	op et al.	(2000) co	orrection	factor re	sults con	nparing	transforn	ned and	metabolic	<u>skeleta</u>	$1\delta^{13}C$ of I	<u>Porites</u>			Con formato: Resaltar
1493	panamen	sis col	onies fro	m Bahía	de La Pa	ız.											Con formato: Izquierda
	<u></u>																
						Transf	ormed	Tra	nsformed	Me	etabolic δ	¹³ C	Metabolic	$\delta^{13}C$	•		Tabla con formato
						s ¹³ C E	amalaa	s13	C Malaa		Females		Malas (N	200)			Con formato: Resaltar
						<u>0 C F</u>	emales	0	<u>U iviales</u>		remates		Iviales (IN-	<u>=300)</u>			Con formato: Centrado
						<u>(N=</u>	<u>200)</u>	$\underline{0}$	<u>V=300)</u>		<u>(N=200)</u>						Con formato: Resaltar
				Me	an	5.082		6.30			6.23		7.13		•		Con formato: Resaltar
					<u>an</u>	<u></u>	02		0.50		0.25		<u>/...</u>			\frown	Con formato: Centrado
				SI	D	0.9	<mark>90</mark>		0.97		<mark>0.90</mark>		<mark>0.96</mark>		•		Con formato: Resaltar
1404				-													Con formato: Centrado
1494																	
1495	Table <mark>5</mark>	4. Cori	elation of	oefficier	nts betwe	en skelet	al exten	sion rate	, skeletal	density	and calci	fication	rate, and	skeletal			
1496	$\delta^{18}O$ and	$\delta^{13}C$ o	f Porites	paname	ensis colo	nies fror	n Bahía	de La Pa	z. <u>Time</u>	period c	overed by	correla	tions is fr	om 1997			Con formato: Resaltar
1497	to	2009.	Tempor	al resolut	ion of da	ata is ann	ual. Bol	d numbe	ers indica	te signif	icant (<i>n</i> <	(0.05) c	orrelation	s.			
, ,		~		2180	~	2180		2180		2130			<u> </u>	<u>al3a</u>			
	Colony	Sex	Ext vs	9 ¹⁰ 0	Den v	s ð ¹⁰ O	Cal v	s ð ¹⁰ O	Ext vs	5 8 ¹⁵ C	Den vs	s ð ⁿ C	Cal vs	5 8 ¹⁵ C			
	DI D20	_	r	<u>p</u>	r	<i>p</i>	r	<i>p</i>	r	<u>p</u>	r	<u>p</u>	r	<u>p</u>			
	BLP32	Г Г	0.34	0.24	-0.81	0.001	0.31	0.23	0.42	0.14	-0.20	0.53	0.43	0.14			
	DLP33	Г	0.37	0.22	-0.05	0.001	0.40	0.19	0.45	0.12	-0.11	0.71	0.39	0.25			
	DLP30 DLD40	Г Г	0.54	0.21	-0.78	0.005	0.41	0.17	0.41	0.11	-0.07	0.80	0.43	0.15			
	DLP40 DLD21	Г	0.40	0.18	-0.75	0.008	0.40	0.18	0.39	0.25	-0.09	0.74	0.37	0.20			
	DLP31 DID34	IVI M	0.01	U.U1ð 0.019	-0.15	0.09	-0.51	0.008	-0.20	0.55	-0.55	0.23	-0.38	0.21			
	DLP34 DLD25	M	0.62	0.018	-0.19	0.55	-0.54	0.005	-0.28	0.55	-0.50	0.21	-0.55	0.24			
	BLF33 BL D37	M	0.07	0.009	-0.10	0.05	-0.49		-0.30	0.29	-0.41	0.13	-0.52	0.29			
	BL D39	M	0.55	0.021	0.20	0.40	0.47	0.019	0.38	0.21	0.30	0.21	0.29	0.34			
	BLP30	M	0.00	0.023	-0.13	0.30	-0.51	0.001	-0.24	0.33	-0.35	0.21	-0.24	0.34			
	DL1 37	141	0.05	0.011	0.24	0.57	0.51	0.000	0.25	0.54	0.50	0.21	0.20	0.55			

1499			
1500	Figure Captions	_	Con formato: Inglés (Estados Unidos)
1501			
1502	Fig. 1. Map showing Location of coral sampling site in Bahía de La Paz, México,	_	Con formato: Resaltar
1503	Fig.2. Negative X-Radiographs showing skeletal growth density band pairs of two Porites	\square	Con formato: Fuente: Sin Negrita, Resaltar
1504	panamensis corals (one male and one female) of Bahía de La Paz. The numbers on the image		Con formato: Resaltar
1505	mark the years of the corresponding high density bands		Con formato: Fuente: Sin Negrita, Resaltar
1506	Fig. 13 . (a) Seasonal variation in δ^{18} O composition (VPDB) from <i>Porites panamensis</i> coral		Con formato: Resaltar
1507	colonies along the major growth axis. Blue lines represent male colonies; Red lines represent		Con formato: Fuente: Sin Negrita, Resaltar
1508	female colonies; red dotted line female colonies' regime mean; blue dotted line, male		Con formato: Resaltar
1509	colonies' regime mean. (b) Satellite sea surface temperature and precipitation (1997–2009)	1	Con formato: Fuente: Sin Negrita, Resaltar
1510	records. Sea surface temperature (red line; °C), mean sea surface temperature (dotted red line;		Con formato: Resaltar
1511	°C), precipitation (blue line; mm), mean precipitation (dotted blue line; mm). Note the regime	_	Con formato: Resaltar
1512	shift in the precipitation mean in 2003.		
1513			
1514	Fig. <u>24</u> . (a) Seasonal variation in δ^{13} C composition (VPDB) from <i>Porites panamensis</i> coral	_	Con formato: Resaltar
1515	colonies along the major growth axis. Blue lines represent male colonies; Red lines represent		
1516	female colonies; red dotted line female colonies' regime mean; blue dotted line, male		
1517	colonies' regime mean. (b) Satellite chlorophyll a and PAR (1997–2009) records. Clorophyll		
1518	<i>a</i> (red line; mg Γ^1), mean chlorophyll <i>a</i> (dotted red line; mg Γ^1), photosynthetically active		
1519	radiation (blue line; $E m^{-2} Day^{-1}$), photosynthetically active radiation (dotted blue line; $E m^{-2}$		
1520	Day ⁻¹).		
1521			
1522	Fig. 35. Linear regressions between satellite derived sea surface temperature (°C) and skeletal	_	Con formato: Resaltar
1523	δ ¹⁸ O (VPDB) of female, and male <i>Porites panamensis</i> coral from Bahía de La Paz. <u>Time</u>	_	Con formato: Resaltar
1524	period covered by analyses is from 1997 to 2009. Temporal resolution of data is quarterly.		
1525	This includes all isotopic data of all colonies. Line equations and coefficients are shown.	_	Con formato: Resaltar
1526			
1527	Fig. <u>64.</u> Plot of δ^{13} C vs. δ^{18} O of female (red dots), and male (blue dots) <i>Porites panamensis</i>	_	Con formato: Resaltar
1528	coral from Bahía de La Paz. This includes all isotopic data of all colonies. Line equations and	_	Con formato: Resaltar
1529	coefficients (red represents females; blue represents males) are shown.		Con formato: Resaltar
1530			
1531			

